CN111897101A - Optical imaging lens group - Google Patents
Optical imaging lens group Download PDFInfo
- Publication number
- CN111897101A CN111897101A CN202010953410.3A CN202010953410A CN111897101A CN 111897101 A CN111897101 A CN 111897101A CN 202010953410 A CN202010953410 A CN 202010953410A CN 111897101 A CN111897101 A CN 111897101A
- Authority
- CN
- China
- Prior art keywords
- lens
- optical imaging
- lens group
- imaging lens
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/06—Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本申请公开了一种光学成像透镜组,其沿着光轴由物侧至像侧依序包括:具有负光焦度的第一透镜;具有光焦度的第二透镜;具有负光焦度的第三透镜;具有光焦度的第四透镜;具有负光焦度的第五透镜,其物侧面为凹面;以及具有光焦度的第六透镜,其物侧面为凸面。光学成像透镜组的最大视场角FOV满足:92°<FOV<116°。光学成像透镜组的成像面上有效像素区域的对角线长的一半ImgH、光学成像透镜组的总有效焦距f以及光学成像透镜组的入瞳直径EPD满足:ImgH×EPD/f<1mm。
The present application discloses an optical imaging lens group, which includes sequentially from the object side to the image side along an optical axis: a first lens with negative refractive power; a second lens with refractive power; and a negative refractive power The fourth lens with optical power; the fifth lens with negative power, whose object side is concave; and the sixth lens with power, whose object side is convex. The maximum field of view FOV of the optical imaging lens group satisfies: 92°<FOV<116°. The half ImgH of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens group, the total effective focal length f of the optical imaging lens group, and the entrance pupil diameter EPD of the optical imaging lens group satisfy: ImgH×EPD/f<1mm.
Description
技术领域technical field
本申请涉及光学元件领域,具体地,涉及一种光学成像透镜组。The present application relates to the field of optical elements, in particular, to an optical imaging lens group.
背景技术Background technique
近年来,随着电子产品的高速发展,智能手机、智能手表等便携式、可穿戴类的电子产品迅速普及。目前,智能手机、智能手表等电子产品已经成为了用户日常生活中的必需品。与此同时,诸多电子产品的供应商为了提高自身产品的竞争力,在产品创新上投入了大量的时间和精力,其中,提高便携式、可穿戴类的电子产品的成像质量成为了诸多供应商的核心竞争力。In recent years, with the rapid development of electronic products, portable and wearable electronic products such as smart phones and smart watches have rapidly become popular. At present, electronic products such as smartphones and smart watches have become necessities in users' daily lives. At the same time, in order to improve the competitiveness of their products, many electronic product suppliers have invested a lot of time and energy in product innovation. Among them, improving the imaging quality of portable and wearable electronic products has become a priority for many suppliers. core competitiveness.
发明内容SUMMARY OF THE INVENTION
本申请提供了这样一种光学成像透镜组,该光学成像透镜组沿着光轴由物侧至像侧依序包括:具有负光焦度的第一透镜;具有光焦度的第二透镜;具有负光焦度的第三透镜;具有光焦度的第四透镜;具有负光焦度的第五透镜,其物侧面为凹面;以及具有光焦度的第六透镜,其物侧面为凸面。光学成像透镜组的最大视场角FOV可满足:92°<FOV<116°;以及光学成像透镜组的成像面上有效像素区域的对角线长的一半ImgH、光学成像透镜组的总有效焦距f以及光学成像透镜组的入瞳直径EPD可满足:ImgH×EPD/f<1mm。The present application provides such an optical imaging lens group, the optical imaging lens group sequentially includes from the object side to the image side along the optical axis: a first lens with negative refractive power; a second lens with refractive power; The third lens with negative power; the fourth lens with power; the fifth lens with negative power, whose object side is concave; and the sixth lens with power, whose object side is convex . The maximum field of view FOV of the optical imaging lens group can satisfy: 92°<FOV<116°; and half of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens group ImgH, the total effective focal length of the optical imaging lens group f and the entrance pupil diameter EPD of the optical imaging lens group can satisfy: ImgH×EPD/f<1mm.
在一个实施方式中,第一透镜的物侧面至第六透镜的像侧面中至少有一个非球面镜面。In one embodiment, there is at least one aspherical mirror surface from the object side of the first lens to the image side of the sixth lens.
在一个实施方式中,第五透镜的有效焦距f5与光学成像透镜组的总有效焦距f可满足:-1.5<f/f5<0。In one embodiment, the effective focal length f5 of the fifth lens and the total effective focal length f of the optical imaging lens group may satisfy: -1.5<f/f5<0.
在一个实施方式中,第一透镜的有效焦距f1与第三透镜的有效焦距f3可满足:0<f3/(f1+f3)<1.0。In one embodiment, the effective focal length f1 of the first lens and the effective focal length f3 of the third lens may satisfy: 0<f3/(f1+f3)<1.0.
在一个实施方式中,光学成像透镜组的总有效焦距f与第二透镜的有效焦距f2可满足:0.3<f/f2<1.3。In one embodiment, the total effective focal length f of the optical imaging lens group and the effective focal length f2 of the second lens may satisfy: 0.3<f/f2<1.3.
在一个实施方式中,第一透镜的像侧面的最大有效半径DT12与第一透镜的像侧面的曲率半径R2可满足:0<DT12/R2<1.0。In one embodiment, the maximum effective radius DT12 of the image side surface of the first lens and the curvature radius R2 of the image side surface of the first lens may satisfy: 0<DT12/R2<1.0.
在一个实施方式中,第一透镜的像侧面和光轴的交点至第一透镜的像侧面的有效半径顶点在光轴上的距离SAG12与第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点在光轴上的距离SAG51可满足:0.3<SAG51/(SAG51-SAG12)<0.8。In one embodiment, the distance SAG12 from the intersection of the image side surface and the optical axis of the first lens to the vertex of the effective radius of the image side surface of the first lens on the optical axis and the intersection of the object side surface and the optical axis of the fifth lens to the fifth lens The distance SAG51 of the effective radius vertex of the object side surface on the optical axis may satisfy: 0.3<SAG51/(SAG51-SAG12)<0.8.
在一个实施方式中,第四透镜的像侧面的最大有效半径DT42与第六透镜的物侧面的最大有效半径DT61可满足:0.5<DT42/DT61<1.0。In one embodiment, the maximum effective radius DT42 of the image side of the fourth lens and the maximum effective radius DT61 of the object side of the sixth lens may satisfy: 0.5<DT42/DT61<1.0.
在一个实施方式中,第四透镜在光轴上的中心厚度CT4与第四透镜的边缘厚度ET4可满足:0.2<ET4/CT4<0.7。In one embodiment, the center thickness CT4 of the fourth lens on the optical axis and the edge thickness ET4 of the fourth lens may satisfy: 0.2<ET4/CT4<0.7.
在一个实施方式中,第五透镜的边缘厚度ET5与第五透镜的物侧面的最大有效半径DT51可满足:0.2<ET5/DT51<1.0。In one embodiment, the edge thickness ET5 of the fifth lens and the maximum effective radius DT51 of the object side surface of the fifth lens may satisfy: 0.2<ET5/DT51<1.0.
在一个实施方式中,第四透镜的像侧面的曲率半径R8与第四透镜的有效焦距f4可满足:-1.5<R8/f4<0。In one embodiment, the curvature radius R8 of the image side surface of the fourth lens and the effective focal length f4 of the fourth lens may satisfy: -1.5<R8/f4<0.
在一个实施方式中,第一透镜的像侧面的曲率半径R2与第二透镜的物侧面的曲率半径R3可满足:0.5<R2/R3<1.5。In one embodiment, the curvature radius R2 of the image side surface of the first lens and the curvature radius R3 of the object side surface of the second lens may satisfy: 0.5<R2/R3<1.5.
在一个实施方式中,第四透镜的像侧面的曲率半径R8与第五透镜的物侧面的曲率半径R9可满足:0<R8/R9<1.0。In one embodiment, the curvature radius R8 of the image side surface of the fourth lens and the curvature radius R9 of the object side surface of the fifth lens may satisfy: 0<R8/R9<1.0.
在一个实施方式中,第六透镜的物侧面的曲率半径R11与第六透镜的像侧面的曲率半径R12可满足:0.3<R12/R11<1.3。In one embodiment, the curvature radius R11 of the object side surface of the sixth lens and the curvature radius R12 of the image side surface of the sixth lens may satisfy: 0.3<R12/R11<1.3.
在一个实施方式中,第一透镜在光轴上的中心厚度CT1、第二透镜在光轴上的中心厚度CT2、第三透镜在光轴上的中心厚度CT3以及第五透镜在光轴上的中心厚度CT5可满足:0.2<CT2/(CT1+CT3+CT5)<1.0。In one embodiment, the central thickness CT1 of the first lens on the optical axis, the central thickness CT2 of the second lens on the optical axis, the central thickness CT3 of the third lens on the optical axis, and the thickness of the fifth lens on the optical axis The central thickness CT5 can satisfy: 0.2<CT2/(CT1+CT3+CT5)<1.0.
在一个实施方式中,光学成像透镜组还包括光阑,光阑至第六透镜的像侧面在光轴上的距离SD与第一透镜的物侧面至第六透镜的像侧面在光轴上的距离TD可满足:0.5<SD/TD<1.0。In one embodiment, the optical imaging lens group further includes a diaphragm, the distance SD from the diaphragm to the image side of the sixth lens on the optical axis is the same as the distance SD from the object side of the first lens to the image side of the sixth lens on the optical axis The distance TD can satisfy: 0.5<SD/TD<1.0.
本申请另一方面提供了这样一种光学成像透镜组,该光学成像透镜组沿着光轴由物侧至像侧依序包括:具有负光焦度的第一透镜;具有光焦度的第二透镜;具有负光焦度的第三透镜;具有光焦度的第四透镜;具有负光焦度的第五透镜,其物侧面为凹面;以及具有光焦度的第六透镜,其物侧面为凸面。光学成像透镜组的最大视场角FOV可满足:92°<FOV<116°。第一透镜的像侧面和光轴的交点至第一透镜的像侧面的有效半径顶点在光轴上的距离SAG12与第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点在光轴上的距离SAG51可满足:0.3<SAG51/(SAG51-SAG12)<0.8。Another aspect of the present application provides such an optical imaging lens group, the optical imaging lens group sequentially includes from the object side to the image side along the optical axis: a first lens with negative refractive power; a first lens with refractive power Two lenses; a third lens with negative power; a fourth lens with power; a fifth lens with negative power, whose object side is concave; and a sixth lens with power, whose object The sides are convex. The maximum field of view FOV of the optical imaging lens group can satisfy: 92°<FOV<116°. The distance from the intersection of the image side and the optical axis of the first lens to the effective radius vertex of the image side of the first lens on the optical axis SAG12 and the intersection of the object side and the optical axis of the fifth lens to the effective radius vertex of the fifth lens The distance SAG51 on the optical axis may satisfy: 0.3<SAG51/(SAG51-SAG12)<0.8.
在一个实施方式中,第五透镜的有效焦距f5与光学成像透镜组的总有效焦距f可满足:-1.5<f/f5<0。In one embodiment, the effective focal length f5 of the fifth lens and the total effective focal length f of the optical imaging lens group may satisfy: -1.5<f/f5<0.
在一个实施方式中,第一透镜的有效焦距f1与第三透镜的有效焦距f3可满足:0<f3/(f1+f3)<1.0。In one embodiment, the effective focal length f1 of the first lens and the effective focal length f3 of the third lens may satisfy: 0<f3/(f1+f3)<1.0.
在一个实施方式中,光学成像透镜组的总有效焦距f与第二透镜的有效焦距f2可满足:0.3<f/f2<1.3。In one embodiment, the total effective focal length f of the optical imaging lens group and the effective focal length f2 of the second lens may satisfy: 0.3<f/f2<1.3.
在一个实施方式中,第一透镜的像侧面的最大有效半径DT12与第一透镜的像侧面的曲率半径R2可满足:0<DT12/R2<1.0。In one embodiment, the maximum effective radius DT12 of the image side surface of the first lens and the curvature radius R2 of the image side surface of the first lens may satisfy: 0<DT12/R2<1.0.
在一个实施方式中,第四透镜的像侧面的最大有效半径DT42与第六透镜的物侧面的最大有效半径DT61可满足:0.5<DT42/DT61<1.0。In one embodiment, the maximum effective radius DT42 of the image side of the fourth lens and the maximum effective radius DT61 of the object side of the sixth lens may satisfy: 0.5<DT42/DT61<1.0.
在一个实施方式中,第四透镜在光轴上的中心厚度CT4与第四透镜的边缘厚度ET4可满足:0.2<ET4/CT4<0.7。In one embodiment, the center thickness CT4 of the fourth lens on the optical axis and the edge thickness ET4 of the fourth lens may satisfy: 0.2<ET4/CT4<0.7.
在一个实施方式中,第五透镜的边缘厚度ET5与第五透镜的物侧面的最大有效半径DT51可满足:0.2<ET5/DT51<1.0。In one embodiment, the edge thickness ET5 of the fifth lens and the maximum effective radius DT51 of the object side surface of the fifth lens may satisfy: 0.2<ET5/DT51<1.0.
在一个实施方式中,第四透镜的像侧面的曲率半径R8与第四透镜的有效焦距f4可满足:-1.5<R8/f4<0。In one embodiment, the curvature radius R8 of the image side surface of the fourth lens and the effective focal length f4 of the fourth lens may satisfy: -1.5<R8/f4<0.
在一个实施方式中,第一透镜的像侧面的曲率半径R2与第二透镜的物侧面的曲率半径R3可满足:0.5<R2/R3<1.5。In one embodiment, the curvature radius R2 of the image side surface of the first lens and the curvature radius R3 of the object side surface of the second lens may satisfy: 0.5<R2/R3<1.5.
在一个实施方式中,第四透镜的像侧面的曲率半径R8与第五透镜的物侧面的曲率半径R9可满足:0<R8/R9<1.0。In one embodiment, the curvature radius R8 of the image side surface of the fourth lens and the curvature radius R9 of the object side surface of the fifth lens may satisfy: 0<R8/R9<1.0.
在一个实施方式中,第六透镜的物侧面的曲率半径R11与第六透镜的像侧面的曲率半径R12可满足:0.3<R12/R11<1.3。In one embodiment, the curvature radius R11 of the object side surface of the sixth lens and the curvature radius R12 of the image side surface of the sixth lens may satisfy: 0.3<R12/R11<1.3.
在一个实施方式中,第一透镜在光轴上的中心厚度CT1、第二透镜在光轴上的中心厚度CT2、第三透镜在光轴上的中心厚度CT3以及第五透镜在光轴上的中心厚度CT5可满足:0.2<CT2/(CT1+CT3+CT5)<1.0。In one embodiment, the central thickness CT1 of the first lens on the optical axis, the central thickness CT2 of the second lens on the optical axis, the central thickness CT3 of the third lens on the optical axis, and the thickness of the fifth lens on the optical axis The central thickness CT5 can satisfy: 0.2<CT2/(CT1+CT3+CT5)<1.0.
在一个实施方式中,光学成像透镜组还包括光阑,光阑至第六透镜的像侧面在光轴上的距离SD与第一透镜的物侧面至第六透镜的像侧面在光轴上的距离TD可满足:0.5<SD/TD<1.0。In one embodiment, the optical imaging lens group further includes a diaphragm, the distance SD from the diaphragm to the image side of the sixth lens on the optical axis is the same as the distance SD from the object side of the first lens to the image side of the sixth lens on the optical axis The distance TD can satisfy: 0.5<SD/TD<1.0.
在一个实施方式中,光学成像透镜组的成像面上有效像素区域的对角线长的一半ImgH、光学成像透镜组的总有效焦距f以及光学成像透镜组的入瞳直径EPD可满足:ImgH×EPD/f<1mm。In one embodiment, the half ImgH of the diagonal length of the effective pixel area on the imaging surface of the optical imaging lens group, the total effective focal length f of the optical imaging lens group, and the entrance pupil diameter EPD of the optical imaging lens group may satisfy: ImgH× EPD/f<1mm.
本申请采用了多片(例如,六片)透镜,通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,使得上述光学成像透镜组具有大视场角、小型化和高成像质量等至少一个有益效果。The present application adopts multiple lenses (for example, six lenses), and the above-mentioned optical imaging lens group has At least one beneficial effect is large field of view, miniaturization and high imaging quality.
附图说明Description of drawings
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present application will become more apparent by reading the detailed description of non-limiting embodiments made with reference to the following drawings:
图1示出了根据本申请实施例1的光学成像透镜组的结构示意图;1 shows a schematic structural diagram of an optical imaging lens group according to
图2A至图2D分别示出了实施例1的光学成像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;2A to 2D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens group of
图3示出了根据本申请实施例2的光学成像透镜组的结构示意图;FIG. 3 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 2 of the present application;
图4A至图4D分别示出了实施例2的光学成像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;4A to 4D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens group of Embodiment 2;
图5示出了根据本申请实施例3的光学成像透镜组的结构示意图;FIG. 5 shows a schematic structural diagram of an optical imaging lens group according to
图6A至图6D分别示出了实施例3的光学成像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;6A to 6D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens group of
图7示出了根据本申请实施例4的光学成像透镜组的结构示意图;FIG. 7 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 4 of the present application;
图8A至图8D分别示出了实施例4的光学成像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;8A to 8D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens group of Embodiment 4;
图9示出了根据本申请实施例5的光学成像透镜组的结构示意图;FIG. 9 shows a schematic structural diagram of an optical imaging lens group according to
图10A至图10D分别示出了实施例5的光学成像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;10A to 10D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve and magnification chromatic aberration curve of the optical imaging lens group of
图11示出了根据本申请实施例6的光学成像透镜组的结构示意图;以及FIG. 11 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 6 of the present application; and
图12A至图12D分别示出了实施例6的光学成像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。12A to 12D respectively show the on-axis chromatic aberration curve, astigmatism curve, distortion curve, and magnification chromatic aberration curve of the optical imaging lens group of Example 6. FIG.
具体实施方式Detailed ways
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。For a better understanding of the present application, various aspects of the present application will be described in more detail with reference to the accompanying drawings. It should be understood that these detailed descriptions are merely illustrative of exemplary embodiments of the present application and are not intended to limit the scope of the present application in any way. Throughout the specification, the same reference numerals refer to the same elements. The expression "and/or" includes any and all combinations of one or more of the associated listed items.
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。It should be noted that in this specification, the expressions first, second, third etc. are only used to distinguish one feature from another feature and do not imply any limitation on the feature. Accordingly, the first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。In the drawings, the thickness, size and shape of the lenses have been slightly exaggerated for convenience of explanation. In particular, the spherical or aspherical shapes shown in the figures are shown by way of example. That is, the shape of the spherical or aspherical surface is not limited to the shape of the spherical or aspherical surface shown in the drawings. The drawings are examples only and are not drawn strictly to scale.
在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。Herein, the paraxial region refers to the region near the optical axis. If the lens surface is convex and the convex position is not defined, it means that the lens surface is convex at least in the paraxial region; if the lens surface is concave and the concave position is not defined, it means that the lens surface is at least in the paraxial region. Concave. The surface of each lens closest to the object is called the object side of the lens, and the surface of each lens closest to the imaging surface is called the image side of the lens.
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。It will also be understood that the terms "comprising", "comprising", "having", "comprising" and/or "comprising" when used in this specification mean that the stated features, elements and/or components are present , but does not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. Furthermore, when an expression such as "at least one of" appears after a list of listed features, it modifies the entire listed feature and not the individual elements of the list. Furthermore, when describing embodiments of the present application, the use of "may" means "one or more embodiments of the present application." Also, the term "exemplary" is intended to refer to an example or illustration.
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过于形式化意义解释,除非本文中明确如此限定。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs. It should also be understood that terms (such as those defined in commonly used dictionaries) should be construed to have meanings consistent with their meanings in the context of the related art, and will not be construed in idealized or overly formalized senses, unless expressly so limited herein.
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。It should be noted that the embodiments in the present application and the features of the embodiments may be combined with each other in the case of no conflict. The present application will be described in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
以下对本申请的特征、原理和其他方面进行详细描述。The features, principles, and other aspects of the present application are described in detail below.
根据本申请示例性实施方式的光学成像透镜组可包括六片具有光焦度的透镜,分别是第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴从物侧至像侧依序排列。第一透镜至第六透镜中的任意相邻两透镜之间均可具有间隔距离。The optical imaging lens group according to the exemplary embodiment of the present application may include six lenses having optical power, which are a first lens, a second lens, a third lens, a fourth lens, a fifth lens and a sixth lens, respectively. The six lenses are arranged in sequence from the object side to the image side along the optical axis. Any two adjacent lenses among the first to sixth lenses may have a separation distance.
在示例性实施方式中,第一透镜可具有负光焦度;第二透镜可具有正光焦度或负光焦度;第三透镜可具有负光焦度;第四透镜可具有正光焦度或负光焦度;第五透镜可具有负光焦度,其物侧面可为凹面;以及第六透镜可具有正光焦度或负光焦度,其物侧面可为凸面。通过合理地设置各透镜的光焦度和面型特性,有利于平衡和矫正光学成像透镜组的各项像差,有利于提高光学成像透镜组的成像质量。In an exemplary embodiment, the first lens may have negative power; the second lens may have positive power or negative power; the third lens may have negative power; the fourth lens may have positive power or negative power; the fifth lens may have negative power, and its object side may be concave; and the sixth lens may have positive or negative power, and its object side may be convex. By reasonably setting the optical power and surface characteristics of each lens, it is beneficial to balance and correct various aberrations of the optical imaging lens group, and is beneficial to improve the imaging quality of the optical imaging lens group.
在示例性实施方式中,根据本申请的光学成像透镜组可满足:92°<FOV<116°,其中,FOV是光学成像透镜组的最大视场角。更具体地,FOV进一步可满足:104°<FOV<113°。满足92°<FOV<116°,有利于实现广角特性,有利于增大成像面上的成像范围。In an exemplary embodiment, the optical imaging lens group according to the present application may satisfy: 92°<FOV<116°, where FOV is the maximum field angle of the optical imaging lens group. More specifically, the FOV may further satisfy: 104°<FOV<113°. Satisfying 92°<FOV<116° is favorable for realizing wide-angle characteristics and increasing the imaging range on the imaging plane.
在示例性实施方式中,根据本申请的光学成像透镜组可满足:ImgH×EPD/f<1mm,其中,ImgH是光学成像透镜组的成像面上有效像素区域的对角线长的一半,f是光学成像透镜组的总有效焦距,EPD是光学成像透镜组的入瞳直径。更具体地,ImgH、EPD和f进一步可满足:ImgH×EPD/f<0.9mm。满足ImgH×EPD/f<1mm,有利于实现小型化。In an exemplary embodiment, the optical imaging lens group according to the present application may satisfy: ImgH×EPD/f<1mm, where ImgH is half the diagonal length of the effective pixel area on the imaging plane of the optical imaging lens group, f is the total effective focal length of the optical imaging lens group, and EPD is the entrance pupil diameter of the optical imaging lens group. More specifically, ImgH, EPD and f may further satisfy: ImgH×EPD/f<0.9mm. Satisfying ImgH×EPD/f<1mm is beneficial for miniaturization.
在示例性实施方式中,根据本申请的光学成像透镜组可满足:-1.5<f/f5<0,其中,f5是第五透镜的有效焦距,f是光学成像透镜组的总有效焦距。更具体地,f和f5进一步可满足:-1.0<f/f5<-0.3。满足-1.5<f/f5<0,有利于减小透镜组的垂轴色差。In an exemplary embodiment, the optical imaging lens group according to the present application may satisfy: -1.5<f/f5<0, where f5 is the effective focal length of the fifth lens, and f is the total effective focal length of the optical imaging lens group. More specifically, f and f5 may further satisfy: -1.0<f/f5<-0.3. Satisfying -1.5<f/f5<0 is beneficial to reduce the vertical axis chromatic aberration of the lens group.
在示例性实施方式中,根据本申请的光学成像透镜组可满足:0<f3/(f1+f3)<1.0,其中,f1是第一透镜的有效焦距,f3是第三透镜的有效焦距。更具体地,f1和f3进一步可满足:0.5<f3/(f1+f3)<0.9。满足0<f3/(f1+f3)<1.0,有利于减小透镜组的轴向色差,提高光学成像透镜组的成像性能。In an exemplary embodiment, the optical imaging lens group according to the present application may satisfy: 0<f3/(f1+f3)<1.0, where f1 is the effective focal length of the first lens, and f3 is the effective focal length of the third lens. More specifically, f1 and f3 may further satisfy: 0.5<f3/(f1+f3)<0.9. Satisfying 0<f3/(f1+f3)<1.0 is beneficial to reduce the axial chromatic aberration of the lens group and improve the imaging performance of the optical imaging lens group.
在示例性实施方式中,根据本申请的光学成像透镜组可满足:0.3<f/f2<1.3,其中,f是光学成像透镜组的总有效焦距,f2是第二透镜的有效焦距。更具体地,f和f2进一步可满足:0.4<f/f2<1.2。满足0.3<f/f2<1.3,有利于减小透镜组的垂轴色差,同时有助于透镜组的小型化设计。In an exemplary embodiment, the optical imaging lens group according to the present application may satisfy: 0.3<f/f2<1.3, where f is the total effective focal length of the optical imaging lens group, and f2 is the effective focal length of the second lens. More specifically, f and f2 may further satisfy: 0.4<f/f2<1.2. Satisfying 0.3<f/f2<1.3 is beneficial to reduce the vertical axis chromatic aberration of the lens group and at the same time contribute to the miniaturized design of the lens group.
在示例性实施方式中,根据本申请的光学成像透镜组可满足:0<DT12/R2<1.0,其中,DT12是第一透镜的像侧面的最大有效半径,R2是第一透镜的像侧面的曲率半径。更具体地,DT12和R2进一步可满足:0.2<DT12/R2<0.7。满足0<DT12/R2<1.0,有利于透镜组的生产加工,同时,也有利于减小透镜组的轴外场曲。In an exemplary embodiment, the optical imaging lens group according to the present application may satisfy: 0<DT12/R2<1.0, wherein DT12 is the maximum effective radius of the image side of the first lens, and R2 is the image side of the first lens. Radius of curvature. More specifically, DT12 and R2 may further satisfy: 0.2<DT12/R2<0.7. Satisfying 0<DT12/R2<1.0 is beneficial to the production and processing of the lens group, and at the same time, it is also beneficial to reduce the off-axis field curvature of the lens group.
在示例性实施方式中,根据本申请的光学成像透镜组可满足:0.3<SAG51/(SAG51-SAG12)<0.8,其中,SAG12是第一透镜的像侧面和光轴的交点至第一透镜的像侧面的有效半径顶点在光轴上的距离,SAG51是第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点在光轴上的距离。更具体地,SAG51和SAG12进一步可满足:0.3<SAG51/(SAG51-SAG12)<0.7。满足0.3<SAG51/(SAG51-SAG12)<0.8,有利于提高透镜组的工艺性和成像质量。若SAG51/(SAG51-SAG12)>0.8,易导致工艺性不佳;若SAG51/(SAG51-SAG12)<0.3,不利于矫正轴外视场的场曲。In an exemplary embodiment, the optical imaging lens group according to the present application may satisfy: 0.3<SAG51/(SAG51-SAG12)<0.8, where SAG12 is the intersection of the image side surface and the optical axis of the first lens to the image of the first lens The distance of the effective radius vertex of the side surface on the optical axis, SAG51 is the distance on the optical axis from the intersection of the object side surface of the fifth lens and the optical axis to the effective radius vertex of the object side surface of the fifth lens. More specifically, SAG51 and SAG12 can further satisfy: 0.3<SAG51/(SAG51-SAG12)<0.7. Satisfying 0.3<SAG51/(SAG51-SAG12)<0.8 is beneficial to improve the manufacturability and imaging quality of the lens group. If SAG51/(SAG51-SAG12)>0.8, it is easy to lead to poor manufacturability; if SAG51/(SAG51-SAG12)<0.3, it is not conducive to correct the field curvature of the off-axis field of view.
在示例性实施方式中,根据本申请的光学成像透镜组可满足:0.5<DT42/DT61<1.0,其中,DT42是第四透镜的像侧面的最大有效半径,DT61是第六透镜的物侧面的最大有效半径。更具体地,DT42和DT61进一步可满足:0.6<DT42/DT61<0.9。满足0.5<DT42/DT61<1.0,既有利于限制透镜组的尺寸,又有利于满足透镜组的加工工艺性要求。In an exemplary embodiment, the optical imaging lens group according to the present application may satisfy: 0.5<DT42/DT61<1.0, wherein DT42 is the maximum effective radius of the image side of the fourth lens, and DT61 is the object side of the sixth lens Maximum effective radius. More specifically, DT42 and DT61 can further satisfy: 0.6<DT42/DT61<0.9. Satisfying 0.5<DT42/DT61<1.0 not only helps to limit the size of the lens group, but also helps to meet the requirements of the processing technology of the lens group.
在示例性实施方式中,根据本申请的光学成像透镜组可满足:0.2<ET4/CT4<0.7,其中,CT4是第四透镜在光轴上的中心厚度,ET4是第四透镜的边缘厚度。更具体地,ET4和CT4进一步可满足:0.2<ET4/CT4<0.5。满足0.2<ET4/CT4<0.7,既可以保证透镜组的加工工艺性要求,又可以减小透镜组的单色像差。In an exemplary embodiment, the optical imaging lens group according to the present application may satisfy: 0.2<ET4/CT4<0.7, wherein CT4 is the center thickness of the fourth lens on the optical axis, and ET4 is the edge thickness of the fourth lens. More specifically, ET4 and CT4 may further satisfy: 0.2<ET4/CT4<0.5. Satisfying 0.2<ET4/CT4<0.7 can not only ensure the processing requirements of the lens group, but also reduce the monochromatic aberration of the lens group.
在示例性实施方式中,根据本申请的光学成像透镜组可满足:0.2<ET5/DT51<1.0,其中,ET5是第五透镜的边缘厚度,DT51是第五透镜的物侧面的最大有效半径。更具体地,ET5和DT51进一步可满足:0.4<ET5/DT51<0.8。满足0.2<ET5/DT51<1.0,既可以保证透镜组的加工工艺性要求,又可以减小鬼像的影响。In an exemplary embodiment, the optical imaging lens group according to the present application may satisfy: 0.2<ET5/DT51<1.0, where ET5 is the edge thickness of the fifth lens, and DT51 is the maximum effective radius of the object side of the fifth lens. More specifically, ET5 and DT51 can further satisfy: 0.4<ET5/DT51<0.8. Satisfying 0.2<ET5/DT51<1.0 can not only ensure the processing technology requirements of the lens group, but also reduce the influence of ghost images.
在示例性实施方式中,根据本申请的光学成像透镜组可满足:-1.5<R8/f4<0,其中,R8是第四透镜的像侧面的曲率半径,f4是第四透镜的有效焦距。更具体地,R8和f4进一步可满足:-1.0<R8/f4<-0.7。满足-1.5<R8/f4<0,有利于减小轴向色差。In an exemplary embodiment, the optical imaging lens group according to the present application may satisfy: -1.5<R8/f4<0, where R8 is the curvature radius of the image side surface of the fourth lens, and f4 is the effective focal length of the fourth lens. More specifically, R8 and f4 may further satisfy: -1.0<R8/f4<-0.7. Satisfying -1.5<R8/f4<0 is beneficial to reduce the axial chromatic aberration.
在示例性实施方式中,根据本申请的光学成像透镜组可满足:0.5<R2/R3<1.5,其中,R2是第一透镜的像侧面的曲率半径,R3是第二透镜的物侧面的曲率半径。更具体地,R2和R3进一步可满足:0.5<R2/R3<1.2。满足0.5<R2/R3<1.5,有利于减小球差。In an exemplary embodiment, the optical imaging lens group according to the present application may satisfy: 0.5<R2/R3<1.5, where R2 is the radius of curvature of the image side of the first lens, and R3 is the curvature of the object side of the second lens radius. More specifically, R2 and R3 may further satisfy: 0.5<R2/R3<1.2. Satisfying 0.5<R2/R3<1.5 is beneficial to reduce spherical aberration.
在示例性实施方式中,根据本申请的光学成像透镜组可满足:0<R8/R9<1.0,其中,R8是第四透镜的像侧面的曲率半径,R9是第五透镜的物侧面的曲率半径。更具体地,R8和R9进一步可满足:0.1<R8/R9<0.7。满足0<R8/R9<1.0,有利于矫正场曲,减小鬼像的影响。In an exemplary embodiment, the optical imaging lens group according to the present application may satisfy: 0<R8/R9<1.0, wherein R8 is the curvature radius of the image side of the fourth lens, and R9 is the curvature of the object side of the fifth lens radius. More specifically, R8 and R9 may further satisfy: 0.1<R8/R9<0.7. Satisfying 0<R8/R9<1.0 is beneficial to correct field curvature and reduce the influence of ghost images.
在示例性实施方式中,根据本申请的光学成像透镜组可满足:0.3<R12/R11<1.3,其中,R11是第六透镜的物侧面的曲率半径,R12是第六透镜的像侧面的曲率半径。更具体地,R12和R11进一步可满足:0.5<R12/R11<1.0。满足0.3<R12/R11<1.3,既可以实现小型化,又可以矫正场曲。In an exemplary embodiment, the optical imaging lens group according to the present application may satisfy: 0.3<R12/R11<1.3, wherein R11 is the radius of curvature of the object side of the sixth lens, and R12 is the curvature of the image side of the sixth lens radius. More specifically, R12 and R11 may further satisfy: 0.5<R12/R11<1.0. Satisfying 0.3<R12/R11<1.3, both miniaturization and correction of field curvature can be achieved.
在示例性实施方式中,根据本申请的光学成像透镜组可满足:0.2<CT2/(CT1+CT3+CT5)<1.0,其中,CT1是第一透镜在光轴上的中心厚度,CT2是第二透镜在光轴上的中心厚度,CT3是第三透镜在光轴上的中心厚度,CT5是第五透镜在光轴上的中心厚度。更具体地,CT2、CT1、CT3和CT5进一步可满足:0.3<CT2/(CT1+CT3+CT5)<0.8。满足0.2<CT2/(CT1+CT3+CT5)<1.0,有利于保证透镜组的加工性,有利于减小透镜组的垂轴色差和轴向色差。In an exemplary embodiment, the optical imaging lens group according to the present application may satisfy: 0.2<CT2/(CT1+CT3+CT5)<1.0, wherein CT1 is the central thickness of the first lens on the optical axis, and CT2 is the first The central thickness of the second lens on the optical axis, CT3 is the central thickness of the third lens on the optical axis, and CT5 is the central thickness of the fifth lens on the optical axis. More specifically, CT2, CT1, CT3 and CT5 may further satisfy: 0.3<CT2/(CT1+CT3+CT5)<0.8. Satisfying 0.2<CT2/(CT1+CT3+CT5)<1.0 is conducive to ensuring the processability of the lens group and reducing the vertical axis chromatic aberration and axial chromatic aberration of the lens group.
在示例性实施方式中,光学成像透镜组还包括光阑,根据本申请的光学成像透镜组可满足:0.5<SD/TD<1.0,其中,SD是光阑至第六透镜的像侧面在光轴上的距离,TD是第一透镜的物侧面至第六透镜的像侧面在光轴上的距离。更具体地,SD和TD进一步可满足:0.7<SD/TD<0.9。满足0.5<SD/TD<1.0,既有利于减小像散,又有利于使透镜组具有较小的光学总长。In an exemplary embodiment, the optical imaging lens group further includes a diaphragm, and the optical imaging lens group according to the present application may satisfy: 0.5<SD/TD<1.0, where SD is the image side of the diaphragm to the sixth lens in the light The distance on the axis, TD is the distance on the optical axis from the object side of the first lens to the image side of the sixth lens. More specifically, SD and TD may further satisfy: 0.7<SD/TD<0.9. Satisfying 0.5<SD/TD<1.0 not only helps to reduce astigmatism, but also helps to make the lens group have a smaller total optical length.
在示例性实施方式中,根据本申请的光学成像透镜组还包括设置在第一透镜与第二透镜之间的光阑。可选地,上述光学成像透镜组还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。In an exemplary embodiment, the optical imaging lens group according to the present application further includes a diaphragm disposed between the first lens and the second lens. Optionally, the above-mentioned optical imaging lens group may further include a filter for correcting color deviation and/or a protective glass for protecting the photosensitive element located on the imaging surface.
根据本申请的上述实施方式的光学成像透镜组可采用多片镜片,例如上文所述的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地缩小光学成像透镜组的体积并提高光学成像透镜组的可加工性,使得光学成像透镜组更有利于生产加工并可适用于便携式电子产品。通过上述配置的光学成像透镜组可具有例如超广角、小型化、良好的成像质量等特点。The optical imaging lens set according to the above-mentioned embodiments of the present application may employ multiple lenses, such as the above-mentioned six lenses. By reasonably allocating the optical power, surface shape, central thickness of each lens, and on-axis distance between each lens, etc., the volume of the optical imaging lens group can be effectively reduced and the machinability of the optical imaging lens group can be improved. The optical imaging lens group is more conducive to production and processing and is suitable for portable electronic products. The optical imaging lens group configured as above can have characteristics such as ultra-wide angle, miniaturization, good imaging quality, and the like.
在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜的物侧面至第六透镜的像侧面中的至少一个镜面为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,进而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面均为非球面镜面。In the embodiments of the present application, at least one of the mirror surfaces of each lens is an aspheric mirror surface, that is, at least one mirror surface from the object side of the first lens to the image side of the sixth lens is an aspheric mirror surface. The characteristic of aspheric lenses is that the curvature changes continuously from the center of the lens to the periphery of the lens. Unlike spherical lenses, which have a constant curvature from the center of the lens to the periphery of the lens, aspheric lenses have better curvature radius characteristics, and have the advantages of improving distortion and astigmatism. After the aspherical lens is used, the aberration that occurs during imaging can be eliminated as much as possible, thereby improving the imaging quality. Optionally, at least one of the object side surface and the image side surface of each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens and the sixth lens is an aspherical mirror surface. Optionally, the object side surface and the image side surface of each of the first lens, the second lens, the third lens, the fourth lens, the fifth lens and the sixth lens are aspherical mirror surfaces.
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案的情况下,可改变构成光学成像透镜组的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学成像透镜组不限于包括六个透镜。如果需要,该光学成像透镜组还可包括其它数量的透镜。However, those skilled in the art should understand that the number of lenses constituting the optical imaging lens group can be changed to obtain the various results and advantages described in this specification without departing from the technical solutions claimed in the present application. For example, although six lenses are described as an example in the embodiment, the optical imaging lens group is not limited to including six lenses. The optical imaging lens set may also include other numbers of lenses if desired.
下面参照附图进一步描述可适用于上述实施方式的光学成像透镜组的具体实施例。Specific examples of the optical imaging lens group applicable to the above-described embodiments are further described below with reference to the accompanying drawings.
实施例1Example 1
以下参照图1至图2D描述根据本申请实施例1的光学成像透镜组。图1示出了根据本申请实施例1的光学成像透镜组的结构示意图。The following describes the optical imaging lens group according to
如图1所示,光学成像透镜组由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。As shown in FIG. 1 , the optical imaging lens group sequentially includes from the object side to the image side: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a Six lenses E6, filter E7 and imaging surface S15.
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。The first lens E1 has negative refractive power, the object side S1 is concave, and the image side S2 is concave. The second lens E2 has positive refractive power, the object side S3 is convex, and the image side S4 is concave. The third lens E3 has negative refractive power, the object side S5 is convex, and the image side S6 is concave. The fourth lens E4 has positive refractive power, the object side S7 is convex, and the image side S8 is convex. The fifth lens E5 has negative refractive power, the object side S9 is concave, and the image side S10 is concave. The sixth lens E6 has negative refractive power, the object side S11 is convex, and the image side S12 is concave. The filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
表1示出了实施例1的光学成像透镜组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。Table 1 shows the basic parameter table of the optical imaging lens group of Example 1, wherein the units of curvature radius, thickness/distance and focal length are all millimeters (mm).
表1Table 1
在本示例中,光学成像透镜组的总有效焦距f为1.80mm,光学成像透镜组的总长度TTL(即,从第一透镜E1的物侧面S1至光学成像透镜组的成像面S15在光轴上的距离)为4.00mm,光学成像透镜组的成像面S15上有效像素区域的对角线长的一半ImgH为1.81mm,光学成像透镜组的总有效焦距f与光学成像透镜组的入瞳直径EPD的比值f/EPD为2.08,光学成像透镜组的最大视场角FOV为105.0°。In this example, the total effective focal length f of the optical imaging lens group is 1.80 mm, and the total length TTL of the optical imaging lens group (that is, from the object side S1 of the first lens E1 to the imaging surface S15 of the optical imaging lens group is on the optical axis The distance from above) is 4.00mm, half of the diagonal length ImgH of the effective pixel area on the imaging surface S15 of the optical imaging lens group is 1.81mm, the total effective focal length f of the optical imaging lens group and the entrance pupil diameter of the optical imaging lens group The ratio f/EPD of EPD is 2.08, and the maximum field of view FOV of the optical imaging lens group is 105.0°.
在实施例1中,第一透镜E1至第六透镜E6中的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:In
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表1中曲率半径R的倒数);k为圆锥系数;Ai是非球面第i-th阶的修正系数。下表2给出了可用于实施例1中各非球面镜面S1-S12的高次项系数A4、A6、A8、A10、A12、A14、和A16。Among them, x is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis; c is the paraxial curvature of the aspheric surface, c=1/R (that is, the paraxial curvature c is the above table 1 is the reciprocal of the radius of curvature R); k is the conic coefficient; Ai is the correction coefficient of the i-th order of the aspheric surface. Table 2 below shows the higher order coefficients A 4 , A 6 , A 8 , A 10 , A 12 , A 14 , and A 16 that can be used for each of the aspheric mirror surfaces S1 to S12 in Example 1.
表2Table 2
图2A示出了实施例1的光学成像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2B示出了实施例1的光学成像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图2D示出了实施例1的光学成像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2A至图2D可知,实施例1所给出的光学成像透镜组能够实现良好的成像品质。FIG. 2A shows the on-axis chromatic aberration curve of the optical imaging lens group of
实施例2Example 2
以下参照图3至图4D描述根据本申请实施例2的光学成像透镜组。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本申请实施例2的光学成像透镜组的结构示意图。The following describes the optical imaging lens group according to Embodiment 2 of the present application with reference to FIGS. 3 to 4D . In this embodiment and the following embodiments, descriptions similar to those in
如图3所示,光学成像透镜组由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。As shown in FIG. 3 , the optical imaging lens group sequentially includes from the object side to the image side: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a Six lenses E6, filter E7 and imaging surface S15.
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凹面,像侧面S6为凸面。第四透镜E4具有正光焦度,其物侧面S7为凹面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。The first lens E1 has negative refractive power, the object side S1 is convex, and the image side S2 is concave. The second lens E2 has positive refractive power, the object side S3 is convex, and the image side S4 is convex. The third lens E3 has negative refractive power, the object side S5 is concave, and the image side S6 is convex. The fourth lens E4 has positive refractive power, the object side S7 is concave, and the image side S8 is convex. The fifth lens E5 has negative refractive power, the object side S9 is concave, and the image side S10 is concave. The sixth lens E6 has negative refractive power, the object side S11 is convex, and the image side S12 is concave. The filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
在本示例中,光学成像透镜组的总有效焦距f为1.75mm,光学成像透镜组的总长度TTL为3.98mm,光学成像透镜组的成像面S15上有效像素区域的对角线长的一半ImgH为1.85mm,光学成像透镜组的总有效焦距f与光学成像透镜组的入瞳直径EPD的比值f/EPD为2.20,光学成像透镜组的最大视场角FOV为112.0°。In this example, the total effective focal length f of the optical imaging lens group is 1.75mm, the total length TTL of the optical imaging lens group is 3.98mm, and the half of the diagonal length of the effective pixel area on the imaging plane S15 of the optical imaging lens group is ImgH is 1.85mm, the ratio f/EPD of the total effective focal length f of the optical imaging lens group to the entrance pupil diameter EPD of the optical imaging lens group is 2.20, and the maximum field of view FOV of the optical imaging lens group is 112.0°.
表3示出了实施例2的光学成像透镜组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表4示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。Table 3 shows the basic parameter table of the optical imaging lens group of Example 2, wherein the units of curvature radius, thickness/distance and focal length are all millimeters (mm). Table 4 shows the high-order term coefficients that can be used for each aspherical mirror surface in Example 2, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
表3table 3
表4Table 4
图4A示出了实施例2的光学成像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4B示出了实施例2的光学成像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图4D示出了实施例2的光学成像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4A至图4D可知,实施例2所给出的光学成像透镜组能够实现良好的成像品质。FIG. 4A shows the on-axis chromatic aberration curve of the optical imaging lens group of Embodiment 2, which represents the deviation of the confocal point of light of different wavelengths after passing through the lens. 4B shows astigmatism curves of the optical imaging lens group of Example 2, which represent the meridional curvature of the image plane and the sagittal image plane curvature. FIG. 4C shows the distortion curve of the optical imaging lens group of Example 2, which represents the magnitude of the distortion corresponding to different field angles. FIG. 4D shows the magnification chromatic aberration curve of the optical imaging lens group of Example 2, which represents the deviation of different image heights on the imaging plane after light passes through the lens. According to FIGS. 4A to 4D , it can be seen that the optical imaging lens group given in Embodiment 2 can achieve good imaging quality.
实施例3Example 3
以下参照图5至图6D描述了根据本申请实施例3的光学成像透镜组。图5示出了根据本申请实施例3的光学成像透镜组的结构示意图。The optical imaging lens group according to
如图5所示,光学成像透镜组由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。As shown in FIG. 5 , the optical imaging lens group sequentially includes from the object side to the image side: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a Six lenses E6, filter E7 and imaging surface S15.
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。The first lens E1 has negative refractive power, the object side S1 is concave, and the image side S2 is concave. The second lens E2 has positive refractive power, the object side S3 is convex, and the image side S4 is convex. The third lens E3 has negative refractive power, the object side S5 is convex, and the image side S6 is concave. The fourth lens E4 has positive refractive power, the object side S7 is convex, and the image side S8 is convex. The fifth lens E5 has negative refractive power, the object side S9 is concave, and the image side S10 is convex. The sixth lens E6 has positive refractive power, the object side S11 is convex, and the image side S12 is concave. The filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
在本示例中,光学成像透镜组的总有效焦距f为1.86mm,光学成像透镜组的总长度TTL为4.10mm,光学成像透镜组的成像面S15上有效像素区域的对角线长的一半ImgH为1.85mm,光学成像透镜组的总有效焦距f与光学成像透镜组的入瞳直径EPD的比值f/EPD为2.25,光学成像透镜组的最大视场角FOV为110.0°。In this example, the total effective focal length f of the optical imaging lens group is 1.86mm, the total length TTL of the optical imaging lens group is 4.10mm, and half the diagonal length of the effective pixel area on the imaging plane S15 of the optical imaging lens group is ImgH is 1.85mm, the ratio f/EPD of the total effective focal length f of the optical imaging lens group to the entrance pupil diameter EPD of the optical imaging lens group is 2.25, and the maximum field of view FOV of the optical imaging lens group is 110.0°.
表5示出了实施例3的光学成像透镜组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表6示出了可用于实施例3中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。Table 5 shows the basic parameter table of the optical imaging lens group of Example 3, wherein the units of curvature radius, thickness/distance and focal length are all millimeters (mm). Table 6 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Example 3, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
表5table 5
表6Table 6
图6A示出了实施例3的光学成像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6B示出了实施例3的光学成像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图6D示出了实施例3的光学成像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6A至图6D可知,实施例3所给出的光学成像透镜组能够实现良好的成像品质。FIG. 6A shows the on-axis chromatic aberration curve of the optical imaging lens group of
实施例4Example 4
以下参照图7至图8D描述了根据本申请实施例4的光学成像透镜组。图7示出了根据本申请实施例4的光学成像透镜组的结构示意图。The optical imaging lens group according to Embodiment 4 of the present application is described below with reference to FIGS. 7 to 8D . FIG. 7 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 4 of the present application.
如图7所示,光学成像透镜组由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。As shown in FIG. 7 , the optical imaging lens group sequentially includes from the object side to the image side: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a Six lenses E6, filter E7 and imaging surface S15.
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。The first lens E1 has negative refractive power, the object side S1 is convex, and the image side S2 is concave. The second lens E2 has positive refractive power, the object side S3 is convex, and the image side S4 is convex. The third lens E3 has negative refractive power, the object side S5 is convex, and the image side S6 is concave. The fourth lens E4 has positive refractive power, the object side S7 is convex, and the image side S8 is convex. The fifth lens E5 has negative refractive power, the object side S9 is concave, and the image side S10 is concave. The sixth lens E6 has negative refractive power, the object side S11 is convex, and the image side S12 is concave. The filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
在本示例中,光学成像透镜组的总有效焦距f为1.81mm,光学成像透镜组的总长度TTL为4.10mm,光学成像透镜组的成像面S15上有效像素区域的对角线长的一半ImgH为1.82mm,光学成像透镜组的总有效焦距f与光学成像透镜组的入瞳直径EPD的比值f/EPD为2.20,光学成像透镜组的最大视场角FOV为106.0°。In this example, the total effective focal length f of the optical imaging lens group is 1.81mm, the total length TTL of the optical imaging lens group is 4.10mm, and the half of the diagonal length of the effective pixel area on the imaging plane S15 of the optical imaging lens group is ImgH is 1.82mm, the ratio f/EPD of the total effective focal length f of the optical imaging lens group to the entrance pupil diameter EPD of the optical imaging lens group is 2.20, and the maximum field of view FOV of the optical imaging lens group is 106.0°.
表7示出了实施例4的光学成像透镜组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表8示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。Table 7 shows the basic parameter table of the optical imaging lens group of Example 4, wherein the units of curvature radius, thickness/distance and focal length are all millimeters (mm). Table 8 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Example 4, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
表7Table 7
表8Table 8
图8A示出了实施例4的光学成像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8B示出了实施例4的光学成像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图8D示出了实施例4的光学成像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8A至图8D可知,实施例4所给出的光学成像透镜组能够实现良好的成像品质。FIG. 8A shows the on-axis chromatic aberration curve of the optical imaging lens group of Embodiment 4, which represents the deviation of the confocal point of light of different wavelengths after passing through the lens. 8B shows astigmatism curves of the optical imaging lens group of Example 4, which represent the meridional curvature of the field and the sagittal curvature of the field. FIG. 8C shows a distortion curve of the optical imaging lens group of Example 4, which indicates the magnitude of the distortion corresponding to different field angles. FIG. 8D shows the magnification chromatic aberration curve of the optical imaging lens group of Example 4, which represents the deviation of different image heights on the imaging plane after light passes through the lens. According to FIGS. 8A to 8D , it can be seen that the optical imaging lens group provided in Embodiment 4 can achieve good imaging quality.
实施例5Example 5
以下参照图9至图10D描述了根据本申请实施例5的光学成像透镜组。图9示出了根据本申请实施例5的光学成像透镜组的结构示意图。The optical imaging lens group according to
如图9所示,光学成像透镜组由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。As shown in FIG. 9 , the optical imaging lens group sequentially includes from the object side to the image side: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a Six lenses E6, filter E7 and imaging surface S15.
第一透镜E1具有负光焦度,其物侧面S1为凸面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凸面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凸面。第六透镜E6具有负光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。The first lens E1 has negative refractive power, the object side S1 is convex, and the image side S2 is concave. The second lens E2 has positive refractive power, the object side S3 is convex, and the image side S4 is convex. The third lens E3 has negative refractive power, the object side S5 is convex, and the image side S6 is concave. The fourth lens E4 has positive refractive power, the object side S7 is convex, and the image side S8 is convex. The fifth lens E5 has negative refractive power, the object side S9 is concave, and the image side S10 is convex. The sixth lens E6 has negative refractive power, the object side S11 is convex, and the image side S12 is concave. The filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
在本示例中,光学成像透镜组的总有效焦距f为1.66mm,光学成像透镜组的总长度TTL为4.29mm,光学成像透镜组的成像面S15上有效像素区域的对角线长的一半ImgH为1.82mm,光学成像透镜组的总有效焦距f与光学成像透镜组的入瞳直径EPD的比值f/EPD为2.20,光学成像透镜组的最大视场角FOV为110.0°。In this example, the total effective focal length f of the optical imaging lens group is 1.66mm, the total length TTL of the optical imaging lens group is 4.29mm, and the half of the diagonal length of the effective pixel area on the imaging plane S15 of the optical imaging lens group is ImgH is 1.82mm, the ratio f/EPD of the total effective focal length f of the optical imaging lens group to the entrance pupil diameter EPD of the optical imaging lens group is 2.20, and the maximum field of view FOV of the optical imaging lens group is 110.0°.
表9示出了实施例5的光学成像透镜组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表10示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。Table 9 shows the basic parameter table of the optical imaging lens group of Example 5, wherein the units of curvature radius, thickness/distance, and focal length are all millimeters (mm). Table 10 shows the higher-order term coefficients that can be used for each aspherical mirror surface in Example 5, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
表9Table 9
表10Table 10
图10A示出了实施例5的光学成像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10B示出了实施例5的光学成像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图10D示出了实施例5的光学成像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10A至图10D可知,实施例5所给出的光学成像透镜组能够实现良好的成像品质。FIG. 10A shows the on-axis chromatic aberration curve of the optical imaging lens group of Example 5, which represents the deviation of the converging point of light of different wavelengths after passing through the lens. 10B shows astigmatism curves of the optical imaging lens group of Example 5, which represent the meridional curvature of the image plane and the sagittal image plane curvature. FIG. 10C shows the distortion curve of the optical imaging lens group of
实施例6Example 6
以下参照图11至图12D描述了根据本申请实施例6的光学成像透镜组。图11示出了根据本申请实施例6的光学成像透镜组的结构示意图。The optical imaging lens group according to Embodiment 6 of the present application is described below with reference to FIGS. 11 to 12D . FIG. 11 shows a schematic structural diagram of an optical imaging lens group according to Embodiment 6 of the present application.
如图11所示,光学成像透镜组由物侧至像侧依序包括:第一透镜E1、光阑STO、第二透镜E2、第三透镜E3、第四透镜E4、第五透镜E5、第六透镜E6、滤光片E7和成像面S15。As shown in FIG. 11 , the optical imaging lens group sequentially includes from the object side to the image side: a first lens E1, a diaphragm STO, a second lens E2, a third lens E3, a fourth lens E4, a fifth lens E5, a Six lenses E6, filter E7 and imaging surface S15.
第一透镜E1具有负光焦度,其物侧面S1为凹面,像侧面S2为凹面。第二透镜E2具有正光焦度,其物侧面S3为凸面,像侧面S4为凹面。第三透镜E3具有负光焦度,其物侧面S5为凸面,像侧面S6为凹面。第四透镜E4具有正光焦度,其物侧面S7为凸面,像侧面S8为凸面。第五透镜E5具有负光焦度,其物侧面S9为凹面,像侧面S10为凹面。第六透镜E6具有正光焦度,其物侧面S11为凸面,像侧面S12为凹面。滤光片E7具有物侧面S13和像侧面S14。来自物体的光依序穿过各表面S1至S14并最终成像在成像面S15上。The first lens E1 has negative refractive power, the object side S1 is concave, and the image side S2 is concave. The second lens E2 has positive refractive power, the object side S3 is convex, and the image side S4 is concave. The third lens E3 has negative refractive power, the object side S5 is convex, and the image side S6 is concave. The fourth lens E4 has positive refractive power, the object side S7 is convex, and the image side S8 is convex. The fifth lens E5 has negative refractive power, the object side S9 is concave, and the image side S10 is concave. The sixth lens E6 has positive refractive power, the object side S11 is convex, and the image side S12 is concave. The filter E7 has an object side S13 and an image side S14. The light from the object sequentially passes through the surfaces S1 to S14 and is finally imaged on the imaging surface S15.
在本示例中,光学成像透镜组的总有效焦距f为1.56mm,光学成像透镜组的总长度TTL为4.41mm,光学成像透镜组的成像面S15上有效像素区域的对角线长的一半ImgH为1.72mm,光学成像透镜组的总有效焦距f与光学成像透镜组的入瞳直径EPD的比值f/EPD为2.30,光学成像透镜组的最大视场角FOV为104.9°。In this example, the total effective focal length f of the optical imaging lens group is 1.56mm, the total length TTL of the optical imaging lens group is 4.41mm, and the half of the diagonal length of the effective pixel area on the imaging plane S15 of the optical imaging lens group is ImgH is 1.72mm, the ratio f/EPD of the total effective focal length f of the optical imaging lens group to the entrance pupil diameter EPD of the optical imaging lens group is 2.30, and the maximum field of view FOV of the optical imaging lens group is 104.9°.
表11示出了实施例6的光学成像透镜组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表12示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。Table 11 shows the basic parameter table of the optical imaging lens group of Example 6, wherein the units of curvature radius, thickness/distance, and focal length are all millimeters (mm). Table 12 shows the coefficients of higher-order terms that can be used for each aspherical mirror surface in Example 6, where each aspherical surface type can be defined by the formula (1) given in Example 1 above.
表11Table 11
表12Table 12
图12A示出了实施例6的光学成像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12B示出了实施例6的光学成像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的光学成像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图12D示出了实施例6的光学成像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12A至图12D可知,实施例6所给出的光学成像透镜组能够实现良好的成像品质。FIG. 12A shows the on-axis chromatic aberration curve of the optical imaging lens group of Example 6, which represents the deviation of the converging point of light of different wavelengths after passing through the lens. 12B shows astigmatism curves of the optical imaging lens group of Example 6, which represent the meridional curvature of the image plane and the sagittal image plane curvature. FIG. 12C shows the distortion curve of the optical imaging lens group of Example 6, which represents the distortion magnitude values corresponding to different field angles. FIG. 12D shows the magnification chromatic aberration curve of the optical imaging lens group of Example 6, which represents the deviation of different image heights on the imaging plane after light passes through the lens. According to FIGS. 12A to 12D , it can be seen that the optical imaging lens group given in Embodiment 6 can achieve good imaging quality.
综上,实施例1至实施例6分别满足表13中所示的关系。In conclusion, Examples 1 to 6 satisfy the relationships shown in Table 13, respectively.
表13Table 13
本申请还提供一种成像装置,其电子感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像透镜组。The present application also provides an imaging device whose electronic photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS). The imaging device may be an independent imaging device such as a digital camera, or an imaging module integrated on a mobile electronic device such as a mobile phone. The imaging device is equipped with the above-described optical imaging lens group.
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is only a preferred embodiment of the present application and an illustration of the applied technical principles. Those skilled in the art should understand that the scope of the invention involved in this application is not limited to the technical solution formed by the specific combination of the above technical features, and should also cover the above technical features without departing from the inventive concept. Other technical solutions formed by any combination of its equivalent features. For example, a technical solution is formed by replacing the above-mentioned features with the technical features disclosed in this application (but not limited to) with similar functions.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010953410.3A CN111897101B (en) | 2020-09-11 | 2020-09-11 | Optical imaging lens set |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010953410.3A CN111897101B (en) | 2020-09-11 | 2020-09-11 | Optical imaging lens set |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111897101A true CN111897101A (en) | 2020-11-06 |
CN111897101B CN111897101B (en) | 2025-07-11 |
Family
ID=73225208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010953410.3A Active CN111897101B (en) | 2020-09-11 | 2020-09-11 | Optical imaging lens set |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111897101B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113433671A (en) * | 2021-07-26 | 2021-09-24 | 浙江舜宇光学有限公司 | Optical imaging lens |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104808316A (en) * | 2014-01-24 | 2015-07-29 | 大立光电股份有限公司 | Optical image capturing lens, image capturing device and mobile terminal |
CN105607221A (en) * | 2014-11-18 | 2016-05-25 | 三星电机株式会社 | Lens module |
CN106443961A (en) * | 2015-08-10 | 2017-02-22 | 三星电机株式会社 | Optical system |
CN107402431A (en) * | 2016-05-20 | 2017-11-28 | 大立光电股份有限公司 | Image capturing lens, image capturing device and electronic device |
JP2018072716A (en) * | 2016-11-02 | 2018-05-10 | カンタツ株式会社 | Image capturing lens |
CN111258036A (en) * | 2020-04-02 | 2020-06-09 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN111538140A (en) * | 2020-07-13 | 2020-08-14 | 瑞声通讯科技(常州)有限公司 | Camera optics |
CN212675263U (en) * | 2020-09-11 | 2021-03-09 | 浙江舜宇光学有限公司 | Optical imaging lens group |
-
2020
- 2020-09-11 CN CN202010953410.3A patent/CN111897101B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104808316A (en) * | 2014-01-24 | 2015-07-29 | 大立光电股份有限公司 | Optical image capturing lens, image capturing device and mobile terminal |
CN105607221A (en) * | 2014-11-18 | 2016-05-25 | 三星电机株式会社 | Lens module |
CN106443961A (en) * | 2015-08-10 | 2017-02-22 | 三星电机株式会社 | Optical system |
CN107402431A (en) * | 2016-05-20 | 2017-11-28 | 大立光电股份有限公司 | Image capturing lens, image capturing device and electronic device |
JP2018072716A (en) * | 2016-11-02 | 2018-05-10 | カンタツ株式会社 | Image capturing lens |
CN111258036A (en) * | 2020-04-02 | 2020-06-09 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN111538140A (en) * | 2020-07-13 | 2020-08-14 | 瑞声通讯科技(常州)有限公司 | Camera optics |
CN212675263U (en) * | 2020-09-11 | 2021-03-09 | 浙江舜宇光学有限公司 | Optical imaging lens group |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113433671A (en) * | 2021-07-26 | 2021-09-24 | 浙江舜宇光学有限公司 | Optical imaging lens |
CN113433671B (en) * | 2021-07-26 | 2023-02-17 | 浙江舜宇光学有限公司 | Optical imaging lens |
Also Published As
Publication number | Publication date |
---|---|
CN111897101B (en) | 2025-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021073275A1 (en) | Optical imaging lens | |
CN114047607B (en) | Optical imaging lens | |
CN111443465A (en) | Optical imaging system | |
CN110673308A (en) | Optical imaging system | |
CN110376720B (en) | Optical imaging system | |
CN112180566B (en) | Optical imaging lens | |
CN113759501B (en) | an optical imaging lens | |
CN111679409A (en) | Optical imaging lens | |
CN212675263U (en) | Optical imaging lens group | |
CN111399182B (en) | Optical imaging lens | |
CN110542996A (en) | Optical imaging lens group | |
CN110426823B (en) | Optical imaging lens group | |
CN111552059A (en) | Optical imaging lens | |
CN111897102B (en) | Optical imaging lens | |
CN111399184A (en) | Optical imaging lens | |
CN112034598A (en) | Optical imaging system | |
CN113467058B (en) | An optical imaging system | |
CN111399191A (en) | Optical imaging lens | |
CN111399183A (en) | Optical imaging lens | |
CN111679408A (en) | Optical imaging lens | |
CN112130286A (en) | Optical imaging lens | |
CN111624739B (en) | Optical imaging lens | |
CN111158110B (en) | Optical imaging lens | |
CN111722368A (en) | Optical imaging lens | |
CN111812808A (en) | Camera lens group |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |