CN111900168A - Memory cells, memory devices and electronic equipment - Google Patents
Memory cells, memory devices and electronic equipment Download PDFInfo
- Publication number
- CN111900168A CN111900168A CN202010944026.7A CN202010944026A CN111900168A CN 111900168 A CN111900168 A CN 111900168A CN 202010944026 A CN202010944026 A CN 202010944026A CN 111900168 A CN111900168 A CN 111900168A
- Authority
- CN
- China
- Prior art keywords
- layer
- conductive
- capacitor
- memory cell
- material layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 60
- 239000000463 material Substances 0.000 claims abstract description 50
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 239000002184 metal Substances 0.000 claims abstract description 33
- 239000007772 electrode material Substances 0.000 claims abstract description 28
- 238000003860 storage Methods 0.000 claims abstract description 16
- 238000009792 diffusion process Methods 0.000 claims description 43
- 230000004888 barrier function Effects 0.000 claims description 39
- 239000000758 substrate Substances 0.000 claims description 23
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 8
- 238000001465 metallisation Methods 0.000 claims description 3
- 239000007836 KH2PO4 Substances 0.000 claims 1
- 229910002113 barium titanate Inorganic materials 0.000 claims 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 claims 1
- 235000019796 monopotassium phosphate Nutrition 0.000 claims 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 claims 1
- 239000010410 layer Substances 0.000 description 202
- 239000002019 doping agent Substances 0.000 description 12
- 239000011229 interlayer Substances 0.000 description 11
- 238000000231 atomic layer deposition Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 150000004767 nitrides Chemical class 0.000 description 6
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000007334 memory performance Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/31—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/37—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Semiconductor Memories (AREA)
Abstract
公开了一种存储单元、存储器件及电子设备。根据实施例,存储单元可以包括:晶体管;以及与该晶体管连接的电容组件,其中,该电容组件包括彼此串联连接的正电容器以及负电容器。电容组件形成为沟槽电容器,该沟槽的形状为U型,包括两个竖直侧壁和连接竖直侧壁的底壁;电容组件包括第一导电层‑电介质层‑第二导电层‑负电容材料层‑第三导电层的叠层;并且各个导电层包括金属电极材料层。
A storage unit, a storage device and an electronic device are disclosed. According to an embodiment, the memory cell may include: a transistor; and a capacitive component connected with the transistor, wherein the capacitive component includes a positive capacitor and a negative capacitor connected in series with each other. The capacitor component is formed as a trench capacitor, and the shape of the trench is U-shaped, including two vertical sidewalls and a bottom wall connecting the vertical sidewalls; the capacitor component includes a first conductive layer-dielectric layer-second conductive layer- A stack of negative capacitance material layers-third conductive layers; and each conductive layer includes a metal electrode material layer.
Description
本案是申请号为“201610048641.3”、申请日为2016年01月25日、发明名称为“存储单元、存储器件及电子设备”的母案申请的分案申请,通过引用将母案的全部内容包括于此。This case is a divisional application of the parent application with the application number of "201610048641.3", the filing date of January 25, 2016, and the name of the invention "memory unit, storage device and electronic equipment". The entire content of the parent case is included by reference here.
技术领域technical field
本公开涉及存储领域,更具体地,涉及一种具有大存储电容的存储单元、包括该存储单元的存储器件以及包括该存储器件的电子设备。The present disclosure relates to the field of storage, and more particularly, to a storage unit with a large storage capacitance, a storage device including the storage unit, and an electronic device including the storage device.
背景技术Background technique
在存储器件中经常利用电容器来储存电荷,以便存储数据。但是,随着器件的不断小型化,用来形成电容器的芯片面积不断缩小,从而电容器的电容值变小。为了确保存储性能,期望在不占用过大芯片面积的情况下,得到尽可能大的电容。Capacitors are often used in memory devices to store charge in order to store data. However, with the continuous miniaturization of devices, the area of the chip used to form the capacitor has continued to shrink, so that the capacitance value of the capacitor has become smaller. In order to ensure memory performance, it is desirable to obtain as large a capacitance as possible without occupying an excessively large chip area.
发明内容SUMMARY OF THE INVENTION
本公开的目的至少部分地在于提供一种具有大存储电容的存储单元、包括该存储单元的存储器件以及包括该存储器件的电子设备。An object of the present disclosure is, at least in part, to provide a memory cell having a large storage capacitance, a memory device including the memory cell, and an electronic device including the memory device.
根据本公开的一个方面,提供了一种存储单元,包括:晶体管;以及与该晶体管连接的电容组件,其中,该电容组件包括彼此串联连接的正电容器以及负电容器。According to one aspect of the present disclosure, there is provided a memory cell including: a transistor; and a capacitance component connected with the transistor, wherein the capacitance component includes a positive capacitor and a negative capacitor connected in series with each other.
根据本公开的另一方面,提供了一种存储器件,包括上述存储单元。According to another aspect of the present disclosure, there is provided a memory device including the above-described memory cell.
根据本公开的再一方面,提供了一种电子设备,包括上述存储器件。According to yet another aspect of the present disclosure, there is provided an electronic device including the above-mentioned storage device.
根据本公开的实施例,利用负电容器和常规电容器(或者说,正电容器)的串联组合来形成存储电容组件。与常规存储电容相比,在相同的占用面积下,这种电容组件可以实现大的存储电容。According to an embodiment of the present disclosure, a storage capacitor assembly is formed using a series combination of a negative capacitor and a conventional capacitor (or, in other words, a positive capacitor). Compared with conventional storage capacitors, such capacitor components can realize large storage capacitors under the same footprint.
附图说明Description of drawings
通过以下参照附图对本公开实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:The above and other objects, features and advantages of the present disclosure will become more apparent from the following description of embodiments of the present disclosure with reference to the accompanying drawings, in which:
图1是示出了根据本公开实施例的存储单元的示意电路图;FIG. 1 is a schematic circuit diagram illustrating a memory cell according to an embodiment of the present disclosure;
图2(a)-2(g)是示出了根据本公开实施例的制造存储单元的流程中部分阶段的截面图;2(a)-2(g) are cross-sectional views illustrating some stages in a flow of manufacturing a memory cell according to an embodiment of the present disclosure;
图3是示出了根据本公开另一实施例的存储单元的配置的截面图;3 is a cross-sectional view illustrating a configuration of a memory cell according to another embodiment of the present disclosure;
图4(a)-4(d)是示出了根据本公开另一实施例的制造存储单元的流程中部分阶段的截面图;4(a)-4(d) are cross-sectional views illustrating some stages in a process of manufacturing a memory cell according to another embodiment of the present disclosure;
图5是示出了根据本公开另一实施例的存储单元的配置的截面图。5 is a cross-sectional view illustrating a configuration of a memory cell according to another embodiment of the present disclosure.
贯穿附图,以相同的附图标记来表示相同或相似的部件。Throughout the drawings, the same reference numerals are used to refer to the same or like parts.
具体实施方式Detailed ways
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. It should be understood, however, that these descriptions are exemplary only, and are not intended to limit the scope of the present disclosure. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concepts of the present disclosure.
在附图中示出了根据本公开实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。Various structural schematic diagrams according to embodiments of the present disclosure are shown in the accompanying drawings. The figures are not to scale, some details have been exaggerated for clarity, and some details may have been omitted. The shapes of the various regions and layers shown in the figures, as well as their relative sizes and positional relationships are only exemplary, and in practice, there may be deviations due to manufacturing tolerances or technical limitations, and those skilled in the art should Regions/layers with different shapes, sizes, relative positions can be additionally designed as desired.
在本公开的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。In the context of this disclosure, when a layer/element is referred to as being "on" another layer/element, it can be directly on the other layer/element or intervening layers/elements may be present therebetween. element. In addition, if a layer/element is "on" another layer/element in one orientation, then when the orientation is reversed, the layer/element can be "under" the other layer/element.
图1是示出了根据本公开实施例的存储单元的示意电路图。FIG. 1 is a schematic circuit diagram illustrating a memory cell according to an embodiment of the present disclosure.
如图1所示,根据该实施例的存储单元100包括晶体管101以及与该晶体管连接的电容组件103。例如,这种存储单元可以构成1T1C配置的动态随机存取存储(DRAM)单元。As shown in FIG. 1 , the
晶体管101可以包括各种形式的晶体管,例如各种形式的金属氧化物半导体场效应晶体管(MOSFET),如鳍式场效应晶体管(FinFET)、绝缘体上半导体(SOI)MOSFET、纳米线场效应晶体管(nanowire FET)等等。
一般地,晶体管101可以包括栅极、源极和漏极。在图1的示例中,栅极可以连接到端子T1,源极/漏极之一可以连接到端子T2,且源极/漏极中另一个可以连接到电容组件103。电容组件103的另一端连接到端子T3。因此,在该示例中,晶体管101与电容组件103呈串联连接。Generally,
电容组件103可以包括串联连接的常规电容器(或者说,正电容器)1031与负电容器1033。一般地,电容器包括极板-电介质层-极板的配置,电介质层可以储存电荷。常规的电容器呈“正”电容特性,即,当电介质层储存的电荷增多时,两个极板间的电压增大。在本公开中,将这种电介质层称作常规电介质层,或者直接简称为电介质层,这与该术语在本领域的常规含义相同。与此不同,某些材料在一定状态下,可以呈现“负”电容特性,即,随着其中储存的电荷增多,极板间的电压反而表现为降低。这种材料称作“负电容材料”。例如,某些铁电材料(例如含Zr、Ba或Sr的材料,如HfZrO2、BaTiO3、KH2PO4或NBT等)在到达某一临界电场时,可发生极化现象。极化使得大量的束缚电荷瞬间积累在材料的表面,使铁电材料两端的电压减小。The
由于串联关系,电容组件103的电容Ct可以表示为:Due to the series relationship, the capacitance C t of the
Ct=|Cn|C/(|Cn|-C),C t =|C n |C/(|C n |-C),
其中,C是正电容器1031的电容值,Cn是负电容器1033的电容值(如上所述,为负值),|Cn|表示Cn的绝对值。根据上式可以看出,当|Cn|近似等于C时,Ct可以趋于无穷大。当然,这是理想情形,在实际中,也可以实现相当大的电容Ct(例如,绝对值为C的约2~5倍)。优选地,|Cn|>C。Here, C is the capacitance value of the
鉴于电容器的叠层配置以及串联连接关系,电容组件103可以形成为第一导电层-电介质层-第二导电层-负电容材料层-第三导电层的叠层形式。此时,第一导电层-电介质层-第二导电层可以构成正电容器1031,而第二导电层-负电容材料层-第三导电层可以构成负电容器1033,且由于公共的第二导电层,它们形成串联连接。或者,电容组件103可以形成为第一导电层-电介质层-负电容材料层-第三导电层的叠层形式。此时,第一导电层、第三导电层构成电容组件103的两个极板,电介质层和负电容材料层的组合构成电容组件103的电容介质。In view of the stacked configuration of the capacitors and the series connection relationship, the
根据本公开的实施例,电容组件可以形成为沟槽电容器的形式。在有限的面积中,沟槽电容器可以增大电容器相对的极板面积,并因此增大电容值。例如,可以在晶体管所形成于的衬底中形成沟槽,或者在晶体管上方的金属化叠层的一层或多层中形成沟槽,并在沟槽中形成电容组件。电容器叠层配置中的层可以沿着沟槽的侧壁和底壁延伸。According to embodiments of the present disclosure, the capacitive components may be formed in the form of trench capacitors. In a limited area, trench capacitors can increase the opposing plate area of the capacitor and thus increase the capacitance value. For example, trenches may be formed in the substrate in which the transistors are formed, or in one or more layers of a metallization stack over the transistors, and capacitive components may be formed in the trenches. The layers in the capacitor stack configuration may extend along the side and bottom walls of the trench.
各导电层(第一导电层、第二导电层和第三导电层)可以包括各种合适的导电材料,例如金属、金属氮化物等。为了更好地与半导体工艺相兼容,导电材料可以包括半导体工艺中用来形成导电接触的材料,例如导电性的扩散阻挡材料如TiN以及金属电极材料如W等。金属电极材料可以形成低欧姆接触,从而适于需要与其他部件形成连接的导电层(例如,第一导电层或第三导电层)。另外,为了避免金属电极材料的扩散,可以与之配合使用导电性扩散阻挡材料层。Each of the conductive layers (the first conductive layer, the second conductive layer, and the third conductive layer) may include various suitable conductive materials, such as metals, metal nitrides, and the like. For better compatibility with semiconductor processes, the conductive materials may include materials used in semiconductor processes to form conductive contacts, such as conductive diffusion barrier materials such as TiN and metal electrode materials such as W, and the like. Metal electrode materials can form low ohmic contacts, making them suitable for conductive layers (eg, the first conductive layer or the third conductive layer) that need to form connections to other components. In addition, in order to avoid the diffusion of the metal electrode material, a conductive diffusion barrier material layer may be used in conjunction therewith.
此外,当在衬底中形成沟槽电容器时,电容器的最外一层(第一导电层或第三导电层)可以利用衬底中的掺杂区域来形成。这种情况下,该掺杂区域可以直接连接到晶体管的源/漏之一(也可以是掺杂区),并因此将电容组件连接到晶体管。Furthermore, when forming the trench capacitor in the substrate, the outermost layer of the capacitor (either the first conductive layer or the third conductive layer) may be formed using the doped regions in the substrate. In this case, the doped region can be directly connected to one of the source/drain of the transistor (which can also be the doped region) and thus connect the capacitive component to the transistor.
这里需要指出的是,尽管在此以1T1C配置为例来描述存储单元,但是本公开不限于此。在此公开的电容组件可以应用于任何需要大电容的场合,包括各种形式的基于电容器的存储器件。It should be pointed out here that although the 1T1C configuration is used as an example to describe the memory cell, the present disclosure is not limited thereto. The capacitive assemblies disclosed herein can be applied to any application requiring large capacitance, including various forms of capacitor-based storage devices.
根据本公开的实施例,还提供了一种存储器件,可以包括多个这种存储单元。例如,存储单元可以排列成二维阵列,各存储单元的端子T1可以连接到字线,端子T2可以连接到位线,且端子T3可以连接到公共电势(例如,地电势)。通过字线,可以选择与该位线相对应的一行存储单元;通过位线,可以向所选行中与该位线相对应的存储单元写入数据或读取数据。当然,存储器件还可以实现为各种其他配置。According to an embodiment of the present disclosure, there is also provided a memory device that may include a plurality of such memory cells. For example, memory cells may be arranged in a two-dimensional array, each memory cell's terminal T1 may be connected to a word line, terminal T2 may be connected to a bit line, and terminal T3 may be connected to a common potential (eg, ground). Through the word line, a row of memory cells corresponding to the bit line can be selected; through the bit line, data can be written or read into the memory cells corresponding to the bit line in the selected row. Of course, the memory device can also be implemented in various other configurations.
图2(a)-2(g)是示出了根据本公开实施例的制造存储单元的流程中部分阶段的截面图。2(a)-2(g) are cross-sectional views illustrating some stages in a flow of manufacturing a memory cell according to an embodiment of the present disclosure.
如图2(a)所示,提供衬底1001。在此,以制作n型晶体管为例进行描述,故而衬底1001可以是p型轻掺杂的硅晶片。但是,本公开不限于此。衬底1001可以包括各种合适的衬底,例如绝缘体上半导体(SOI)衬底、化合物半导体如SiGe等。As shown in Fig. 2(a), a
在衬底1001中,如上所述,可以形成沟槽,以便在其中形成电容组件。In
为此,可以如图2(a)所示,可以在衬底1001上形成硬掩模层。在该示例中,硬掩模层包括氧化物(例如,氧化硅)层1003和氮化物(例如,氮化硅)层1005。例如,氧化物层1003的厚度为约5~20nm,氮化物层1005的厚度为约50~200nm。在硬掩模层上可以形成构图(例如,通过曝光、显影进行光刻)的光刻胶1007。在此,光刻胶1007被构图为具有与将要形成的沟槽相对应的开口。To this end, as shown in FIG. 2( a ), a hard mask layer may be formed on the
然后,如图2(b)所示,可以利用构图的光刻胶1007为掩模,对硬掩模层(1005、1003)进行构图,如反应离子刻蚀(RIE),以将光刻胶1007的图形转移到硬掩模层(1005、1003)中。接着,可以硬掩模层(1005、1003)为掩模,对衬底1001进行构图如RIE,以在其中形成沟槽R。随后,将在该沟槽R中形成电容组件。在形成沟槽R之后,可以去除光刻胶1007。在此,可以先不去除硬掩模层,以便保护衬底1001的表面。Then, as shown in FIG. 2(b), the patterned
在该示例中,可以对衬底1001靠近沟槽R的侧壁和底壁的部分进行掺杂,以形成沿沟槽R的侧壁和底壁延伸的掺杂区域(即,导电区域),并由此构成电容组件的一个极板(例如,上述第一导电层)。这种掺杂区域例如可以如下形成。具体地,如图2(c)所示,可以在形成有沟槽R的衬底1001上(在此,硬掩模层有助于形成沿沟槽R的侧壁和底壁延伸的掺杂区域),可以形成(例如,通过淀积)掺杂剂源层1009。掺杂剂源层是指包含掺杂剂的材料层。例如,掺杂剂源层1009可以包括掺杂有n型掺杂剂如As或P的氧化物。掺杂剂源层1009的厚度可以不填满沟槽R,因此其沿沟槽R的侧壁和底壁延伸。优选地,可以大致共形的方式来淀积掺杂剂源层1009。随后,可以进行退火,以将掺杂剂源层1009中的掺杂剂驱入衬底1001中。由于掺杂剂源层1009沿着沟槽R的侧壁和底壁布置,从而沿着沟槽R的侧壁和底壁形成n型掺杂区1011。之后,可以去除掺杂剂源层1009,如图2(d)所示。In this example, portions of the
在此需要指出的是,可以各种合适的其他方式(例如,离子注入)来形成掺杂区。It should be pointed out here that the doped regions may be formed in various other suitable manners (eg, ion implantation).
接着,可以向沟槽R中填充各材料层,以形成电容组件的叠层配置。在本示例中,在如上所述形成作为第一导电层的n型掺杂区1011之后,可以向沟槽R中依次填充电介质层、第二导电层、负电容材料层和第三导电层,来形成电容组件。Next, the trenches R may be filled with layers of materials to form a stacked configuration of capacitive components. In this example, after forming the n-type doped
具体地,如图2(e)所示,可以依次在沟槽R中形成高K电介质层1013、导电性扩散阻挡层1015、负电容材料层1017、导电性扩散阻挡层1019和金属电极材料层1021。例如,高K电介质层1013可以包括HfO2,厚度为约1~10nm。此时,可以先在沟槽R的侧壁和底壁上形成界面层(未示出),例如氧化物层,厚度为约0.5~5nm,再在界面层上形成高K电介质层1013。备选地,代替高K电介质层1013,可以形成氧化物层,厚度例如为约2~10nm。例如,导电性扩散阻挡层1015可以包括TiN,厚度为约1~10nm;负电容材料层1017可以包括HfZrO2,厚度为约3~15nm;导电性扩散阻挡层1019可以包括TiN,厚度为约2~10nm;金属电极材料层1021可以包括W,其厚度可以填满沟槽R。这种情况下,n型掺杂区1011(第一导电层)-高K电介质层1013(电介质层)-导电性扩散阻挡层1015(第二导电层)可以构成正电容器;导电性扩散阻挡层1015(第二导电层)-负电容材料层1017-导电性扩散阻挡层1019和金属电极材料层1021(第三导电层)可以构成负电容器。在此,第三导电层包括金属电极材料层1021,这是为了更好地与后继形成的接触部(参见图2(g)中的1035-3)形成低欧姆接触;导电性扩散阻挡层1019可以避免金属电极材料层1021向负电容材料层1017中扩散。例如,可以通过依次以大致共形的方式淀积高K电介质层1013、导电性扩散阻挡层1015、负电容材料层1017、导电性扩散阻挡层1019,并淀积金属电极材料层1021以填满沟槽R,然后进行平坦化处理例如化学机械抛光(CMP)(可以硬掩模层为停止点)然后进行回蚀,来向沟槽R中填充这些层。Specifically, as shown in FIG. 2( e ), a high-
在该示例中,先形成电介质层1013,然后再形成负电容材料层1017。但是,本公开不限于此。例如,可以先形成负电容材料层,然后再形成电介质层。In this example, the
在形成电容组件之后,可以去除硬掩模层,并在衬底1001上形成晶体管。本领域存在多种方式来形成各种形式的晶体管,如MOSFET,在此不再赘述。图2(f)示出了一个晶体管的示例。如图2(f)所示,该晶体管可以包括栅堆叠(包括栅介质层1025、栅电极层1027)、绕栅堆叠形成的栅侧墙1029以及源/漏区1031。此外,图2(f)中还示出了浅沟槽隔离(STI)1023。在该示例中,晶体管是n型器件,其源/漏区1031是衬底1001中的n型掺杂区的形式。晶体管的源/漏区之一(在该示例中,图2(f)中右侧的源/漏区)延伸到与n型掺杂区1011相接,从而实现晶体管与电容组件之间的连接。After the capacitive components are formed, the hard mask layer can be removed and transistors formed on the
还可以形成与其他部件的接触部。例如,如图2(g)所示,可以在如图2(f)所示的形成有晶体管和电容组件的衬底上形成层间电介质层1033(例如,氮化物)。在层间电介质层1033中,与晶体管的栅极、源/漏区中另一个(未连接到电容组件的一个)以及电容组件(具体地,金属电极材料层1021)相对应的位置处,例如通过刻蚀,形成接触孔,并在接触孔中填充导电材料层(例如,金属接触材料如W)来形成接触部1035-1、1035-2和1035-3。当然,也可以先在接触孔的侧壁和底壁上先形成(导电性)扩散阻挡层,然后再填充金属接触材料层。接触部1035-1、1035-2和1035-3可以分别对应于图1中的端子T1、T2和T3。Contacts with other components may also be formed. For example, as shown in FIG. 2(g), an interlayer dielectric layer 1033 (eg, nitride) may be formed on the substrate on which transistors and capacitor components are formed as shown in FIG. 2(f). In the
图3是示出了根据本公开另一实施例的存储单元的配置的截面图。3 is a cross-sectional view illustrating a configuration of a memory cell according to another embodiment of the present disclosure.
图3所示的存储单元与图2(g)中所示的存储单元大体上相同,除了省略了作为第二导电层的导电性扩散阻挡层1015之外。在该示例中,n型掺杂区1011(第一导电层)构成电容组件的一个极板,导电性扩散阻挡层1019和金属电极材料层1021(第三导电层)构成电容组件的另一个极板,且高K电介质层1013(电介质层)和负电容材料层1017的叠层构成电容组件的电容介质。同样,高K电介质层1013和负电容材料层1017的顺序可以交换。The memory cell shown in FIG. 3 is substantially the same as the memory cell shown in FIG. 2( g ), except that the conductive
在以上实施例中,电容组件同晶体管一样,形成在衬底上。但是,本公开不限于此。例如,电容组件也可以形成于金属化叠层中。In the above embodiments, the capacitor element is formed on the substrate like the transistor. However, the present disclosure is not limited thereto. For example, capacitive components may also be formed in metallization stacks.
图4(a)-4(d)是示出了根据本公开另一实施例的制造存储单元的流程中部分阶段的截面图。4(a)-4(d) are cross-sectional views illustrating some stages in a process of manufacturing a memory cell according to another embodiment of the present disclosure.
如图4(a)所示,可以在衬底2001上形成晶体管。本领域存在多种方式来形成各种形式的晶体管,如MOSFET,在此不再赘述。图4(a)示出了一个晶体管的示例。如图4(a)所示,该晶体管可以包括栅堆叠(包括栅介质层2025、栅电极层2027)、绕栅堆叠形成的栅侧墙2029以及源/漏区2031。此外,图4(a)中还示出了浅沟槽隔离(STI)2023。As shown in FIG. 4( a ), transistors may be formed on the
在形成有晶体管的衬底上可以形成层间电介质层2033,且在层间电介质层2033中可以形成与晶体管的栅极以及各源/漏区相接触的接触部2035-1、2035-2和2035-3。关于层间电介质层和接触部,可以参见以上的描述。An
接着,如图4(b)所示,可以在层间电介质层2033上形成另一层间电介质层2037(例如,氮化物)。在层间电介质层2037中,例如通过刻蚀,可以形成沟槽R1,随后可以在该沟槽R1中形成电容组件。在该示例中,沟槽R1的位置与电容组件将要连接到的源/漏区(图4(b)中右侧的源/漏区)相对应,并穿透层间电介质层2037从而露出该源/漏区所对应的接触部2035-3。Next, as shown in FIG. 4( b ), another interlayer dielectric layer 2037 (eg, nitride) may be formed on the
随后,可以向沟槽R1中填充各种材料层,来形成电容组件。在该示例中,例如可以依次在沟槽R1中形成导电性扩散阻挡层2039(例如TiN,厚度为约1-10nm,可以通过原子层淀积(ALD)来形成)、金属电极材料层2041(例如W,厚度为约5-50nm,可以通过ALD、化学气相淀积(CVD)等来形成)、导电性扩散阻挡层2043(例如TiN,厚度为约1-10nm,可以通过ALD来形成)、负电容材料层2045(例如,HfZrO2,厚度为约3~15nm,可以通过ALD来形成)、导电性扩散阻挡层2047(例如TiN,厚度为约1-10nm,可以通过ALD来形成)、高K电介质层2049(例如HfO2,厚度为约3~15nm,可以通过ALD来形成)、导电性扩散阻挡层2051(例如TiN,厚度为约1-10nm,可以通过ALD来形成)和金属电极材料层2053(例如W,可以通过ALD、CVD等来形成)。这种情况下,导电性扩散阻挡层2039、金属电极材料层2041和导电性扩散阻挡层2043(第一导电层)-负电容材料层2045-导电性扩散阻挡层2047(第二导电层)可以构成负电容器。在此,第一导电层包括金属电极材料层2041,这是为了更好地与下方的接触部2035-3形成低欧姆接触;导电性扩散阻挡层2039和导电性扩散阻挡层2043可以避免金属电极材料层2041向其他层(例如,负电容材料层2045)中扩散。另外,导电性扩散阻挡层2047(第二导电层)-高K电介质层2049-导电性扩散阻挡层2051和金属电极材料层2053(第三导电层)可以形成正电容器。在此,第三导电层包括金属电极材料层2053,这是为了更好地与后继形成的接触部(参见图4(d)中的2059-3)形成低欧姆接触;导电性扩散阻挡层2051可以避免金属电极材料层1021向其他层中扩散。例如,可以通过依次以大致共形的方式淀积导电性扩散阻挡层2039、金属电极材料层2041、导电性扩散阻挡层2043、负电容材料层2045、导电性扩散阻挡层2047、高K电介质层2049、导电性扩散阻挡层2051,并淀积金属电极材料层2053以填满沟槽R1,然后进行平坦化处理例如CMP,来向沟槽R1中填充这些层。Subsequently, various material layers may be filled into the trench R1 to form a capacitor component. In this example, for example, a conductive diffusion barrier layer 2039 (eg, TiN, with a thickness of about 1-10 nm, which can be formed by atomic layer deposition (ALD)), a metal electrode material layer 2041 ( For example, W, with a thickness of about 5-50 nm, can be formed by ALD, chemical vapor deposition (CVD), etc.), a conductive diffusion barrier layer 2043 (eg, TiN, with a thickness of about 1-10 nm, can be formed by ALD), Negative capacitance material layer 2045 (for example, HfZrO 2 with a thickness of about 3-15 nm, which can be formed by ALD), a conductive diffusion barrier layer 2047 (for example, TiN, with a thickness of about 1-10 nm, which can be formed by ALD), high K dielectric layer 2049 (eg HfO 2 with a thickness of about 3-15 nm, which can be formed by ALD), conductive diffusion barrier layer 2051 (eg, TiN, with a thickness of about 1-10 nm, which can be formed by ALD), and metal electrode materials Layer 2053 (eg W, which can be formed by ALD, CVD, etc.). In this case, the conductive
在该示例中,先形成负电容材料层2045,然后再形成电介质层2049。但是,本公开不限于此。例如,可以先形成负电容材料层,然后再形成电介质层。In this example, the negative
此外,如图4(d)所示,在0层间电介质层2037中,可以形成与接触部2035-1和2035-2相对应的接触部2055-1和2055-2。之后,可以形成再一层间电介质层2057(例如,氮化物)。在层间电介质层2057中,可以形成与接触部2055-1和2055-2以及电容组件(具体地,金属电极材料层2053)相对应的接触部2059-1、2059-2和2059-3。接触部2059-1、2059-2和2059-3可以分别对应于图1中的端子T1、T2和T3。Furthermore, as shown in FIG. 4(d), in the 0
图5是示出了根据本公开另一实施例的存储单元的配置的截面图。5 is a cross-sectional view illustrating a configuration of a memory cell according to another embodiment of the present disclosure.
图5所示的存储单元与图4(d)中所示的存储单元大体上相同,除了省略了作为第二导电层的导电性扩散阻挡层2047之外。在该示例中,导电性扩散阻挡层2039、金属电极材料层2041和导电性扩散阻挡层2043(第一导电层)构成电容组件的一个极板,导电性扩散阻挡层2051和金属电极材料层2053(第三导电层)构成电容组件的另一个极板,且负电容材料层2045和高K电介质层2049的叠层构成电容组件的电容介质。同样,负电容材料层2045和高K电介质层2049的顺序可以交换。The memory cell shown in FIG. 5 is substantially the same as the memory cell shown in FIG. 4(d), except that the conductive
根据本公开实施例的存储器件可以应用于各种电子没备。这种电子没备例如智能电话、平板电脑(PC)、个人数字助手(PDA)等。The memory device according to the embodiment of the present disclosure may be applied to various electronic devices. Such electronic devices are, for example, smart phones, tablet computers (PCs), personal digital assistants (PDAs), and the like.
在以上的描述中,对于各层的构图、刻蚀等技术细节并没有做出详细的说明。但是本领域技术人员应当理解,可以通过各种技术手段,来形成所需形状的层、区域等。另外,为了形成同一结构,本领域技术人员还可以设计出与以上描述的方法并不完全相同的方法。另外,尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。In the above description, technical details such as patterning and etching of each layer are not described in detail. However, those skilled in the art should understand that various technical means can be used to form layers, regions, etc. of desired shapes. In addition, in order to form the same structure, those skilled in the art can also design methods that are not exactly the same as those described above. Additionally, although the various embodiments have been described above separately, this does not mean that the measures in the various embodiments cannot be used in combination to advantage.
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。本公开的范围由所附权利要求及其等价物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。Embodiments of the present disclosure have been described above. However, these examples are for illustrative purposes only, and are not intended to limit the scope of the present disclosure. The scope of the present disclosure is defined by the appended claims and their equivalents. Without departing from the scope of the present disclosure, those skilled in the art can make various substitutions and modifications, and these substitutions and modifications should all fall within the scope of the present disclosure.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010944026.7A CN111900168A (en) | 2016-01-25 | 2016-01-25 | Memory cells, memory devices and electronic equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610048641.3A CN105609503A (en) | 2016-01-25 | 2016-01-25 | Memory cell, memory device and electronic apparatus |
CN202010944026.7A CN111900168A (en) | 2016-01-25 | 2016-01-25 | Memory cells, memory devices and electronic equipment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610048641.3A Division CN105609503A (en) | 2016-01-25 | 2016-01-25 | Memory cell, memory device and electronic apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111900168A true CN111900168A (en) | 2020-11-06 |
Family
ID=55989301
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010944026.7A Pending CN111900168A (en) | 2016-01-25 | 2016-01-25 | Memory cells, memory devices and electronic equipment |
CN201610048641.3A Pending CN105609503A (en) | 2016-01-25 | 2016-01-25 | Memory cell, memory device and electronic apparatus |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610048641.3A Pending CN105609503A (en) | 2016-01-25 | 2016-01-25 | Memory cell, memory device and electronic apparatus |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN111900168A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112635467A (en) * | 2020-12-18 | 2021-04-09 | 上海微阱电子科技有限公司 | Memory cell structure and forming method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10128327B2 (en) | 2014-04-30 | 2018-11-13 | Stmicroelectronics, Inc. | DRAM interconnect structure having ferroelectric capacitors exhibiting negative capacitance |
US11461620B2 (en) * | 2017-07-05 | 2022-10-04 | Samsung Electronics Co., Ltd. | Multi-bit, SoC-compatible neuromorphic weight cell using ferroelectric FETs |
US10566413B2 (en) | 2017-10-03 | 2020-02-18 | Qualcomm Incorporated | MIM capacitor containing negative capacitance material |
KR102131900B1 (en) * | 2018-07-17 | 2020-07-08 | 서강대학교산학협력단 | Low-operating-voltage switching device and fabrication method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1290038A (en) * | 1999-09-28 | 2001-04-04 | 西门子公司 | Piled capacitor memory units and manufacture thereof |
CN1828905A (en) * | 2005-01-07 | 2006-09-06 | 因芬尼昂技术股份公司 | DRAM with high-k dielectric storage capacitor and method of manufacturing the same |
CN101819922A (en) * | 2009-02-27 | 2010-09-01 | 中芯国际集成电路制造(上海)有限公司 | Metal-insulator-metal capacitor and preparation method thereof |
US20150318285A1 (en) * | 2014-04-30 | 2015-11-05 | Stmicroelectronics, Inc. | Dram interconnect structure having ferroelectric capacitors |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4649625A (en) * | 1985-10-21 | 1987-03-17 | International Business Machines Corporation | Dynamic memory device having a single-crystal transistor on a trench capacitor structure and a fabrication method therefor |
US5264716A (en) * | 1992-01-09 | 1993-11-23 | International Business Machines Corporation | Diffused buried plate trench dram cell array |
US6100131A (en) * | 1997-06-11 | 2000-08-08 | Siemens Aktiengesellschaft | Method of fabricating a random access memory cell |
US5867420A (en) * | 1997-06-11 | 1999-02-02 | Siemens Aktiengesellschaft | Reducing oxidation stress in the fabrication of devices |
TW425718B (en) * | 1997-06-11 | 2001-03-11 | Siemens Ag | Vertical transistor |
US5907771A (en) * | 1997-09-30 | 1999-05-25 | Siemens Aktiengesellschaft | Reduction of pad erosion |
US20020036282A1 (en) * | 1998-10-19 | 2002-03-28 | Yet-Ming Chiang | Electromechanical actuators |
US6207524B1 (en) * | 1998-09-29 | 2001-03-27 | Siemens Aktiengesellschaft | Memory cell with a stacked capacitor |
TWI385423B (en) * | 2008-11-05 | 2013-02-11 | Univ Ishou | A waveguide device with energy compensation |
US9685295B2 (en) * | 2011-07-28 | 2017-06-20 | The Board Of Trustees Of The University Of Illinois | Electron emission device |
US9520506B2 (en) * | 2013-07-23 | 2016-12-13 | Globalfoundries Singapore Pte. Ltd. | 3D high voltage charge pump |
US9231206B2 (en) * | 2013-09-13 | 2016-01-05 | Micron Technology, Inc. | Methods of forming a ferroelectric memory cell |
US9391162B2 (en) * | 2014-04-04 | 2016-07-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Tunnel MOSFET with ferroelectric gate stack |
US10242989B2 (en) * | 2014-05-20 | 2019-03-26 | Micron Technology, Inc. | Polar, chiral, and non-centro-symmetric ferroelectric materials, memory cells including such materials, and related devices and methods |
US20160005749A1 (en) * | 2014-07-01 | 2016-01-07 | Qualcomm Incorporated | Series ferroelectric negative capacitor for multiple time programmable (mtp) devices |
-
2016
- 2016-01-25 CN CN202010944026.7A patent/CN111900168A/en active Pending
- 2016-01-25 CN CN201610048641.3A patent/CN105609503A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1290038A (en) * | 1999-09-28 | 2001-04-04 | 西门子公司 | Piled capacitor memory units and manufacture thereof |
CN1828905A (en) * | 2005-01-07 | 2006-09-06 | 因芬尼昂技术股份公司 | DRAM with high-k dielectric storage capacitor and method of manufacturing the same |
CN101819922A (en) * | 2009-02-27 | 2010-09-01 | 中芯国际集成电路制造(上海)有限公司 | Metal-insulator-metal capacitor and preparation method thereof |
US20150318285A1 (en) * | 2014-04-30 | 2015-11-05 | Stmicroelectronics, Inc. | Dram interconnect structure having ferroelectric capacitors |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112635467A (en) * | 2020-12-18 | 2021-04-09 | 上海微阱电子科技有限公司 | Memory cell structure and forming method |
Also Published As
Publication number | Publication date |
---|---|
CN105609503A (en) | 2016-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109285836B (en) | Semiconductor storage device, manufacturing method thereof, and electronic device including storage device | |
US9754880B2 (en) | Semiconductor devices including a contact structure and methods of manufacturing the same | |
US8860107B2 (en) | FinFET-compatible metal-insulator-metal capacitor | |
US9082647B2 (en) | Semiconductor devices | |
US10008505B2 (en) | Semiconductor device including capacitor and method of manufacturing the same | |
US11245035B2 (en) | Multi-gate FinFET including negative capacitor, method of manufacturing the same, and electronic device | |
TWI774371B (en) | Memory device and method of forming three-dimensional memory device | |
CN111900168A (en) | Memory cells, memory devices and electronic equipment | |
CN109643716B (en) | Three-dimensional storage device and manufacturing method thereof | |
WO2023103182A1 (en) | Memory cell, and memory and manufacturing method therefor | |
CN111564441A (en) | Semiconductor structure and preparation method | |
CN105789312A (en) | FinFET, manufacturing method thereof and electronic device comprising FinFET | |
US9343320B2 (en) | Pattern factor dependency alleviation for eDRAM and logic devices with disposable fill to ease deep trench integration with fins | |
CN111370410A (en) | Three-dimensional NAND memory and manufacturing method thereof | |
CN105742362A (en) | Semiconductor device having multi-gate FinFET, method of manufacturing the same, and electronic apparatus | |
TW202226546A (en) | Memory device and manufacturing method thereof | |
TWI848509B (en) | Memory device and methods of forming the same | |
US20090001450A1 (en) | Non-volatile memory device and method of fabricating the same | |
CN116568026A (en) | Semiconductor device with a semiconductor layer having a plurality of semiconductor layers | |
CN116471832A (en) | Method for manufacturing memory element | |
CN117316974A (en) | Semiconductor structure, manufacturing method thereof and memory | |
CN105789313A (en) | Semiconductor device, method of manufacturing the same, and electronic apparatus including the same | |
CN105702738A (en) | FinFET with negative capacitance, manufacturing method thereof and electronic device | |
CN219437502U (en) | Semiconductor device with a semiconductor layer having a plurality of semiconductor layers | |
CN118250997B (en) | Semiconductor device, method of manufacturing the same, and electronic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201106 |
|
RJ01 | Rejection of invention patent application after publication |