CN111884661B - Method of LDPC coding combined with 16DAPSK modulation and demodulation - Google Patents
Method of LDPC coding combined with 16DAPSK modulation and demodulation Download PDFInfo
- Publication number
- CN111884661B CN111884661B CN202010685135.1A CN202010685135A CN111884661B CN 111884661 B CN111884661 B CN 111884661B CN 202010685135 A CN202010685135 A CN 202010685135A CN 111884661 B CN111884661 B CN 111884661B
- Authority
- CN
- China
- Prior art keywords
- data
- matrix
- channel
- 16dapsk
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 239000011159 matrix material Substances 0.000 claims abstract description 101
- 239000013598 vector Substances 0.000 claims description 30
- 125000004122 cyclic group Chemical group 0.000 claims description 25
- WXNXCEHXYPACJF-ZETCQYMHSA-N N-acetyl-L-leucine Chemical compound CC(C)C[C@@H](C(O)=O)NC(C)=O WXNXCEHXYPACJF-ZETCQYMHSA-N 0.000 claims description 21
- 238000010586 diagram Methods 0.000 claims description 13
- 239000000969 carrier Substances 0.000 claims description 9
- 238000013507 mapping Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 3
- 230000000996 additive effect Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000005562 fading Methods 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 description 6
- 238000012937 correction Methods 0.000 description 4
- 230000001427 coherent effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Theoretical Computer Science (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
Description
技术领域technical field
本发明涉及通信技术,具体是一种LDPC编码联合16DAPSK调制解调的方法。The invention relates to communication technology, in particular to a method for LDPC coding combined with 16DAPSK modulation and demodulation.
背景技术Background technique
随着通信技术的发展和实际应用的需求,无线多媒体移动接入通信应用的快速增长导致高比特率无线接入的迅速增加。OFDM+MQAM是当前最常用的信道编码多载波数字调制技术。利用OFDM多载波在多径信道中的良好表现结合MQAM良好的误比特率性能和MQAM较高的频带利用率等技术的优点,广泛的运用在了人们生活的各方面。With the development of communication technology and the requirements of practical applications, the rapid growth of wireless multimedia mobile access communication applications leads to the rapid increase of high bit rate wireless access. OFDM+MQAM is currently the most commonly used channel coding multi-carrier digital modulation technology. Using the good performance of OFDM multi-carrier in multi-path channels combined with the advantages of MQAM's good bit error rate performance and MQAM's high frequency band utilization, it is widely used in all aspects of people's lives.
然而采用MQAM数字调制解调技术,就必须采用相干解调,这需要进行信道估计,了解每个OFDM子载波上的信道失真情况,但是相干解调的信道估计计算量大且需要加入长短训练序列,增加了实现的复杂度,降低了信道的有效性,再者MQAM的数字调制低误码率性能在多径衰落的信道中表现并不理想。However, if MQAM digital modulation and demodulation technology is used, coherent demodulation must be used, which requires channel estimation to understand the channel distortion on each OFDM subcarrier, but the channel estimation of coherent demodulation requires a large amount of calculation and needs to add long and short training sequences , which increases the complexity of implementation and reduces the effectiveness of the channel. Moreover, the low bit error rate performance of MQAM digital modulation is not ideal in multipath fading channels.
发明内容Contents of the invention
本发明的目的是针对现有技术的不足,而提供一种LDPC编码联合16DAPSK调制解调的方法。这种方法硬件实现容易、适应性好、能够抵抗多径衰落信道引起的误码性能降低,能提高信道的有效性和子载波的利用率,能提高信道对载波相位的容错度即载波相位偏移大的情况下仍能解调出正确的对应数据。The purpose of the present invention is to provide a method for LDPC coding combined with 16DAPSK modulation and demodulation to address the deficiencies of the prior art. This method is easy to implement in hardware, has good adaptability, can resist the error performance reduction caused by multipath fading channels, can improve the effectiveness of the channel and the utilization rate of subcarriers, and can improve the error tolerance of the channel to the carrier phase, that is, the carrier phase offset. In a large case, the correct corresponding data can still be demodulated.
实现本发明目的的技术方案是:The technical scheme that realizes the object of the present invention is:
一种LDPC编码联合16DAPSK调制解调的方法,包括如下步骤:A method for LDPC coding joint 16DAPSK modulation and demodulation, comprising the steps:
1)生成数据:生成的数据包括256个符号,每个符号包括48个子载波,将生成的数据当做信息比特,数学表示为一个[48,256]的矩阵,矩阵[48,256]为全零矩阵,解调出来也必为全零,对纠错性能和误比特性能没有影响;1) Generated data: The generated data includes 256 symbols, and each symbol includes 48 subcarriers. The generated data is regarded as information bits, and the mathematical representation is a [48,256] matrix, and the matrix [48,256] is an all-zero matrix. Demodulation It must be all zeros when it comes out, which has no effect on error correction performance and bit error performance;
2)生成(512,256)LDPC信道编码矩阵:依据公式(1)生成矩阵由单位矩阵I和循环子矩阵β两部分组成,其中循环子矩阵的循环行向量种子为β的上标表示第几个循环子矩阵的种子、下标表示循环行向量所在的行数,如表1所示,每一个种子由64个16进制表示,将16进制转换为4比特二进制表示,变为256个二进制表示,将此256二进制表示的数据,循环右移一位产生新的一行,依次循环右移63次产生63行256个二进制数据,加上种子一行,总共组成64行256个二进制数据,数学表示为[64,256]的子矩阵,总共有4个种子β即/>那么生成矩的阵数学表示为[256,256]的矩阵,依据公式(1)产生信道编码矩阵,其中I64×64代表一个64阶单位矩阵,0表示全零矩阵,最后的编码矩阵数学表示为[512,256]:2) Generate (512,256) LDPC channel coding matrix: According to formula (1), the generated matrix is composed of two parts: identity matrix I and cyclic sub-matrix β, wherein the cyclic row vector seed of cyclic sub-matrix is The superscript of β indicates the seed of the cyclic submatrix, and the subscript indicates the number of rows where the cyclic row vector is located. As shown in Table 1, each seed is represented by 64 hexadecimals, and the hexadecimals are converted into 4 bits The binary representation becomes 256 binary representations. The 256 binary representations of data are shifted to the right by one bit to generate a new row, and then shifted to the right 63 times in turn to generate 63 rows of 256 binary data, plus a seed row to form a total of 64 256 rows of binary data, mathematically expressed as a sub-matrix of [64,256], there are a total of 4 seeds β that /> Then the mathematical representation of the generating matrix is a [256,256] matrix, and the channel coding matrix is generated according to formula (1), where I 64×64 represents a 64-order unit matrix, 0 represents an all-zero matrix, and the final coding matrix is mathematically represented as [ 512,256]:
表1:生成矩阵的循环行向量种子Table 1: Cyclic row vector seeds for generating matrices
3)校验矩阵的生成:校验矩阵如公式(2)所示,其中I代表大小为P的单位矩阵,P=64,0代表大小为P的全零矩阵,Φ代表由单位矩阵I64×64循环右移得到的矩阵,代表模2运算,将公式(2)转换为向量的种子,如表2所示,表2中总共有32个种子,每个种子都是长度为64的行向量,表中的坐标表示元素“1”所在行向量的位置,每个通过1的位置产生每个子矩阵第一行的行向量,每个子矩阵都是64x64的大小,所以循环右移63次,产生63个新的行向量与原来的行向量组成一个校验子矩阵,故校验矩阵的数学表示为[256,512]的矩阵:3) Generation of parity check matrix: parity check matrix is as shown in formula (2), and wherein I represents the unit matrix that size is P, and P=64, and 0 represents that size is the all-zero matrix of P, and Φ represents that by unit matrix I 64 ×64 The matrix obtained by circular right shifting, Represents the
表2:校验矩阵的循环行向量种子Table 2: Circular row vector seeds for parity check matrix
,,
4)对数据进行信道编码:将步骤1)中生成的数据作为数据源,令数据源为X,表示为如公式(3)所示,假定编码后的数据用Y表示,依据信道编码公式(4),对数据源进行编码,编码得到的数据可表示为如公式(5)所示,其中y1 y2 ... y256代表的是有效信息,c1 c2... c256代表的是校验位,编码后的数据表示为[48,512]的矩阵:4) Perform channel coding on the data: take the data generated in step 1) as the data source, let the data source be X, expressed as shown in formula (3), assume that the coded data is represented by Y, according to the channel coding formula ( 4) Encode the data source, and the encoded data can be expressed as shown in formula (5), where y 1 y 2 ... y 256 represents valid information, and c 1 c 2 ... c 256 represents is the check digit, and the encoded data is expressed as a matrix of [48,512]:
X=[x1 x2 x3 x4 ... x254 x255 x256] (3),X=[x 1 x 2 x 3 x 4 ... x 254 x 255 x 256 ] (3),
Y=X*G (4),Y=X*G (4),
Y=[y1 y2 ... y256 c1 c2 ... c256] (5),Y=[y 1 y 2 ... y 256 c 1 c 2 ... c 256 ] (5),
5)16DAPSK数字调制:将步骤3)中[48,512]的数据矩阵转化成适合16DAPSK调制的格式即转化为[4,6144]的矩阵,然后每一列当做是一个4比特的所表示二进制数,假定为[b3b2b1b0],最高位的b3作为幅度进行幅度差分编码,再将编码后的数据0映射为0.5,1映射为1,输入的低3位b2b1b0按照公式(6)和公式(7)映射产生差分相位Δθi,其中Ii,Qi代表映射的横、纵坐标,Δθi代表当前数据与上一个数据的相位差,具体映射关系将一个圆8等分,即取{π/8,3π/8,5π/8,7π/8,9π/8,11π/8,13π/8,15π/8}中一个,调制后的16DAPSK星座图中16个坐标点为“o”,另外16个坐标为“*”,信号只能在“*”和“o”之间交替跳变,避免180°相位跳变:5) 16DAPSK digital modulation: convert the data matrix of [48,512] in step 3) into a format suitable for 16DAPSK modulation, that is, convert it into a matrix of [4,6144], and then each column is regarded as a 4-bit binary number, assuming It is [b3b2b1b0], the highest bit b3 is used as the amplitude for amplitude differential encoding, and then the encoded
Ii=Ii-1 cos(Δθi)-Qi-1 sin(Δθi) (6),I i =I i-1 cos(Δθ i )-Q i-1 sin(Δθ i ) (6),
Qi=Ii-1 sin(Δθi)+Qi-1 cos(Δθi) (7);Q i =I i-1 sin(Δθ i )+Q i-1 cos(Δθ i ) (7);
6)OFDM即正交频分复用:OFDM的系统子载波间隔是312.5KHz,标准采用48个并行子载进行数据传输,步骤4)调制后变为128+1个符号,每个符号48个子载波,加入16个空载波,每个符号变为64个子载波,然后经过64点的IFFT进行时域变化,接着加入16个子载波的循环前缀,最后进行串转并,从OFDM出来的数据格式为[1,10320]的复信号;6) OFDM is Orthogonal Frequency Division Multiplexing: The system subcarrier spacing of OFDM is 312.5KHz, and the standard uses 48 parallel subcarriers for data transmission. After step 4), it becomes 128+1 symbols after modulation, and each symbol has 48 subcarriers. Carrier, adding 16 empty carriers, each symbol becomes 64 subcarriers, and then undergoes 64-point IFFT for time domain change, then adds 16 subcarrier cyclic prefixes, and finally performs serial conversion and parallelization. The data format from OFDM is Complex signal of [1,10320];
7)加噪声过信道:加噪声过信道包括:7) Noise-added over-channel: Noise-added over-channel includes:
7-1)高斯加性白噪声信道,其中噪声方差为σ2、每个SNR点100个数据帧;7-1) Gaussian additive white noise channel, wherein the noise variance is σ 2 , and each SNR point has 100 data frames;
7-2)COST207信道中的丘陵地区信道传播时延迟Delay=[0 1 2 3 4 5],路径功率分贝值PowerdB=[0 -4 -8 -12 -16 -20],噪声方差同样为σ2,每个SNR点100个数据帧;7-2) In the hilly area of the COST207 channel, the channel propagation delay Delay=[0 1 2 3 4 5], the path power decibel value PowerdB=[0 -4 -8 -12 -16 -20], and the noise variance is also σ 2 , 100 data frames for each SNR point;
8)解OFDM:将经过信道后的10320个复信号,先进行串转并,转换成[80,129]的矩阵,接着去除16个子载波的循环前缀转换为[64,129]的矩阵,然后经过FFT变化,再去除16个空载波,数据格式变换为[48,129]的矩阵;8) Solution to OFDM: convert the 10320 complex signals after passing through the channel into a matrix of [80,129] first, then remove the cyclic prefix of 16 subcarriers and convert them into a matrix of [64,129], and then undergo FFT changes, Then remove 16 empty carriers, and transform the data format into a matrix of [48,129];
9)DIFTIME_16DAPSK联合LDPC信道译码解调:将步骤7)解调出来的第i个数据设为Gi,令然后依据公式(8)进行归一化:9) DIFTIME_16DAPSK joint LDPC channel decoding and demodulation: set the i-th data demodulated in step 7) as G i , let Then normalize according to formula (8):
归一化后相当于只提取出了组成的b2b1b0相位信息,单个比特的对数似然比即软信息LLR的定义如公式(9)所示,其中k取0,1,2,表示是相位调制中的第k个比特,S代表π/8-8DPSK调制后的数据点,Gdni代表归一化后的信息:After normalization, it is equivalent to only extracting the phase information of b 2 b 1 b 0. The logarithmic likelihood ratio of a single bit, that is, the soft information LLR, is defined as shown in formula (9), where k is 0, 1, 2. It means the kth bit in the phase modulation, S represents the data point after π/8-8DPSK modulation, and Gdn i represents the normalized information:
依据归一化后星座图的分布特点,将公式(9)简化公式为(10),其中Es代表的是比特信号能量,N0表示均值为1且方差为σ2的噪声功率,因为LDPC译码采用的是不受输入信息同比例因子影响的最小和译码算法,故公式(10)可简化为公式(11),软信息对应相位调制中第i个数据的(b2b1b0):According to the distribution characteristics of the normalized constellation diagram, the formula (9) is simplified as (10), where E s represents the bit signal energy, N 0 represents the noise power with a mean of 1 and a variance of σ 2 , because LDPC The decoding uses the minimum sum decoding algorithm that is not affected by the same scale factor of the input information, so formula (10) can be simplified to formula (11), the soft information Corresponding to (b 2 b 1 b 0 ) of the i-th data in phase modulation:
两个相邻信号的比值Gdi分布在半径为0.5,1和2的圆的附近,如果Gdi小于1,那么b3对应的幅度软信息为公式(12)所示:The ratio Gd i of two adjacent signals is distributed around circles with radii of 0.5, 1, and 2. If Gd i is less than 1, then the amplitude soft information corresponding to b 3 is shown in formula (12):
如果Gdi小于1,那么b3对应的幅度软信息为公式(13)所示:If Gd i is less than 1, then the amplitude soft information corresponding to b 3 is shown in formula (13):
其中,α为幅度调制的高电平与低电平的比值,在16DAPSK中α=2,一个数据的软比特信息(b3b2b1b0),故16DAPSK如解调出的数据格式为[48,512];Among them, α is the ratio of high level to low level of amplitude modulation. In 16DAPSK, α=2, the soft bit information of one data (b 3 b 2 b 1 b 0 ), so 16DAPSK is like the demodulated data format is [48,512];
10)LDPC最小和译码输出数据信息:将步骤8)中的16DAPSK如解调出的数据[48,512]利用步骤2)生成的校验矩阵通过最小和译码算法进行译码输出,输出的每个符号去除其256个校验位,最终输出的数据格式为[48,256]即为最终解调输出。10) LDPC minimum sum decoding output data information: the 16DAPSK in step 8) such as the demodulated data [48,512] utilizes the check matrix generated in step 2) to decode and output through the minimum sum decoding algorithm, and each output symbol to remove its 256 parity bits, and the final output data format is [48,256] which is the final demodulation output.
针对传统的OFDM+MQAM系统所出现的不足和相关缺陷,本技术方案把经过信道后的10320个复信号,先进行串转并,转换成[80,129]的矩阵,接着去除16个子载波的循环前缀转换为[64,129]的矩阵,然后经过FFT变化,再去除16个空载波,数据格式变换为[48,129]的矩阵;利用了LDPC强大的信道纠错能力,OFDM的抗多径性能,在数字调制方面采用时域差分16DAPSK的数字调制解调技术,在解调端可以采用非相干解调,不需要信道估计,降低了系统的复杂度,同时差分编码,在载波相位偏移较大的情况依旧能够正确的解调出对应的数据,DIFTIME_16DAPSK在多径衰落信道中可以削弱衰落信道引起的性能下降。In view of the deficiencies and related defects of the traditional OFDM+MQAM system, this technical solution converts the 10320 complex signals after passing through the channel into a matrix of [80,129], and then removes the cyclic prefix of 16 subcarriers Convert to the matrix of [64,129], and then undergo FFT changes, then remove 16 empty carriers, and transform the data format into a matrix of [48,129]; use the powerful channel error correction capability of LDPC, the anti-multipath performance of OFDM, in the digital modulation On the one hand, it adopts the digital modulation and demodulation technology of time-domain difference 16DAPSK, and non-coherent demodulation can be used at the demodulation end, without channel estimation, which reduces the complexity of the system. The corresponding data can be correctly demodulated, and DIFTIME_16DAPSK can weaken the performance degradation caused by the fading channel in the multipath fading channel.
本技术方案与现有技术相比,具有以下特点:Compared with the prior art, this technical solution has the following characteristics:
1.数据长度更适合相关计算设备处理:采用CCSDS中超短码(256,512)的LDPC编码方式,编码效率为1/2,纠错码长度为256,信息码长度为256,256和512都是16、32、64的倍数所以更能适配当前计算设备的处理;1. The data length is more suitable for processing by related computing equipment: the LDPC encoding method of the ultra-short code (256,512) in CCSDS is adopted, the encoding efficiency is 1/2, the length of the error correction code is 256, and the length of the information code is 256. Both 256 and 512 are 16 , 32, and 64 multiples, so it is more suitable for the processing of current computing equipment;
2.OFDM采用有效子载波数为48,插入导频个数为16,构成一个OFDM符号为64个子载波,更能适配IFFFT和计算处理设备;2. OFDM uses 48 effective subcarriers, 16 inserted pilots, and 64 subcarriers to form an OFDM symbol, which is more suitable for IFFFT and computing processing equipment;
3.采用DIFTIME_16DAPSK技术,不需要信道估计大大的降低了实现的复杂度,同时DIFTIME_16DAPSK可以有效的抵抗多径衰落中引起的性能降低;3. Using DIFTIME_16DAPSK technology, no channel estimation is required, which greatly reduces the complexity of implementation, and at the same time, DIFTIME_16DAPSK can effectively resist performance degradation caused by multipath fading;
4.DIFTIME_16DAPSK调制分为2DASK的幅度差分和8DPSK,本技术方案在8DPSK调制中,采用π/8-8DPSK使得相位的调制只能在相邻的两个点之间跳变,消除了相位调制的相位模糊的现象;4. DIFTIME_16DAPSK modulation is divided into 2DASK amplitude differential and 8DPSK. In 8DPSK modulation, this technical solution uses π/8-8DPSK so that the phase modulation can only jump between two adjacent points, eliminating the phase modulation The phenomenon of phase ambiguity;
5.高阶调制解调当中一个符号的不同比特的误比特性能是不同的。本实用新型采用软解调的方法,计算出每个比特为0和1的概率。将幅度的概率值和相位的概率值分离出4组子数据,将每一组数据分别送到最小和译码算法Min_sum中进行译码,最后进行数据重组。5. The bit error performance of different bits of a symbol in high-order modulation and demodulation is different. The utility model adopts a soft demodulation method to calculate the probability that each bit is 0 and 1. Separate the probability value of the amplitude and the probability value of the phase into 4 groups of sub-data, send each group of data to the minimum sum decoding algorithm Min_sum for decoding, and finally perform data reorganization.
这种方法硬件实现容易、适应性好、能够抵抗多径衰落信道引起的误码性能降低,能提高信道的有效性和子载波的利用率,能提高信道对载波相位的容错度即载波相位偏移大的情况下仍能解调出正确的对应数据。This method is easy to implement in hardware, has good adaptability, can resist the error performance reduction caused by multipath fading channels, can improve the effectiveness of the channel and the utilization rate of subcarriers, and can improve the error tolerance of the channel to the carrier phase, that is, the carrier phase offset. In a large case, the correct corresponding data can still be demodulated.
附图说明Description of drawings
图1为实施例中DIFTIME_16DAPSK调制示意框图;Fig. 1 is a schematic block diagram of DIFTIME_16DAPSK modulation in an embodiment;
图2为实施例中差分相位Δθi与b2b1b0的映射关系示意图;Fig. 2 is a schematic diagram of the mapping relationship between differential phase Δθ i and b 2 b 1 b 0 in an embodiment;
图3为实施例中DIFTIME_16DAPSK星座图;Fig. 3 is the DIFTIME_16DAPSK constellation diagram in the embodiment;
图4为实施例中DIFTIME_16DAPSK联合LDPC信道译码软解调示意框图;Fig. 4 is a schematic block diagram of DIFTIME_16DAPSK joint LDPC channel decoding soft demodulation in the embodiment;
图5为实施例中AWGN信道下16DAPSK软解调LDPC编码Min_Sum译码和高阶软解调卷积信道编码维特比译码误码率性能曲线示意图;Fig. 5 is a schematic diagram of BER performance curves of 16DAPSK soft demodulation LDPC coding Min_Sum decoding and high-order soft demodulation convolutional channel coding Viterbi decoding under the AWGN channel in the embodiment;
图6为实施例中AWGN信道下16DAPSK软解调LDPC编码Min_Sum译码和16DAPSK硬解调LDPC编码Min_Sum译码误码率性能曲线示意图;Fig. 6 is a schematic diagram of BER performance curves of 16DAPSK soft demodulation LDPC encoding Min_Sum decoding and 16DAPSK hard demodulation LDPC encoding Min_Sum decoding under the AWGN channel in the embodiment;
图7为实施例中COST207中丘陵地区信道下16DAPSK软解调LDPC编码Min_Sum译码、16DAPSK硬解调LDPC编码Min_Sum译码和16ADQAM解调LDPC编码Min_Sum译码误码率性能曲线示意图。Fig. 7 is a schematic diagram of the bit error rate performance curves of 16DAPSK soft demodulation LDPC encoding Min_Sum decoding, 16DAPSK hard demodulation LDPC encoding Min_Sum decoding and 16ADQAM demodulation LDPC encoding Min_Sum decoding under the COST207 hilly area channel in the embodiment.
具体实施方式Detailed ways
下面结合附图和实施例对本发明的内容作进一步的阐述,但不是对本发明的限定。The content of the present invention will be further described below in conjunction with the accompanying drawings and embodiments, but the present invention is not limited.
实施例:Example:
一种LDPC编码联合16DAPSK调制解调的方法,包括如下步骤:A method for LDPC coding joint 16DAPSK modulation and demodulation, comprising the steps:
1)生成数据:生成的数据包括256个符号,每个符号包括48个子载波,将生成的数据当做信息比特,数学表示为一个[48,256]的矩阵,矩阵[48,256]为全零矩阵,解调出来也必为全零,对纠错性能和误比特性能没有影响;1) Generated data: The generated data includes 256 symbols, and each symbol includes 48 subcarriers. The generated data is regarded as information bits, and the mathematical representation is a [48,256] matrix, and the matrix [48,256] is an all-zero matrix. Demodulation It must be all zeros when it comes out, which has no effect on error correction performance and bit error performance;
2)生成(512,256)LDPC信道编码矩阵:依据公式(1)生成矩阵由单位矩阵I和循环子矩阵β两大部分组成,其中循环子矩阵的循环行向量种子为β的上标表示第几个循环子矩阵的种子、下标表示循环行向量所在的行数,如表1所示,每一个种子由64个16进制表示,将16进制转换为4比特二进制表示,变为256个二进制表示,将此256二进制表示的数据,循环右移一位产生新的一行,依次循环右移63次产生63行256个二进制数据,加上种子一行,总共组成64行256个二进制数据,数学表示为[64,256]的子矩阵,总共有4个种子β即/>那么生成矩的阵数学表示为[256,256]的矩阵,依据公式(1)产生信道编码矩阵,其中I64×64代表一个64阶单位矩阵,0表示全零矩阵,最后的编码矩阵数学表示为[512,256]:2) Generate (512,256) LDPC channel coding matrix: According to formula (1), the generated matrix is composed of two parts: identity matrix I and cyclic sub-matrix β, wherein the cyclic row vector seed of cyclic sub-matrix is The superscript of β indicates the seed of the cyclic submatrix, and the subscript indicates the number of rows where the cyclic row vector is located. As shown in Table 1, each seed is represented by 64 hexadecimals, and the hexadecimals are converted into 4 bits The binary representation becomes 256 binary representations. The 256 binary representations of data are shifted to the right by one bit to generate a new row, and then shifted to the right 63 times in turn to generate 63 rows of 256 binary data, plus a seed row to form a total of 64 256 rows of binary data, mathematically expressed as a sub-matrix of [64,256], there are a total of 4 seeds β that /> Then the mathematical representation of the generating matrix is a [256,256] matrix, and the channel coding matrix is generated according to formula (1), where I 64×64 represents a 64-order unit matrix, 0 represents an all-zero matrix, and the final coding matrix is mathematically represented as [ 512,256]:
表1:生成矩阵自子矩阵的循环行向量种子Table 1: Circular row vector seeds for generating matrix from submatrix
3)校验矩阵的生成:校验矩阵如公式(2)所示,其中I代表大小为P的单位矩阵,P=64,0代表大小为P的全零矩阵,Φ代表由单位矩阵I64×64循环右移得到的矩阵,代表模2运算,将公式(2)转换为向量的种子,如表2所示,表2中总共有32个种子,每个种子都是长度为64的行向量,表中的坐标表示元素“1”所在行向量的位置,每个通过1的位置产生每个子矩阵第一行的行向量,每个子矩阵都是64x64的大小,所以循环右移63次,产生63个新的行向量与原来的行向量组成一个校验子矩阵,故校验矩阵的数学表示为[256,512]的矩阵:3) Generation of parity check matrix: parity check matrix is as shown in formula (2), and wherein I represents the unit matrix that size is P, and P=64, and 0 represents that size is the all-zero matrix of P, and Φ represents that by unit matrix I 64 ×64 The matrix obtained by circular right shifting, Represents the
表2:校验矩阵的循环行向量种子Table 2: Circular row vector seeds for parity check matrix
,,
4)对数据进行信道编码:将步骤1)中生成的数据作为数据源,令数据源为X,表示为如公式(3)所示,假定编码后的数据用Y表示,依据信道编码公式(4),对数据源进行编码,编码得到的数据可表示为如公式(5)所示,其中y1 y2 ... y256代表的是有效信息,c1 c2... c256代表的是校验位,编码后的数据表示为[48,512]的矩阵:4) Perform channel coding on the data: take the data generated in step 1) as the data source, let the data source be X, expressed as shown in formula (3), assume that the coded data is represented by Y, according to the channel coding formula ( 4) Encode the data source, and the encoded data can be expressed as shown in formula (5), where y 1 y 2 ... y 256 represents valid information, and c 1 c 2 ... c 256 represents is the check digit, and the encoded data is expressed as a matrix of [48,512]:
X=[x1 x2 x3 x4 ... x254 x255 x256] (3),X=[x 1 x 2 x 3 x 4 ... x 254 x 255 x 256 ] (3),
Y=X*G (4),Y=X*G (4),
Y=[y1 y2 ... y256 c1 c2 ... c256] (5),Y=[y 1 y 2 ... y 256 c 1 c 2 ... c 256 ] (5),
5)16DAPSK数字调制:将步骤3)中[48,512]的数据矩阵转化成适合16DAPSK调制的格式即转化为[4,6144]的矩阵,然后每一列当做是一个4比特的所表示二进制数,假定为[b3b2b1b0],最高位的b3作为幅度进行幅度差分编码,再将编码后的数据0映射为0.5,1映射为1,输入的低3位b2b1b0按照公式(6)和公式(7)映射产生差分相位Δθi,其中Ii,Qi代表映射的横、纵坐标,Δθi代表当前数据与上一个数据的相位差,具体映射关系将一个圆8等分,即取{π/8,3π/8,5π/8,7π/8,9π/8,11π/8,13π/8,15π/8}中一个,调制后的16DAPSK星座图中16个坐标点为“o”,另外16个坐标为“*”,信号只能在“*”和“o”之间交替跳变,避免180°相位跳变:5) 16DAPSK digital modulation: convert the data matrix of [48,512] in step 3) into a format suitable for 16DAPSK modulation, that is, convert it into a matrix of [4,6144], and then each column is regarded as a 4-bit binary number, assuming It is [b3b2b1b0], the highest bit b3 is used as the amplitude for amplitude differential encoding, and then the encoded
Ii=Ii-1 cos(Δθi)-Qi-1 sin(Δθi) (6),I i =I i-1 cos(Δθ i )-Q i-1 sin(Δθ i ) (6),
Qi=Ii-1 sin(Δθi)+Qi-1 cos(Δθi) (7);Q i =I i-1 sin(Δθ i )+Q i-1 cos(Δθ i ) (7);
6)OFDM即正交频分复用:OFDM的系统子载波间隔是312.5KHz,标准采用48个并行子载进行数据传输,步骤4)调制后变为128+1个符号,每个符号48个子载波,加入16个空载波,每个符号变为64个子载波,然后经过64点的IFFT进行时域变化,接着加入16个子载波的循环前缀,最后进行串转并,从OFDM出来的数据格式为[1,10320]的复信号;6) OFDM is Orthogonal Frequency Division Multiplexing: The system subcarrier spacing of OFDM is 312.5KHz, and the standard uses 48 parallel subcarriers for data transmission. After step 4), it becomes 128+1 symbols after modulation, and each symbol has 48 subcarriers. Carrier, adding 16 empty carriers, each symbol becomes 64 subcarriers, and then undergoes 64-point IFFT for time domain change, then adds 16 subcarrier cyclic prefixes, and finally performs serial conversion and parallelization. The data format from OFDM is Complex signal of [1,10320];
7)加噪声过信道:加噪声过信道包括:7) Noise-added over-channel: Noise-added over-channel includes:
7-1)高斯加性白噪声信道,其中噪声方差为σ2、每个SNR点100个数据帧;7-1) Gaussian additive white noise channel, wherein the noise variance is σ 2 , and each SNR point has 100 data frames;
7-2)COST207信道中的丘陵地区信道传播时延迟Delay=[0 1 2 3 4 5],路径功率分贝值PowerdB=[0 -4-8 -12 -16 -20],噪声方差同样为σ2,每个SNR点100个数据帧;7-2) Delay in channel propagation in hilly areas in COST207 channel Delay=[0 1 2 3 4 5], path power decibel value PowerdB=[0 -4-8 -12 -16 -20], noise variance is also σ 2 , 100 data frames for each SNR point;
8)解OFDM:将经过信道后的10320个复信号,先进行串转并,转换成[80,129]的矩阵,接着去除16个子载波的循环前缀转换为[64,129]的矩阵,然后经过FFT变化,再去除16个空载波,数据格式变换为[48,129]的矩阵;8) Solution to OFDM: convert the 10320 complex signals after passing through the channel into a matrix of [80,129] first, then remove the cyclic prefix of 16 subcarriers and convert them into a matrix of [64,129], and then undergo FFT changes, Then remove 16 empty carriers, and transform the data format into a matrix of [48,129];
9)DIFTIME_16DAPSK联合LDPC信道译码解调:将步骤7)解调出来的第i个数据设为Gi,令然后依据公式(8)进行归一化:9) DIFTIME_16DAPSK joint LDPC channel decoding and demodulation: set the i-th data demodulated in step 7) as G i , let Then normalize according to formula (8):
归一化后相当于只提取出了组成的b2b1b0相位信息,单个比特的对数似然比即软信息LLR的定义如公式(9)所示,其中k取0,1,2,表示是相位调制中的第k个比特,S代表π/8-8DPSK调制后的数据点,Gdni代表归一化后的信息:After normalization, it is equivalent to only extracting the phase information of b 2 b 1 b 0. The logarithmic likelihood ratio of a single bit, that is, the soft information LLR, is defined as shown in formula (9), where k is 0, 1, 2. It means the kth bit in the phase modulation, S represents the data point after π/8-8DPSK modulation, and Gdn i represents the normalized information:
依据归一化后星座图的分布特点,将公式(9)简化公式为(10),其中Es代表的是比特信号能量,N0表示均值为1且方差为σ2的噪声功率,因为LDPC译码采用的是不受输入信息同比例因子影响的最小和译码算法,故公式(10)可简化为公式(11),软信息对应相位调制中第i个数据的(b2b1b0):According to the distribution characteristics of the normalized constellation diagram, the formula (9) is simplified as (10), where E s represents the bit signal energy, N 0 represents the noise power with a mean of 1 and a variance of σ 2 , because LDPC The decoding uses the minimum sum decoding algorithm that is not affected by the same scale factor of the input information, so formula (10) can be simplified to formula (11), the soft information Corresponding to (b 2 b 1 b 0 ) of the i-th data in phase modulation:
两个相邻信号的比值Gdi分布在半径为0.5,1和2的圆的附近,如果Gdi小于1,那么b3对应的幅度软信息为公式(12)所示:The ratio Gd i of two adjacent signals is distributed around circles with radii of 0.5, 1, and 2. If Gd i is less than 1, then the amplitude soft information corresponding to b 3 is shown in formula (12):
如果Gdi小于1,那么b3对应的幅度软信息为公式(13)所示:If Gd i is less than 1, then the amplitude soft information corresponding to b 3 is shown in formula (13):
其中,α为幅度调制的高电平与低电平的比值,在16DAPSK中α=2,一个数据的软比特信息(b3b2b1b0),故16DAPSK如解调出的数据格式为[48,512];Among them, α is the ratio of high level to low level of amplitude modulation. In 16DAPSK, α=2, the soft bit information of one data (b 3 b 2 b 1 b 0 ), so 16DAPSK is like the demodulated data format is [48,512];
10)LDPC最小和译码输出数据信息:将步骤8)中的16DAPSK如解调出的数据[48,512]利用步骤2)生成的校验矩阵通过最小和译码算法进行译码输出,输出的每个符号去除其256个校验位,最终输出的数据格式为[48,256]即为最终解调输出。10) LDPC minimum sum decoding output data information: the 16DAPSK in step 8) such as the demodulated data [48,512] utilizes the check matrix generated in step 2) to decode and output through the minimum sum decoding algorithm, and each output symbol to remove its 256 parity bits, and the final output data format is [48,256] which is the final demodulation output.
误码率分析:如图5所示在AWGN信道下,保持时域差分16DAPSK,OFDM系统参数以及软解调的方法改变,只改变信道编码,在相同的误码率为10-3时相比于采用卷积信道编码和维特比译码方案的误码性能提高约2-2.5dB;如图6所示,保持时域差分16DAPSK,OFDM系统参数以及LDPC编译码的方案都不变,只改变16DAPSK解调的方法,如图7所示,在误码率为10-3时,采用软解调的误码率要比采用硬解调的误码性能提高约10-11dB,COST207模型中丘陵地区(HL)信道也就是多径信道,在OFDM参数,LDPC结构不变的情况下,如图5、6、7所示,要在误码率为10-2时比硬解调方案和16ADQAM方案的误码率性能提升约8-9dB。Bit error rate analysis: As shown in Figure 5, under the AWGN channel, the time domain difference 16DAPSK is maintained, the OFDM system parameters and the method of soft demodulation are changed, and only the channel coding is changed. Compared with the same bit error rate of 10 -3 The bit error performance of the convolutional channel coding and Viterbi decoding scheme is improved by about 2-2.5dB; as shown in Figure 6, the time domain difference 16DAPSK is kept, the OFDM system parameters and the LDPC coding and decoding scheme are unchanged, only changing 16DAPSK demodulation method, as shown in Figure 7, when the bit error rate is 10 -3 , the bit error rate using soft demodulation is about 10-11dB higher than the bit error performance using hard demodulation, and the hills in the COST207 model The regional (HL) channel is also a multipath channel. Under the condition that OFDM parameters and LDPC structure remain unchanged, as shown in Figures 5, 6, and 7, it is better than the hard demodulation scheme and 16ADQAM when the bit error rate is 10 -2 The bit error rate performance of the solution is improved by about 8-9dB.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010685135.1A CN111884661B (en) | 2020-07-16 | 2020-07-16 | Method of LDPC coding combined with 16DAPSK modulation and demodulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010685135.1A CN111884661B (en) | 2020-07-16 | 2020-07-16 | Method of LDPC coding combined with 16DAPSK modulation and demodulation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111884661A CN111884661A (en) | 2020-11-03 |
CN111884661B true CN111884661B (en) | 2023-07-04 |
Family
ID=73154983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010685135.1A Active CN111884661B (en) | 2020-07-16 | 2020-07-16 | Method of LDPC coding combined with 16DAPSK modulation and demodulation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111884661B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115981209A (en) * | 2023-01-06 | 2023-04-18 | 上海科技大学 | Automatic overclocking controller based on circuit delay measurement |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101022321A (en) * | 2006-11-09 | 2007-08-22 | 鲍东山 | Method for realizing channel coding and decoding in T-MMB system |
US7376075B1 (en) * | 2003-09-26 | 2008-05-20 | Conexant Systems, Inc. | Circular constellations with coherent gain/differential phase and pilots |
CN107070841A (en) * | 2017-03-09 | 2017-08-18 | 清华大学 | A kind of phase noise iteration compensation method suitable for LDPC navamanders |
JP2019036940A (en) * | 2017-08-10 | 2019-03-07 | 日本放送協会 | Transmitter, receiver, ldpc encoder and ldpc decoder |
CN110611633A (en) * | 2018-06-14 | 2019-12-24 | 大唐移动通信设备有限公司 | Method and device for processing 16-amplitude phase keying signal |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9379848B2 (en) * | 2013-06-10 | 2016-06-28 | Broadcom Corporation | Cyclic redundancy check (CRC) and forward error correction (FEC) for ranging within communication systems |
US20160233889A1 (en) * | 2013-09-26 | 2016-08-11 | Sony Corporation | Data processing device and data processing method |
US9716536B2 (en) * | 2015-03-19 | 2017-07-25 | Mitsubishi Electric Research Laboratories, Inc. | System and method for wireless communications over fading channels |
US10237016B2 (en) * | 2016-10-20 | 2019-03-19 | Hughes Network Systems, Llc | Satellite transmission including narrowband interference erasure |
-
2020
- 2020-07-16 CN CN202010685135.1A patent/CN111884661B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7376075B1 (en) * | 2003-09-26 | 2008-05-20 | Conexant Systems, Inc. | Circular constellations with coherent gain/differential phase and pilots |
CN101022321A (en) * | 2006-11-09 | 2007-08-22 | 鲍东山 | Method for realizing channel coding and decoding in T-MMB system |
CN107070841A (en) * | 2017-03-09 | 2017-08-18 | 清华大学 | A kind of phase noise iteration compensation method suitable for LDPC navamanders |
JP2019036940A (en) * | 2017-08-10 | 2019-03-07 | 日本放送協会 | Transmitter, receiver, ldpc encoder and ldpc decoder |
CN110611633A (en) * | 2018-06-14 | 2019-12-24 | 大唐移动通信设备有限公司 | Method and device for processing 16-amplitude phase keying signal |
Non-Patent Citations (3)
Title |
---|
LDPC-BICM-ID系统的APSK星座映射研究;焦琦;知网;全文 * |
Near-Optimal DAPSK Demodulation Using a PARAFAC Decomposition;M. Sandell, A. Ismail and F. Tosato;IEEE Transactions on Vehicular Technology;全文 * |
Nurellari, Edmond.LDPC Coded OFDM And It's Application To DVB-T2, DVB-S2 And IEEE 802.16e.http://hdl.handle.net/11129/172.2012,全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN111884661A (en) | 2020-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8947996B2 (en) | Offset modulation orthogonal frequency division multiplexing (OFDM) and multi-access transmission method with cyclic prefix (CP) | |
CN101394392B (en) | Signal diversifying method for OFDM system | |
Han et al. | Modified selected mapping technique for PAPR reduction of coded OFDM signal | |
CN102916923B (en) | Information transmission method capable of reducing PAPR of multicarrier system | |
CN101848061A (en) | Constellation diagram limited extended code modulation method, demodulation and decoding method and system thereof | |
CN107612863A (en) | A kind of high spectrum effect wireless multi-carrier communications method of bandwidth reduction | |
CN101848184A (en) | Selective mapping scrambling method for reducing peak-to-average power ratio of orthogonal frequency division multiplexing system | |
CN110138700B (en) | Continuous phase modulation low-complexity demodulation method based on threshold judgment | |
CN105743835A (en) | Method for reducing peak-to-average power ratio of OFDMA system signal | |
CN111884661B (en) | Method of LDPC coding combined with 16DAPSK modulation and demodulation | |
CN102916924B (en) | The offset modulation multi-carrier frequency division multiple access transmission method of BREATHABLE BANDWIDTH | |
CN100505725C (en) | Channel Equalization Method for OFDM System | |
CN102299890A (en) | Multimedia broadcasting wireless signal anti-interference framing modulation method | |
CN102255863B (en) | Anti-noise digital mobile broadcast signal transmitting method | |
CN102263738B (en) | Anti-interference transmission method for digital broadcast wireless signal | |
CN102307171B (en) | Anti-interference wireless multimedia broadcast signal framing modulation method | |
Benkhouya et al. | Evaluation of the polar coded OFDM system | |
CN102263760B (en) | Anti-noise multimedia wireless broadcast signal framing modulation method | |
CN102281232B (en) | Multimedia broadcast mobile signal anti-noise framing modulation method | |
CN102263756B (en) | Anti-noise mobile digital broadcast signal transmitting method | |
CN108737029B (en) | A joint method of time-frequency interleaving preprocessing against narrowband interference and impulse noise in OFDM system | |
CN102255852B (en) | Anti-fading wireless digital broadcast signal transmitting method | |
CN112332948B (en) | Multi-service transmission sending and receiving method, system, medium and device | |
CN102281240B (en) | Anti-noise multimedia mobile broadcast signal framing modulation method | |
Ou et al. | Performance Improvement of Multi-level Redundant Discrete Wavelet Transform OFDM System by Using LDPC Encoding and Belief Propagation Algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |