[go: up one dir, main page]

CN111880267A - Silicon nitride-assisted lithium niobate thin film waveguide-based fully-integrated optical transceiving system - Google Patents

Silicon nitride-assisted lithium niobate thin film waveguide-based fully-integrated optical transceiving system Download PDF

Info

Publication number
CN111880267A
CN111880267A CN202010827673.XA CN202010827673A CN111880267A CN 111880267 A CN111880267 A CN 111880267A CN 202010827673 A CN202010827673 A CN 202010827673A CN 111880267 A CN111880267 A CN 111880267A
Authority
CN
China
Prior art keywords
wavelength
mode
lithium niobate
waveguide
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010827673.XA
Other languages
Chinese (zh)
Inventor
田永辉
韩旭
蒋永恒
肖恢芙
张朴
谭建宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN202010827673.XA priority Critical patent/CN111880267A/en
Publication of CN111880267A publication Critical patent/CN111880267A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/04Mode multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/1204Lithium niobate (LiNbO3)

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明提出了一种基于氮化硅辅助的铌酸锂薄膜波导的全集成光学收发系统,包括由多模波导相连的发送模块和接收模块;光学频率梳激光源包括相连的片上单波长激光源和光频梳器件;波长‑模式调制模块包括依次相连的波长解复用器、功分器组、电光调制器阵列和模式复用器;光频梳器件与波长解复用器相连,模式复用器通过多模波导与波长‑模式解复用模块相连。该光学系统仅使用标准商业化的CMOS工艺就可以在同一块芯片上实现多波长激光器、电光调制器、波长(解)复用器、模式(解)复用器、光电探测器等器件的全集成,大大降低了芯片的工艺难度和制作成本。大大扩展了系统的通信容量,成倍地提高了系统的处理速度。

Figure 202010827673

The invention proposes a fully integrated optical transceiver system based on silicon nitride-assisted lithium niobate thin film waveguide, which includes a transmitting module and a receiving module connected by a multi-mode waveguide; the optical frequency comb laser source includes a connected on-chip single-wavelength laser source and an optical frequency comb device; the wavelength-mode modulation module includes a wavelength demultiplexer, a power divider group, an electro-optical modulator array and a mode multiplexer connected in sequence; the optical frequency comb device is connected to the wavelength demultiplexer, and the mode is multiplexed The converter is connected to the wavelength-mode demultiplexing module through a multimode waveguide. The optical system can realize the full integration of multi-wavelength lasers, electro-optic modulators, wavelength (de)multiplexers, mode (de)multiplexers, photodetectors and other devices on the same chip using only standard commercial CMOS processes. Integration greatly reduces the process difficulty and manufacturing cost of the chip. It greatly expands the communication capacity of the system and doubles the processing speed of the system.

Figure 202010827673

Description

基于氮化硅辅助的铌酸锂薄膜波导的全集成光学收发系统Fully integrated optical transceiver system based on silicon nitride assisted lithium niobate thin film waveguide

技术领域technical field

本发明属于集成光学技术领域,涉及一种基于氮化硅辅助的铌酸锂薄膜波导的全集成光学收发系统。The invention belongs to the technical field of integrated optics, and relates to a fully integrated optical transceiver system based on a silicon nitride-assisted lithium niobate thin film waveguide.

背景技术Background technique

现有技术中电互连及电信息处理的带宽受限、延迟高、功耗高,已经逐渐无法满足信息容量增长对器件性能提升的需求。光具有高速、抗电磁干扰及并行处理等特点,非常适合作为信息的载体。此外,光除了空分复用、时分复用、码分复用外还拥有其独特的波分复用、模分复用、偏振复用等方式,可以成倍地提高系统的通信容量和处理速度。因此,光通信技术吸引了研究人员的广泛关注。其中,光纤通信技术发展最为成熟,应用也最为广泛,但是光纤器件的结构稳定性较差,设计手段也十分有限。近年来,随着微电子行业的不断发展,集成光子芯片获得了学术界及工业界的广泛关注,最具代表性的就是硅基光子集成技术。在芯片的制作工艺方面,硅基光子集成技术可以利用标准化的金属氧化物半导体(CMOS)工艺在现有的微电子加工工艺平台上实现芯片的大规模生产,大大降低了工业成本。在芯片性能方面,可以灵活地设计各种有源或无源器件,并将这些器件集成到同一块硅基芯片上,实现多个功能的同时,大大降低了芯片的面积和功耗。然而,硅材料具有一些天然的缺陷,如具有双光子吸收,电光效应弱等。其中,由于硅材料具有双光子吸收效应,很难利用硅材料进行非线性光学的研究。又由于硅材料不具有显著的电光效应,通常需要在掺杂后进行载流子注入或抽取,借助硅材料的等离子色散效应完成器件的电光调制。这种方法不仅工艺较为复杂,而且材料掺杂会引起额外的损耗。这些天然的缺陷都成为了硅基光子集成技术进一步发展过程中的阻碍。In the prior art, the electrical interconnection and electrical information processing have limited bandwidth, high delay, and high power consumption, and have gradually been unable to meet the demand for improved device performance due to the increase in information capacity. Light has the characteristics of high speed, anti-electromagnetic interference and parallel processing, and is very suitable as a carrier of information. In addition, in addition to space division multiplexing, time division multiplexing, and code division multiplexing, light also has its own unique wavelength division multiplexing, mode division multiplexing, polarization multiplexing, etc., which can double the communication capacity and processing capacity of the system. speed. Therefore, optical communication technology has attracted extensive attention of researchers. Among them, optical fiber communication technology is the most mature and widely used, but the structural stability of optical fiber devices is poor, and the design methods are also very limited. In recent years, with the continuous development of the microelectronics industry, integrated photonic chips have received extensive attention from academia and industry, and the most representative one is silicon-based photonic integration technology. In terms of chip fabrication process, silicon-based photonic integration technology can utilize standardized metal-oxide-semiconductor (CMOS) processes to achieve mass production of chips on the existing microelectronics processing technology platform, which greatly reduces industrial costs. In terms of chip performance, various active or passive devices can be flexibly designed, and these devices can be integrated on the same silicon-based chip to achieve multiple functions while greatly reducing the chip area and power consumption. However, silicon materials have some natural defects, such as two-photon absorption and weak electro-optic effect. Among them, due to the two-photon absorption effect of silicon material, it is difficult to use silicon material for nonlinear optics research. Since silicon material does not have significant electro-optic effect, it is usually necessary to perform carrier injection or extraction after doping, and to complete the electro-optic modulation of the device by means of the plasmon dispersion effect of silicon material. This method is not only a complicated process, but also material doping will cause additional losses. These natural defects have become obstacles in the further development of silicon-based photonic integration technology.

相比于硅材料,铌酸锂拥有一些优异的材料属性,如显著的线性电光效应以及二阶非线性效应等。基于此,体铌酸锂波导已经被广泛应用于电光调制器领域。然而,现有技术中的体铌酸锂波导的制作工艺与标准商业化的CMOS工艺不兼容,这限制了电光调制器与其他光子器件的混合集成。于是,基于铌酸锂薄膜波导的器件进入了研究人员的视野。目前最常见的实现铌酸锂薄膜波导的方法仍然是直接刻蚀,但是通过直接刻蚀的方法形成的波导结构很难拥有平滑的边界,除此之外,在设计一些对波导参数敏感的器件时,必须在设计过程中将刻蚀可能形成的倒角严格地考虑进去,这为器件的设计增加了难度。综上所述,不论是基于硅波导还是基于铌酸锂薄膜波导,都很难通过现有的技术手段完成光通信系统中主要功能器件的单片全集成。Compared with silicon materials, lithium niobate has some excellent material properties, such as significant linear electro-optic effects and second-order nonlinear effects. Based on this, bulk lithium niobate waveguides have been widely used in the field of electro-optic modulators. However, the fabrication process of state-of-the-art bulk lithium niobate waveguides is not compatible with standard commercial CMOS processes, which limits the hybrid integration of electro-optic modulators with other photonic devices. As a result, devices based on lithium niobate thin-film waveguides entered the researchers' field of vision. At present, the most common method to realize lithium niobate thin film waveguide is still direct etching, but it is difficult for the waveguide structure formed by the direct etching method to have a smooth boundary. When it is necessary to strictly consider the chamfer that may be formed by etching in the design process, it increases the difficulty of device design. To sum up, whether it is based on silicon waveguide or based on lithium niobate thin film waveguide, it is difficult to complete the monolithic full integration of the main functional devices in the optical communication system through the existing technical means.

发明内容SUMMARY OF THE INVENTION

本发明的目的是提供一种基于氮化硅辅助的铌酸锂薄膜波导的全集成光学收发系统,在同一块衬底上实现包括多波长激光源、电光调制、波分(解)复用、模分(解)复用、光电探测等在内的光学收发系统,实现光通信系统中主要功能器件的单片全集成。The purpose of the present invention is to provide a fully integrated optical transceiver system based on silicon nitride assisted lithium niobate thin film waveguide, which includes multi-wavelength laser source, electro-optic modulation, wavelength division (de-multiplexing), The optical transceiver system, including mode division (de)multiplexing, photoelectric detection, etc., realizes the single-chip full integration of the main functional devices in the optical communication system.

为实现上述目的,本发明所采用的技术方案是:一种基于氮化硅辅助的铌酸锂薄膜波导的全集成光学收发系统,包括发送模块和接收模块,发送模块和接收模块通过多模波导相连;In order to achieve the above object, the technical solution adopted in the present invention is: a fully integrated optical transceiver system based on a silicon nitride-assisted lithium niobate thin film waveguide, comprising a sending module and a receiving module, and the sending module and the receiving module pass through the multi-mode waveguide. connected;

发送模块包括相连接的光学频率梳激光源和波长-模式调制模块;The sending module includes a connected optical frequency comb laser source and a wavelength-mode modulation module;

接收模块包括相连接的光电探测器阵列和波长-模式解复用模块;光学频率梳激光源包括相连接的片上单波长激光源和光频梳器件;波长-模式调制模块包括依次相连的波长解复用器、功分器组、电光调制器阵列和模式复用器;光频梳器件与波长解复用器相连,模式复用器通过多模波导与波长-模式解复用模块相连。The receiving module includes a connected photodetector array and a wavelength-mode demultiplexing module; the optical frequency comb laser source includes a connected on-chip single-wavelength laser source and an optical frequency comb device; the wavelength-mode modulation module includes sequentially connected wavelength demultiplexing modules. The optical frequency comb device is connected with the wavelength demultiplexer, and the mode multiplexer is connected with the wavelength-mode demultiplexer module through the multi-mode waveguide.

本发明全集成光学收发系统基于氮化硅辅助的铌酸锂薄膜波导,该种类型波导以氮化硅辅助的铌酸锂薄膜作为波导芯层,二氧化硅作为波导包层/衬底。只需对氮化硅层进行光刻、刻蚀等标准商业化的CMOS工艺就可以在同一块芯片上实现激光器、电光调制器、波长(解)复用器、模式(解)复用器、光电探测器等器件的全集成,大大降低了芯片的工艺难度和制作成本。此外,该光学收发系统结合了光的波分复用技术和模分复用技术,大大扩展了系统的通信容量,成倍地提高了系统的处理速度。The fully integrated optical transceiver system of the present invention is based on a silicon nitride assisted lithium niobate thin film waveguide. This type of waveguide uses a silicon nitride assisted lithium niobate thin film as the waveguide core layer and silicon dioxide as the waveguide cladding/substrate. Lasers, electro-optic modulators, wavelength (de)multiplexers, mode (de)multiplexers, The full integration of devices such as photodetectors greatly reduces the process difficulty and manufacturing cost of the chip. In addition, the optical transceiver system combines optical wavelength division multiplexing technology and mode division multiplexing technology, which greatly expands the communication capacity of the system and doubles the processing speed of the system.

附图说明Description of drawings

图1是本发明光学收发系统的总体架构图。FIG. 1 is an overall architecture diagram of an optical transceiver system of the present invention.

图2是本发明光学收发系统中接收模块的结构示意图。FIG. 2 is a schematic structural diagram of a receiving module in the optical transceiver system of the present invention.

图3是本发明光学收发系统中发送模块的结构示意图。FIG. 3 is a schematic structural diagram of a transmitting module in the optical transceiver system of the present invention.

图4是本发明光学收发系统中铌酸锂薄膜波导的结构示意图。FIG. 4 is a schematic structural diagram of the lithium niobate thin film waveguide in the optical transceiver system of the present invention.

图5是光在图4铌酸锂薄膜波导中传输时形成的模场图。FIG. 5 is a mode field diagram formed when light is transmitted in the lithium niobate thin film waveguide of FIG. 4 .

图中:1.发送模块,2.接收模块,3.光学频率梳激光源,4.波长-模式调制模块,5.多模波导,6.光电探测器阵列,7.波长-模式解复用模块,8.片上单波长激光源,9.光频梳器件,10.波长解复用器,11.功分器组,12.电光调制器阵列,13.模式复用器,14.二氧化硅包层,15.氮化硅层,16.铌酸锂层,17.二氧化硅掩埋层,18.衬底层。In the figure: 1. Transmitting module, 2. Receiving module, 3. Optical frequency comb laser source, 4. Wavelength-mode modulation module, 5. Multimode waveguide, 6. Photodetector array, 7. Wavelength-mode demultiplexing Module, 8. On-chip single-wavelength laser source, 9. Optical frequency comb device, 10. Wavelength demultiplexer, 11. Power divider group, 12. Electro-optic modulator array, 13. Mode multiplexer, 14. Dioxide Silicon cladding layer, 15. Silicon nitride layer, 16. Lithium niobate layer, 17. Silicon dioxide buried layer, 18. Substrate layer.

具体实施方式Detailed ways

下面结合附图和具体实施方式对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.

如图1所示,本发明光学收发系统,包括发送模块1和接收模块2,发送模块1和接收模块2通过多模波导5相连接。As shown in FIG. 1 , the optical transceiver system of the present invention includes a sending module 1 and a receiving module 2 , and the sending module 1 and the receiving module 2 are connected through a multimode waveguide 5 .

发送模块1包括相连接的光学频率梳激光源3和波长-模式调制模块4。The transmitting module 1 includes a connected optical frequency comb laser source 3 and a wavelength-mode modulation module 4 .

接收模块2包括相连接的光电探测器阵列6和波长-模式解复用模块7,如图2所示。The receiving module 2 includes a connected photodetector array 6 and a wavelength-mode demultiplexing module 7, as shown in FIG. 2 .

波长-模式调制模块4通过多模波导5与波长-模式解复用模块7相连。The wavelength-mode modulation module 4 is connected to the wavelength-mode demultiplexing module 7 through the multimode waveguide 5 .

发送模块1中的光学频率梳激光源3包括相连接的片上单波长激光源8和光频梳器件9;发送模块1中的波长-模式调制模块4包括依次相连的波长解复用器10、功分器组11、电光调制器阵列12和模式复用器13,如图3;光频梳器件9与波长解复用器10相连,模式复用器13通过多模波导5与波长-模式解复用模块7相连。The optical frequency comb laser source 3 in the transmitting module 1 includes a connected on-chip single-wavelength laser source 8 and an optical frequency comb device 9; the wavelength-mode modulation module 4 in the transmitting module 1 includes a wavelength demultiplexer 10, a function The splitter group 11, the electro-optic modulator array 12 and the mode multiplexer 13 are shown in Figure 3; the optical frequency comb device 9 is connected to the wavelength demultiplexer 10, and the mode multiplexer 13 is connected to the wavelength-mode demultiplexer through the multimode waveguide 5. The multiplexing module 7 is connected.

功分器组11由N个1×M功分器组成,所有1×M功分器的输入端均接波长解复用器10的输出端,所有1×M功分器的输出端均接电光调制器阵列12的输入端。电光调制器阵列12由数量为N×M个电光调制器构成,一个1×M功分器连接M个电光调制器。The power divider group 11 is composed of N 1×M power dividers, the input ends of all 1×M power dividers are connected to the output end of the wavelength demultiplexer 10, and the output ends of all 1×M power dividers are connected to Input of the electro-optic modulator array 12 . The electro-optic modulator array 12 is composed of N×M electro-optic modulators, and a 1×M power divider is connected to the M electro-optic modulators.

在发送模块1和接收模块2之间可以按照用户的需求布局光传输和光信息处理器件。目前,已有多种用于光传输和光信息处理的集成光电子器件被相继报道,包括开关、路由、逻辑运算器件等,并涉及多种波长与多种模式,此处不再一一描述。Optical transmission and optical information processing devices can be arranged between the sending module 1 and the receiving module 2 according to the user's needs. At present, a variety of integrated optoelectronic devices for optical transmission and optical information processing have been reported successively, including switches, routing, logic operation devices, etc., involving multiple wavelengths and multiple modes, and will not be described one by one here.

本发明光学收发系统中的多模波导5为结构如图4所示的氮化硅辅助的铌酸锂薄膜波导,该薄膜波导包括从下往上依次设置的衬底层18、二氧化硅掩埋层17、铌酸锂层16和二氧化硅包层14,铌酸锂层16上还设有氮化硅层15,氮化硅层15位于二氧化硅包层14内。The multi-mode waveguide 5 in the optical transceiver system of the present invention is a silicon nitride-assisted lithium niobate thin film waveguide with a structure as shown in FIG. 17. The lithium niobate layer 16 and the silicon dioxide cladding layer 14 . The lithium niobate layer 16 is further provided with a silicon nitride layer 15 , and the silicon nitride layer 15 is located in the silicon dioxide cladding layer 14 .

氮化硅辅助的铌酸锂薄膜波导的基本实现方法:首先在一块硅或铌酸锂晶圆(衬底层18)上生长二氧化硅层(二氧化硅掩埋层17),随后将铌酸锂薄膜(铌酸锂层16)键合到该二氧化硅层上,并溅射一层氮化硅,对该层氮化硅进行光刻、刻蚀等工艺形成波导结构(氮化硅层15),通过刻蚀不同宽度的氮化硅波导可以实现多种模式信号的传输。最后淀积一层二氧化硅层作为器件包层(二氧化硅包层14)。其中,铌酸锂薄膜采用离子注入和热剥离的方法制备,其详细制备方法可见文献(A. Rao, S. Fathpour, “Compact lithiumniobateelectroopticmodulators,” IEEE J. Sel. Top. QuantumElectron. 24(4), 1–14 (2018).);氮化硅层采用磁控溅射的方法制备,相比于等离子体化学气相淀积(PECVD),使用磁控溅射法制备的氮化硅波导的传输损耗大大降低;相比于低压化学气相淀积(LPCVD),使用磁控溅射法制备的氮化硅波导不易产生波导裂纹,且所需的工艺温度较低,不会对器件结构和基底造成破坏。磁控溅射氮化硅制备方法可见文献(A. Frigg, A.Mitchell, et al. “Low loss CMOS-compatible silicon nitride photonicsutilizing reactive sputtered thin films,”Opt. Express 27(26), 37795-37805(2019).)。The basic implementation method of the silicon nitride-assisted lithium niobate thin film waveguide: firstly, a silicon dioxide layer (silicon dioxide buried layer 17) is grown on a silicon or lithium niobate wafer (substrate layer 18), and then the lithium niobate The thin film (lithium niobate layer 16) is bonded to the silicon dioxide layer, and a layer of silicon nitride is sputtered, and the layer of silicon nitride is subjected to photolithography, etching and other processes to form a waveguide structure (silicon nitride layer 15). ), multiple modes of signal transmission can be achieved by etching silicon nitride waveguides with different widths. Finally, a silicon dioxide layer is deposited as the device cladding layer (silicon dioxide cladding layer 14). Among them, lithium niobate thin films were prepared by ion implantation and thermal stripping. The detailed preparation methods can be found in the literature (A. Rao, S. Fathpour, "Compact lithiumniobate electroopticmodulators," IEEE J. Sel. Top. QuantumElectron. 24(4), 1–14 (2018).); The silicon nitride layer was prepared by magnetron sputtering, and compared with plasma chemical vapor deposition (PECVD), the transmission loss of silicon nitride waveguide prepared by magnetron sputtering method Greatly reduced; compared with low pressure chemical vapor deposition (LPCVD), the silicon nitride waveguide prepared by magnetron sputtering is less prone to waveguide cracks, and the required process temperature is lower, which will not cause damage to the device structure and substrate . The preparation method of magnetron sputtering silicon nitride can be found in the literature (A. Frigg, A.Mitchell, et al. “Low loss CMOS-compatible silicon nitride photonicsutilizing reactive sputtered thin films,” Opt. Express 27(26), 37795-37805 ( 2019). ).

图5为光在氮化硅辅助的铌酸锂薄膜波导中传输时形成的模场图。可以看到,基于氮化硅辅助的铌酸锂波导对光有很好的限制作用,由于铌酸锂材料的折射率较大,因此大部分光场被限制在铌酸锂薄膜中,方便充分地利用铌酸锂材料的线性电光效应和二阶非线性效应;又因为氮化硅材料与铌酸锂材料的折射率非常接近,氮化硅波导对光场也有一定的限制作用,光可以沿着氮化硅波导向前传输,氮化硅波导的形状和结构尺寸将影响光的一系列传输特性,而氮化硅波导的制造工艺与标准商业化的CMOS工艺完全兼容,降低了器件的设计难度和工艺成本。Figure 5 is a mode field diagram of light propagating in a silicon nitride-assisted lithium niobate thin-film waveguide. It can be seen that the silicon nitride-assisted lithium niobate waveguide has a good confinement effect on light. Due to the large refractive index of the lithium niobate material, most of the light field is confined in the lithium niobate film, which is convenient and sufficient. The linear electro-optic effect and second-order nonlinear effect of lithium niobate material are used effectively; and because the refractive index of silicon nitride material is very close to that of lithium niobate material, silicon nitride waveguide also has a certain constraining effect on the optical field, and light can travel along the As the silicon nitride waveguide is transmitted forward, the shape and structure size of the silicon nitride waveguide will affect a series of transmission characteristics of light, and the fabrication process of the silicon nitride waveguide is fully compatible with the standard commercial CMOS process, which reduces the design of the device. Difficulty and process cost.

铌酸锂材料具有显著的电光效应,在具体实施过程中,当片上单波长激光源8发出的连续光被一个或多个电光调制器调制时,在调制器的输出端可以得到以连续光为中心,调制频率为间隔的N个等间隔的频率分量的光谱,称为光学频率梳,其原理及具体实现方法可见文献(M. Zhang, B. Buscaino, C. Wang,etal.“Broadband electro-opticfrequency combgeneration in a lithium niobatemicroring resonator,”Nature568,373 (2019))。利用波长解复用器10将这多个频率分量解复用到不同的端口,经过功分器11阵列后,每个频率分量都被分为M束,这M束同波长的连续光被电光调制器阵列12调制为二进制信号,再通过模式复用器13复用到多模波导5中的M种不同模式输出。可以看到,由片上单波长激光源8输入到系统中的单波长连续激光被扩展为N×M路并行传输的光信号,从而成倍地提高了系统的通信容量。The lithium niobate material has a significant electro-optic effect. In the specific implementation process, when the continuous light emitted by the on-chip single-wavelength laser source 8 is modulated by one or more electro-optic modulators, the output end of the modulator can be obtained with continuous light as the continuous light. In the center, the spectrum of N equally spaced frequency components whose modulation frequency is spaced is called an optical frequency comb. opticfrequency combgeneration in a lithium niobatemicroring resonator,"Nature568,373 (2019)). The wavelength demultiplexer 10 is used to demultiplex the multiple frequency components to different ports. After passing through the power divider 11 array, each frequency component is divided into M beams, and the M beams of continuous light with the same wavelength are electro-optical The modulator array 12 is modulated into a binary signal, which is then multiplexed into M different mode outputs in the multi-mode waveguide 5 through the mode multiplexer 13 . It can be seen that the single-wavelength CW laser input into the system by the on-chip single-wavelength laser source 8 is expanded into N×M optical signals transmitted in parallel, thereby multiplying the communication capacity of the system.

波长-模式解复用器7将发送模块1输入多模波导5中不同波长信道及不同模式信道所携带的信号解复用到不同的端口,被光电探测器阵列6接收,转换为电信号输出,见图2。可以看到,N×M路并行传输的光信号被成功接收、采集并处理,从而成倍地提高了系统的处理速度。The wavelength-mode demultiplexer 7 demultiplexes the signals carried by different wavelength channels and different mode channels in the multi-mode waveguide 5 input by the transmitting module 1 to different ports, which are received by the photodetector array 6 and converted into electrical signals for output. , see Figure 2. It can be seen that the optical signals transmitted in parallel by N×M channels are successfully received, collected and processed, thereby multiplying the processing speed of the system.

在具体实施过程中,可采用不对称的单环双波导型微环谐振器实现波长-模式(解)复用器,其原理及具体实施方法可见参考文献(L. W. Luo, N. Ophir, C. P. Chen,et al.“WDM-compatible mode-division multiplexing on a silicon chip,” Nat.Commun. 5, 3069 (2014))。可采用微环谐振器(Z. Yu, Y. Tong, H. K. Tsang, et al.“High-dimensional communication on etchlesslithiumniobate platform withphotonicbound states in the continuum,” Nat. Commun. 11, 2602 (2020))或马赫增德尔干涉仪结构实现片上电光调制器(A. N. R. Ahmed, S.Nelan, S. Shi, et al.“Subvolt electro-optical modulator on thin-filmlithiumniobate and siliconnitride hybrid platform,” Opt. Lett. 45(5), 1112-1115 (2020))。可以通过在氮化硅层上生长硅和Ⅲ-Ⅴ族材料制备片上激光器,其原理及具体实施方法可见参考文献(C.Xiang, W.Jin, J. Guo, et al. “Narrow-linewidth III-V/Si/Si3N4 laserusingmultilayer heterogeneous integration,” Optica 7(1), 20-21 (2020))。可以通过在氮化硅层上生长锗制备光电探测器,其原理及具体实施方法可见参考文献(H.Chen,P.Verheyen, P.DeHeyn, et al.“-1 V bias 67 GHz bandwidth Si-contactedgermanium waveguide p-i-nphotodetector for optical links at 56 Gbps andbeyond,”Opt. Express 24, 4622(2016))。In the specific implementation process, an asymmetric single-ring dual-waveguide micro-ring resonator can be used to realize a wavelength-mode (de)multiplexer. The principle and specific implementation method can be found in references (LW Luo, N. Ophir, CP Chen) , et al. “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014)). Microring resonators (Z. Yu, Y. Tong, HK Tsang, et al. “High-dimensional communication on etchlesslithiumniobate platform with photonicbound states in the continuum,” Nat. Commun. 11, 2602 (2020)) or Mach augmentation can be used. The Del interferometer structure realizes the on-chip electro-optical modulator (ANR Ahmed, S.Nelan, S. Shi, et al. "Subvolt electro-optical modulator on thin-filmlithiumniobate and siliconnitride hybrid platform," Opt. Lett. 45(5), 1112 -1115 (2020)). On-chip lasers can be prepared by growing silicon and III-V materials on a silicon nitride layer. The principle and specific implementation methods can be found in the reference (C.Xiang, W.Jin, J. Guo, et al. "Narrow-linewidth III -V/Si/Si 3 N 4 laser usingmultilayer heterogeneous integration,” Optica 7(1), 20-21 (2020)). A photodetector can be prepared by growing germanium on a silicon nitride layer, and its principle and specific implementation methods can be found in the reference (H.Chen, P.Verheyen, P.DeHeyn, et al. "-1 V bias 67 GHz bandwidth Si- contactedgermanium waveguide pi-nphotodetector for optical links at 56 Gbps and beyond,” Opt. Express 24, 4622 (2016)).

本发明光学接收系统包括发送与接收两大模块。光学频率梳激光源3产生一束多波长的光源信号(即N×M个波长-模式信号)进入波长-模式调制模块4中,利用波分复用与模式复用技术,将该源信号解复用到不同的端口,并分别输入到由N×M个光电探测器所构成的光电探测器阵列12中,由光电探测器阵列12处理并输出电信号。即将调制后的光信号输入到一根多模波导5中输出,实现了发送功能。在接收端,进入到多模波导5中的信号被输入到波长-模式解复用器7中,通过波长-模式解复用操作解复用成多路信号并被光电探测器阵列6接收,实现了接收功能。The optical receiving system of the present invention includes two modules of sending and receiving. The optical frequency comb laser source 3 generates a multi-wavelength light source signal (that is, N×M wavelength-mode signals) into the wavelength-mode modulation module 4, and uses the wavelength division multiplexing and mode multiplexing technology to decompose the source signal. They are multiplexed to different ports, and respectively input to the photodetector array 12 composed of N×M photodetectors, and the photodetector array 12 processes and outputs electrical signals. That is, the modulated optical signal is input into a multi-mode waveguide 5 for output, and the transmission function is realized. At the receiving end, the signal entering the multimode waveguide 5 is input into the wavelength-mode demultiplexer 7, demultiplexed into multiple signals through the wavelength-mode demultiplexing operation, and received by the photodetector array 6, The receive function is implemented.

光学频率梳激光源3所产生的N个波长的光信号被波长解复用器10解复用后,单个波长的光被N个1×M功分器分成M束同波长的连续光,该M束同波长的连续光被电光调制器阵列12调制为二进制信号后,经模式复用器13分别复用到M个模式信道中,在一根多模波导5中同时输出N×M路并行信号,这N×M路并行信号包含N个波长信道和M个模式信道。After the optical signals of N wavelengths generated by the optical frequency comb laser source 3 are demultiplexed by the wavelength demultiplexer 10, the light of a single wavelength is divided into M beams of continuous light of the same wavelength by N 1×M power dividers. After M beams of continuous light with the same wavelength are modulated into binary signals by the electro-optic modulator array 12 , they are multiplexed into M mode channels by the mode multiplexer 13 respectively, and N×M parallel channels are simultaneously output in a multimode waveguide 5 signal, the N×M parallel signals contain N wavelength channels and M mode channels.

Claims (3)

1.一种基于氮化硅辅助的铌酸锂薄膜波导的全集成光学收发系统,其特征在于,包括发送模块(1)和接收模块(2),发送模块(1)和接收模块(2)通过多模波导(5)相连;1. A fully integrated optical transceiver system based on a silicon nitride-assisted lithium niobate thin film waveguide, characterized in that it comprises a sending module (1) and a receiving module (2), a sending module (1) and a receiving module (2) connected through a multimode waveguide (5); 发送模块(1)包括相连接的光学频率梳激光源(3)和波长-模式调制模块(4);The sending module (1) includes a connected optical frequency comb laser source (3) and a wavelength-mode modulation module (4); 接收模块(2)包括相连接的光电探测器阵列(6)和波长-模式解复用模块(7);光学频率梳激光源(3)包括相连接的片上单波长激光源(8)和光频梳器件(9);波长-模式调制模块(4)包括依次相连的波长解复用器(10)、功分器组(11)、电光调制器阵列(12)和模式复用器(13);光频梳器件(9)与波长解复用器(10)相连,模式复用器(13)通过多模波导(5)与波长-模式解复用模块(7)相连。The receiving module (2) includes a connected photodetector array (6) and a wavelength-mode demultiplexing module (7); the optical frequency comb laser source (3) includes a connected on-chip single-wavelength laser source (8) and an optical frequency comb laser source (8) A comb device (9); a wavelength-mode modulation module (4) comprising a wavelength demultiplexer (10), a power divider group (11), an electro-optic modulator array (12) and a mode multiplexer (13) connected in sequence The optical frequency comb device (9) is connected with the wavelength demultiplexer (10), and the mode multiplexer (13) is connected with the wavelength-mode demultiplexer module (7) through the multimode waveguide (5). 2.根据权利要求1所述的基于氮化硅辅助的铌酸锂薄膜波导的全集成光学收发系统,其特征在于,所述的功分器组(11)由N个1×M功分器组成,所有1×M功分器的输入端均接波长解复用器(10)的输出端,所有1×M功分器的输出端均接电光调制器阵列(12)的输入端;所述电光调制器阵列(12)由数量为N×M个电光调制器构成,一个1×M功分器连接M个电光调制器。2 . The fully integrated optical transceiver system based on silicon nitride assisted lithium niobate thin film waveguide according to claim 1 , wherein the power divider group ( 11 ) consists of N 1×M power dividers The input ends of all 1×M power dividers are connected to the output ends of the wavelength demultiplexer (10), and the output ends of all 1×M power dividers are connected to the input ends of the electro-optic modulator array (12); The electro-optic modulator array (12) is composed of N×M electro-optic modulators, and a 1×M power divider is connected to the M electro-optic modulators. 3.根据权利要求1所述的基于氮化硅辅助的铌酸锂薄膜波导的全集成光学收发系统,其特征在于,所述的多模波导(5)包括从下往上依次设置的衬底层(18)、二氧化硅掩埋层(17)、铌酸锂层(16)和二氧化硅包层(14),铌酸锂层(16)上还设有氮化硅层(15),氮化硅层(15)位于二氧化硅包层(14)内。3 . The fully integrated optical transceiver system based on silicon nitride assisted lithium niobate thin film waveguide according to claim 1 , wherein the multi-mode waveguide ( 5 ) comprises substrate layers arranged sequentially from bottom to top. 4 . (18), a silicon dioxide buried layer (17), a lithium niobate layer (16) and a silicon dioxide cladding layer (14), the lithium niobate layer (16) is further provided with a silicon nitride layer (15), nitrogen A silicon oxide layer (15) is located within the silicon dioxide cladding (14).
CN202010827673.XA 2020-08-17 2020-08-17 Silicon nitride-assisted lithium niobate thin film waveguide-based fully-integrated optical transceiving system Pending CN111880267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010827673.XA CN111880267A (en) 2020-08-17 2020-08-17 Silicon nitride-assisted lithium niobate thin film waveguide-based fully-integrated optical transceiving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010827673.XA CN111880267A (en) 2020-08-17 2020-08-17 Silicon nitride-assisted lithium niobate thin film waveguide-based fully-integrated optical transceiving system

Publications (1)

Publication Number Publication Date
CN111880267A true CN111880267A (en) 2020-11-03

Family

ID=73203450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010827673.XA Pending CN111880267A (en) 2020-08-17 2020-08-17 Silicon nitride-assisted lithium niobate thin film waveguide-based fully-integrated optical transceiving system

Country Status (1)

Country Link
CN (1) CN111880267A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987171A (en) * 2021-03-11 2021-06-18 深圳硅基传感科技有限公司 Optical communication device
CN114545564A (en) * 2020-11-24 2022-05-27 青岛海信宽带多媒体技术有限公司 Optical module
CN115085821A (en) * 2021-03-16 2022-09-20 华为技术有限公司 Receiving optical module, optical signal transmission method and system
CN115166898A (en) * 2022-07-21 2022-10-11 西安电子科技大学 Electro-optical modulation integrated waveguide structure
CN115951454A (en) * 2023-03-13 2023-04-11 中科鑫通微电子技术(北京)有限公司 Lithium niobate-silicon nitride waveguide and laser heterogeneous integrated structure and preparation method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2859941Y (en) * 2006-01-12 2007-01-17 中国科学院长春光学精密机械与物理研究所 Multi-channel parallel data information optical fiber transmission device
CN101718944A (en) * 2009-12-29 2010-06-02 上海交通大学 Multi-wavelength space-division optical analog-digital converter
CN106125449A (en) * 2016-06-30 2016-11-16 派尼尔科技(天津)有限公司 A kind of orthoron preparation method with Er ions tantalum oxide ridge structure
CN205942163U (en) * 2016-07-11 2017-02-08 派尼尔科技(天津)有限公司 Mach that adopts ridge waveguide is light modulator wafer structure morally once
CN109407208A (en) * 2018-12-13 2019-03-01 中国科学院半导体研究所 The preparation method of optical coupling structure, system and optical coupling structure
CN109600167A (en) * 2018-11-27 2019-04-09 成都成电光信科技股份有限公司 A kind of Digital Array Radar optical fiber transmission network and its control method
CN109613647A (en) * 2019-01-10 2019-04-12 济南晶正电子科技有限公司 A kind of lithium niobate/nitridation silicon optical waveguide integrated morphology and preparation method thereof
CN109813961A (en) * 2019-01-11 2019-05-28 中国科学院半导体研究所 Microwave Instantaneous Frequency Measurement Device Based on Optical Frequency Comb
CN110012368A (en) * 2019-03-27 2019-07-12 兰州大学 A Silicon-Based Integrated On-Chip Multimode Optical Switching System Compatible with Wavelength Division Multiplexing Signals
CN110703382A (en) * 2019-01-10 2020-01-17 济南晶正电子科技有限公司 High-integration-level lithium niobate/silicon nitride optical waveguide integrated structure and preparation method thereof
CN110892655A (en) * 2017-06-07 2020-03-17 贰陆特拉华公司 Integrated WDM optical transceiver
CN111181002A (en) * 2020-01-06 2020-05-19 上海交通大学 High-speed VCSEL array integration method and system based on injection locking technology
CN111276562A (en) * 2020-02-19 2020-06-12 上海交通大学 Optoelectronic monolithic integrated system based on lithium niobate-silicon nitride wafers

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2859941Y (en) * 2006-01-12 2007-01-17 中国科学院长春光学精密机械与物理研究所 Multi-channel parallel data information optical fiber transmission device
CN101718944A (en) * 2009-12-29 2010-06-02 上海交通大学 Multi-wavelength space-division optical analog-digital converter
CN106125449A (en) * 2016-06-30 2016-11-16 派尼尔科技(天津)有限公司 A kind of orthoron preparation method with Er ions tantalum oxide ridge structure
CN205942163U (en) * 2016-07-11 2017-02-08 派尼尔科技(天津)有限公司 Mach that adopts ridge waveguide is light modulator wafer structure morally once
CN110892655A (en) * 2017-06-07 2020-03-17 贰陆特拉华公司 Integrated WDM optical transceiver
CN109600167A (en) * 2018-11-27 2019-04-09 成都成电光信科技股份有限公司 A kind of Digital Array Radar optical fiber transmission network and its control method
CN109407208A (en) * 2018-12-13 2019-03-01 中国科学院半导体研究所 The preparation method of optical coupling structure, system and optical coupling structure
CN109613647A (en) * 2019-01-10 2019-04-12 济南晶正电子科技有限公司 A kind of lithium niobate/nitridation silicon optical waveguide integrated morphology and preparation method thereof
CN110703382A (en) * 2019-01-10 2020-01-17 济南晶正电子科技有限公司 High-integration-level lithium niobate/silicon nitride optical waveguide integrated structure and preparation method thereof
CN109813961A (en) * 2019-01-11 2019-05-28 中国科学院半导体研究所 Microwave Instantaneous Frequency Measurement Device Based on Optical Frequency Comb
CN110012368A (en) * 2019-03-27 2019-07-12 兰州大学 A Silicon-Based Integrated On-Chip Multimode Optical Switching System Compatible with Wavelength Division Multiplexing Signals
CN111181002A (en) * 2020-01-06 2020-05-19 上海交通大学 High-speed VCSEL array integration method and system based on injection locking technology
CN111276562A (en) * 2020-02-19 2020-06-12 上海交通大学 Optoelectronic monolithic integrated system based on lithium niobate-silicon nitride wafers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. ZHANG, B. BUSCAINO, C. WANG,ETAL.: "Broadband electro-optic frequency combgeneration in a lithium niobatemicroring resonator", 《NATURE》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114545564A (en) * 2020-11-24 2022-05-27 青岛海信宽带多媒体技术有限公司 Optical module
CN112987171A (en) * 2021-03-11 2021-06-18 深圳硅基传感科技有限公司 Optical communication device
CN112987171B (en) * 2021-03-11 2023-03-14 深圳硅基传感科技有限公司 Optical communication device
CN116203675A (en) * 2021-03-11 2023-06-02 深圳硅基传感科技有限公司 Miniaturized Optical Communication Device
CN115085821A (en) * 2021-03-16 2022-09-20 华为技术有限公司 Receiving optical module, optical signal transmission method and system
CN115166898A (en) * 2022-07-21 2022-10-11 西安电子科技大学 Electro-optical modulation integrated waveguide structure
CN115166898B (en) * 2022-07-21 2024-02-06 西安电子科技大学 An electro-optical modulation integrated waveguide structure
CN115951454A (en) * 2023-03-13 2023-04-11 中科鑫通微电子技术(北京)有限公司 Lithium niobate-silicon nitride waveguide and laser heterogeneous integrated structure and preparation method thereof

Similar Documents

Publication Publication Date Title
CN111880267A (en) Silicon nitride-assisted lithium niobate thin film waveguide-based fully-integrated optical transceiving system
CN102882601B (en) Silicon photonic integrated high-speed optical communication transceiver module
CN110012368B (en) A Silicon-Based Integrated On-Chip Multimode Optical Switching System Compatible with Wavelength Division Multiplexing Signals
US20110305416A1 (en) Method and system for multi-mode integrated receivers
CN106646783A (en) Silicon-based WDM optical transceiver module
CN110703851B (en) An Optical Matrix-Vector Multiplier Based on Pattern Multiplexing
CN108519641B (en) A Reconfigurable Optical Mode Converter
CN206848526U (en) Silicon substrate WDM optical transceiver modules
CN202872791U (en) A high-speed optical communication transmitting and receiving module using silicon photon integration technology
CN111461317B (en) Single-chip integrated photon convolution neural network computing system and preparation method thereof
CN106933001A (en) Based on the photon modulus conversion chip that silicon light is integrated
CN108347283B (en) Coherent optical communication system based on microcavity optical soliton crystal frequency comb
CN104918145B (en) Single-chip integration formula multi-wavelength palarization multiplexing/demultiplexer
CN106291820A (en) A kind of silicon-based integrated optical mode data exchange unit
CN103091782B (en) Array waveguide grating module with polarization control
CN102545007B (en) Tunable laser and method for locking and monitoring wavelength of tunable laser
CN105981240A (en) Resonant Cavity Component Used in Optical Switching System
CN105785602A (en) Silicon-based micro-ring optical router based on graphene
CN111276562B (en) Optoelectronic monolithic integrated system based on lithium niobate-silicon nitride wafer
CN202563118U (en) Wavelength division multiplexing device and application of the same to high-speed optical device
CN101153939A (en) Hybrid Integrated Single Fiber Tridirectional Switch
CN115598767A (en) CWDM optical transmitting chip
CN110749956B (en) Reconfigurable optical mode converter compatible with wavelength division multiplexing
CN108594480A (en) Few mould waveguide light emission structure based on nanometer bundle modulator
US20240284080A1 (en) Switched wavelength optical receiver for direct-detection methods and systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201103

RJ01 Rejection of invention patent application after publication