[go: up one dir, main page]

CN111886701A - 有机el显示装置及其制造方法 - Google Patents

有机el显示装置及其制造方法 Download PDF

Info

Publication number
CN111886701A
CN111886701A CN201880086836.4A CN201880086836A CN111886701A CN 111886701 A CN111886701 A CN 111886701A CN 201880086836 A CN201880086836 A CN 201880086836A CN 111886701 A CN111886701 A CN 111886701A
Authority
CN
China
Prior art keywords
organic
insulating film
electrode
film
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880086836.4A
Other languages
English (en)
Inventor
岸本克彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Display Products Corp
Original Assignee
Sakai Display Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Display Products Corp filed Critical Sakai Display Products Corp
Publication of CN111886701A publication Critical patent/CN111886701A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/451Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs characterised by the compositions or shapes of the interlayer dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/031Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
    • H10D30/0312Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] characterised by the gate electrodes
    • H10D30/0314Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] characterised by the gate electrodes of lateral top-gate TFTs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/031Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT]
    • H10D30/0321Manufacture or treatment of FETs having insulated gates [IGFET] of thin-film transistors [TFT] comprising silicon, e.g. amorphous silicon or polysilicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/6729Thin-film transistors [TFT] characterised by the electrodes
    • H10D30/673Thin-film transistors [TFT] characterised by the electrodes characterised by the shapes, relative sizes or dispositions of the gate electrodes
    • H10D30/6731Top-gate only TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]
    • H10D30/674Thin-film transistors [TFT] characterised by the active materials
    • H10D30/6741Group IV materials, e.g. germanium or silicon carbide
    • H10D30/6743Silicon
    • H10D30/6745Polycrystalline or microcrystalline silicon
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/01Manufacture or treatment
    • H10D86/021Manufacture or treatment of multiple TFTs
    • H10D86/0221Manufacture or treatment of multiple TFTs comprising manufacture, treatment or patterning of TFT semiconductor bodies
    • H10D86/0223Manufacture or treatment of multiple TFTs comprising manufacture, treatment or patterning of TFT semiconductor bodies comprising crystallisation of amorphous, microcrystalline or polycrystalline semiconductor materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/421Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/60Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明包括:基板(10),其具有形成包含TFT(20)的驱动电路的表面;平坦化膜(30),其通过覆盖驱动电路使基板(10)的表面平坦化;有机发光元件(40),其具有:第一电极(41),其形成在平坦化膜(30)的表面上,并与驱动电路连接;有机发光层(43),其形成在第一电极(41)之上;以及第二电极(44),其形成在有机发光层(43)之上。并且,平坦化膜(30)包含层叠在驱动电路之上的第一无机绝缘膜(31)以及有机绝缘膜(32),有机绝缘膜(32)的表面形成为算术平面粗糙度Ra在50nm以下。

Description

有机EL显示装置及其制造方法
技术领域
本发明关于有机EL显示装置及其制造方法。
背景技术
近年来,在大型电视机、移动设备等有采用有机EL显示装置的趋势。有机EL显示装置通过如下方式构成:在绝缘基板之上的每个像素的区域内形成有使用作为开关元件、驱动元件等的有源元件的薄膜晶体管(以下,也称为TFT)的驱动电路,并在该驱动电路之上以与TFT连接的方式形成每个像素的有机发光元件。作为有机EL显示装置,具有以发光元件的正面为显示面的顶部发射型和以绝缘基板的背面作为显示面的底部发射型,在顶部发射型中,与有机发光元件的显示区域无关,而在其下方形成上述驱动电路。另一方面,在底部发射型中,在显示区域的周缘部形成驱动电路。因此,在形成驱动电路的空间小的移动设备等的小型有机EL显示装置中,经常使用顶部发射型、即在几乎整个显示区域的下方形成TFT等的驱动电路的构成。另一方面,底部发射型适用于在像素之间的空间具有一些余量的大型电视机等。
当驱动电路由TFT等形成时,其表面变得凹凸。由于在此基础上形成有机发光元件,因此通过用树脂材料等覆盖在驱动电路之上来形成平坦化膜。由此,可以进行表面平坦化。在以往,该平坦化膜是在形成TFT之后形成作为阻挡层的第一无机绝缘膜,并通过光刻工艺形成用于连接上述有机发光元件与TFT的接触孔,并且在此基础上形成感光性有机绝缘膜,并通过光刻工艺与湿法显影进行的接触孔的形成而得到。通过以此方式形成有机绝缘膜,由于TFT等的形成使表面的凹凸被平坦化。
专利文献1中公开了一种适用于有源矩阵型显示装置的每个像素的开关元件等的TFT及其制造方法,该TFT及其制造方法兼具有小的占用面积与优异的晶体管特性。这是在相同结构的TFT之间插入其中通过CMP处理而使表面的凹凸设为20nm以下的层间绝缘膜,以将多层TFT垂直地形成为一体的构成。即,在形成精细的TFT时,层间绝缘膜的表面的平坦度设为20nm以下以对应浅的焦点深度,因此不是用于在TFT之上形成有机发光元件的平坦化。
现有技术文献
专利文献
专利文献1:日本特开2017-11173号公报
发明内容
本发明所要解决的技术问题
另一方面,当在视觉上观看有机EL显示装置时,存在由像素产生的颜色不均匀或亮度不均匀,从而视觉辨识特性降低的情况。本发明人对产生这种颜色不均或亮度不均的原因进行了重复深入研究,调查结果发现是由有机发光层的表面的平坦性的缺陷引起的。即,如上所述,在有机发光元件形成在形成有驱动电路的TFT等上,且形成在使表面平坦的平坦化膜上。该有机绝缘膜的表面大致平坦,这在以往不视为问题。然而,本发明人进行了重复深入研究,调查结果发现有机绝缘膜表面即使使用非感光性的树脂,但算术平均粗糙度Ra约为100~300nm,与此相比,以往通常使用的感光性树脂更加凹凸,当在其表面上形成有机发光元件的电极以及有机发光层时,有机发光层的表面也变为相同程度的表面粗糙度。当有机发光层的表面产生凹凸时,在微观上看到的光的前进方向不同。因此,当从正面观看显示画面时,在倾斜方向上前进的光难以被视觉辨认,且发现产生颜色不均以及/或亮度不均。
即使在显示装置的显示画面中没有例如灭灯区域、常亮区域或亮线等的明确的显示上的缺陷,但当产生如上所述的由亮度不均以及/或颜色不均引起的显示不均匀时,也存在显示品质降低的问题。
此外还具有如下问题,虽通过在有机发光层的表面上设置反射率大高的层以形成微腔来提高发光输出,但当有机发光层的表面具有凹凸时,则反射层也形成有凹凸,且不能通过漫反射形成完整的谐振器,并且不能获得输出的增加。
另一方面,由于不需要用于制造精细的TFT的平坦性,因此即使没有如上述专利文献1所记载的表面平坦度在20nm以下的严格的平坦度,有机发光层中发出的光只要平坦成以大致正面为中心进行发光的程度即可。
本发明鉴于这样的情况而完成,目的在于,提供一种通过抑制有机EL显示装置的颜色不均以及/或亮度不均来提高显示品质的有机EL显示装置及其制造方法。
解决问题的方案
本发明的一实施方式的有机EL显示装置包括:基板,其具有形成包含薄膜晶体管的驱动电路的表面;平坦化膜,其通过覆盖所述驱动电路使所述基板的所述表面平坦化;有机发光元件,其具有:第一电极,其形成在所述平坦化膜的表面上,并与所述驱动电路连接;有机发光层,其形成在所述第一电极之上;以及第二电极,其形成在所述有机发光层之上,所述平坦化膜包含层叠在所述驱动电路之上的第一无机绝缘膜以及有机绝缘膜,所述有机绝缘膜的表面形成为算术平面粗糙度Ra在50nm以下。
本发明的其他实施方式的有机EL显示装置的制造方法包括如下工序:在基板之上形成包含薄膜晶体管的驱动电路的工序;在所述驱动电路的表面上形成第一无机绝缘膜以及有机绝缘膜的工序;对所述有机绝缘膜的表面进行CMP抛光的工序;在所述有机绝缘膜以及所述第一无机绝缘膜中形成到达所述TFT的接触孔的工序;在所述接触孔的内部埋入金属,并且在规定的区域内形成第一电极的工序;在所述第一电极之上形成有机发光层的工序;以及在所述有机发光层之上形成第二电极的工序。
发明效果
根据本发明的实施方式,在包含TFT的驱动电路的凹凸表面上形成有机绝缘膜,且其表面通过CMP抛光,其表面被平坦化为算术平均粗糙度Ra在50nm以下的平坦度。结果,在微观上,在倾斜方向上前进的光被极大地抑制,且抑制了颜色不均以及/或亮度不均的产生,并能够大大提高有机EL显示装置的显示品质。
附图说明
图1是本发明的一实施方式的有机EL显示装置的剖视图。
图2A是示出图1的不具有第二无机绝缘膜的实施例1的有机EL显示装置的制造工序的流程图。
图2B是进一步详细说明图2A的工序的流程图。
图3A是示出图1的不具有第二无机绝缘膜的实施例1的有机EL显示装置的制造工序的剖视图。
图3B是示出图1的不具有第二无机绝缘膜的实施例1的有机EL显示装置的制造工序的剖视图。
图3C是示出图1的不具有第二无机绝缘膜的实施例1的有机EL显示装置的制造工序的剖视图。
图3D是示出图1的不具有第二无机绝缘膜的实施例1的有机EL显示装置的制造工序的剖视图。
图3E是示出图1的不具有第二无机绝缘膜的实施例1的有机EL显示装置的制造工序的剖视图。
图3F是示出图1的不具有第二无机绝缘膜的实施例1的有机EL显示装置的制造工序的剖视图。
图3G是示出图1的不具有第二无机绝缘膜的实施例1的有机EL显示装置的制造工序的剖视图。
图4A是示出图1的有机EL显示装置的实施例2的制造工序的剖视图。
图4B是示出图1的有机EL显示装置的实施例2的制造工序的剖视图。
图4C是示出图1的有机EL显示装置的实施例2的制造工序的剖视图。
图4D是示出图1的有机EL显示装置的实施例2的制造工序的剖视图。
图4E是示出图1的有机EL显示装置的实施例2的制造工序的剖视图。
具体实施方式
接着,参照附图说明本发明的一实施方式的有机EL显示装置。图1中示出了一实施方式的有机EL显示装置的对应于一个像素(严格地说,是一个像素中的红、绿、蓝的子像素,但是在本说明书中,这些子像素也被称为一个像素)的示意性剖视图。
如图1的剖面的说明图所示,本发明的一实施方式的有机EL显示装置包括:基板10,其具有形成包含TFT20的驱动电路的表面;平坦化膜30,其通过覆盖驱动电路使基板10的表面平坦化;有机发光元件40,其具有:第一电极41,其形成在平坦化膜30的表面上,并与驱动电路连接;有机发光层43,其形成在第一电极41之上;以及第二电极44,其形成在有机发光层43之上。并且,平坦化膜30包含层叠在驱动电路之上的第一无机绝缘膜31以及有机绝缘膜32,有机绝缘膜32的表面形成为算术平面粗糙度Ra在50nm以下。进一步地,有机发光层43避开接触孔30a的正上方地形成。
即,在本实施方式的有机EL显示装置中,具有如下所述的一个特征:通过将无机绝缘膜31和有机绝缘膜32层叠在由于形成驱动电路而变得凹凸的基板10的表面上来形成平坦化膜30,并且平坦化膜30的表面被CMP抛光,以形成为算术平面粗糙度Ra在50nm以下的平坦度。此外,可以在该有机绝缘膜32的表面进一步形成第二无机绝缘膜33以设置平坦化膜30,并且在图1所示的例子中,也形成有该第二无机绝缘膜33。此外,在本实施方式的有机EL显示装置中,具有如下所述的另一个特征:在用于连接驱动电路与第一电极41的接触孔30a的非正上方的区域内形成有有机发光层43。
如上所述,本发明人对产生这种颜色不均以及/或亮度不均的原因进行了重复深入研究,调查结果发现有机发光元件40的有机发光层43的表面具有凹凸,在微观上有机发光层43的表面不完全平坦,且微观观察时存在倾斜的部分,倾斜时,有机发光层43的表面的法线方向相对于显示面的法线方向倾斜。然后,从显示面的垂直方向观看时,发出的光向倾斜方向前进的像素的光难以被视觉辨认,导致亮度降低或混色的颜色改变。即,发出的光在其法线方向上具有最高亮度,并且其亮度随着从法线方向倾斜而降低。在智能手机等的小型显示装置中,该子像素的大小的一边非常小至几十μm左右。因此,在有机发光层43的表面所具有的凹凸的子像素中即使有一点凹凸,相对于正面的发光也变得非常弱。
以往,作为针对这种颜色不均以及/或亮度不均的对策,在显示面板的外缘内置有TFT,并且在制造产品之后检查中,通过电路来调整具有颜色不均以及/或亮度不均的像素的亮度。因此,还存在驱动电路变得复杂的问题。
在本实施方式中,如上所述,由于找到了颜色不均以及/或亮度不均的原因,因此为了提高其有机发光层43的表面的平坦度,发现通过将成为其基底的平坦化膜30的表面设为50nm以下,并避开接触孔30a的正上方来形成有机发光层43,由此几乎不会产生颜色不均以及/或亮度不均。表面粗糙度越小则越优选,但也发现不必如专利文献1所示将平坦度设为20nm以下,即使算术平均粗糙度Ra在20nm以上,也几乎不会产生颜色不均或亮度不均。即,表面粗糙度越小则越优选,因此没有设定下限值,但是为降低表面粗糙度的抛光作业难以进行,优选设为20nm以上且50nm以下的表面粗糙度。
具体来说,在以往的方法中,对于该平坦化膜而言,在形成无机阻挡膜之后,通过干法蚀刻来形成接触孔,并且在此基础上形成有机绝缘膜(感光性树脂)以通过湿法蚀刻进行接触孔的形成。即,如上所述,由于有机绝缘膜是通过涂布液态树脂而形成的,因此可以认为表面平坦而不成问题。然而,即使使用非感光性树脂,该有机绝缘膜的表面的平坦度在算术平均粗糙度Ra约为100~300nm,该算术平均粗糙度甚至大于感光性树脂的情况,本发明人发现这种程度的平坦化还不足够。这种情况下,当使用感光性树脂时,由于混入的光聚合起始剂的影响,表面粗糙度进一步增加。并且,如上所述,发现了通过对有机绝缘膜32的表面进行CMP抛光,并通过使表面粗糙度成为算术平均粗糙度Ra在20nm以上且50nm以下,几乎可以抑制颜色不均以及/或亮度不均的产生。即,不一定要设为如上述专利文献1所记载的20nm以下的平坦度,但必须约为50nm以下。
(有机EL显示装置的结构)
接着,具体说明图1所示的有机EL显示装置及其制造方法。
当基板10是以基板面作为显示面观看显示图像的底部发射型时,必须透射由有机发光层43发出的光,并使用透光性材料且绝缘性的基板。具体来说,使用玻璃基板或聚酰亚胺等的树脂膜。通过使用树脂膜,可以使有机EL显示装置具有挠性,并且可以将有机EL显示装置粘附在曲面等上。
基板10不一定是玻璃基板,但是当基板10是诸如聚酰亚胺的树脂膜时,表面不是结晶的且难以直接形成半导体层,因此形成底涂层11。作为底涂层11,例如通过等离子体CVD法形成厚度约为500nm的SiO2/厚度约为50nm的SiNx/厚度为250nm的SiO2的层叠体。
在底涂层11上形成包括有TFT20的驱动电路。在图1中,仅示出了阴极配线27,但是也同样形成有其他栅极配线以及信号配线等。并且,在此基础上形成有TFT20。在图1中,仅示出了驱动发光元件40的TFT20,但是同样形成有其他开关TFT等的其他TFT。在有机EL显示装置是其中与基板10的相反面为显示面的顶部发射型的情况下,该驱动电路可以形成在有机发光元件40的发光区域的下方的整个表面上。但是,在以基板10侧为显示面的底部发射型中,不能在有机发光元件40的发光区域的下方形成TFT等。因此,需要在俯视时与发光区域重叠的部分的周围形成TFT等。这种情况下,由于在周围形成有TFT或配线的区域与在发光区域的下方未形成TFT等的区域之间的边界部形成了傾斜面,因此可以在发光区域的周缘部产生凹凸,导致显示品质降低。因此,即使在底部发射型中,也要求同样的平坦度。此外,在每个像素中还形成了电容器,但是即使电容器形成在大面积且薄厚度的发光区域下方,也几乎不会产生微小的凹凸。
TFT20由具有源极21s、沟道21c和漏极21d的半导体层21、栅极绝缘膜22、栅极电极23、层间绝缘膜24、源极电极25和漏极电极26形成。栅极绝缘膜22由厚度约为50nm的SiO2等制成,并且栅极电极23通过在厚度约为250nm的Mo等的膜形成之后通过图案化等形成。在此基础上形成由厚度约为300nm的SiO2膜与厚度约为300nm的SiNx膜构成的层间绝缘膜24,并且形成源极电极25和漏极电极26以连接至源极21s和漏极21d,由此,形成了包含TFT20的驱动电路。此外,之前,源极21s和漏极21d的电极连接部分被硼掺杂为p+,并通过退火被激活。关于更具体的结构以后述的制造方法的具体例进行说明。此外,图1所示的例子是栅极电极23形成在半导体层21的与基板10相反的一侧的顶栅结构,而在栅极电极23形成在基板10上的底栅结构也相同。
在包含TFT20的驱动电路的表面上,成膜作为阻挡层的由厚度约为200nm的SiNx等制成的第一无机绝缘膜31以及以2μm左右成膜由例如聚酰亚胺树脂或丙烯酸树脂制成的有机绝缘膜32,并通过CMP抛光表面,由此表面粗糙度被设为算术平均粗糙度Ra在50nm以下。该有机绝缘膜也可以是混入了光聚合起始剂的感光性的有机绝缘膜。若是感光性的有机绝缘膜,则在形成第一无机绝缘膜31之后形成有机绝缘膜32,并且通过光刻工艺进行的曝光和显影来形成接触孔30a。这种情况下,也可以在形成接触孔30a之后进行CMP抛光。
当对有机绝缘膜32进行CMP抛光时,即使CMP抛光剂进入接触孔30a中,接触孔的大小也远大于(例如约50倍)抛光剂的粒径的大小,因此可以通过清洗去除,而没有特别的问题。当有机绝缘膜32是非感光性时,接触孔30a与第一无机绝缘膜31一起形成。此时,在平坦化膜30中同时形成有接触孔30b,该接触孔30b用于形成第二触点45,该第二触点45用于连接有机EL显示装置的阴极(第二电极)与阴极配线27。
在图1所示的例子中,该有机绝缘膜32之上形成有例如由SiNx等制成的厚度约为400nm的第二无机绝缘膜33。通过形成该第二无机绝缘膜33,从而可以防止在形成接触孔30a的蚀刻时,有机绝缘膜被蚀刻剂腐蚀,因此被优选。另外,由于无机绝缘膜按原样保持其基底的平坦性,因此不必对其进行抛光。在形成该第二无机绝缘膜33之后,通过一同蚀刻三层来形成接触孔30a。
然后,例如通过用溅射等方式将ITO与Ag或APC(银钯铜合金)等金属与ITO形成膜,并通过在接触孔30a内埋入Ag等金属,且在形成由Ag或APC等金属与ITO的导电层之后,在有机绝缘膜32或第二无机绝缘膜33(形成第二无机绝缘膜33时)、即平坦化膜30的表面上进行图案化,由此,形成以表面与最下层为ITO膜的由中间夹设有Ag或APC的ITO/Ag或APC/ITO的层叠膜等构成的第一电极(阳极)41。该第一电极41虽与埋入接触孔30a的内部的导体层连续地形成,但以避开在接触孔30a之上容易产生凹凸的位置且位于表面被设为平坦的平坦化膜30的表面上的方式进行图案化来形成。由此,第一电极41的表面也被设为与平坦化膜30的表面相同程度的平坦度,其上方的有机发光层43的表面也被设为相同程度的平坦。
第一电极(阳极)41因与有机发光层43之间的关系而优选功函数约为5eV,并且在顶部发射型的情况下,使用上述材料。ITO膜形成为约10nm的厚度,并且Ag或APC形成为约100nm的厚度。在底部发射型的情况下,ITO膜形成为约300nm至1μm的厚度。在该第一电极41的周缘部中形成有用于划分每个像素并使阳极和阴极绝缘的由绝缘材料制成的绝缘堤42,并且在由该绝缘堤42包围的第一电极41之上层叠有有机发光层43。
有机发光层43被绝缘堤42包围且层叠在露出的第一电极41之上。该有机发光层43在图1等中被图示为一层,但可以层叠各种材料形成多层。另外,该有机发光层43抗湿性差,而不能在形成整个表面之后被图案化,因此通过使用蒸镀掩膜,并将被蒸发或升华的有机材料选择性地仅蒸镀在需要的部分来形成有机发光层43。或者,也可以通过印刷来形成有机发光层43。
具体来说,例如,作为与第一电极(阳极电极)41相接的层,有时会设置由使空穴的注入性提高的电离能的匹配性高的材料制成的空穴注入层。在该空穴注入层上,由例如胺系材料形成能够提高空穴的稳定传输并限制到发光层的电子(势垒)的空穴传输层。进一步地,在此基础上根据发光波长选择的发光层,例如,相对于红色、绿色,将红色或绿色的有机荧光材料掺杂至Alq3而形成。另外,作为蓝色系的材料,使用DSA系的有机材料。另一方面,当用未图示的彩色滤光片来着色时,发光层可以由相同的材料形成而不全部掺杂。在发光层上,进一步由Alq3等形成电子传输层,该电子传输层提高电子注入性,并且稳定传输电子。通过分别以几十nm左右层叠这些各层来形成有机发光层43的层叠膜。此外,有时也在该有机发光层43与第二电极44之间设置LiF或Liq等提高电子注入性的电子注入层。这虽不是有机层,但在本说明书中,作为通过有机层而发光的构成被包含在有机发光层43内。
如上所述,在有机发光层43的层叠膜的发光层也可以不沉积与R、G、B的各色对应的材料的有机材料,而通过彩色滤光片设置彩色显示装置。即,发光层也可以由相同的有机材料形成,通过未图示的彩色滤光片来确定发光颜色。另外,如果重视空穴传输层、电子传输层等的发光性能,则优选为分别沉积适于发光层的材料。但是,考虑到材料成本方面,有时也与R、G、B的两色或三色共同地以相同材料层叠。
在形成包含LiF层等的电子注入层等的所有有机发光层43的层叠膜之后,在其表面上形成有第二电极44。具体来说,第二电极(例如阴极)44形成在有机发光层43之上。该第二电极(阴极)44在所有像素上共同且连续地形成。该阴极44经由形成在平坦化膜30中的第二触点45以及形成在TFT20的绝缘膜22、24中的第一触点28,与阴极配线27连接。第二电极44由透光性材料,例如薄膜Mg-Ag的共晶膜制成,并且容易被水分腐蚀,因此,被其表面上所设置的覆盖层46覆盖。阴极材料优选具有功函数小的材料,并可以使用碱金属或碱土金属等。优选Mg,因为其具有小至3.6eV的功函数,但由于其活泼且不稳定,因此以约10质量%的比例共沉积功函数为4.25eV的Ag。由于Al的功函数也小至约4.25eV,且用于基底中使用LiF,因此可以充分用作阴极材料。因此,在底部发射型中,该第二电极44中可以厚厚地形成Al。
覆盖层(TFE:Thin Film Encapsulation)46例如由SiNx、SiO2等的无机绝缘膜制成,并可以由一层或二层以上的层叠膜形成。例如一层的厚度约为0.1μm至0.5μm,优选地,以二层左右的层叠膜形成。该覆盖层46优选由不同材料形成为多层。由于覆盖层46形成为多层,所以即使形成针孔等,在多层中针孔几乎不完全一致,且完全屏蔽外部空气。如上所述,该覆盖层46以完全覆盖有机发光层43以及第二电极44的方式形成。此外,也可以在两层无机绝缘膜之间设置有机绝缘材料。
(有机EL显示装置的制造方法)
实施例1
接着,参照图2A~2B的流程图以及图3A~3G的制造工序的图,说明图1所示的有机EL显示装置的不具有第二无机绝缘膜33的有机EL显示装置的制造方法。
首先,如图3A所示,在基板10上形成包含TFT20的驱动电路(图2A中的S1)。具体来说,如图2B中的流程图所示,在基板10上形成底涂层11(S11)。底涂层11例如通过等离子体CVD法形成厚度约为500nm的SiO2层,并在其上方通过形成厚度约为50nm的SiNx层来层叠下层,并进一步作为其上层通过层叠厚度约为250nm的SiO2层而形成。
其后,在底涂层11之上,例如通过低压等离子体CVD法形成由非晶硅(a-Si)层制成的半导体层21(S12)。其后,例如在氮气中,以约450℃进行约45分钟的退火处理,由此进行多晶硅化(LTPS:Low Temperature Poly Silicon,低温多晶硅)(S13)。
接着,通过光刻工艺形成抗蚀剂掩膜,并通过干法蚀刻等来图案化半导体层21,形成成为TFT20的部分的半导体层21与阴极配线27等配线(S14)。然后成膜栅极绝缘膜22(S15)。通过等离子体CVD法以约50nm成膜SiO2来形成栅极绝缘膜22。
其后,例如,通过溅射法,钼(Mo)等金属膜形成厚度约为250nm的膜,且通过光刻工艺,在形成抗蚀剂掩膜之后进行干法蚀刻,由此通过图案化来形成栅极电极23(S16)。
其后,在半导体层21中形成源极21s、漏极21d。具体来说,例如在掺杂了硼(B+)之后,以约400℃进行约1小时的退火处理并将其激活,并形成实现低电阻化的源极21s、漏极21d(S17)。由于栅极电极23被设为掩膜,因此在沟道21c中未注入硼离子,而仅注入到源极21s、漏极21d中,由此实现低电阻化。
其后,在整个表面上形成层间绝缘膜24,并形成用于露出源极21s、漏极21d的一部分的接触孔24a(S18)。层间绝缘膜24例如通过低压等离子体CVD法并由主要以SiO2制成的厚度约为300nm的下层和主要以SiNx制成的厚度约为300nm的上层的层叠膜形成。接触孔24a通过抗蚀剂膜的形成与光刻工艺形成掩膜并通过进行湿法蚀刻而形成。
其后,通过形成金属膜,在接触孔24a内埋入金属的同时,在层间绝缘膜24的表面上形成源极电极25以及漏极电极26的金属膜(S19)。源极电极25以及漏极电极26的形成是通过例如溅射,层叠约300nm的Ti膜和约300nm的Al膜,并在其上方层叠约100nm的Ti而形成的。通过将形成在层间绝缘膜24之上的金属膜利用相同的光刻工艺和湿法蚀刻来图案化,由此形成分别与半导体层21的源极21s、漏极21d连接的源极电极25以及漏极电极26。此外,通过与该源极电极25以及漏极电极26的形成工序相同的工序且利用完全相同的方法,由此形成于阴极配线27连接的第一触点28。
通过以上的工序,形成了包含使用了顶栅型且顶部接触型的LTPS的TFT20的驱动电路、即称为背板的部分。然而,TFT20不限于该结构,并且可以用在其他结构中,例如顶栅且底部接触结构、底栅且顶部接触结构、或底栅且底部接触结构等。
其后,如图3B所示,在驱动电路的表面上形成第一无机绝缘膜31和有机绝缘膜32(返回至图2A,S2)。第一无机绝缘膜31例如通过等离子体CVD法形成厚度约为200nm的SiNx。这用作防止有机绝缘膜32的成分进入TFT20的阻挡层。此外,通过形成TFT20等,有机绝缘膜32被埋在表面凹凸的部分中,并且有机绝缘膜32的表面易于通过涂布液态树脂而被平坦化。作为涂布方法,具有狭缝涂布法、旋涂法等的方法,但也可以是结合两者的狭缝涂布法·旋涂法。该有机绝缘膜32以厚度约为2μm的方式形成,并且可以使用例如聚酰亚胺树脂或丙烯酸树脂。也可以是在这些树脂中混入光聚合起始剂的感光性树脂。然而,若是不包含光聚合起始剂的非感光性树脂,则优选纯度高且表面平滑性高。尤其优选丙烯酸树脂。
接着,如图3C所示,对该有机绝缘膜32的表面进行CMP抛光(S3)。有机绝缘膜32由于涂布液态树脂来使其干燥,因此表面容易被平坦化,如上所述,该表面形成为算术平均的表面粗糙度Ra约为100~300nm。然而,如上所述,本发明人发现,仅通过该有机绝缘膜32的涂布的平坦度出现颜色不均以及/或亮度不均,且无法充分满足发光特性。因此,通过CMP抛光,以使表面的平坦度被抛光为算术平均粗糙度Ra在50nm以下。该平坦度越小则越优选,但不需要如专利文献1所示的20nm以下的非常平坦。若约为50nm以下,则看起来没有出现颜色不均以及/或亮度不均的问题。该CMP抛光例如通过在氧化铈(CeO2)系的料浆或气相法二氧化硅系料浆中一同供给水和醇的同时,抛光有机绝缘膜32的表面来进行。
其后,如图3D所示,在该平坦化膜30中形成到达至TFT20的接触孔30a(S4)。该接触孔30a的形成与上述的接触孔24a等同样地,形成抗蚀剂掩膜并通过干法蚀刻等的蚀刻来进行。此外,当共同蚀刻其中混合有无机绝缘膜和有机绝缘膜的如该平坦化膜30那样的层时,由于两者的蚀刻率不同,尤其优选通过干法蚀刻进行蚀刻,原因使难以在两者的界面处产生台阶。当产生台阶时,要埋入至接触孔30a内的金属没有完全被埋入,并且容易出现与源极电极25等的接触电阻增加的问题。
其后,如图3E所示,金属埋入至接触孔30a内的同时,在规定的区域内形成有机发光元件40用的第一电极41(S5)。具体来说,例如通过溅射等,形成将约为10nm的ITO膜和将约为100nm的Ag膜或APC膜左右层叠而成的下层,以及由厚度约为10nm的ITO膜构成的上层的膜。结果,在接触孔30a的内部埋入ITO和金属的同时,在平坦化膜30的表面上形成ITO和金属膜以及ITO膜的层叠膜。其后,通过对该ITO和金属的层叠膜进行图案化来形成第一电极41。
其后,如图3F所示,在第一电极41之上形成有机发光层43(S6)。具体来说,在第一电极41的周缘部处划分每个像素的同时,形成用于防止阴极和阳极之间接触的绝缘堤42。绝缘堤42可以是SiO2等的无机绝缘膜,也可以是聚酰亚胺树脂或丙烯酸树脂等的有机绝缘膜。膜形成在整个表面上,从而露出第一电极41的规定位置。绝缘堤42的高度形成约为1μm。如上所述,有机发光层43通过层叠各种有机材料而形成,并且有机材料的层叠例如通过真空蒸镀进行,此时,有机材料通过蒸镀掩膜的开口,从而经由开口的蒸镀掩膜来形成R、G、B等的期望的子像素。在有机发光层43的表面上,可以形成诸如LiF的提高电子注入性能的层。此外,可以通过喷墨法等进行的印刷来形成,而不进行蒸镀。将Ag或APC用于第一电极41的原因是将其用于顶部发射型,以反射在有机发光层43中发出的光。
其后,如图3G所示,在有机发光层43上形成第二电极(阴极)44(S7)。第二电极44通过蒸镀等在整个表面上形成薄膜Mg-Ag的共晶膜,从而被设为阴极。此外,该第二电极44也形成在第二触点45上,从而经由第二触点45、第一触点28与阴极配线27连接。由于该Mg-Ag共晶膜的Mg与Ag的融点不同,因此在成膜时从不同的坩埚中蒸发而形成共晶膜。以Mg约为90质量%程度和Ag约为10质量%的比例形成约为10~20nm的厚度。
在该第二电极44之上形成使第二电极44以及有机发光层43免受水分或氧气等的影响的覆盖层46。该覆盖层46为了保护抗湿性和抗氧化差的第二电极44以及有机发光层43,因此通过CVD法等形成不易吸收水分等的诸如SiO2、SiNx的无机绝缘膜。并且,该覆盖层46以其端部与第二无机绝缘膜33等的无机膜紧密接触的方式形成。这是因为,只要是无机膜彼此之间的接合,则被紧密接触性佳地接合,但对于与有机膜的结合,难以得到完全的紧密接触性佳的接合。因此,在不具有图1所示的第二无机绝缘膜33的情况下,优选去除有机绝缘膜32的一部分,并与其下层的第一无机绝缘膜接合。由此,可以完全防止水分等的浸入。
实施例2
在图2A~2B以及图3A~3G所示的实施例1的制造方法中,平坦化膜30由第一无机绝缘膜31和有机绝缘膜32形成(在图1的结构中不具有第二无机绝缘膜33的结构)。在这种结构中,有机绝缘膜32的表面被抛光,并在其表面形成有第一电极41。因此,将平坦化膜30的表面设为平坦不成问题。然而,在形成接触孔30a时,当进行湿法蚀刻等时,水分等容易浸入有机绝缘膜32中,且即使通过干法蚀刻进行,存在蚀刻气体等也容易进入的问题。若浸入水分等,则在形成发光元件并使其工作时,若渗出,则可能使有机发光层43或第二电极44的材料劣化。因此,第二无机绝缘膜33优选形成在有机绝缘膜32的表面上,并在图1中示出了其结构。其制造方法将参照图4A~4E进行说明。
到上述图3C所示的工序为止,进行与实施例1相同的工序。即,有机绝缘膜32的表面通过CMP抛光被平坦化。其后,如图4A所示,第二无机绝缘膜33与第一无机绝缘膜31同样地,通过等离子体CVD等将SiNx以约为200nm的厚度形成。该第二无机绝缘膜33利用上述的等离子体CVD等的方法,通过无机材料的沉积而形成,并且形成得非常薄,因此有机绝缘膜32的抛光过的表面的平坦度保持原样。因此,该第二无机绝缘膜33的表面也可以得到算术平均粗糙度Ra在50nm以下的平坦度。即,在该第二实施例子中,平坦化膜30由第一无机绝缘膜31、有机绝缘膜32以及第二无机绝缘膜33构成,但该平坦化膜30的表面被形成为算术平均粗糙度Ra在50nm以下的平坦面。
以下的工序与上述实施例1相同,但如图4B所示,在平坦化膜30中形成接触孔30a。形成方法与实施例1相同,并省略其说明。
其后,如图4C所示,在接触孔30a的内部埋入金属的同时,在平坦化膜30的表面上形成有机发光元件40的第一电极41。该方法也与上述的图3E的工序相同,并省略其说明。
其后,如图4D所示,在形成了绝缘堤42之后,通过例如真空蒸镀等的方法形成有机发光层43。该方法也与上述的实施例1的图3F所示的工序相同,并省略其详细说明。
其后,如图4E所示,在整个表面上形成第二电极44。该工序也与上述的实施例1的图3G所示的工序相同,并且可以通过相同的方法形成。其后,在该表面上形成覆盖层46,从而得到图1所示的有机EL显示装置。
(总结)
(1)本发明的一实施方式所涉及的有机EL显示装置包括:基板,其具有形成包含薄膜晶体管的驱动电路的表面;平坦化膜,其通过覆盖所述驱动电路使所述基板的所述表面平坦化;有机发光元件,其具有:第一电极,其形成在所述平坦化膜的表面上,并与所述驱动电路连接;有机发光层,其形成在所述第一电极之上;以及第二电极,其形成在所述有机发光层之上,所述平坦化膜包含层叠在所述驱动电路之上的第一无机绝缘膜以及有机绝缘膜,所述有机绝缘膜的表面形成为算术平面粗糙度Ra在50nm以下。
根据本实施方式,表面不形成有机发光元件的第一电极而将平坦化膜直接以由有机绝缘膜形成的表面,通过CMP抛光有机绝缘膜的表面,由此表面形成为算术平面粗糙度Ra在50nm以下,并且,有机发光层避开形成在接触孔的正上方。结果,在微观的平面状态下没有凹凸,且小的子像素的有机发光层的表面的法线方向与显示面的法线方向一致。结果,不存在小的子像素的一部分的光向倾斜方向前进的问题,且消除了降低亮度不均、颜色不均等的显示品质的原因。结果,可以得到显示品质非常优异有机EL显示装置。
(2)优选地,所述有机绝缘膜是丙烯酸树脂或聚酰亚胺树脂,因为具有耐热性且成为稳定的绝缘膜。
(3)优选地,所述有机绝缘膜是非感光性树脂,因为不包含容易使表面变得凹凸的光聚合起始剂,从而能够得到足够的表面平坦性。
(4)优选地,所述平坦化膜通过在所述有机绝缘膜之上形成第二无机绝缘膜而为三层结构,因为在接触孔的形成之时等,易于阻止水分等渗入有机绝缘膜。
(5)优选地,所述接触孔通过统一形成在所述三层结构中,因为有机绝缘膜未暴露在蚀刻氛围下,能够抑制水分等渗入到有机绝缘膜中。
(6)所述有机发光元件可以采用在所述有机发光层的投影区域内未形成所述薄膜晶体管而从所述基板侧提取光的底部发射型发光元件、或是在所述有机发光层的投影区域内也形成有所述薄膜晶体管且从所述第二电极提取光的顶部发射型发光元件中的任一个结构。即,不管在哪一个结构,由于平坦化膜的平坦性,消除了降低亮度不均、颜色不均等的显示品质的原因,且可以得到显示品质非常优异的有机EL显示装置。
(7)本发明的其他实施方式的有机EL显示装置的制造方法包括如下工序:在基板之上形成包含薄膜晶体管的驱动电路的工序;在所述驱动电路的表面上形成第一无机绝缘膜以及有机绝缘膜的工序;对所述有机绝缘膜的表面进行CMP抛光的工序;在所述有机绝缘膜以及所述第一无机绝缘膜中形成到达所述TFT的接触孔的工序;在所述接触孔的内部埋入金属,并且在规定的区域内形成第一电极的工序;在所述第一电极之上形成有机发光层的工序;以及在所述有机发光层之上形成第二电极的工序。
根据本实施方式,有机绝缘膜的表面被CMP抛光,使得平坦化膜的表面即使在微观上观察时也平坦。因此,有机发光层的表面的法线方向与显示面的法线方向不同,且抑制了颜色不均、亮度不均的原因。
(8)优选地,在所述有机绝缘膜之上形成第二无机绝缘膜,并且统一在所述第二无机绝缘膜、所述有机绝缘膜以及所述第一绝缘膜的三层中形成所述接触孔,因为不仅简化接触孔的形成工序,且由于有机绝缘膜由无机绝缘膜保护,从而能够抑制水分等的渗入。
(9)优选地,通过将中性的氧化铈系抛光材料、或气相法二氧化硅系料浆与水和酒精一同进行所述平坦化的工序,从而将表面平坦度抛光为算术平均粗糙度Ra在20nm以上且50nm以下,因为可以将有机绝缘膜抛光成平坦。
(10)优选地,通过干法蚀刻进行所述接触孔的形成,因为可以在蚀刻率不同的无机绝缘膜与有机绝缘膜之间的界面中不产生台阶地进行蚀刻。如果在无机绝缘膜和有机绝缘膜之间的边界面处形成台阶,则金属不能适当地埋入接触孔内,并且接触电阻可能增加。
附图标记说明
10 基板
20 TFT
21 半导体层
30 平坦化膜
31 第一无机绝缘膜
32 有机绝缘膜
33 第二无机绝缘膜
40 有机发光元件
41 第一电极(阳极)
43 有机发光层
44 第二电极(阴极)

Claims (10)

1.一种有机EL显示装置,其特征在于,包括:
基板,其具有形成包含薄膜晶体管的驱动电路的表面;
平坦化膜,其通过覆盖所述驱动电路使所述基板的所述表面平坦化;
有机发光元件,其具有:第一电极,其形成在所述平坦化膜的表面上,并与所述驱动电路连接;有机发光层,其形成在所述第一电极之上;以及第二电极,其形成在所述有机发光层之上,
所述平坦化膜包含层叠在所述驱动电路之上的第一无机绝缘膜以及有机绝缘膜,
所述有机绝缘膜的表面形成为算术平面粗糙度Ra在50nm以下。
2.权利要求1所述的有机EL显示装置,其特征在于,
所述有机绝缘膜是丙烯酸树脂或聚酰亚胺树脂。
3.权利要求1或2所述的有机EL显示装置,其特征在于,
所述有机绝缘膜是非感光性树脂。
4.权利要求1至3中的任一项所述的有机EL显示装置,其特征在于,
所述平坦化膜通过在所述有机绝缘膜之上形成第二无机绝缘膜而为三层结构。
5.权利要求4所述的有机EL显示装置,其特征在于,
所述接触孔统一形成在所述三层结构中。
6.权利要求1至5中的任一项所述的有机EL显示装置,其特征在于,
所述有机发光元件是在所述有机发光层的投影区域内未形成所述薄膜晶体管而从所述基板侧提取光的底部发射型发光元件、或是在所述有机发光层的投影区域内也形成有所述薄膜晶体管且从所述第二电极提取光的顶部发射型发光元件。
7.一种有机EL显示装置的制造方法,其特征在于,包括如下工序:
在基板之上形成包含薄膜晶体管的驱动电路的工序;
在所述驱动电路的表面上形成第一无机绝缘膜以及有机绝缘膜的工序;
对所述有机绝缘膜的表面进行CMP抛光的工序;
在所述有机绝缘膜以及所述第一无机绝缘膜中形成到达所述TFT的接触孔的工序;
在所述接触孔的内部埋入金属,并且在规定的区域内形成第一电极的工序;
在所述第一电极之上形成有机发光层的工序;以及
在所述有机发光层之上形成第二电极的工序。
8.根据权利要求7所述的制造方法,其特征在于,
在所述有机绝缘膜之上形成第二无机绝缘膜,并且统一在所述第二无机绝缘膜、所述有机绝缘膜以及所述第一绝缘膜的三层中形成所述接触孔。
9.根据权利要求7或8所述的制造方法,其特征在于,
通过将中性的氧化铈系抛光材料、或气相法二氧化硅系料浆与水和酒精一同进行所述平坦化的工序,从而将表面平坦度抛光为算术平均粗糙度Ra在20nm以上且50nm以下。
10.根据权利要求7至9中的任一项所述的制造方法,其特征在于,
通过干法蚀刻进行所述接触孔的形成。
CN201880086836.4A 2018-03-28 2018-03-28 有机el显示装置及其制造方法 Pending CN111886701A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012906 WO2019186805A1 (ja) 2018-03-28 2018-03-28 有機el表示装置及びその製造方法

Publications (1)

Publication Number Publication Date
CN111886701A true CN111886701A (zh) 2020-11-03

Family

ID=68061081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880086836.4A Pending CN111886701A (zh) 2018-03-28 2018-03-28 有机el显示装置及其制造方法

Country Status (4)

Country Link
US (3) US11114517B2 (zh)
JP (1) JP6603826B1 (zh)
CN (1) CN111886701A (zh)
WO (1) WO2019186805A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886699A (zh) * 2018-03-28 2020-11-03 堺显示器制品株式会社 有机el显示装置及其制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6603826B1 (ja) * 2018-03-28 2019-11-06 堺ディスプレイプロダクト株式会社 有機el表示装置及びその製造方法
KR102772580B1 (ko) * 2019-03-28 2025-02-25 삼성디스플레이 주식회사 표시 장치
CN113497090B (zh) * 2020-03-20 2023-09-22 合肥鑫晟光电科技有限公司 一种显示基板及其制作方法、显示面板
CN113161396B (zh) * 2021-03-19 2023-05-02 京东方科技集团股份有限公司 一种显示基板、其制作方法及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077822A (ja) * 2003-09-01 2005-03-24 Casio Comput Co Ltd トランジスタアレイ基板の製造方法及びトランジスタアレイ基板
JP2005159328A (ja) * 2003-10-28 2005-06-16 Semiconductor Energy Lab Co Ltd 配線の作製方法、薄膜トランジスタの作製方法、及び液滴吐出方法
US20070235777A1 (en) * 2006-04-06 2007-10-11 Mitsubishi Electric Corporation Thin film transistor, manufacturing method thereof, and active matrix display apparatus
KR20170002782A (ko) * 2015-06-29 2017-01-09 엘지디스플레이 주식회사 표시장치

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3694060B2 (ja) 1995-05-11 2005-09-14 勝美 吉野 有機発光ダイオード及びその製造方法
JP3967081B2 (ja) 2000-02-03 2007-08-29 株式会社半導体エネルギー研究所 発光装置及びその作製方法
JP4831873B2 (ja) 2000-02-22 2011-12-07 株式会社半導体エネルギー研究所 自発光装置及びその作製方法
JP4677085B2 (ja) * 2000-10-12 2011-04-27 キヤノン株式会社 光学素子の製造方法
JP4581187B2 (ja) * 2000-06-13 2010-11-17 ソニー株式会社 表示装置の製造方法
JP2002083691A (ja) 2000-09-06 2002-03-22 Sharp Corp アクティブマトリックス駆動型有機led表示装置及びその製造方法
JP2003308971A (ja) * 2002-04-17 2003-10-31 Seiko Instruments Inc 有機el素子の製造方法
JP4493931B2 (ja) 2002-05-13 2010-06-30 株式会社半導体エネルギー研究所 表示装置
TWI255432B (en) 2002-06-03 2006-05-21 Lg Philips Lcd Co Ltd Active matrix organic electroluminescent display device and fabricating method thereof
US7226819B2 (en) 2003-10-28 2007-06-05 Semiconductor Energy Laboratory Co., Ltd. Methods for forming wiring and manufacturing thin film transistor and droplet discharging method
JP4420391B2 (ja) 2004-05-28 2010-02-24 三井金属鉱業株式会社 セリウム系研摩材
WO2008035556A1 (en) 2006-09-19 2008-03-27 Sharp Kabushiki Kaisha Organic electroluminescent display and method for manufacturing the same
JP5007246B2 (ja) 2008-01-31 2012-08-22 三菱電機株式会社 有機電界発光型表示装置及びその製造方法
JP5819036B2 (ja) 2008-03-25 2015-11-18 三井金属鉱業株式会社 セリウム系研摩材スラリー
JP2010139920A (ja) 2008-12-15 2010-06-24 Seiko Epson Corp 電気的固体装置、電気光学装置、電気的固体装置の製造方法、および電子機器
JP5322787B2 (ja) 2009-06-11 2013-10-23 富士フイルム株式会社 薄膜トランジスタ及びその製造方法、電気光学装置、並びにセンサー
JP2012178268A (ja) 2011-02-25 2012-09-13 Mitsubishi Chemicals Corp 有機電界発光素子、有機電界発光モジュール、有機電界発光表示装置、及び有機電界発光照明
TWI616873B (zh) * 2011-05-20 2018-03-01 半導體能源研究所股份有限公司 儲存裝置及信號處理電路
KR101407310B1 (ko) * 2011-12-30 2014-06-16 엘지디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
JP6274199B2 (ja) 2013-02-12 2018-02-07 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び照明装置
JP6256482B2 (ja) * 2013-12-26 2018-01-10 日立化成株式会社 研磨剤、研磨剤セット及び基体の研磨方法
JP6520489B2 (ja) * 2014-07-17 2019-05-29 株式会社リコー 電子回路装置、及び表示素子
JP2016153888A (ja) * 2015-02-18 2016-08-25 株式会社リコー 画像表示装置
JP6583812B2 (ja) 2015-06-24 2019-10-02 国立研究開発法人物質・材料研究機構 多層構成の薄膜トランジスタの製造方法
KR102458660B1 (ko) 2016-08-03 2022-10-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
CN106206622B (zh) * 2016-09-23 2019-05-10 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
KR102706584B1 (ko) * 2016-11-22 2024-09-19 삼성디스플레이 주식회사 표시 장치용 백플레인 및 이의 제조 방법
KR102426624B1 (ko) * 2017-11-23 2022-07-28 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
KR102014179B1 (ko) * 2017-12-08 2019-08-26 엘지디스플레이 주식회사 유기발광 표시장치와 그의 제조방법
US10991778B2 (en) * 2018-03-28 2021-04-27 Sakai Display Products Corporation Organic EL display apparatus and manufacturing method therefor
JP6603826B1 (ja) * 2018-03-28 2019-11-06 堺ディスプレイプロダクト株式会社 有機el表示装置及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077822A (ja) * 2003-09-01 2005-03-24 Casio Comput Co Ltd トランジスタアレイ基板の製造方法及びトランジスタアレイ基板
JP2005159328A (ja) * 2003-10-28 2005-06-16 Semiconductor Energy Lab Co Ltd 配線の作製方法、薄膜トランジスタの作製方法、及び液滴吐出方法
US20070235777A1 (en) * 2006-04-06 2007-10-11 Mitsubishi Electric Corporation Thin film transistor, manufacturing method thereof, and active matrix display apparatus
KR20170002782A (ko) * 2015-06-29 2017-01-09 엘지디스플레이 주식회사 표시장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111886699A (zh) * 2018-03-28 2020-11-03 堺显示器制品株式会社 有机el显示装置及其制造方法
CN111886699B (zh) * 2018-03-28 2024-06-14 堺显示器制品株式会社 有机el显示装置及其制造方法

Also Published As

Publication number Publication date
JP6603826B1 (ja) 2019-11-06
US20230354652A1 (en) 2023-11-02
US11114517B2 (en) 2021-09-07
JPWO2019186805A1 (ja) 2020-04-30
WO2019186805A1 (ja) 2019-10-03
US11758774B2 (en) 2023-09-12
US20200411617A1 (en) 2020-12-31
US20210367018A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
CN111886699B (zh) 有机el显示装置及其制造方法
US11758774B2 (en) Organic EL display apparatus with suppressed color and/or luminance non-uniformity and method of manufacturing organic EL display apparatus
JP6606309B1 (ja) 有機el表示装置及びその製造方法
US20210225973A1 (en) Organic el display device and manufacturing method for organic el display device
JP6564965B1 (ja) 有機el表示装置及びその製造方法
JP6837410B2 (ja) 発光領域を含むディスプレイ装置
JPWO2019186809A1 (ja) 有機el表示装置及び有機el表示装置の製造方法
JP2019204967A (ja) 有機el表示装置及びその製造方法
JP7410242B2 (ja) 有機el表示装置及びその製造方法
JP2006032156A (ja) 表示装置および表示装置の製造方法
JP6694988B2 (ja) 有機el表示装置及び有機el表示装置の製造方法
KR20190130537A (ko) 유기전계 발광소자 및 이의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination