[go: up one dir, main page]

CN111900168A - Memory cells, memory devices and electronic equipment - Google Patents

Memory cells, memory devices and electronic equipment Download PDF

Info

Publication number
CN111900168A
CN111900168A CN202010944026.7A CN202010944026A CN111900168A CN 111900168 A CN111900168 A CN 111900168A CN 202010944026 A CN202010944026 A CN 202010944026A CN 111900168 A CN111900168 A CN 111900168A
Authority
CN
China
Prior art keywords
layer
conductive
capacitor
memory cell
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010944026.7A
Other languages
Chinese (zh)
Inventor
朱慧珑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN202010944026.7A priority Critical patent/CN111900168A/en
Publication of CN111900168A publication Critical patent/CN111900168A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)

Abstract

公开了一种存储单元、存储器件及电子设备。根据实施例,存储单元可以包括:晶体管;以及与该晶体管连接的电容组件,其中,该电容组件包括彼此串联连接的正电容器以及负电容器。电容组件形成为沟槽电容器,该沟槽的形状为U型,包括两个竖直侧壁和连接竖直侧壁的底壁;电容组件包括第一导电层‑电介质层‑第二导电层‑负电容材料层‑第三导电层的叠层;并且各个导电层包括金属电极材料层。

Figure 202010944026

A storage unit, a storage device and an electronic device are disclosed. According to an embodiment, the memory cell may include: a transistor; and a capacitive component connected with the transistor, wherein the capacitive component includes a positive capacitor and a negative capacitor connected in series with each other. The capacitor component is formed as a trench capacitor, and the shape of the trench is U-shaped, including two vertical sidewalls and a bottom wall connecting the vertical sidewalls; the capacitor component includes a first conductive layer-dielectric layer-second conductive layer- A stack of negative capacitance material layers-third conductive layers; and each conductive layer includes a metal electrode material layer.

Figure 202010944026

Description

存储单元、存储器件及电子设备Memory cells, memory devices and electronic equipment

本案是申请号为“201610048641.3”、申请日为2016年01月25日、发明名称为“存储单元、存储器件及电子设备”的母案申请的分案申请,通过引用将母案的全部内容包括于此。This case is a divisional application of the parent application with the application number of "201610048641.3", the filing date of January 25, 2016, and the name of the invention "memory unit, storage device and electronic equipment". The entire content of the parent case is included by reference here.

技术领域technical field

本公开涉及存储领域,更具体地,涉及一种具有大存储电容的存储单元、包括该存储单元的存储器件以及包括该存储器件的电子设备。The present disclosure relates to the field of storage, and more particularly, to a storage unit with a large storage capacitance, a storage device including the storage unit, and an electronic device including the storage device.

背景技术Background technique

在存储器件中经常利用电容器来储存电荷,以便存储数据。但是,随着器件的不断小型化,用来形成电容器的芯片面积不断缩小,从而电容器的电容值变小。为了确保存储性能,期望在不占用过大芯片面积的情况下,得到尽可能大的电容。Capacitors are often used in memory devices to store charge in order to store data. However, with the continuous miniaturization of devices, the area of the chip used to form the capacitor has continued to shrink, so that the capacitance value of the capacitor has become smaller. In order to ensure memory performance, it is desirable to obtain as large a capacitance as possible without occupying an excessively large chip area.

发明内容SUMMARY OF THE INVENTION

本公开的目的至少部分地在于提供一种具有大存储电容的存储单元、包括该存储单元的存储器件以及包括该存储器件的电子设备。An object of the present disclosure is, at least in part, to provide a memory cell having a large storage capacitance, a memory device including the memory cell, and an electronic device including the memory device.

根据本公开的一个方面,提供了一种存储单元,包括:晶体管;以及与该晶体管连接的电容组件,其中,该电容组件包括彼此串联连接的正电容器以及负电容器。According to one aspect of the present disclosure, there is provided a memory cell including: a transistor; and a capacitance component connected with the transistor, wherein the capacitance component includes a positive capacitor and a negative capacitor connected in series with each other.

根据本公开的另一方面,提供了一种存储器件,包括上述存储单元。According to another aspect of the present disclosure, there is provided a memory device including the above-described memory cell.

根据本公开的再一方面,提供了一种电子设备,包括上述存储器件。According to yet another aspect of the present disclosure, there is provided an electronic device including the above-mentioned storage device.

根据本公开的实施例,利用负电容器和常规电容器(或者说,正电容器)的串联组合来形成存储电容组件。与常规存储电容相比,在相同的占用面积下,这种电容组件可以实现大的存储电容。According to an embodiment of the present disclosure, a storage capacitor assembly is formed using a series combination of a negative capacitor and a conventional capacitor (or, in other words, a positive capacitor). Compared with conventional storage capacitors, such capacitor components can realize large storage capacitors under the same footprint.

附图说明Description of drawings

通过以下参照附图对本公开实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:The above and other objects, features and advantages of the present disclosure will become more apparent from the following description of embodiments of the present disclosure with reference to the accompanying drawings, in which:

图1是示出了根据本公开实施例的存储单元的示意电路图;FIG. 1 is a schematic circuit diagram illustrating a memory cell according to an embodiment of the present disclosure;

图2(a)-2(g)是示出了根据本公开实施例的制造存储单元的流程中部分阶段的截面图;2(a)-2(g) are cross-sectional views illustrating some stages in a flow of manufacturing a memory cell according to an embodiment of the present disclosure;

图3是示出了根据本公开另一实施例的存储单元的配置的截面图;3 is a cross-sectional view illustrating a configuration of a memory cell according to another embodiment of the present disclosure;

图4(a)-4(d)是示出了根据本公开另一实施例的制造存储单元的流程中部分阶段的截面图;4(a)-4(d) are cross-sectional views illustrating some stages in a process of manufacturing a memory cell according to another embodiment of the present disclosure;

图5是示出了根据本公开另一实施例的存储单元的配置的截面图。5 is a cross-sectional view illustrating a configuration of a memory cell according to another embodiment of the present disclosure.

贯穿附图,以相同的附图标记来表示相同或相似的部件。Throughout the drawings, the same reference numerals are used to refer to the same or like parts.

具体实施方式Detailed ways

以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. It should be understood, however, that these descriptions are exemplary only, and are not intended to limit the scope of the present disclosure. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concepts of the present disclosure.

在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。Various structural schematic diagrams according to embodiments of the present disclosure are shown in the accompanying drawings. The figures are not to scale, some details have been exaggerated for clarity, and some details may have been omitted. The shapes of the various regions and layers shown in the figures, as well as their relative sizes and positional relationships are only exemplary, and in practice, there may be deviations due to manufacturing tolerances or technical limitations, and those skilled in the art should Regions/layers with different shapes, sizes, relative positions can be additionally designed as desired.

在本公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。In the context of this disclosure, when a layer/element is referred to as being "on" another layer/element, it can be directly on the other layer/element or intervening layers/elements may be present therebetween. element. In addition, if a layer/element is "on" another layer/element in one orientation, then when the orientation is reversed, the layer/element can be "under" the other layer/element.

图1是示出了根据本公开实施例的存储单元的示意电路图。FIG. 1 is a schematic circuit diagram illustrating a memory cell according to an embodiment of the present disclosure.

如图1所示,根据该实施例的存储单元100包括晶体管101以及与该晶体管连接的电容组件103。例如,这种存储单元可以构成1T1C配置的动态随机存取存储(DRAM)单元。As shown in FIG. 1 , the memory cell 100 according to this embodiment includes a transistor 101 and a capacitance component 103 connected to the transistor. For example, such memory cells may constitute dynamic random access memory (DRAM) cells in a 1T1C configuration.

晶体管101可以包括各种形式的晶体管,例如各种形式的金属氧化物半导体场效应晶体管(MOSFET),如鳍式场效应晶体管(FinFET)、绝缘体上半导体(SOI)MOSFET、纳米线场效应晶体管(nanowire FET)等等。Transistor 101 may include various forms of transistors, such as various forms of metal oxide semiconductor field effect transistors (MOSFETs), such as fin field effect transistors (FinFETs), semiconductor-on-insulator (SOI) MOSFETs, nanowire field effect transistors ( nanowire FET) and so on.

一般地,晶体管101可以包括栅极、源极和漏极。在图1的示例中,栅极可以连接到端子T1,源极/漏极之一可以连接到端子T2,且源极/漏极中另一个可以连接到电容组件103。电容组件103的另一端连接到端子T3。因此,在该示例中,晶体管101与电容组件103呈串联连接。Generally, transistor 101 may include a gate, a source and a drain. In the example of FIG. 1 , the gate may be connected to the terminal T1 , one of the source/drain may be connected to the terminal T2 , and the other of the source/drain may be connected to the capacitive component 103 . The other end of the capacitance component 103 is connected to the terminal T3. Thus, in this example, the transistor 101 is connected in series with the capacitive component 103 .

电容组件103可以包括串联连接的常规电容器(或者说,正电容器)1031与负电容器1033。一般地,电容器包括极板-电介质层-极板的配置,电介质层可以储存电荷。常规的电容器呈“正”电容特性,即,当电介质层储存的电荷增多时,两个极板间的电压增大。在本公开中,将这种电介质层称作常规电介质层,或者直接简称为电介质层,这与该术语在本领域的常规含义相同。与此不同,某些材料在一定状态下,可以呈现“负”电容特性,即,随着其中储存的电荷增多,极板间的电压反而表现为降低。这种材料称作“负电容材料”。例如,某些铁电材料(例如含Zr、Ba或Sr的材料,如HfZrO2、BaTiO3、KH2PO4或NBT等)在到达某一临界电场时,可发生极化现象。极化使得大量的束缚电荷瞬间积累在材料的表面,使铁电材料两端的电压减小。The capacitive component 103 may include a conventional capacitor (or, a positive capacitor) 1031 and a negative capacitor 1033 connected in series. Typically, capacitors include a plate-dielectric layer-plate configuration, where the dielectric layer can store charge. Conventional capacitors exhibit "positive" capacitive characteristics, that is, as the charge stored in the dielectric layer increases, the voltage across the two plates increases. In this disclosure, such a dielectric layer is referred to as a conventional dielectric layer, or simply simply a dielectric layer, as the term has the conventional meaning in the art. In contrast, some materials can exhibit "negative" capacitive properties under certain conditions, that is, as the stored charge increases, the voltage between the plates appears to decrease instead. Such materials are referred to as "negative capacitance materials". For example, some ferroelectric materials (such as Zr, Ba or Sr-containing materials, such as HfZrO 2 , BaTiO 3 , KH 2 PO 4 or NBT, etc.) can polarize when they reach a certain critical electric field. The polarization causes a large amount of bound charges to accumulate on the surface of the material instantaneously, reducing the voltage across the ferroelectric material.

由于串联关系,电容组件103的电容Ct可以表示为:Due to the series relationship, the capacitance C t of the capacitive component 103 can be expressed as:

Ct=|Cn|C/(|Cn|-C),C t =|C n |C/(|C n |-C),

其中,C是正电容器1031的电容值,Cn是负电容器1033的电容值(如上所述,为负值),|Cn|表示Cn的绝对值。根据上式可以看出,当|Cn|近似等于C时,Ct可以趋于无穷大。当然,这是理想情形,在实际中,也可以实现相当大的电容Ct(例如,绝对值为C的约2~5倍)。优选地,|Cn|>C。Here, C is the capacitance value of the positive capacitor 1031, C n is the capacitance value of the negative capacitor 1033 (a negative value as described above), and |C n | represents the absolute value of C n . According to the above formula, it can be seen that when |C n | is approximately equal to C, C t can tend to infinity. Of course, this is an ideal situation, and in practice, a relatively large capacitance Ct (eg, about 2-5 times the absolute value of C) can also be achieved. Preferably, |C n |>C.

鉴于电容器的叠层配置以及串联连接关系,电容组件103可以形成为第一导电层-电介质层-第二导电层-负电容材料层-第三导电层的叠层形式。此时,第一导电层-电介质层-第二导电层可以构成正电容器1031,而第二导电层-负电容材料层-第三导电层可以构成负电容器1033,且由于公共的第二导电层,它们形成串联连接。或者,电容组件103可以形成为第一导电层-电介质层-负电容材料层-第三导电层的叠层形式。此时,第一导电层、第三导电层构成电容组件103的两个极板,电介质层和负电容材料层的组合构成电容组件103的电容介质。In view of the stacked configuration of the capacitors and the series connection relationship, the capacitor component 103 may be formed in a stacked form of a first conductive layer-dielectric layer-second conductive layer-negative capacitance material layer-third conductive layer. At this time, the first conductive layer-dielectric layer-second conductive layer can form a positive capacitor 1031, and the second conductive layer-negative capacitive material layer-third conductive layer can form a negative capacitor 1033, and since the common second conductive layer , they form a series connection. Alternatively, the capacitive component 103 may be formed in the form of a stack of the first conductive layer-dielectric layer-negative capacitive material layer-third conductive layer. At this time, the first conductive layer and the third conductive layer constitute two pole plates of the capacitor component 103 , and the combination of the dielectric layer and the negative capacitance material layer constitutes the capacitive medium of the capacitor component 103 .

根据本公开的实施例,电容组件可以形成为沟槽电容器的形式。在有限的面积中,沟槽电容器可以增大电容器相对的极板面积,并因此增大电容值。例如,可以在晶体管所形成于的衬底中形成沟槽,或者在晶体管上方的金属化叠层的一层或多层中形成沟槽,并在沟槽中形成电容组件。电容器叠层配置中的层可以沿着沟槽的侧壁和底壁延伸。According to embodiments of the present disclosure, the capacitive components may be formed in the form of trench capacitors. In a limited area, trench capacitors can increase the opposing plate area of the capacitor and thus increase the capacitance value. For example, trenches may be formed in the substrate in which the transistors are formed, or in one or more layers of a metallization stack over the transistors, and capacitive components may be formed in the trenches. The layers in the capacitor stack configuration may extend along the side and bottom walls of the trench.

各导电层(第一导电层、第二导电层和第三导电层)可以包括各种合适的导电材料,例如金属、金属氮化物等。为了更好地与半导体工艺相兼容,导电材料可以包括半导体工艺中用来形成导电接触的材料,例如导电性的扩散阻挡材料如TiN以及金属电极材料如W等。金属电极材料可以形成低欧姆接触,从而适于需要与其他部件形成连接的导电层(例如,第一导电层或第三导电层)。另外,为了避免金属电极材料的扩散,可以与之配合使用导电性扩散阻挡材料层。Each of the conductive layers (the first conductive layer, the second conductive layer, and the third conductive layer) may include various suitable conductive materials, such as metals, metal nitrides, and the like. For better compatibility with semiconductor processes, the conductive materials may include materials used in semiconductor processes to form conductive contacts, such as conductive diffusion barrier materials such as TiN and metal electrode materials such as W, and the like. Metal electrode materials can form low ohmic contacts, making them suitable for conductive layers (eg, the first conductive layer or the third conductive layer) that need to form connections to other components. In addition, in order to avoid the diffusion of the metal electrode material, a conductive diffusion barrier material layer may be used in conjunction therewith.

此外,当在衬底中形成沟槽电容器时,电容器的最外一层(第一导电层或第三导电层)可以利用衬底中的掺杂区域来形成。这种情况下,该掺杂区域可以直接连接到晶体管的源/漏之一(也可以是掺杂区),并因此将电容组件连接到晶体管。Furthermore, when forming the trench capacitor in the substrate, the outermost layer of the capacitor (either the first conductive layer or the third conductive layer) may be formed using the doped regions in the substrate. In this case, the doped region can be directly connected to one of the source/drain of the transistor (which can also be the doped region) and thus connect the capacitive component to the transistor.

这里需要指出的是,尽管在此以1T1C配置为例来描述存储单元,但是本公开不限于此。在此公开的电容组件可以应用于任何需要大电容的场合,包括各种形式的基于电容器的存储器件。It should be pointed out here that although the 1T1C configuration is used as an example to describe the memory cell, the present disclosure is not limited thereto. The capacitive assemblies disclosed herein can be applied to any application requiring large capacitance, including various forms of capacitor-based storage devices.

根据本公开的实施例,还提供了一种存储器件,可以包括多个这种存储单元。例如,存储单元可以排列成二维阵列,各存储单元的端子T1可以连接到字线,端子T2可以连接到位线,且端子T3可以连接到公共电势(例如,地电势)。通过字线,可以选择与该位线相对应的一行存储单元;通过位线,可以向所选行中与该位线相对应的存储单元写入数据或读取数据。当然,存储器件还可以实现为各种其他配置。According to an embodiment of the present disclosure, there is also provided a memory device that may include a plurality of such memory cells. For example, memory cells may be arranged in a two-dimensional array, each memory cell's terminal T1 may be connected to a word line, terminal T2 may be connected to a bit line, and terminal T3 may be connected to a common potential (eg, ground). Through the word line, a row of memory cells corresponding to the bit line can be selected; through the bit line, data can be written or read into the memory cells corresponding to the bit line in the selected row. Of course, the memory device can also be implemented in various other configurations.

图2(a)-2(g)是示出了根据本公开实施例的制造存储单元的流程中部分阶段的截面图。2(a)-2(g) are cross-sectional views illustrating some stages in a flow of manufacturing a memory cell according to an embodiment of the present disclosure.

如图2(a)所示,提供衬底1001。在此,以制作n型晶体管为例进行描述,故而衬底1001可以是p型轻掺杂的硅晶片。但是,本公开不限于此。衬底1001可以包括各种合适的衬底,例如绝缘体上半导体(SOI)衬底、化合物半导体如SiGe等。As shown in Fig. 2(a), a substrate 1001 is provided. Here, the description is made by taking the fabrication of an n-type transistor as an example, so the substrate 1001 can be a p-type lightly doped silicon wafer. However, the present disclosure is not limited thereto. The substrate 1001 may include various suitable substrates, such as semiconductor-on-insulator (SOI) substrates, compound semiconductors such as SiGe, and the like.

在衬底1001中,如上所述,可以形成沟槽,以便在其中形成电容组件。In substrate 1001, as described above, trenches may be formed to form capacitive components therein.

为此,可以如图2(a)所示,可以在衬底1001上形成硬掩模层。在该示例中,硬掩模层包括氧化物(例如,氧化硅)层1003和氮化物(例如,氮化硅)层1005。例如,氧化物层1003的厚度为约5~20nm,氮化物层1005的厚度为约50~200nm。在硬掩模层上可以形成构图(例如,通过曝光、显影进行光刻)的光刻胶1007。在此,光刻胶1007被构图为具有与将要形成的沟槽相对应的开口。To this end, as shown in FIG. 2( a ), a hard mask layer may be formed on the substrate 1001 . In this example, the hard mask layer includes an oxide (eg, silicon oxide) layer 1003 and a nitride (eg, silicon nitride) layer 1005 . For example, the thickness of the oxide layer 1003 is about 5-20 nm, and the thickness of the nitride layer 1005 is about 50-200 nm. A patterned (eg, photolithographic by exposure, development) photoresist 1007 may be formed on the hard mask layer. Here, the photoresist 1007 is patterned to have openings corresponding to the trenches to be formed.

然后,如图2(b)所示,可以利用构图的光刻胶1007为掩模,对硬掩模层(1005、1003)进行构图,如反应离子刻蚀(RIE),以将光刻胶1007的图形转移到硬掩模层(1005、1003)中。接着,可以硬掩模层(1005、1003)为掩模,对衬底1001进行构图如RIE,以在其中形成沟槽R。随后,将在该沟槽R中形成电容组件。在形成沟槽R之后,可以去除光刻胶1007。在此,可以先不去除硬掩模层,以便保护衬底1001的表面。Then, as shown in FIG. 2(b), the patterned photoresist 1007 may be used as a mask to pattern the hard mask layers (1005, 1003), such as reactive ion etching (RIE), to remove the photoresist The pattern of 1007 is transferred into the hard mask layers (1005, 1003). Next, the substrate 1001 may be patterned, eg, RIE, to form trenches R therein, using the hard mask layers ( 1005 , 1003 ) as masks. Subsequently, a capacitor element will be formed in the trench R. After the trench R is formed, the photoresist 1007 may be removed. Here, the hard mask layer may not be removed first, so as to protect the surface of the substrate 1001 .

在该示例中,可以对衬底1001靠近沟槽R的侧壁和底壁的部分进行掺杂,以形成沿沟槽R的侧壁和底壁延伸的掺杂区域(即,导电区域),并由此构成电容组件的一个极板(例如,上述第一导电层)。这种掺杂区域例如可以如下形成。具体地,如图2(c)所示,可以在形成有沟槽R的衬底1001上(在此,硬掩模层有助于形成沿沟槽R的侧壁和底壁延伸的掺杂区域),可以形成(例如,通过淀积)掺杂剂源层1009。掺杂剂源层是指包含掺杂剂的材料层。例如,掺杂剂源层1009可以包括掺杂有n型掺杂剂如As或P的氧化物。掺杂剂源层1009的厚度可以不填满沟槽R,因此其沿沟槽R的侧壁和底壁延伸。优选地,可以大致共形的方式来淀积掺杂剂源层1009。随后,可以进行退火,以将掺杂剂源层1009中的掺杂剂驱入衬底1001中。由于掺杂剂源层1009沿着沟槽R的侧壁和底壁布置,从而沿着沟槽R的侧壁和底壁形成n型掺杂区1011。之后,可以去除掺杂剂源层1009,如图2(d)所示。In this example, portions of the substrate 1001 proximate the sidewalls and bottom walls of the trench R may be doped to form doped regions (ie, conductive regions) extending along the sidewalls and bottom walls of the trench R, And thus constitute a pole plate of the capacitor assembly (for example, the above-mentioned first conductive layer). Such doped regions can be formed, for example, as follows. Specifically, as shown in FIG. 2( c ), on the substrate 1001 on which the trench R is formed (here, a hard mask layer helps to form dopant extending along the sidewall and bottom wall of the trench R region), a dopant source layer 1009 may be formed (eg, by deposition). The dopant source layer refers to a material layer containing a dopant. For example, the dopant source layer 1009 may include an oxide doped with an n-type dopant such as As or P. The thickness of the dopant source layer 1009 may not fill the trench R, so it extends along the side and bottom walls of the trench R. Preferably, the dopant source layer 1009 may be deposited in a substantially conformal manner. Subsequently, an anneal may be performed to drive the dopants in the dopant source layer 1009 into the substrate 1001 . Since the dopant source layer 1009 is arranged along the sidewall and bottom wall of the trench R, the n-type doped region 1011 is formed along the sidewall and the bottom wall of the trench R. Afterwards, the dopant source layer 1009 may be removed, as shown in FIG. 2(d).

在此需要指出的是,可以各种合适的其他方式(例如,离子注入)来形成掺杂区。It should be pointed out here that the doped regions may be formed in various other suitable manners (eg, ion implantation).

接着,可以向沟槽R中填充各材料层,以形成电容组件的叠层配置。在本示例中,在如上所述形成作为第一导电层的n型掺杂区1011之后,可以向沟槽R中依次填充电介质层、第二导电层、负电容材料层和第三导电层,来形成电容组件。Next, the trenches R may be filled with layers of materials to form a stacked configuration of capacitive components. In this example, after forming the n-type doped region 1011 as the first conductive layer as described above, the trench R may be filled with a dielectric layer, a second conductive layer, a negative capacitance material layer and a third conductive layer in sequence, to form capacitive components.

具体地,如图2(e)所示,可以依次在沟槽R中形成高K电介质层1013、导电性扩散阻挡层1015、负电容材料层1017、导电性扩散阻挡层1019和金属电极材料层1021。例如,高K电介质层1013可以包括HfO2,厚度为约1~10nm。此时,可以先在沟槽R的侧壁和底壁上形成界面层(未示出),例如氧化物层,厚度为约0.5~5nm,再在界面层上形成高K电介质层1013。备选地,代替高K电介质层1013,可以形成氧化物层,厚度例如为约2~10nm。例如,导电性扩散阻挡层1015可以包括TiN,厚度为约1~10nm;负电容材料层1017可以包括HfZrO2,厚度为约3~15nm;导电性扩散阻挡层1019可以包括TiN,厚度为约2~10nm;金属电极材料层1021可以包括W,其厚度可以填满沟槽R。这种情况下,n型掺杂区1011(第一导电层)-高K电介质层1013(电介质层)-导电性扩散阻挡层1015(第二导电层)可以构成正电容器;导电性扩散阻挡层1015(第二导电层)-负电容材料层1017-导电性扩散阻挡层1019和金属电极材料层1021(第三导电层)可以构成负电容器。在此,第三导电层包括金属电极材料层1021,这是为了更好地与后继形成的接触部(参见图2(g)中的1035-3)形成低欧姆接触;导电性扩散阻挡层1019可以避免金属电极材料层1021向负电容材料层1017中扩散。例如,可以通过依次以大致共形的方式淀积高K电介质层1013、导电性扩散阻挡层1015、负电容材料层1017、导电性扩散阻挡层1019,并淀积金属电极材料层1021以填满沟槽R,然后进行平坦化处理例如化学机械抛光(CMP)(可以硬掩模层为停止点)然后进行回蚀,来向沟槽R中填充这些层。Specifically, as shown in FIG. 2( e ), a high-K dielectric layer 1013 , a conductive diffusion barrier layer 1015 , a negative capacitance material layer 1017 , a conductive diffusion barrier layer 1019 and a metal electrode material layer may be sequentially formed in the trench R 1021. For example, the high-K dielectric layer 1013 may include HfO 2 with a thickness of about 1-10 nm. At this time, an interface layer (not shown), such as an oxide layer, may be formed on the sidewalls and bottom walls of the trench R, with a thickness of about 0.5-5 nm, and then a high-K dielectric layer 1013 is formed on the interface layer. Alternatively, instead of the high-K dielectric layer 1013, an oxide layer may be formed, eg, with a thickness of about 2-10 nm. For example, the conductive diffusion barrier layer 1015 may include TiN with a thickness of about 1-10 nm; the negative capacitance material layer 1017 may include HfZrO 2 with a thickness of about 3-15 nm; the conductive diffusion barrier layer 1019 may include TiN with a thickness of about 2 nm ~10 nm; the metal electrode material layer 1021 may include W, and its thickness may fill the trench R. In this case, the n-type doped region 1011 (first conductive layer)-high-K dielectric layer 1013 (dielectric layer)-conductive diffusion barrier layer 1015 (second conductive layer) can constitute a positive capacitor; the conductive diffusion barrier layer 1015 (second conductive layer)-negative capacitance material layer 1017-conductive diffusion barrier layer 1019 and metal electrode material layer 1021 (third conductive layer) may constitute a negative capacitor. Here, the third conductive layer includes a metal electrode material layer 1021, which is to better form a low-ohmic contact with a subsequently formed contact (see 1035-3 in FIG. 2(g) ); the conductive diffusion barrier layer 1019 Diffusion of the metal electrode material layer 1021 into the negative capacitance material layer 1017 can be avoided. For example, the high-K dielectric layer 1013, the conductive diffusion barrier layer 1015, the negative capacitance material layer 1017, the conductive diffusion barrier layer 1019, and the metal electrode material layer 1021 can be deposited in sequence in a substantially conformal manner to fill the The trenches R are then filled with these layers by planarization such as chemical mechanical polishing (CMP) (with a hard mask layer as a stop) followed by an etch back.

在该示例中,先形成电介质层1013,然后再形成负电容材料层1017。但是,本公开不限于此。例如,可以先形成负电容材料层,然后再形成电介质层。In this example, the dielectric layer 1013 is formed first, and then the negative capacitance material layer 1017 is formed. However, the present disclosure is not limited thereto. For example, the layer of negative capacitance material may be formed first, followed by the formation of the dielectric layer.

在形成电容组件之后,可以去除硬掩模层,并在衬底1001上形成晶体管。本领域存在多种方式来形成各种形式的晶体管,如MOSFET,在此不再赘述。图2(f)示出了一个晶体管的示例。如图2(f)所示,该晶体管可以包括栅堆叠(包括栅介质层1025、栅电极层1027)、绕栅堆叠形成的栅侧墙1029以及源/漏区1031。此外,图2(f)中还示出了浅沟槽隔离(STI)1023。在该示例中,晶体管是n型器件,其源/漏区1031是衬底1001中的n型掺杂区的形式。晶体管的源/漏区之一(在该示例中,图2(f)中右侧的源/漏区)延伸到与n型掺杂区1011相接,从而实现晶体管与电容组件之间的连接。After the capacitive components are formed, the hard mask layer can be removed and transistors formed on the substrate 1001 . There are many ways in the art to form various forms of transistors, such as MOSFETs, which will not be repeated here. Figure 2(f) shows an example of a transistor. As shown in FIG. 2( f ), the transistor may include a gate stack (including a gate dielectric layer 1025 and a gate electrode layer 1027 ), gate spacers 1029 formed around the gate stack, and source/drain regions 1031 . In addition, shallow trench isolation (STI) 1023 is also shown in FIG. 2(f). In this example, the transistor is an n-type device whose source/drain regions 1031 are in the form of n-type doped regions in the substrate 1001 . One of the source/drain regions of the transistor (in this example, the source/drain region on the right in Fig. 2(f)) extends to meet the n-type doped region 1011, thereby realizing the connection between the transistor and the capacitive component .

还可以形成与其他部件的接触部。例如,如图2(g)所示,可以在如图2(f)所示的形成有晶体管和电容组件的衬底上形成层间电介质层1033(例如,氮化物)。在层间电介质层1033中,与晶体管的栅极、源/漏区中另一个(未连接到电容组件的一个)以及电容组件(具体地,金属电极材料层1021)相对应的位置处,例如通过刻蚀,形成接触孔,并在接触孔中填充导电材料层(例如,金属接触材料如W)来形成接触部1035-1、1035-2和1035-3。当然,也可以先在接触孔的侧壁和底壁上先形成(导电性)扩散阻挡层,然后再填充金属接触材料层。接触部1035-1、1035-2和1035-3可以分别对应于图1中的端子T1、T2和T3。Contacts with other components may also be formed. For example, as shown in FIG. 2(g), an interlayer dielectric layer 1033 (eg, nitride) may be formed on the substrate on which transistors and capacitor components are formed as shown in FIG. 2(f). In the interlayer dielectric layer 1033, at positions corresponding to the gate of the transistor, the other of the source/drain regions (the one not connected to the capacitive component), and the capacitive component (specifically, the metal electrode material layer 1021), for example Contacts 1035-1, 1035-2, and 1035-3 are formed by etching, forming contact holes, and filling the contact holes with a layer of conductive material (eg, a metal contact material such as W). Of course, the (conductive) diffusion barrier layer can also be formed on the sidewall and bottom wall of the contact hole first, and then the metal contact material layer is filled. The contact portions 1035-1, 1035-2, and 1035-3 may correspond to the terminals T1, T2, and T3 in FIG. 1, respectively.

图3是示出了根据本公开另一实施例的存储单元的配置的截面图。3 is a cross-sectional view illustrating a configuration of a memory cell according to another embodiment of the present disclosure.

图3所示的存储单元与图2(g)中所示的存储单元大体上相同,除了省略了作为第二导电层的导电性扩散阻挡层1015之外。在该示例中,n型掺杂区1011(第一导电层)构成电容组件的一个极板,导电性扩散阻挡层1019和金属电极材料层1021(第三导电层)构成电容组件的另一个极板,且高K电介质层1013(电介质层)和负电容材料层1017的叠层构成电容组件的电容介质。同样,高K电介质层1013和负电容材料层1017的顺序可以交换。The memory cell shown in FIG. 3 is substantially the same as the memory cell shown in FIG. 2( g ), except that the conductive diffusion barrier layer 1015 as the second conductive layer is omitted. In this example, the n-type doped region 1011 (the first conductive layer) constitutes one pole plate of the capacitor component, and the conductive diffusion barrier layer 1019 and the metal electrode material layer 1021 (the third conductive layer) constitute the other pole of the capacitor component plate, and the stack of the high-K dielectric layer 1013 (dielectric layer) and the negative capacitance material layer 1017 constitutes the capacitive medium of the capacitive component. Likewise, the order of the high-K dielectric layer 1013 and the negative capacitance material layer 1017 can be swapped.

在以上实施例中,电容组件同晶体管一样,形成在衬底上。但是,本公开不限于此。例如,电容组件也可以形成于金属化叠层中。In the above embodiments, the capacitor element is formed on the substrate like the transistor. However, the present disclosure is not limited thereto. For example, capacitive components may also be formed in metallization stacks.

图4(a)-4(d)是示出了根据本公开另一实施例的制造存储单元的流程中部分阶段的截面图。4(a)-4(d) are cross-sectional views illustrating some stages in a process of manufacturing a memory cell according to another embodiment of the present disclosure.

如图4(a)所示,可以在衬底2001上形成晶体管。本领域存在多种方式来形成各种形式的晶体管,如MOSFET,在此不再赘述。图4(a)示出了一个晶体管的示例。如图4(a)所示,该晶体管可以包括栅堆叠(包括栅介质层2025、栅电极层2027)、绕栅堆叠形成的栅侧墙2029以及源/漏区2031。此外,图4(a)中还示出了浅沟槽隔离(STI)2023。As shown in FIG. 4( a ), transistors may be formed on the substrate 2001 . There are many ways in the art to form various forms of transistors, such as MOSFETs, which will not be repeated here. Figure 4(a) shows an example of a transistor. As shown in FIG. 4( a ), the transistor may include a gate stack (including a gate dielectric layer 2025 and a gate electrode layer 2027 ), gate spacers 2029 formed around the gate stack, and source/drain regions 2031 . In addition, shallow trench isolation (STI) 2023 is also shown in FIG. 4(a).

在形成有晶体管的衬底上可以形成层间电介质层2033,且在层间电介质层2033中可以形成与晶体管的栅极以及各源/漏区相接触的接触部2035-1、2035-2和2035-3。关于层间电介质层和接触部,可以参见以上的描述。An interlayer dielectric layer 2033 may be formed on the substrate on which the transistors are formed, and contacts 2035-1, 2035-2, and 2035-3. Regarding the interlayer dielectric layers and the contacts, reference can be made to the above description.

接着,如图4(b)所示,可以在层间电介质层2033上形成另一层间电介质层2037(例如,氮化物)。在层间电介质层2037中,例如通过刻蚀,可以形成沟槽R1,随后可以在该沟槽R1中形成电容组件。在该示例中,沟槽R1的位置与电容组件将要连接到的源/漏区(图4(b)中右侧的源/漏区)相对应,并穿透层间电介质层2037从而露出该源/漏区所对应的接触部2035-3。Next, as shown in FIG. 4( b ), another interlayer dielectric layer 2037 (eg, nitride) may be formed on the interlayer dielectric layer 2033 . In the interlayer dielectric layer 2037, for example, by etching, a trench R1 can be formed, and then a capacitor element can be formed in the trench R1. In this example, the position of the trench R1 corresponds to the source/drain region to which the capacitive element is to be connected (the source/drain region on the right in FIG. 4(b) ), and penetrates the interlayer dielectric layer 2037 to expose the Contacts 2035-3 corresponding to the source/drain regions.

随后,可以向沟槽R1中填充各种材料层,来形成电容组件。在该示例中,例如可以依次在沟槽R1中形成导电性扩散阻挡层2039(例如TiN,厚度为约1-10nm,可以通过原子层淀积(ALD)来形成)、金属电极材料层2041(例如W,厚度为约5-50nm,可以通过ALD、化学气相淀积(CVD)等来形成)、导电性扩散阻挡层2043(例如TiN,厚度为约1-10nm,可以通过ALD来形成)、负电容材料层2045(例如,HfZrO2,厚度为约3~15nm,可以通过ALD来形成)、导电性扩散阻挡层2047(例如TiN,厚度为约1-10nm,可以通过ALD来形成)、高K电介质层2049(例如HfO2,厚度为约3~15nm,可以通过ALD来形成)、导电性扩散阻挡层2051(例如TiN,厚度为约1-10nm,可以通过ALD来形成)和金属电极材料层2053(例如W,可以通过ALD、CVD等来形成)。这种情况下,导电性扩散阻挡层2039、金属电极材料层2041和导电性扩散阻挡层2043(第一导电层)-负电容材料层2045-导电性扩散阻挡层2047(第二导电层)可以构成负电容器。在此,第一导电层包括金属电极材料层2041,这是为了更好地与下方的接触部2035-3形成低欧姆接触;导电性扩散阻挡层2039和导电性扩散阻挡层2043可以避免金属电极材料层2041向其他层(例如,负电容材料层2045)中扩散。另外,导电性扩散阻挡层2047(第二导电层)-高K电介质层2049-导电性扩散阻挡层2051和金属电极材料层2053(第三导电层)可以形成正电容器。在此,第三导电层包括金属电极材料层2053,这是为了更好地与后继形成的接触部(参见图4(d)中的2059-3)形成低欧姆接触;导电性扩散阻挡层2051可以避免金属电极材料层1021向其他层中扩散。例如,可以通过依次以大致共形的方式淀积导电性扩散阻挡层2039、金属电极材料层2041、导电性扩散阻挡层2043、负电容材料层2045、导电性扩散阻挡层2047、高K电介质层2049、导电性扩散阻挡层2051,并淀积金属电极材料层2053以填满沟槽R1,然后进行平坦化处理例如CMP,来向沟槽R1中填充这些层。Subsequently, various material layers may be filled into the trench R1 to form a capacitor component. In this example, for example, a conductive diffusion barrier layer 2039 (eg, TiN, with a thickness of about 1-10 nm, which can be formed by atomic layer deposition (ALD)), a metal electrode material layer 2041 ( For example, W, with a thickness of about 5-50 nm, can be formed by ALD, chemical vapor deposition (CVD), etc.), a conductive diffusion barrier layer 2043 (eg, TiN, with a thickness of about 1-10 nm, can be formed by ALD), Negative capacitance material layer 2045 (for example, HfZrO 2 with a thickness of about 3-15 nm, which can be formed by ALD), a conductive diffusion barrier layer 2047 (for example, TiN, with a thickness of about 1-10 nm, which can be formed by ALD), high K dielectric layer 2049 (eg HfO 2 with a thickness of about 3-15 nm, which can be formed by ALD), conductive diffusion barrier layer 2051 (eg, TiN, with a thickness of about 1-10 nm, which can be formed by ALD), and metal electrode materials Layer 2053 (eg W, which can be formed by ALD, CVD, etc.). In this case, the conductive diffusion barrier layer 2039, the metal electrode material layer 2041, and the conductive diffusion barrier layer 2043 (first conductive layer)-negative capacitance material layer 2045-conductive diffusion barrier layer 2047 (second conductive layer) may be form a negative capacitor. Here, the first conductive layer includes a metal electrode material layer 2041, which is to better form a low-ohmic contact with the lower contact portion 2035-3; the conductive diffusion barrier layer 2039 and the conductive diffusion barrier layer 2043 can avoid metal electrodes Material layer 2041 diffuses into other layers (eg, negative capacitance material layer 2045). In addition, the conductive diffusion barrier layer 2047 (second conductive layer)-high-K dielectric layer 2049-conductive diffusion barrier layer 2051 and metal electrode material layer 2053 (third conductive layer) may form a positive capacitor. Here, the third conductive layer includes a metal electrode material layer 2053, which is to better form a low-ohmic contact with a subsequently formed contact (see 2059-3 in FIG. 4(d) ); the conductive diffusion barrier layer 2051 Diffusion of the metal electrode material layer 1021 into other layers can be avoided. For example, conductive diffusion barrier layer 2039, metal electrode material layer 2041, conductive diffusion barrier layer 2043, negative capacitance material layer 2045, conductive diffusion barrier layer 2047, high-K dielectric layer may be sequentially deposited in a substantially conformal manner 2049. Conductive diffusion barrier layer 2051, and deposit a metal electrode material layer 2053 to fill trench R1, and then perform a planarization process such as CMP to fill trench R1 with these layers.

在该示例中,先形成负电容材料层2045,然后再形成电介质层2049。但是,本公开不限于此。例如,可以先形成负电容材料层,然后再形成电介质层。In this example, the negative capacitance material layer 2045 is formed first, and then the dielectric layer 2049 is formed. However, the present disclosure is not limited thereto. For example, the layer of negative capacitance material may be formed first, followed by the formation of the dielectric layer.

此外,如图4(d)所示,在0层间电介质层2037中,可以形成与接触部2035-1和2035-2相对应的接触部2055-1和2055-2。之后,可以形成再一层间电介质层2057(例如,氮化物)。在层间电介质层2057中,可以形成与接触部2055-1和2055-2以及电容组件(具体地,金属电极材料层2053)相对应的接触部2059-1、2059-2和2059-3。接触部2059-1、2059-2和2059-3可以分别对应于图1中的端子T1、T2和T3。Furthermore, as shown in FIG. 4(d), in the 0 interlayer dielectric layer 2037, contact portions 2055-1 and 2055-2 corresponding to the contact portions 2035-1 and 2035-2 may be formed. Afterwards, another interlayer dielectric layer 2057 (eg, nitride) may be formed. In the interlayer dielectric layer 2057, contact portions 2059-1, 2059-2, and 2059-3 corresponding to the contact portions 2055-1 and 2055-2 and the capacitance component (specifically, the metal electrode material layer 2053) may be formed. The contact portions 2059-1, 2059-2, and 2059-3 may correspond to the terminals T1, T2, and T3 in FIG. 1, respectively.

图5是示出了根据本公开另一实施例的存储单元的配置的截面图。5 is a cross-sectional view illustrating a configuration of a memory cell according to another embodiment of the present disclosure.

图5所示的存储单元与图4(d)中所示的存储单元大体上相同,除了省略了作为第二导电层的导电性扩散阻挡层2047之外。在该示例中,导电性扩散阻挡层2039、金属电极材料层2041和导电性扩散阻挡层2043(第一导电层)构成电容组件的一个极板,导电性扩散阻挡层2051和金属电极材料层2053(第三导电层)构成电容组件的另一个极板,且负电容材料层2045和高K电介质层2049的叠层构成电容组件的电容介质。同样,负电容材料层2045和高K电介质层2049的顺序可以交换。The memory cell shown in FIG. 5 is substantially the same as the memory cell shown in FIG. 4(d), except that the conductive diffusion barrier layer 2047 as the second conductive layer is omitted. In this example, the conductive diffusion barrier layer 2039, the metal electrode material layer 2041 and the conductive diffusion barrier layer 2043 (the first conductive layer) constitute one electrode plate of the capacitor assembly, the conductive diffusion barrier layer 2051 and the metal electrode material layer 2053 The (third conductive layer) constitutes the other plate of the capacitor element, and the stack of the negative capacitance material layer 2045 and the high-K dielectric layer 2049 constitutes the capacitor medium of the capacitor element. Likewise, the order of the negative capacitance material layer 2045 and the high-K dielectric layer 2049 can be swapped.

根据本公开实施例的存储器件可以应用于各种电子没备。这种电子没备例如智能电话、平板电脑(PC)、个人数字助手(PDA)等。The memory device according to the embodiment of the present disclosure may be applied to various electronic devices. Such electronic devices are, for example, smart phones, tablet computers (PCs), personal digital assistants (PDAs), and the like.

在以上的描述中,对于各层的构图、刻蚀等技术细节并没有做出详细的说明。但是本领域技术人员应当理解,可以通过各种技术手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。另外,尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。In the above description, technical details such as patterning and etching of each layer are not described in detail. However, those skilled in the art should understand that various technical means can be used to form layers, regions, etc. of desired shapes. In addition, in order to form the same structure, those skilled in the art can also design methods that are not exactly the same as those described above. Additionally, although the various embodiments have been described above separately, this does not mean that the measures in the various embodiments cannot be used in combination to advantage.

以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。Embodiments of the present disclosure have been described above. However, these examples are for illustrative purposes only, and are not intended to limit the scope of the present disclosure. The scope of the present disclosure is defined by the appended claims and their equivalents. Without departing from the scope of the present disclosure, those skilled in the art can make various substitutions and modifications, and these substitutions and modifications should all fall within the scope of the present disclosure.

Claims (14)

1.一种存储单元,包括:1. A storage unit, comprising: 晶体管;以及transistors; and 与该晶体管连接的电容组件,A capacitive component connected to this transistor, 该电容组件包括彼此串联连接的正电容器以及负电容器;The capacitive assembly includes a positive capacitor and a negative capacitor connected in series with each other; 其中,电容组件形成为沟槽电容器,该沟槽的形状为U型,包括两个竖直侧壁和连接竖直侧壁的底壁;Wherein, the capacitor component is formed as a trench capacitor, and the shape of the trench is U-shaped, including two vertical sidewalls and a bottom wall connecting the vertical sidewalls; 电容组件包括第一导电层-电介质层-第二导电层-负电容材料层-第三导电层的叠层;并且各个导电层包括金属电极材料层。The capacitor assembly includes a stack of a first conductive layer-dielectric layer-second conductive layer-negative capacitance material layer-third conductive layer; and each conductive layer includes a metal electrode material layer. 2.根据权利要求1所述的存储单元,其中,所述负电容材料层的材料为含Zr、Ba或Sr的材料。2. The memory cell according to claim 1, wherein the material of the negative capacitance material layer is a material containing Zr, Ba or Sr. 3.根据权利要求1所述的存储单元,其中,所述负电容材料层的材料包括以下一种:HfZrO2、BaTiO3、KH2PO4或NBT。3. The memory cell of claim 1 , wherein the material of the negative capacitance material layer comprises one of the following: HfZrO2 , BaTiO3, KH2PO4 or NBT . 4.根据权利要求1所述的存储单元,其中,所述负电容器的电容绝对值大于或等于正电容器的电容值。4. The memory cell of claim 1, wherein the absolute value of the capacitance of the negative capacitor is greater than or equal to the capacitance value of the positive capacitor. 5.根据权利要求1所述的存储单元,其中,所述电容组件形成在所述晶体管所形成于的衬底上,且第一导电层或第三导电层包括衬底中的掺杂区域。5. The memory cell of claim 1, wherein the capacitive component is formed on a substrate on which the transistor is formed, and the first conductive layer or the third conductive layer includes a doped region in the substrate. 6.根据权利要求5所述的存储单元,其中,所述掺杂区域与晶体管的源/漏区之一相连,从而将电容组件连接到晶体管。6. The memory cell of claim 5, wherein the doped region is connected to one of the source/drain regions of the transistor, thereby connecting the capacitive component to the transistor. 7.根据权利要求1所述的存储单元,其中,所述第二导电层包括导电性的扩散阻挡材料层。7. The memory cell of claim 1, wherein the second conductive layer comprises a conductive diffusion barrier material layer. 8.根据权利要求1所述的存储单元,其中,所述第一导电层和所述第三导电层中至少之一包括导电性的扩散阻挡材料层与金属电极材料层的叠层。8. The memory cell of claim 1, wherein at least one of the first conductive layer and the third conductive layer comprises a stack of a conductive diffusion barrier material layer and a metal electrode material layer. 9.根据权利要求7或8所述的存储单元,其中,所述导电性的扩散阻挡材料层包括TiN。9. The memory cell of claim 7 or 8, wherein the conductive diffusion barrier material layer comprises TiN. 10.根据权利要求8所述的存储单元,其中,所述金属电极材料层包括W。10. The memory cell of claim 8, wherein the metal electrode material layer comprises W. 11.根据权利要求8所述的存储单元,其中,所述电容组件形成于晶体管上方的金属化叠层中。11. The memory cell of claim 8, wherein the capacitive component is formed in a metallization stack over a transistor. 12.根据权利要求11所述的存储单元,其中,靠近下层的第一导电层或第三导电层包括导电性扩散阻挡材料层-金属电极材料层-导电性扩散材料层的叠层。12. The memory cell of claim 11, wherein the first conductive layer or the third conductive layer adjacent to the lower layer comprises a stack of a conductive diffusion barrier material layer-metal electrode material layer-conductive diffusion material layer. 13.一种存储器件,包括多个如权利要求1-12中任一项所述的存储单元。13. A memory device comprising a plurality of memory cells as claimed in any one of claims 1-12. 14.一种电子设备,包括如权利要求13所述的存储器件。14. An electronic device comprising the memory device of claim 13.
CN202010944026.7A 2016-01-25 2016-01-25 Memory cells, memory devices and electronic equipment Pending CN111900168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010944026.7A CN111900168A (en) 2016-01-25 2016-01-25 Memory cells, memory devices and electronic equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610048641.3A CN105609503A (en) 2016-01-25 2016-01-25 Memory cell, memory device and electronic apparatus
CN202010944026.7A CN111900168A (en) 2016-01-25 2016-01-25 Memory cells, memory devices and electronic equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201610048641.3A Division CN105609503A (en) 2016-01-25 2016-01-25 Memory cell, memory device and electronic apparatus

Publications (1)

Publication Number Publication Date
CN111900168A true CN111900168A (en) 2020-11-06

Family

ID=55989301

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010944026.7A Pending CN111900168A (en) 2016-01-25 2016-01-25 Memory cells, memory devices and electronic equipment
CN201610048641.3A Pending CN105609503A (en) 2016-01-25 2016-01-25 Memory cell, memory device and electronic apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201610048641.3A Pending CN105609503A (en) 2016-01-25 2016-01-25 Memory cell, memory device and electronic apparatus

Country Status (1)

Country Link
CN (2) CN111900168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635467A (en) * 2020-12-18 2021-04-09 上海微阱电子科技有限公司 Memory cell structure and forming method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10128327B2 (en) 2014-04-30 2018-11-13 Stmicroelectronics, Inc. DRAM interconnect structure having ferroelectric capacitors exhibiting negative capacitance
US11461620B2 (en) * 2017-07-05 2022-10-04 Samsung Electronics Co., Ltd. Multi-bit, SoC-compatible neuromorphic weight cell using ferroelectric FETs
US10566413B2 (en) 2017-10-03 2020-02-18 Qualcomm Incorporated MIM capacitor containing negative capacitance material
KR102131900B1 (en) * 2018-07-17 2020-07-08 서강대학교산학협력단 Low-operating-voltage switching device and fabrication method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1290038A (en) * 1999-09-28 2001-04-04 西门子公司 Piled capacitor memory units and manufacture thereof
CN1828905A (en) * 2005-01-07 2006-09-06 因芬尼昂技术股份公司 DRAM with high-k dielectric storage capacitor and method of manufacturing the same
CN101819922A (en) * 2009-02-27 2010-09-01 中芯国际集成电路制造(上海)有限公司 Metal-insulator-metal capacitor and preparation method thereof
US20150318285A1 (en) * 2014-04-30 2015-11-05 Stmicroelectronics, Inc. Dram interconnect structure having ferroelectric capacitors

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649625A (en) * 1985-10-21 1987-03-17 International Business Machines Corporation Dynamic memory device having a single-crystal transistor on a trench capacitor structure and a fabrication method therefor
US5264716A (en) * 1992-01-09 1993-11-23 International Business Machines Corporation Diffused buried plate trench dram cell array
US6100131A (en) * 1997-06-11 2000-08-08 Siemens Aktiengesellschaft Method of fabricating a random access memory cell
US5867420A (en) * 1997-06-11 1999-02-02 Siemens Aktiengesellschaft Reducing oxidation stress in the fabrication of devices
TW425718B (en) * 1997-06-11 2001-03-11 Siemens Ag Vertical transistor
US5907771A (en) * 1997-09-30 1999-05-25 Siemens Aktiengesellschaft Reduction of pad erosion
US20020036282A1 (en) * 1998-10-19 2002-03-28 Yet-Ming Chiang Electromechanical actuators
US6207524B1 (en) * 1998-09-29 2001-03-27 Siemens Aktiengesellschaft Memory cell with a stacked capacitor
TWI385423B (en) * 2008-11-05 2013-02-11 Univ Ishou A waveguide device with energy compensation
US9685295B2 (en) * 2011-07-28 2017-06-20 The Board Of Trustees Of The University Of Illinois Electron emission device
US9520506B2 (en) * 2013-07-23 2016-12-13 Globalfoundries Singapore Pte. Ltd. 3D high voltage charge pump
US9231206B2 (en) * 2013-09-13 2016-01-05 Micron Technology, Inc. Methods of forming a ferroelectric memory cell
US9391162B2 (en) * 2014-04-04 2016-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel MOSFET with ferroelectric gate stack
US10242989B2 (en) * 2014-05-20 2019-03-26 Micron Technology, Inc. Polar, chiral, and non-centro-symmetric ferroelectric materials, memory cells including such materials, and related devices and methods
US20160005749A1 (en) * 2014-07-01 2016-01-07 Qualcomm Incorporated Series ferroelectric negative capacitor for multiple time programmable (mtp) devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1290038A (en) * 1999-09-28 2001-04-04 西门子公司 Piled capacitor memory units and manufacture thereof
CN1828905A (en) * 2005-01-07 2006-09-06 因芬尼昂技术股份公司 DRAM with high-k dielectric storage capacitor and method of manufacturing the same
CN101819922A (en) * 2009-02-27 2010-09-01 中芯国际集成电路制造(上海)有限公司 Metal-insulator-metal capacitor and preparation method thereof
US20150318285A1 (en) * 2014-04-30 2015-11-05 Stmicroelectronics, Inc. Dram interconnect structure having ferroelectric capacitors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635467A (en) * 2020-12-18 2021-04-09 上海微阱电子科技有限公司 Memory cell structure and forming method

Also Published As

Publication number Publication date
CN105609503A (en) 2016-05-25

Similar Documents

Publication Publication Date Title
CN109285836B (en) Semiconductor storage device, manufacturing method thereof, and electronic device including storage device
US9754880B2 (en) Semiconductor devices including a contact structure and methods of manufacturing the same
US8860107B2 (en) FinFET-compatible metal-insulator-metal capacitor
US9082647B2 (en) Semiconductor devices
US10008505B2 (en) Semiconductor device including capacitor and method of manufacturing the same
US11245035B2 (en) Multi-gate FinFET including negative capacitor, method of manufacturing the same, and electronic device
TWI774371B (en) Memory device and method of forming three-dimensional memory device
CN111900168A (en) Memory cells, memory devices and electronic equipment
CN109643716B (en) Three-dimensional storage device and manufacturing method thereof
WO2023103182A1 (en) Memory cell, and memory and manufacturing method therefor
CN111564441A (en) Semiconductor structure and preparation method
CN105789312A (en) FinFET, manufacturing method thereof and electronic device comprising FinFET
US9343320B2 (en) Pattern factor dependency alleviation for eDRAM and logic devices with disposable fill to ease deep trench integration with fins
CN111370410A (en) Three-dimensional NAND memory and manufacturing method thereof
CN105742362A (en) Semiconductor device having multi-gate FinFET, method of manufacturing the same, and electronic apparatus
TW202226546A (en) Memory device and manufacturing method thereof
TWI848509B (en) Memory device and methods of forming the same
US20090001450A1 (en) Non-volatile memory device and method of fabricating the same
CN116568026A (en) Semiconductor device with a semiconductor layer having a plurality of semiconductor layers
CN116471832A (en) Method for manufacturing memory element
CN117316974A (en) Semiconductor structure, manufacturing method thereof and memory
CN105789313A (en) Semiconductor device, method of manufacturing the same, and electronic apparatus including the same
CN105702738A (en) FinFET with negative capacitance, manufacturing method thereof and electronic device
CN219437502U (en) Semiconductor device with a semiconductor layer having a plurality of semiconductor layers
CN118250997B (en) Semiconductor device, method of manufacturing the same, and electronic apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201106

RJ01 Rejection of invention patent application after publication