CN111882812A - Fire monitoring system and method - Google Patents
Fire monitoring system and method Download PDFInfo
- Publication number
- CN111882812A CN111882812A CN202010885455.1A CN202010885455A CN111882812A CN 111882812 A CN111882812 A CN 111882812A CN 202010885455 A CN202010885455 A CN 202010885455A CN 111882812 A CN111882812 A CN 111882812A
- Authority
- CN
- China
- Prior art keywords
- fire
- rotating head
- filter
- motor
- suspected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000012545 processing Methods 0.000 claims abstract description 62
- 238000001514 detection method Methods 0.000 claims abstract description 42
- 230000003287 optical effect Effects 0.000 claims abstract description 29
- 230000003750 conditioning effect Effects 0.000 claims abstract description 23
- 238000001228 spectrum Methods 0.000 claims abstract description 20
- 230000007246 mechanism Effects 0.000 claims description 9
- 238000013527 convolutional neural network Methods 0.000 claims description 6
- 235000012419 Thalia geniculata Nutrition 0.000 claims description 3
- 244000145580 Thalia geniculata Species 0.000 claims description 3
- 238000001914 filtration Methods 0.000 abstract description 8
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 description 10
- 238000002329 infrared spectrum Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000779 smoke Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/12—Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
Landscapes
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fire-Detection Mechanisms (AREA)
Abstract
本发明公开一种火灾监测系统与方法。所述系统包括:中央处理单元,与中央处理单元相连的信号调理模块和电机驱动模块,与信号调理模块相连的红外传感器,与电机驱动模块相连的用于驱动转动头的水平电机,还包括与转动头机械交连的光处理装置,光处理装置用于在转动头的带动下,通过在3600范围内进行水平扫描、同时在竖直平面扫描来收集光线,并对光线进行反射、聚焦、滤波处理后,使包含火灾特征波段的多个波段光谱轮流投射到红外传感器的靶面上。本发明拓展了火灾探测范围,提高了检测灵敏度和精度,消除了日光、人工光源和一般热源光谱的影响,降低了误报率。
The invention discloses a fire monitoring system and method. The system includes: a central processing unit, a signal conditioning module and a motor driving module connected with the central processing unit, an infrared sensor connected with the signal conditioning module, a horizontal motor connected with the motor driving module for driving the rotating head, and a horizontal motor connected with the motor driving module. Optical processing device with mechanically connected rotating head, the optical processing device is used to collect light by scanning horizontally in the range of 3600 degrees and scanning in the vertical plane under the driving of the rotating head, and reflecting, focusing, After filtering, the spectrum of multiple bands including fire characteristic bands is projected onto the target surface of the infrared sensor in turn. The invention expands the fire detection range, improves the detection sensitivity and precision, eliminates the influence of sunlight, artificial light source and general heat source spectrum, and reduces the false alarm rate.
Description
技术领域technical field
本发明属于火灾探测预警技术领域,具体涉及一种基于红外检测的火灾监测系统与方法。The invention belongs to the technical field of fire detection and early warning, and in particular relates to a fire monitoring system and method based on infrared detection.
背景技术Background technique
目前,对于近距离建筑内外的火灾探测技术已经比较成熟。现有技术主要通过对火灾的燃烧产物(如气体、烟雾、温度、火焰等)的检测判断是否有火灾发生。这些技术都面临一个很大的问题,探测距离非常有限,通常情况下100m是一个标准距离,部分设备能达到200~300m。At present, the fire detection technology inside and outside the building is relatively mature. In the prior art, whether there is a fire is determined mainly by detecting the combustion products of the fire (such as gas, smoke, temperature, flame, etc.). These technologies all face a big problem, the detection distance is very limited, usually 100m is a standard distance, and some devices can reach 200-300m.
在实际应用中,有些场景对探测距离和覆盖面积有很严格的要求,例如对于森林、草原火灾的探测,往往要求探测距离达到几公里或几十公里。因此,一般传统的探测方法已无法满足要求。近二十年来,随着图像分析技术的发展,人们开始针对大范围可变视场摄像机的图像进行烟雾和火焰的分析,但是由于自然界中误报源很多,使得该项技术的应用受到较大的限制。这一阶段最典型的代表技术是德国FireWatch的系统。FireWatch采用特定波段(植被反射弱)的BW摄像机,可以获得相对比较好的烟雾图像,这一定程度上提升了探测的能力。近年来在中国开始应用比较多的技术是基于红外热成像摄像机和可见光摄像机的双目摄像机探测技术,如公开号为CN104269013A、名称为“一种森林探火系统及方法”发明专利,利用红外热成像摄像机获得与温度辐射相关的参数,如温度或者成像灰度值,结合两种图像的分析实现火灾探测。然而,这些技术都存在探测距离近、误报率偏高等问题。In practical applications, some scenarios have strict requirements on the detection distance and coverage area. For example, for the detection of forest and grassland fires, the detection distance is often required to reach several kilometers or tens of kilometers. Therefore, the general traditional detection methods can no longer meet the requirements. In the past two decades, with the development of image analysis technology, people began to analyze smoke and flames for the images of large-scale variable field of view cameras. However, due to the many sources of false alarms in nature, the application of this technology has been greatly affected. limits. The most typical representative technology at this stage is the German FireWatch system. FireWatch uses a BW camera with a specific band (weak vegetation reflection), which can obtain relatively good smoke images, which improves the detection ability to a certain extent. In recent years, the most widely used technology in China is the binocular camera detection technology based on infrared thermal imaging cameras and visible light cameras. The imaging camera obtains parameters related to temperature radiation, such as temperature or imaging gray value, and combines the analysis of the two images to realize fire detection. However, these technologies all have the problems of short detection distance and high false alarm rate.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中存在的上述问题,本发明提出一种火灾监测系统与方法。In order to solve the above problems existing in the prior art, the present invention provides a fire monitoring system and method.
为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
本发明提供一种火灾监测系统,所述系统包括:中央处理单元,与中央处理单元相连的信号调理模块和电机驱动模块,与信号调理模块相连的红外传感器,与电机驱动模块相连的用于驱动转动头的水平电机,还包括与转动头机械交连的光处理装置,光处理装置用于在转动头的带动下,通过在360°范围内进行水平扫描、同时在竖直平面扫描来收集光线,并对光线进行反射、聚焦、滤波处理后,使包含火灾特征波段的多个波段光谱轮流投射到红外传感器的靶面上。The invention provides a fire monitoring system, which comprises: a central processing unit, a signal conditioning module and a motor driving module connected with the central processing unit, an infrared sensor connected with the signal conditioning module, and a driving module connected with the motor driving module for driving The horizontal motor of the rotating head also includes a light processing device mechanically connected to the rotating head, and the light processing device is used to collect light by scanning horizontally in a 360° range and scanning in a vertical plane under the driving of the rotating head , and after the light is reflected, focused and filtered, the spectrum of multiple bands including the fire characteristic band is projected on the target surface of the infrared sensor in turn.
本发明还提供一种应用所述系统进行火灾探测的方法,包括以下步骤:The present invention also provides a method for applying the system for fire detection, comprising the following steps:
步骤1,在每个扫描周期,实时采集由红外传感器输出经信号调理模块放大变换后的电压信号,并保存每个数据点的数值;
步骤2,在第一滤光片工作的扫描周期,如果发现某个数据点的数值大于设定的阈值,则所述数据点为疑似点;搜索所述疑似点周边的数据点,生成由多个相邻的疑似点组成的疑似区域,计算疑似区域内所有疑似点数值的平均值Mn;
步骤3,遍历所述扫描周期前一个扫描周期的数据点,生成与所述扫描周期疑似区域对应的疑似区域,并计算疑似区域内所有疑似点数值的平均值Mn-1,若没有生成疑似区域,置Mn-1=0;
步骤4,根据Mn、Mn-1和Mn-2的大小按以下步骤进行火灾检测,Mn-2为当前扫描周期前两个扫描周期的疑似区域的平均值:
步骤4.1,若Lfire=0,且Mn/Mn-1≥C1,Mn/Mn-2≥C2,则判为发生火灾,置Lfire=1;Lfire为火灾标志,Lfire=0表示没有火灾;Lfire=1表示发生火灾,C1、C2为设定的阈值;Step 4.1, if L fire = 0, and M n /M n-1 ≥ C 1 , Mn /M n -2 ≥ C 2 , it is judged that a fire has occurred, and L fire = 1; L fire is a fire sign, L fire = 0 means no fire; L fire = 1 means fire occurs, C 1 and C 2 are the set thresholds;
步骤4.2,若Lfire=0,且Mn-1=Mn-2=0,Mn>0,则判为发生火灾,置Lfire=1;Step 4.2, if L fire = 0, and Mn -1 = Mn -2 =0, and Mn >0, it is judged that a fire has occurred, and L fire =1;
步骤4.3,若Lfire=0,且Mn-2=0,Mn/Mn-1≥C1,则判为发生火灾,置Lfire=1;Step 4.3, if L fire =0, and Mn -2 =0, Mn /Mn -1 ≥C 1 , it is judged that a fire has occurred, and L fire =1;
步骤4.4,若Lfire=0,且Mn-1=0,Mn/Mn-2≥C2,则判为发生火灾,置Lfire=1;Step 4.4, if L fire =0, and Mn -1 =0, Mn /Mn -2 ≥C 2 , it is judged that a fire has occurred, and L fire =1;
步骤4.5,若Lfire=1,且Mn/Mn-1≥C1,则判为发生火灾,保持火灾标志Lfire=1。Step 4.5, if L fire =1 and Mn /Mn -1 ≥C 1 , it is judged that a fire has occurred, and the fire flag L fire =1 is maintained.
与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明通过设置中央处理单元、信号调理模块、红外传感器、电机驱动模块、水平电机和光处理装置,光处理装置用于在转动头的带动下,通过在360°范围内进行水平扫描、同时在竖直平面扫描来收集光线,并对光线进行反射、聚焦、滤波处理后,使包含火灾特征波段的多个波段光谱轮流投射到红外传感器的靶面上,实现了对火灾的自动探测。由于设置了能够对光线进行反射、聚焦、滤波等处理的光处理装置,进行基于包含火灾特征波段的多波段红外光谱检测,消除了日光、人工光源和一般热源光谱的影响,提高了火灾探测范围和精度,降低了误报率。In the present invention, a central processing unit, a signal conditioning module, an infrared sensor, a motor driving module, a horizontal motor and a light processing device are provided. The straight plane scans to collect the light, and after the light is reflected, focused and filtered, the spectrum of multiple bands including the fire characteristic band is projected on the target surface of the infrared sensor in turn, realizing the automatic detection of fire. Due to the installation of a light processing device capable of reflecting, focusing, filtering and other processing of light, multi-band infrared spectrum detection based on fire characteristic bands is carried out, which eliminates the influence of sunlight, artificial light source and general heat source spectrum, and improves the fire detection range. and accuracy, reducing the false positive rate.
附图说明Description of drawings
图1为本发明实施例一种火灾监测系统的组成框图;1 is a block diagram showing the composition of a fire monitoring system according to an embodiment of the present invention;
图2为光处理装置的结构示意图。FIG. 2 is a schematic structural diagram of a light processing device.
图中:1-中央处理单元,2-信号调理模块,3-红外传感器,4-光处理装置,41-主反射镜,42-光学吊舱,43-切换电机,44-竖直电机,45-第一滤光片,46-第二滤光片,5-电机驱动模块,6-水平电机,7-转动头。In the figure: 1-central processing unit, 2-signal conditioning module, 3-infrared sensor, 4-light processing device, 41-main mirror, 42-optical pod, 43-switching motor, 44-vertical motor, 45 -1st filter, 46-second filter, 5-motor drive module, 6-horizontal motor, 7-rotating head.
具体实施方式Detailed ways
下面结合附图对本发明作进一步详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.
本发明实施例一种火灾监测系统,组成框图如图1所示,所述系统包括:中央处理单元1,与中央处理单元1相连的信号调理模块2和电机驱动模块5,与信号调理模块2相连的红外传感器3,与电机驱动模块5相连的用于驱动转动头7的水平电机6,还包括与转动头7机械交连的光处理装置4,光处理装置4用于在转动头7的带动下,通过在360°范围内进行水平扫描、同时在竖直平面扫描来收集光线,并对光线进行反射、聚焦、滤波处理后,使包含火灾特征波段的多个波段光谱轮流投射到红外传感器3的靶面上。A fire monitoring system according to an embodiment of the present invention has a block diagram as shown in FIG. 1 . The system includes: a
在本实施例中,所述系统主要由中央处理单元1、信号调理模块2、红外传感器3和光处理装置4组成。中央处理单元1分别与信号调理模块2和电机驱动模块5相连,红外传感器3与信号调理模块2相连。其中,In this embodiment, the system is mainly composed of a
中央处理单元1,是系统的数据处理与控制中心,主要用于进行数据处理和通过输出控制信号协调各模块的工作。中央处理单元1一般由微处理器及数据存储器等组成。The
红外传感器3,主要用于将感应到的不同波段的红外辐射光转换成微弱的电信号,经信号调理模块2放大变换后送到中央处理单元1,中央处理单元1根据对应不同波段红外光谱的电信号的大小,按照一定的算法判断是否发生火灾。为了减小环境高温的影响,红外传感器3一般采用制冷型红外传感器。制冷型红外传感器工作时,其自带制冷机能够降低自身的温度,与非制冷型红外传感器相比,具有灵敏度更高、精度更高、检测温度范围更广等优点。当然,其缺点是耗能较大、成本较高。The
信号调理模块2,主要用于对红外传感器3输出的微弱电信号进行放大、高速数据采集(模数变换)、滤波等处理,将输出的数字信号送至中央处理单元1。The
光处理装置4,主要用于有效收集现场的光线并使其照射到红外传感器3的靶面上。由于本实施例是基于火焰发出的红外光谱进行火灾检测,因此,应使光处理装置4能够宽范围地有效接收现场的光线。为此,将光处理装置4设计成能够在以其安装位置为中心的360°范围内进行水平扫描、且能在竖直平面内进行扫描,以明显提高监测范围。所谓扫描是对光处理装置4中接收光线的部件(如反射镜)旋转时其光轴运动轨迹的形象描述。光处理装置4还能对收集的光线进行反射、聚焦、滤波(或滤光)等处理,不仅提高了照射到红外传感器3上的光线的强度,还能通过滤波处理获得包括火灾特征波段的多波段光谱。中央处理单元1通过将检测到的火灾特征波段的信号与不同于该波段的信号进行比较判断是否发生火灾。本实施例由于采用包含火灾特征波段的多波段红外检测技术,提高了火灾检测精度;同时,由于采取了滤波处理,还可以消除日光、人工光源和一般热源光谱的干扰,降低误报率。The
作为一种可选实施例,所述信号调理模块2包括相互连接的前置放大器和数据采集电路。As an optional embodiment, the
本实施例给出了信号调理模块2的一种技术方案。所述信号调理模块2主要由前置放大器和数据采集电路组成。前置放大器用于对红外传感器3输出的微弱信号进行放大,一般包括线性放大器和对数放大器,线性放大器主要用于满足增益要求,对数放大器用于提高动态范围(提升小信号压制大信号)。数据采集电路主要用于在中央处理单元1的作用下,将模拟信号转换成数字信号,一般由ADC芯片构成。This embodiment provides a technical solution of the
作为一种可选实施例,所述光处理装置4包括:与电机驱动模块5相连的切换电机43和竖直电机44,还包括安装在转动头7上的主反射镜41、位于转动头7下方主要由多个反射镜组成的光学吊舱42、位于光学吊舱42下方安装在转盘上的第一滤光片45和第二滤光片46,光线经主反射镜41及光学吊舱42内的多个反射镜后照射到第一滤光片45或第二滤光片46上;主反射镜41在转动头7带动下水平旋转,同时还在竖直电机44驱动下以明显高于水平旋转速度的速度在竖直平面旋转;主反射镜41水平旋转一周或半周为一个扫描周期,在每个扫描周期结束时,切换电机43带动转盘水平旋转,将与光学吊舱42对正的第一滤光片45或第二滤光片46切换为第二滤光片46或第一滤光片45;第一滤光片45能够透过火灾特征波段的光谱,第二滤光片46能够透过不同于所述火灾特征波段的光谱。As an optional embodiment, the
本实施例给出了光处理装置4的一种技术方案。光处理装置4由光学部件、电气部件和机械部件三部分组成。光学部件主要包括主反射镜41、光学吊舱42、第一滤光片45和第二滤光片46;电气部件主要包括切换电机43和竖直电机44;机械部件主要包括转动头7、转盘以及电机与被驱动部件之间的传动机构。现场光线由主反射镜41接收,再经光学吊舱42内多个反射镜进行反射、聚焦等处理后,照射在第一滤光片45或第二滤光片46上进行滤波处理,使第一滤光片45只透过火灾特征波段的光谱,第二滤光片46透过不同于所述火灾特征波段的光谱。转动头7在水平电机6驱动下水平旋转,带动主反射镜41也进行水平旋转,从而能够接收360°范围内的光线,即实现水平方向360°扫描。由于主反射镜41能够有效接收光线的最大视角有限,水平旋转只能保证水平方向有最大的监视范围,无法保证竖直方向没有监视死角。为此,本实施例设置了竖直电机44,驱动主反射镜41在竖直平面作高速旋转(可达每秒20转),即其光轴线在竖直平面进行扫描,大大提高了主反射镜41在竖直方向的监视范围。主反射镜41在进行竖直扫描时,可在其朝向正面和反面的一定俯仰角范围内均采集数据,因此,主反射镜41水平旋转半周即180度就可以完成一周360度范围内的数据采集。在这种情况下,主反射镜41水平旋转半周就是一个扫描周期。当然,也可以只在主反射镜41朝向正面时采集数据,这种情况下,主反射镜41水平旋转一周为一个扫描周期。在每个扫描周期结束时,切换电机43带动转盘水平旋转,切换与光学吊舱42对正的滤光片。也就是说,两个滤光片轮流工作在不同的扫描周期。竖直电机44及其传动机构和主反射镜41均安装在转动头7上;切换电机43、两个滤光片及固定它们的转盘均安装在光学吊舱42内;转动头7与光学吊舱42之间采用轴承和电滑环承重连接,转动头7转动时光学吊舱42不动。值得说明的是,本实施例只是给出了一种较佳的实施方式,比如虽然只设置两个滤光片获得两个波段的光谱,但并不限于两个,也可以设置3个甚至更多的滤光片获得更多波段的光谱。This embodiment presents a technical solution of the
作为一种可选实施例,所述系统还包括:与中央处理单元1相连的摄像机,与电机驱动模块5相连的俯仰电机,摄像机和俯仰电机安装在转动头7上,转动头7带动摄像机水平旋转,俯仰电机能够通过俯仰机构带动摄像机在竖直平面转动;中央处理单元1通过对摄像机输入的视频信号进行图像处理判断是否发生火灾。As an optional embodiment, the system further includes: a camera connected to the
本实施例给出了基于视频图像处理检测火灾的一种技术方案。本实施例的视频检测是红外检测的补充,当红外检测结果为发生火灾时,可利用视频检测进一步确认,以提高火灾检测的精度,减小误报率。另外,还可用于形成光谱遥感的全景彩色图,以便进行实时图像监视。视频检测部分主要由与中央处理单元1相连的摄像机、与电机驱动模块5相连的俯仰电机组成。摄像机主要用于拍摄现场的视频图像,一般采用数码摄像机,直接输出数字视频信号至中央处理单元1。其中,This embodiment presents a technical solution for detecting fire based on video image processing. The video detection in this embodiment is a supplement to the infrared detection. When the infrared detection result is a fire, the video detection can be used for further confirmation, so as to improve the accuracy of the fire detection and reduce the false alarm rate. In addition, it can also be used to form a panoramic color map of spectral remote sensing for real-time image monitoring. The video detection part is mainly composed of a camera connected to the
摄像机安装在转动头7上,转动头7带动摄像机水平旋转,从而使摄像机能够实时拍摄其周围360°范围内的视频图像。The camera is installed on the
俯仰电机也安装在转动头7上,通过俯仰机构与摄像机机械连接。俯仰机构一般由蜗轮蜗杆或齿轮组成,俯仰电机通过俯仰机构可带动摄像机在竖直平面转动,即上仰或下俯。通过改变摄像机的俯仰角(光轴线与水平面的夹角),可扩展在竖直方向的监视范围。比如,摄像机以一个固定的俯仰角水平旋转一周或几周后,将俯仰角向上或向下步进一个角度继续水平旋转,直到达到上极限位置或下极限位置,然后向相反的方向改变俯仰角。这样就可以实现竖直方向的全景覆盖。俯仰电机一般采用步进电机,有利于进行精确控制。作为一种改进技术方案,可以取消俯仰电机,在竖直方向安装多个固定视场摄像机。例如,可以将多个摄像机安装在转动头7的圆柱侧面上,所有摄像机的光轴线位于同一竖直平面内,且具有不同俯仰角。摄像机的数量由竖直方向覆盖的角度和单个摄像机的竖直视场角决定。假设需要覆盖竖直方向70°,使用25°竖直视场角的摄像机,则至少需要3个摄像机。通常情况下摄像机的视场角重叠一个△Φ角度,△Φ一般取1°~2°。改进前的技术方案,需要旋转多周后才能在竖直方向获得大视场角;改进后的技术方案,由于多个不同俯仰角的摄像机同时工作,通过图像拼接算法一个扫描周期便可在竖直方向获得大的视场角。The tilt motor is also installed on the
作为一种可选实施例,判断是否发生火灾的方法包括以下步骤:As an optional embodiment, the method for judging whether a fire has occurred includes the following steps:
实时获取摄像机水平旋转时拍摄的图像ft(θi),ft(θi)表示当前扫描周期即第t个扫描周期、摄像机光轴方向的方位角为θi时拍摄的一帧视频图像,i=1,2,3,…;Real-time acquisition of the image f t (θ i ) taken when the camera rotates horizontally, f t (θ i ) represents a frame of video image taken when the current scanning period, that is, the t-th scanning period, and the azimuth angle of the camera’s optical axis direction is θ i , i = 1, 2, 3, ...;
对当前扫描周期和上一扫描周期获得的视频图像求差分:Δft(θi)=ft(θi)-ft-1(θi);Differentiate the video images obtained in the current scan period and the previous scan period: Δf t (θ i )=f t (θ i )-f t-1 (θ i );
将Δft(θi)输入卷积神经网络,若卷积神经网络的输出大于设定阈值,则认为发生火灾。Input Δf t (θ i ) into the convolutional neural network, if the output of the convolutional neural network is greater than the set threshold, it is considered that a fire has occurred.
本实施例给出了一种基于视频图像的火灾检测方法。摄像机水平旋转时一般以等角度间隔实时拍摄现场的视频图像。一帧视频图像是由很多像素点组成的,像素点数据一般表示为R、G、B或Y、U、V的形式。为简便起见,本实施例用ft(θi)表示当前扫描周期摄像机在方位角为θi时拍摄的一帧视频图像。现有技术一般是通过针对拍摄的视频图像直接进行特征提取来实现火灾检测。但实践表明采用这种方法进行火灾检测,检测灵敏度较低。有鉴于此,本实施例通过求解两个相邻扫描周期拍摄的视频图像的差值Δft(θi)进行判断,其检测原理是:发生火灾前后的视频图像有较大的差异。将所述差值Δft(θi)输入到一个训练好的卷积神经网络进行卷积运算,相当于对不同像素点对应的值加权求和。经卷积神经网络后输出一个值VNN,VNN的值越大,发生火灾的可能性也越大。将VNN与设定的阈值进行比较,若超过设定的阈值就认为是发生了火灾。求两个相邻扫描周期视频图像的差分,是在摄像机俯仰角不变的情况下进行的,这样可以保证两个扫描周期的视频图像属于同一空域。对于前述的改进技术方案,即在竖直方向安装多个固定视场摄像机时,对每个摄像机输出的视频图像进行上述相同的处理,只要有一个检测到有火灾发生,就认为是发生了火灾。This embodiment provides a video image-based fire detection method. When the camera is rotated horizontally, the video images of the scene are generally captured in real time at equal angular intervals. A frame of video image is composed of many pixels, and the pixel data is generally expressed in the form of R, G, B or Y, U, V. For the sake of simplicity, in this embodiment, f t (θ i ) is used to represent a frame of video image captured by the camera in the current scanning period when the azimuth angle is θ i . In the prior art, fire detection is generally realized by directly performing feature extraction on captured video images. However, the practice shows that this method is used for fire detection, and the detection sensitivity is low. In view of this, in this embodiment, the judgment is made by calculating the difference Δf t (θ i ) of the video images captured in two adjacent scanning periods. The detection principle is that the video images before and after the fire are greatly different. Inputting the difference Δf t (θ i ) into a trained convolutional neural network for convolution operation is equivalent to weighted summation of the values corresponding to different pixel points. After the convolutional neural network, a value V NN is output. The larger the value of V NN , the greater the possibility of fire. The V NN is compared with the set threshold, and if it exceeds the set threshold, it is considered that a fire has occurred. The difference between the video images of two adjacent scanning periods is obtained under the condition that the camera pitch angle remains unchanged, which ensures that the video images of the two scanning periods belong to the same airspace. For the aforementioned improved technical solution, that is, when a plurality of fixed field of view cameras are installed in the vertical direction, the above-mentioned same processing is performed on the video images output by each camera. As long as one detects that a fire has occurred, it is considered that a fire has occurred. .
作为一种可选实施例,所述系统还包括与中央处理单元1相连的角度传感器和限位开关。As an optional embodiment, the system further includes an angle sensor and a limit switch connected to the
在本实施例中,为了实现摄像机俯仰角度的精确控制,在俯仰机构上安装与中央处理单元1相连的角度传感器,用于测量摄像机在竖直方向转过的角度;为了简化控制,在俯仰机构上安装多个与中央处理单元1相连的限位开关。In this embodiment, in order to realize the precise control of the tilt angle of the camera, an angle sensor connected to the
本发明还提供实施例一种应用所述系统进行火灾探测的方法,包括以下步骤:The present invention also provides an embodiment of a method for fire detection using the system, comprising the following steps:
S101、在每个扫描周期,实时采集由红外传感器3输出经信号调理模块2放大变换后的电压信号,并保存每个数据点的数值;S101, in each scanning period, collect in real time the voltage signal amplified and transformed by the
S102、在第一滤光片45工作扫描周期,如果发现某个数据点的数值大于设定的阈值,则所述数据点为疑似点;搜索所述疑似点周边的数据点,生成由多个相邻的疑似点组成的疑似区域,计算疑似区域内所有疑似点数值的平均值Mn;S102. During the scan cycle of the
S103、遍历所述扫描周期前一个扫描周期的数据点,生成与所述扫描周期疑似区域对应的疑似区域,并计算疑似区域内所有疑似点数值的平均值Mn-1,若没有生成疑似区域,置Mn-1=0;S103, traverse the data points of the previous scan period of the scan period, generate a suspected area corresponding to the suspected area of the scan period, and calculate the average value M n-1 of all the suspected point values in the suspected area, if no suspected area is generated , set Mn -1 =0;
S104、根据Mn、Mn-1和Mn-2的大小按以下步骤进行火灾检测,Mn-2为当前扫描周期前两个扫描周期的疑似区域的平均值;S104, according to the size of Mn , Mn -1 and Mn -2 , perform fire detection according to the following steps, where Mn -2 is the average value of the suspected area in the first two scan periods of the current scan period;
S1041、若Lfire=0,且Mn/Mn-1≥C1,Mn/Mn-2≥C2,则判为发生火灾,置Lfire=1;Lfire为火灾标志,Lfire=0表示没有火灾;Lfire=1表示发生火灾,C1、C2为设定的阈值;S1041. If L fire = 0, and M n /M n-1 ≥ C 1 , Mn /M n -2 ≥ C 2 , it is judged that a fire has occurred, and L fire = 1; L fire is a fire sign, and L fire = 0 means no fire; L fire = 1 means fire occurs, C 1 and C 2 are the set thresholds;
S1042、若Lfire=0,且Mn-1=Mn-2=0,Mn>0,则判为发生火灾,置Lfire=1;S1042. If L fire = 0, and Mn -1 = Mn -2 =0, and Mn >0, it is judged that a fire has occurred, and L fire =1 is set;
S1043、若Lfire=0,且Mn-2=0,Mn/Mn-1≥C1,则判为发生火灾,置Lfire=1;S1043. If L fire = 0, and Mn -2 = 0, Mn /Mn -1 ≥ C 1 , it is judged that a fire has occurred, and L fire = 1;
S1044、若Lfire=0,且Mn-1=0,Mn/Mn-2≥C2,则判为发生火灾,置Lfire=1;S1044. If L fire = 0, and Mn -1 = 0, and Mn /Mn -2 ≥ C 2 , it is judged that a fire has occurred, and L fire = 1;
S1045、若Lfire=1,且Mn/Mn-1≥C1,则判为发生火灾,保持火灾标志Lfire=1。S1045 , if L fire =1, and Mn /Mn -1 ≥C 1 , it is determined that a fire has occurred, and the fire flag L fire =1 is maintained.
在本实施例中,步骤S101主要用于进行数据采集。红外传感器3输出的微弱电压信号经信号调理模块2的前置放大器放大到一定幅度后,在中央处理单元1的作用下由数据采集电路转换成数字信号,然后由中央处理单元1读入并进行保存。In this embodiment, step S101 is mainly used for data collection. The weak voltage signal output by the
在本实施例中,步骤S102主要用于生成疑似区域。如前述,主反射镜41水平旋转一周为一个扫描周期,每个扫描周期结束时切换一次滤光片,第一滤光片45透过火灾特征波段光谱,第二滤光片46透过不同的特征波段光谱。为了提高检测灵敏度,本实施例采用对火焰敏感的火灾特征波段光谱进行火灾识别,即透过第一滤光片45的红外光谱。为了进一步提高检测效率,还采用多波段红外光谱检测技术(本实施例为两个波段),通过对不同波段的光谱数据进行比较来识别火灾是否发生。先对第一滤光片45工作的扫描周期的数据进行处理。如果发现某个数据点的数值大于设定的阈值,则认为该数据点为疑似点。为了消除噪声的影响,可适当提高所述阈值的大小。以该疑似点为根,向周边搜索其它数据点,判断是否为疑似点,得到由多个相邻的疑似点组成的疑似区域。为了消除噪声的影响,可限定疑似区域疑似点数量的最小值,也就是将很少的几个疑似点视为噪声点。得到疑似区域后,计算疑似区域内所有疑似点数值的平均值,然后转S103进行火灾判断。In this embodiment, step S102 is mainly used to generate a suspected area. As mentioned above, a horizontal rotation of the
在本实施例中,步骤S103主要用于对当前扫描周期前一个扫描周期的数据点进行处理,以生成疑似区域。该扫描周期为第二滤光片46工作的扫描周期,数据点对应的波段为不同于第一滤光片45工作的火灾特征波段。按照与上一步相同的方法生成与上一步得到的疑似区域对应的疑似区域。所谓对应是指两个扫描周期的疑似区域的数据点对应相同的空域。In this embodiment, step S103 is mainly used to process data points of a scan period before the current scan period to generate a suspected area. The scanning period is the scanning period during which the second
在本实施例中,步骤S104主要用于根据3个扫描周期的疑似区域的平均值进行火灾检测。本实施例给出了5种情况的判定方法。对于S1042所述情况,为了减小误报,还可以等到下一扫描周期,计算下一扫描周期对应的疑似区域的平均值Mn+1,如果Mn/Mn+1≥C2,则判定发生火灾;否则,没有发生火灾。如果也出现Mn+1=0,则判定发生火灾。In this embodiment, step S104 is mainly used to perform fire detection according to the average value of the suspected area in three scanning periods. This embodiment provides the determination methods for 5 cases. For the situation described in S1042, in order to reduce false alarms, it is also possible to wait until the next scan period, and calculate the average value Mn +1 of the suspected area corresponding to the next scan period. If Mn /Mn +1 ≥C 2 , then A fire is determined to have occurred; otherwise, no fire has occurred. If Mn +1 = 0 also occurs, it is determined that a fire has occurred.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010885455.1A CN111882812A (en) | 2020-08-28 | 2020-08-28 | Fire monitoring system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010885455.1A CN111882812A (en) | 2020-08-28 | 2020-08-28 | Fire monitoring system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111882812A true CN111882812A (en) | 2020-11-03 |
Family
ID=73198608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010885455.1A Pending CN111882812A (en) | 2020-08-28 | 2020-08-28 | Fire monitoring system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111882812A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113065421A (en) * | 2021-03-19 | 2021-07-02 | 国网河南省电力公司电力科学研究院 | Multi-source optical fire detection method and system for oil charging equipment |
CN115188151A (en) * | 2022-07-11 | 2022-10-14 | 杭州海康威视数字技术股份有限公司 | Video camera |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101609589A (en) * | 2008-06-17 | 2009-12-23 | 侯荣琴 | Multi-frequency image fire detection system |
KR101869442B1 (en) * | 2017-11-22 | 2018-06-20 | 공주대학교 산학협력단 | Fire detecting apparatus and the method thereof |
CN108957573A (en) * | 2017-05-19 | 2018-12-07 | 丁语欣 | Danger source detection device and method |
CN212433922U (en) * | 2020-08-28 | 2021-01-29 | 北京英特威视科技有限公司 | Fire monitoring system |
-
2020
- 2020-08-28 CN CN202010885455.1A patent/CN111882812A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101609589A (en) * | 2008-06-17 | 2009-12-23 | 侯荣琴 | Multi-frequency image fire detection system |
CN108957573A (en) * | 2017-05-19 | 2018-12-07 | 丁语欣 | Danger source detection device and method |
KR101869442B1 (en) * | 2017-11-22 | 2018-06-20 | 공주대학교 산학협력단 | Fire detecting apparatus and the method thereof |
CN212433922U (en) * | 2020-08-28 | 2021-01-29 | 北京英特威视科技有限公司 | Fire monitoring system |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113065421A (en) * | 2021-03-19 | 2021-07-02 | 国网河南省电力公司电力科学研究院 | Multi-source optical fire detection method and system for oil charging equipment |
CN115188151A (en) * | 2022-07-11 | 2022-10-14 | 杭州海康威视数字技术股份有限公司 | Video camera |
CN115188151B (en) * | 2022-07-11 | 2024-09-03 | 杭州海康威视数字技术股份有限公司 | Video camera |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9906737B2 (en) | Co-aperture multi-FOV image-spectrum cooperative detection system and method | |
US5249046A (en) | Method and apparatus for three dimensional range resolving imaging | |
CN110858892B (en) | Shore Island Observation System | |
CN107798811B (en) | A tunnel fire monitor, monitoring system and monitoring method | |
US20240060822A1 (en) | Method and apparatus for detecting fire spots, electronic device, and storage medium | |
CN111882812A (en) | Fire monitoring system and method | |
CN1432798A (en) | flame detection device | |
CN201788026U (en) | A Front-End Forest Fire Dynamic Identification and Alarm System and Its Infrared Thermal Imager | |
CN105376522A (en) | Infrared thermal imager with optical warning device and application thereof | |
CN206741006U (en) | Dangerous matter sources detection means | |
CN108957573B (en) | Dangerous source detection device and method | |
CN212433922U (en) | Fire monitoring system | |
KR20090079658A (en) | Composite image generating device and method | |
WO2023029344A1 (en) | Complementary single-pixel centroid detection system and method | |
KR20200037699A (en) | Thermal-infrared temperature measurement apparatus for monitoring photovoltaic solar panel and measurement method thereof | |
JP3979713B2 (en) | Imaging device and monitoring device | |
CN217586251U (en) | Low-cost high-resolution single-point scanning laser beam quality measuring device | |
CN112924987B (en) | A laser light field visualization device and method based on an InGaAs camera | |
JPH10221163A (en) | Fire detector | |
CN214010535U (en) | Device for monitoring mountain fire | |
CN209296947U (en) | Millimeter wave/terahertz wave imaging equipment | |
CN209962382U (en) | Intelligent fire detection system | |
CN117490842A (en) | Based on CO 2 Spectral vegetation combustion flame detection system and method | |
CN207895648U (en) | Fire source detection device and system | |
JPH07244145A (en) | Image target detection apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |