CN111878055A - Control system and control method for drilling speed of drill bit - Google Patents
Control system and control method for drilling speed of drill bit Download PDFInfo
- Publication number
- CN111878055A CN111878055A CN202010655211.4A CN202010655211A CN111878055A CN 111878055 A CN111878055 A CN 111878055A CN 202010655211 A CN202010655211 A CN 202010655211A CN 111878055 A CN111878055 A CN 111878055A
- Authority
- CN
- China
- Prior art keywords
- parameters
- drill bit
- downhole
- underground
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B44/00—Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
- E21B44/02—Automatic control of the tool feed
- E21B44/04—Automatic control of the tool feed in response to the torque of the drive ; Measuring drilling torque
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B45/00—Measuring the drilling time or rate of penetration
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geophysics (AREA)
- Earth Drilling (AREA)
Abstract
本申请公开了一种钻头钻速的控制系统以及控制方法,控制方法包括:所述控制方法包括:接收地面工程设备的地面工程参数;在钻头钻进过程中接收目标井的井下信息,所述井下信息包括:近钻头工程参数和环境特征参数;将所述地面工程参数和所述井下信息输入综合数据处理设备,所述综合数据处理设备将所述地面工程参数和所述井下信息输入寻优模型并得出井下决策参数和地面决策参数;根据所述地面决策参数调节地面工程设备,将所述地面工程参数调节为所述地面决策参数;根据所述井下决策参数调节钻头,将钻头工作参数调节为所述井下决策参数。本申请通过同时调节地面工程参数和钻头工作参数,能够使得钻头钻速可以得到有效控制。
The present application discloses a control system and a control method for the drilling rate of a drill bit. The control method includes: the control method includes: receiving surface engineering parameters of surface engineering equipment; receiving downhole information of a target well during the drilling process of the drill bit, the The downhole information includes: near-bit engineering parameters and environmental characteristic parameters; the surface engineering parameters and the downhole information are input into a comprehensive data processing device, and the comprehensive data processing device inputs the surface engineering parameters and the downhole information into optimization model and obtain downhole decision parameters and surface decision parameters; adjust the surface engineering equipment according to the surface decision parameters, and adjust the surface engineering parameters to the surface decision parameters; adjust the drill bit according to the downhole decision parameters, and adjust the drill bit working parameters Adjusted to the downhole decision parameters. In the present application, the drilling speed of the drill bit can be effectively controlled by adjusting the ground engineering parameters and the working parameters of the drill bit at the same time.
Description
技术领域technical field
本发明涉及石油钻井技术领域,具体涉及一种钻头钻速的控制系统以及控制方法。The invention relates to the technical field of oil drilling, in particular to a control system and a control method for the drilling speed of a drill bit.
背景技术Background technique
本部分的描述仅提供与本发明公开相关的背景信息,而不构成现有技术。The descriptions in this section merely provide background information related to the present disclosure and do not constitute prior art.
随着全球能源的紧张,石油和天然气资源成为各国普遍争抢的能源,各国都在加紧进行油气的勘探开发。钻井是油气勘探开发过程中最关键的环节之一,在钻井过程中,需要对影响钻井钻速的地面工程参数进行有效的控制,从而能够合理控制钻头钻速,有效的减小作业时间,降低作业成本。With the global energy shortage, oil and natural gas resources have become the energy resources that countries are generally competing for, and all countries are stepping up the exploration and development of oil and gas. Drilling is one of the most critical links in the process of oil and gas exploration and development. During the drilling process, it is necessary to effectively control the surface engineering parameters that affect the drilling speed, so that the drilling speed of the drill bit can be reasonably controlled, and the operation time can be effectively reduced. job cost.
现有技术中,通常根据携带有近钻头工况(例如近钻头处钻压、扭矩、井底压力等)信息的泥浆脉冲信号,来判断井下工况。然后依赖司钻人员的经验操作地面工程设备来达到控制钻头钻速的目的。但采用该方法无法做到实时控制,从而使得钻头钻速不能没有得到及时的调控,钻速若没有得到合理的控制会导致井壁失稳,井眼轨迹偏移,钻井效率低,严重会导致井壁坍塌,使井报废,造成巨大的经济损失。In the prior art, the downhole working condition is usually judged according to a mud pulse signal carrying information about the near-bit working condition (eg, WOB, torque, bottom-hole pressure, etc.) near the bit. Then rely on the experience of the driller to operate the ground engineering equipment to achieve the purpose of controlling the drilling speed of the drill bit. However, this method cannot achieve real-time control, so that the drilling speed of the drill bit cannot be controlled in time. If the drilling speed is not reasonably controlled, it will lead to the instability of the wellbore, the deviation of the wellbore trajectory, and the low drilling efficiency, which will seriously lead to The collapse of the well wall makes the well scrapped and causes huge economic losses.
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。It should be noted that the above description of the technical background is only for the convenience of clearly and completely describing the technical solutions of the present invention and facilitating the understanding of those skilled in the art. It should not be assumed that the above-mentioned technical solutions are well known to those skilled in the art simply because these solutions are described in the background section of the present invention.
发明内容SUMMARY OF THE INVENTION
为解决现有技术存在的问题,本申请提供了一种钻头钻速的控制系统以及控制方法,使得钻头钻速可以得到有效控制。In order to solve the problems existing in the prior art, the present application provides a control system and a control method for the drilling speed of the drill bit, so that the drilling speed of the drill bit can be effectively controlled.
为实现上述目的,本申请提供的技术方案如下所述:To achieve the above purpose, the technical solutions provided by the application are as follows:
一种钻头钻速的控制系统,所述控制系统包括:A control system for drilling speed of a drill bit, the control system comprises:
地面工程设备;ground engineering equipment;
用于测量所述地面工程设备的地面工程参数的地面检测机构;a ground detection mechanism for measuring the ground engineering parameters of the ground engineering equipment;
用于调节地面工程参数的地面设备控制机构,所述地面工程参数包括大钩悬重、泥浆泵压、转盘转速、泥浆排量中的其中一个或多个;A ground equipment control mechanism for adjusting ground engineering parameters, wherein the ground engineering parameters include one or more of hook suspension, mud pump pressure, rotary speed, and mud displacement;
设置在目标井下的钻头;The drill bit set in the target well;
用于调节钻头工作参数的钻头控制机构;Drill bit control mechanism for adjusting drill bit working parameters;
设置在所述目标井下的井下测量机构,所述井下测量机构用于采集井下信息,所述井下信息包括近钻头工程参数和环境特征参数;a downhole measurement mechanism arranged under the target well, the downhole measurement mechanism is used to collect downhole information, and the downhole information includes near-bit engineering parameters and environmental characteristic parameters;
设置在所述目标井下的井下辅助机构,所述井下辅助机构与所述井下测量机构电性连接,所述井下辅助机构用于对所述井下信息进行压缩处理得到井下压缩信息;a downhole auxiliary mechanism disposed under the target well, the downhole auxiliary mechanism is electrically connected with the downhole measurement mechanism, and the downhole auxiliary mechanism is used for compressing the downhole information to obtain downhole compression information;
综合数据处理设备,包括:用于获取所述井下压缩信息和所述地面工程参数的综合数据采集机构,所述综合数据处理设备能根据所述井下信息和所述地面工程参数建立所述地面设备控制机构与所述地面检测机构之间的第一反馈回路;所述综合数据处理设备能通过所述井下辅助机构建立所述井下测量机构与所述钻头控制机构之间的第二反馈回路。Comprehensive data processing equipment, including: a comprehensive data acquisition mechanism for acquiring the downhole compression information and the surface engineering parameters, the comprehensive data processing equipment can establish the surface equipment according to the downhole information and the surface engineering parameters A first feedback loop between the control mechanism and the surface detection mechanism; the integrated data processing device can establish a second feedback loop between the downhole measurement mechanism and the drill bit control mechanism through the downhole auxiliary mechanism.
作为一种优选的实施方式,所述井下测量机构和所述综合数据采集机构均包括:用于产生和接收泥浆脉冲信号的脉冲模块,所述综合数据采集机构和所述井下测量机构通过泥浆脉冲信号进行信息传递。As a preferred embodiment, both the downhole measurement mechanism and the comprehensive data acquisition mechanism include: a pulse module for generating and receiving mud pulse signals, and the comprehensive data acquisition mechanism and the downhole measurement mechanism pass the mud pulse Signals transmit information.
作为一种优选的实施方式,所述综合数据处理设备还包括:As a preferred embodiment, the integrated data processing device further includes:
与所述综合数据采集机构电性连接的综合学习模块,所述综合学习模块包括:用于对所述井下压缩信息进行解压缩处理的井下信息解压缩单元;深度学习单元,所述深度学习单元能将获取的所述地面工程参数和所述井下信息输入至寻优模型并得出井下决策参数和地面决策参数;井下决策信息压缩单元,所述井下决策信号压缩单元用于对所述井下决策参数进行压缩处理得到井下决策压缩信息;A comprehensive learning module electrically connected with the comprehensive data acquisition mechanism, the comprehensive learning module includes: a downhole information decompression unit for decompressing the downhole compressed information; a deep learning unit, the deep learning unit The acquired surface engineering parameters and the downhole information can be input into the optimization model, and the downhole decision parameters and the surface decision parameters can be obtained; the downhole decision information compression unit, the downhole decision signal compression unit is used for the downhole decision-making The parameters are compressed to obtain downhole decision-making compression information;
综合决策控制模块,所述综合决策控制模块能将所述地面决策参数发送给所述地面设备控制机构,调节所述地面工程设备的地面工程参数为所述地面决策参数;a comprehensive decision control module, which can send the ground decision parameters to the ground equipment control mechanism, and adjust the ground engineering parameters of the ground engineering equipment to be the ground decision parameters;
与所述综合学习模块和所述综合数据采集机构电性连接的综合数据管理模块。An integrated data management module electrically connected with the integrated learning module and the integrated data acquisition mechanism.
作为一种优选的实施方式,所述井下辅助机构包括:As a preferred embodiment, the downhole auxiliary mechanism includes:
与所述井下测量机构电性连接的井下数据处理模块,所述井下数据处理模块包括:用于对所述井下信息进行数据清洗的井下信息清洗单元;用于对所述井下信息进行压缩处理的井下信息压缩单元;用于对所述井下决策压缩信息解压缩处理的井下决策信息解压缩单元;A downhole data processing module electrically connected to the downhole measurement mechanism, the downhole data processing module includes: a downhole information cleaning unit for data cleaning of the downhole information; a downhole information cleaning unit for compressing the downhole information a downhole information compression unit; a downhole decision information decompression unit for decompressing the downhole decision compression information;
井下决策控制模块;所述井下决策控制模块能将所述井下决策参数发送给所述钻头控制机构,调节所述钻头的钻头工作参数为所述井下决策参数;A downhole decision control module; the downhole decision control module can send the downhole decision parameters to the drill bit control mechanism, and adjust the bit working parameters of the drill bit to be the downhole decision parameters;
与所述井下数据处理模块电性连接的井下数据管理模块。A downhole data management module electrically connected with the downhole data processing module.
作为一种优选的实施方式,所述近钻头工程参数包括:钻压、井斜角、井底压力、扭矩、钻头切削角、钻头水眼尺寸、钻头侧向力、钻头吃入深度,所述环境特征参数包括:电阻率、自然电位、声波时差、温度、压力、伽马、中子、密度、流量、磁定位、PH。As a preferred embodiment, the near-bit engineering parameters include: weight on bit, inclination angle, bottom hole pressure, torque, bit cutting angle, bit water hole size, bit lateral force, and bit penetration depth. Environmental characteristic parameters include: resistivity, natural potential, acoustic transit time, temperature, pressure, gamma, neutron, density, flow, magnetic localization, pH.
一种钻头钻速的控制方法,所述控制方法包括:A method for controlling the drilling speed of a drill bit, the control method comprising:
接收地面工程设备的地面工程参数;Receive ground engineering parameters of ground engineering equipment;
在钻头钻进过程中接收目标井的井下信息,所述井下信息包括:近钻头工程参数和环境特征参数;Receive downhole information of the target well during the drilling process of the drill bit, the downhole information includes: near-bit engineering parameters and environmental characteristic parameters;
将所述地面工程参数和所述井下信息输入综合数据处理设备,所述综合数据处理设备将所述地面工程参数和所述井下信息输入至寻优模型并得出井下决策参数和地面决策参数;Inputting the surface engineering parameters and the downhole information into a comprehensive data processing device, and the comprehensive data processing device inputs the surface engineering parameters and the downhole information into an optimization model and obtains downhole decision parameters and surface decision parameters;
根据所述地面决策参数调节地面工程设备,将所述地面工程参数调节为所述地面决策参数;Adjust the ground engineering equipment according to the ground decision parameters, and adjust the ground engineering parameters to the ground decision parameters;
根据所述井下决策参数调节钻头,将钻头工作参数调节为所述井下决策参数。The drill bit is adjusted according to the downhole decision parameter, and the drill bit working parameter is adjusted to the downhole decision parameter.
作为一种优选的实施方式,所述地面工程参数包括:大钩悬重、泥浆泵压、转盘转速、泥浆排量中的其中一个或多个;所述近钻头工程参数包括:钻压、井斜角、井底压力、扭矩、钻头切削角、钻头水眼尺寸、钻头侧向力、钻头吃入深度,所述环境特征参数包括:电阻率、自然电位、声波时差、温度、压力、伽马、中子、密度、流量、磁定位、PH。As a preferred embodiment, the surface engineering parameters include: one or more of hook suspension, mud pump pressure, rotary speed, and mud displacement; the near-bit engineering parameters include: weight on bit, wellbore Inclination angle, bottom hole pressure, torque, bit cutting angle, bit water hole size, bit lateral force, bit penetration depth, the environmental characteristic parameters include: resistivity, spontaneous potential, sonic time difference, temperature, pressure, gamma , Neutron, Density, Flow, Magnetic Positioning, PH.
作为一种优选的实施方式,在所述井下信息输入综合数据处理设备之前还包括将所述井下信息进行数据预处理,所述数据预处理包括:噪声去除、缺失值处理、异常值处理、数据压缩。As a preferred embodiment, before the downhole information is input into the comprehensive data processing equipment, it further includes performing data preprocessing on the downhole information, and the data preprocessing includes: noise removal, missing value processing, outlier processing, data processing compression.
作为一种优选的实施方式,在将所述地面工程参数和所述井下信息输入至寻优模型之前,还包括:获取所述目标井的至少一个邻井的井下信息和地面工程参数,对所述至少一个邻井的井下信息和地面工程参数进行训练得到所述寻优模型。As a preferred embodiment, before the surface engineering parameters and the downhole information are input into the optimization model, the method further includes: acquiring downhole information and surface engineering parameters of at least one offset well of the target well, and for all The optimization model is obtained by training the downhole information and surface engineering parameters of the at least one offset well.
作为一种优选的实施方式,所述寻优模型采用的算法为以下任意一种或几种的组合:支持向量机、随机森林、反向传播神经网络、卷积神经网络、循环神经网络。As a preferred embodiment, the algorithm used in the optimization model is any one or a combination of the following: support vector machine, random forest, back-propagation neural network, convolutional neural network, and recurrent neural network.
有益效果:Beneficial effects:
本申请实施方式提供的钻头钻速的控制系统及控制方法通过综合数据处理设备获取井下信息和地面工程参数。综合数据处理设备能根据获取的井下信息和地面工程参数建立地面设备控制机构与地面检测机构之间的第一反馈回路,地面设备控制机构可以通过第一反馈回路调节地面工程设备的地面工程参数。同时,综合数据处理能通过井下辅助机构建立井下测量机构与钻头控制机构之间的第二反馈回路,钻头控制机构可以通过第二反馈回路调节钻头工作参数。The control system and control method for the drilling rate of the drill bit provided by the embodiments of the present application acquire downhole information and surface engineering parameters through comprehensive data processing equipment. The comprehensive data processing equipment can establish a first feedback loop between the surface equipment control mechanism and the surface detection mechanism according to the acquired underground information and surface engineering parameters, and the surface equipment control mechanism can adjust the surface engineering parameters of the surface engineering equipment through the first feedback loop. At the same time, the comprehensive data processing can establish a second feedback loop between the downhole measurement mechanism and the drill bit control mechanism through the downhole auxiliary mechanism, and the drill bit control mechanism can adjust the working parameters of the drill bit through the second feedback loop.
本申请实施方式提供的井下钻头钻速的控制系统及方法能够建立位于地面的第一反馈回路和位于井下的第二反馈回路,从而形成双闭环控制回路,自动调节地面工程设备的工作参数和井下钻头的工作参数,能够实时将钻速调整至最优钻速。The system and method for controlling the ROP of an underground drill bit provided by the embodiments of the present application can establish a first feedback loop located on the surface and a second feedback loop located underground, so as to form a double closed-loop control loop, and automatically adjust the working parameters of the surface engineering equipment and the downhole The working parameters of the drill bit can adjust the drilling speed to the optimal drilling speed in real time.
参照后文的说明和附图,详细公开了本申请的特定实施方式,指明了本申请的原理可以被采用的方式。应该理解,本申请的实施方式在范围上并不因而受到限制。With reference to the following description and drawings, specific embodiments of the present application are disclosed in detail, indicating the manner in which the principles of the present application may be employed. It should be understood that the embodiments of the present application are not thereby limited in scope.
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。Features described and/or illustrated for one embodiment may be used in the same or similar manner in one or more other embodiments, in combination with, or instead of features in other embodiments .
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。It should be emphasized that the term "comprising/comprising" when used herein refers to the presence of a feature, integer, step or component, but does not exclude the presence or addition of one or more other features, integers, steps or components.
附图说明Description of drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动力的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the following briefly introduces the accompanying drawings required for the description of the embodiments or the prior art. Obviously, the drawings in the following description are only These are some embodiments of the present application. For those skilled in the art, other drawings can also be obtained according to these drawings without creative labor.
图1为本申请实施方式提供的钻头钻速的控制系统的流程示意图;FIG. 1 is a schematic flowchart of a control system for the drilling rate of a drill bit provided by an embodiment of the application;
图2为本申请实施方式提供的综合数据处理设备的结构示意图;2 is a schematic structural diagram of a comprehensive data processing device provided by an embodiment of the present application;
图3为本申请实施方式提供的井下辅助机构的结构示意图;3 is a schematic structural diagram of a downhole auxiliary mechanism provided by an embodiment of the present application;
图4为本申请实施方式提供的钻头钻速的控制方法流程图。FIG. 4 is a flowchart of a method for controlling the drilling rate of a drill bit provided by an embodiment of the present application.
附图标记说明:Description of reference numbers:
11、地面设备控制机构;12、地面工程设备;13、地面检测机构;21、综合数据采集机构;22、综合学习模块;23、综合决策控制模块;24、综合数据管理模块;31、井下数据处理模块;32、井下决策控制模块;33、井下数据管理模块;4、井下测量机构;51、钻头控制机构;52、钻头。11. Surface equipment control organization; 12. Surface engineering equipment; 13. Surface inspection organization; 21. Comprehensive data acquisition organization; 22. Comprehensive learning module; 23. Comprehensive decision-making control module; 24. Comprehensive data management module; 31. Downhole data processing module; 32, downhole decision control module; 33, downhole data management module; 4, downhole measurement mechanism; 51, drill bit control mechanism; 52, drill bit.
具体实施方式Detailed ways
下面将结合附图和具体实施方式,对本发明的技术方案作详细说明,应理解这些实施方式仅用于说明本发明而不用于限制范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落入本申请所限定的范围内。The technical solutions of the present invention will be described in detail below with reference to the accompanying drawings and specific embodiments. It should be understood that these embodiments are only used to illustrate the present invention and not to limit the scope. Modifications of various equivalent forms fall within the scope defined by this application.
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。It should be noted that when an element is referred to as being "disposed on" another element, it can be directly on the other element or intervening elements may also be present. When an element is referred to as being "connected" to another element, it can be directly connected to the other element or intervening elements may also be present. The terms "vertical", "horizontal", "upper", "lower", "left", "right" and similar expressions used herein are for the purpose of illustration only and do not represent the only embodiment.
下面将结合图1至图4对本申请实施例的钻头钻速的控制系统以及控制方法进行解释和说明。需要说明的是,为了便于说明,在本申请的实施例中,相同的附图标记表示相同的部件。而为了简洁,在不同的实施例中,省略对相同部件的详细说明,且相同部件的说明可互相参照和引用。The following will explain and describe the control system and control method for the drilling rate of the drill bit according to the embodiment of the present application with reference to FIGS. 1 to 4 . It should be noted that, for convenience of description, in the embodiments of the present application, the same reference numerals denote the same components. For the sake of brevity, in different embodiments, the detailed descriptions of the same components are omitted, and the descriptions of the same components can be referred to and quoted from each other.
本申请实施方式提供了一种钻头钻速的控制系统,如图1所示,所述钻头钻速的控制系统包括地面设备和井下设备。地面设备可以包括地面工程设备12、地面检测机构13和地面设备控制机构11。其中,地面检测机构13用于测量地面工程设备12的地面工程参数,地面设备控制机构11用于调节地面工程参数。地面工程设备12、地面检测机构13和地面设备控制机构11可以是集成为一体的智能设备,以智能钻机为例,智能钻机上通常配置有传感器等检测单元组成的地面检测机构13以实时获取地面工程参数,以及配合地面检测机构13实时控制钻机工作参数的地面设备控制机构11。An embodiment of the present application provides a control system for the drilling rate of a drill bit. As shown in FIG. 1 , the control system for the drilling rate of a drill bit includes surface equipment and downhole equipment. The ground equipment may include
在本申请实施方式中,地面工程设备12可以包括起升系统设备、旋转系统设备、钻井液循环系统设备。其中,起升系统设备用于起下钻具、控制钻压送钻,可以包括绞车、井架、大钩及钢丝绳等部件。旋转系统设备用于带动井下钻具、钻头旋转、破碎岩石(钻进),旋转系统设备可以包括转盘、水龙头和井下钻具等部件。钻井液循环系统设备用于通过泵将钻井液送至钻杆、井下钻柱及钻头处后冲洗井底钻屑,从钻具与井眼之间的环形空间带出地面,以使得钻具正常钻进。钻井液循环系统设备可以包括泥浆泵、管汇等部件。In the embodiment of the present application, the
在本说明书中,地面工程设备12用于实现钻具的提升和旋转以及钻井液的循环等功能,通过调节地面工程设备12的地面工程参数能够实现对钻压、井底压力和钻杆转速的调节,从而实现钻头钻速的调节。地面工程参数包括大钩悬重、泥浆泵压、转盘转速、泥浆排量中的其中一个或多个。对应的,地面检测机构13可以包括扭矩传感器、悬重传感器、转速传感器等。地面设备控制机构11可以包括转盘电机控制机构、送钻电机控制机构、泥浆泵电机控制机构等。所述地面工程设备的各个部件之间的连接关系以及操作方法属于现有技术,本申请不再做赘述。In this specification, the
在一些可能的实施方式中,地面设备控制机构11的个数可以与地面工程设备12的个数相匹配,地面设备控制机构11可以调节对应的地面工程设备12的地面工程参数。In some possible implementations, the number of ground
井下设备包括:设置在目标井下的钻头52和用于调节钻头工作参数的钻头控制机构51。该钻头钻速控制系统还包括设置在目标井下的井下测量机构4和井下辅助机构。井下测量机构4用于采集井下信息,可以为PWD或者MWD等设备。所述井下信息包括近钻头工程参数和环境特征参数。The downhole equipment includes: a
具体的,地面设备控制机构11、钻头控制机构51可以采取例如微处理器或处理器以及存储可由该微处理器或处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器(Programmable Logic Controller,PLC)和嵌入微控制单元(Microcontroller Unit,MCU)的形式,能够接收控制信号,也能够发出指令。Specifically, the surface
井下辅助机构具体是井下CPU,并与钻头控制机构51电性连接,井下辅助机构用于接收井下测量机构4采集的井下信息,并能够对其进行压缩处理以得到井下压缩信息,从而避免井下信息数据量过大无法直接传递。该井下辅助机构同时可以发出信号给钻头控制机构51,调节钻头工作参数。井下测量机构4与井下辅助机构、钻头控制机构51均电性连接,从而井下辅助机构能够建立井下测量机构4与钻头控制机构51之间的反馈回路。The downhole auxiliary mechanism is specifically the downhole CPU, and is electrically connected to the drill
综合数据处理设备位于地面,包括:用于获取井下压缩信息和地面工程参数的综合数据采集机构21,综合数据采集机构21与地面检测机构13和井下测量机构4均电性连接,从而综合数据处理设备能实时接受地面工程参数和井下信息。该综合数据处理设备能根据井下信息和地面工程参数建立地面设备控制机构11与地面检测机构13之间的第一反馈回路。同时,综合数据处理设备还能通过井下辅助机构建立井下测量机构4与钻头控制机构51之间的第二反馈回路。从而,本申请提供的井下钻头钻速的控制系统能够建立位于地面的第一反馈回路和位于井下的第二反馈回路,从而形成双闭环控制回路。The comprehensive data processing equipment is located on the ground, and includes: a comprehensive
在本说明书中,近钻头工程参数包括:钻压、井斜角、井底压力、扭矩、钻头切削角、钻头水眼尺寸、钻头侧向力、钻头吃入深度,所述环境特征参数包括:电阻率、自然电位、声波时差、温度、压力、伽马、中子、密度、流量、磁定位、PH。In this specification, near-bit engineering parameters include: weight on bit, inclination angle, bottom hole pressure, torque, bit cutting angle, bit water hole size, bit lateral force, and bit penetration depth, and the environmental characteristic parameters include: Resistivity, Spontaneous Potential, Transit Time, Temperature, Pressure, Gamma, Neutron, Density, Flow, Magnetic Positioning, PH.
在钻井过程中,钻头的钻速与钻头的旋转速度、钻压、泥浆排量、井底压力、钻头吃入深度、钻头切削角、钻头水眼尺寸、钻头侧向力均相关。钻头的旋转速度等同于地面转盘的转速,而钻压主要受井内钻具总重、地面起升设备大钩悬重的影响,井底压力受泵压和井筒内静水压力影响。钻头的扭矩跟地面井口方钻杆的扭矩息息相关,而钻头的扭矩异常会造成跳钻、摆振事故极易造成井壁失稳,带来钻井风险。钻头的侧向力会导致轨迹偏离,给定向钻井造成不利影响。可见,若只调节地面工程参数一方面会造成钻头的过快磨损,需要频繁更换钻头。而钻头的更换一方面钻头本身价格较高,另一方面需要起钻和下钻,非常耗费人力成本,增加作业成本。In the drilling process, the drilling speed of the bit is related to the rotation speed of the bit, weight on bit, mud displacement, bottom hole pressure, bit penetration depth, bit cutting angle, bit water hole size, and bit lateral force. The rotation speed of the drill bit is equal to the rotation speed of the surface turntable, and the weight on bit is mainly affected by the total weight of the drilling tool in the well and the hook suspension of the surface lifting equipment, and the bottom hole pressure is affected by the pump pressure and the hydrostatic pressure in the wellbore. The torque of the drill bit is closely related to the torque of the kelly at the surface wellhead, and the abnormal torque of the drill bit will cause skipping and vibration accidents, which can easily lead to the instability of the well wall and bring drilling risks. The lateral force of the drill bit can cause the trajectory to deviate, adversely affecting directional drilling. It can be seen that if only the ground engineering parameters are adjusted, on the one hand, the drill bit will wear too quickly, and the drill bit needs to be replaced frequently. On the one hand, the replacement of the drill bit is relatively expensive, and on the other hand, it requires tripping and drilling down, which is very labor-intensive and increases the operation cost.
由于井下的岩体构造的多样性,不同性质的岩石、地层条件对于钻头钻速具有不同的要求。过高的钻速可能会造成事故,导致钻头损坏,而过低的钻速又使钻井效率十分低。因此,在某特定的地层条件和岩石,合适的地面工程参数和钻头工作参数对钻井是十分有利的,既可以提高钻井效率,也有利于减小钻头的磨损。Due to the diversity of underground rock mass structures, different rock and formation conditions have different requirements for the drilling rate of the drill bit. Too high ROP can cause accidents and damage to the drill bit, while too low ROP makes drilling very inefficient. Therefore, in a specific formation condition and rock, suitable ground engineering parameters and bit working parameters are very beneficial to drilling, which can not only improve drilling efficiency, but also help reduce bit wear.
环境特征参数可以指导井下的情况,例如地层的岩性、硬度、走向、渗透率、地下水、孔隙压力等情况。由于不同地层的硬度、抗剪切强度等都不同,钻头若可以根据地层的情况改变切削角和吃入深度可以有效的避免钻头的磨损和破坏,同时还可以提高机械钻速。泵压、水眼大小和泥浆排量可以改善井下岩屑的清洁程度,减小压持效应,避免重复破碎。Environmental characteristic parameters can guide downhole conditions, such as formation lithology, hardness, strike, permeability, groundwater, pore pressure, etc. Since the hardness and shear strength of different strata are different, if the drill bit can change the cutting angle and penetration depth according to the situation of the stratum, it can effectively avoid the wear and damage of the drill bit, and at the same time, the ROP can be improved. Pump pressure, water hole size and mud displacement can improve the cleanliness of downhole cuttings, reduce the hold-up effect, and avoid repeated crushing.
在上述实施例中,钻头52的工作参数包括:钻头吃入深度、钻头切削角、钻头水眼尺寸、钻头侧向力。通过将地面工程参数和钻头工作参数的组合调节至合理范围可以获得最优钻速,将钻头钻速控制在合理范围内。In the above embodiment, the working parameters of the
在本说明书中,所述井下测量机构4和所述综合数据采集机构21均包括:用于产生和接收泥浆脉冲信号的脉冲模块,所述综合数据采集机构21和所述井下测量机构4通过泥浆脉冲信号进行信息传递。从而,井下辅助机构能够将压缩处理后的井下压缩信息传递给井下测量机构4,并通过脉冲模块传递至地面的综合数据采集机构21,该综合数据采集机构21也能够通过脉冲模块将获得的信息发送给井下测量机构4,并由井下辅助机构接收。In this specification, the downhole measurement mechanism 4 and the comprehensive
如图1和图2所示,所述综合数据处理设备还包括:与综合数据采集机构21电性连接的综合学习模块22,综合学习模块22包括:用于对井下压缩信息进行解压缩处理的井下信息解压缩单元;深度学习单元,所述深度学习单元能将获取的所述地面工程参数和所述井下信息输入至寻优模型并得出井下决策参数和地面决策参数;井下决策信息压缩单元,所述井下决策信号压缩单元用于对所述井下决策参数进行压缩处理得到井下决策压缩信息;综合决策控制模块23,所述综合决策控制模块23能将所述地面决策参数发送给所述地面设备控制机构11,调节所述地面工程设备12的地面工程参数为所述地面决策参数;与所述综合学习模块22和所述综合数据采集机构21电性连接的综合数据管理模块24。As shown in FIG. 1 and FIG. 2 , the comprehensive data processing equipment further includes: a
进一步的,如图2所示,所述综合数据管理模块24包括:用于存储井下信息的井下信息存储单元;用于存储地面工程参数的地面工程参数存储单元;用于存储地面决策参数的地面决策信息存储单元;用于存储井下决策压缩信息的井下决策压缩信息存储单元。综合数据管理模块24能够不断存储井下信息、地面工程参数以及决策参数,从而深度学习单元能够根据综合数据管理模块24存储的信息,不断自主学习,更新寻优模型,提高决策结果的准确性。Further, as shown in FIG. 2, the comprehensive
所述井下信息解压缩单元能够对获得的井下压缩信息进行解压缩处理,从而得到详细的井下信息。深度学习单元对地面工程参数和井下信息进行综合后,将数据输入寻优模型,获取井下决策参数和地面决策参数。地面设备控制机构11可以通过有线或无线的方式接收综合决策控制模块23发送的地面决策参数,再发出控制信号更改地面工程设备12的工作参数。井下决策参数由综合学习模块22中的井下决策信息压缩单元进行压缩处理,得到井下决策压缩信息,然后发送给综合数据管理模块24进行存储,并发送给综合数据采集机构21。井下决策压缩信息通过综合数据采集机构21的脉冲模块发出的泥浆脉冲信号发送至井下,并由井下辅助机构接收。井下辅助机构在接收到泥浆脉冲传输的井下决策压缩信息后,可以对井下决策压缩信息进行解压缩处理,获得详细的井下决策信息,并将井下决策信息发送给钻头控制机构51,调节钻头52的工作参数。The downhole information decompression unit can decompress the obtained downhole compressed information, thereby obtaining detailed downhole information. After synthesizing surface engineering parameters and downhole information, the deep learning unit inputs the data into the optimization model to obtain downhole decision parameters and surface decision parameters. The ground
如图1和图3所示,所述井下辅助机构包括:与所述井下测量机构4电性连接的井下数据处理模块31,所述井下数据处理模块31包括:用于对所述井下信息进行数据清洗的井下信息清洗单元;用于对所述井下信息进行压缩处理的井下信息压缩单元;用于对所述井下决策压缩信息解压缩处理的井下决策信息解压缩单元;与所述井下决策信息解压缩单元电性连接的井下决策控制模块32;所述井下决策控制模块32能将所述井下决策参数发送给所述钻头控制机构51,调节所述钻头52的钻头工作参数为所述井下决策参数;与所述井下数据处理模块31电性连接的井下数据管理模块33。As shown in FIG. 1 and FIG. 3 , the downhole auxiliary mechanism includes: a downhole
其中,井下数据处理模块31在接收至井下测量机构4获得的井下信息后,可以通过井下信息清洗单元对数据进行清洗,从而提高数据质量。再对清洗后的数据进行二次处理,即对井下信息进行压缩处理得到井下压缩信息,然后通过泥浆脉冲传输至地面。当井下数据处理模块31接收到井下决策压缩信息后,首先通过井下决策信息解压缩单元处理,得到详细的井下决策参数,再通过井下决策控制模块32将井下决策参数发送给钻头控制机构51,由钻头控制机构51发出信号控制钻头52的工作参数。Wherein, after receiving the downhole information obtained by the downhole measurement mechanism 4, the downhole
进一步的,如图3所示,所述井下数据管理模块33包括:用于存储井下信息的井下信息存储单元;用于存储井下压缩信息的井下压缩信息存储单元;用于存储井下决策信息的井下决策信息存储单元。Further, as shown in FIG. 3 , the downhole
在本实施例中,井下辅助机构能够建立井下测量机构4与钻头控制机构51之间的第二反馈回路,能够进一步调节钻头52的钻头工作参数。通过建立的第二反馈回路,可以实时的调节钻头工作参数,使得钻头根据井下实时工况调整切削角、钻头水眼尺寸、钻头侧向力、钻头吃入深度。另外,钻头52的钻头工作参数的调节与地面工程参数的调节相适应,保证钻井参数调节的准确性。In this embodiment, the downhole auxiliary mechanism can establish a second feedback loop between the downhole measurement mechanism 4 and the drill
本申请还提供了一种利用钻头钻速的控制系统的控制方法,如图4所示,所述控制方法包括:The present application also provides a control method for a control system utilizing the drill bit rate of penetration, as shown in FIG. 4 , the control method includes:
S10:接收地面工程设备12的地面工程参数;S10: Receive ground engineering parameters of the
S20:在钻头52钻进过程中接收目标井的井下信息,所述井下信息包括:近钻头工程参数和环境特征参数;S20: Receive downhole information of the target well during the drilling process of the
S30:将所述地面工程参数和所述井下信息输入综合数据处理设备,所述综合数据处理设备将所述地面工程参数和所述井下信息输入至寻优模型并得出井下决策参数和地面决策参数;S30: Input the surface engineering parameters and the downhole information into a comprehensive data processing device, and the comprehensive data processing device inputs the surface engineering parameters and the downhole information into an optimization model to obtain downhole decision parameters and surface decision-making parameter;
S40:根据所述地面决策参数调节地面工程设备12,将所述地面工程参数调节为所述地面决策参数;S40: Adjust the
S50:根据所述井下决策参数调节钻头52,将钻头工作参数调节为所述井下决策参数。S50: Adjust the
在上述步骤中,对地面工程参数和井下信息的实时监测可以更加准确地控制钻井过程,减少钻井风险。在本实施方式中,采用上述利用寻优模型可以更加准确、高效的预测得到井下决策参数和地面决策参数。In the above steps, real-time monitoring of surface engineering parameters and downhole information can control the drilling process more accurately and reduce drilling risks. In this embodiment, by using the above-mentioned optimization model, the downhole decision parameters and the surface decision parameters can be predicted and obtained more accurately and efficiently.
在本实施方式中,所述寻优模型采用的算法为以下任意一种或几种的组合:支持向量机、随机森林、反向传播神经网络、卷积神经网络、循环神经网络。In this embodiment, the algorithm used in the optimization model is any one or a combination of the following: support vector machine, random forest, back-propagation neural network, convolutional neural network, and recurrent neural network.
在本说明书中,在所述接收井下信息和地面工程参数的步骤中,所述综合数据处理设备可以通过井下和地面设备配置的传感器实时接收参数,并将得到的数据参数传输到综合数据管理模块24。综合数据处理设备可以将获取的井下信息和地面工程参数信号进行分析处理,分别得到地面决策参数和井下决策参数,其中地面决策参数通过第一反馈回路传输给地面设备控制机构11,能够将地面工程参数调整至地面决策参数;而井下辅助机构在接收至井下决策参数后能生成控制信号通过第二反馈回路发送给钻头控制机构51,将钻头52的钻头工作参数调整至井下决策参数。In this specification, in the step of receiving downhole information and surface engineering parameters, the comprehensive data processing equipment can receive parameters in real time through sensors configured in the downhole and surface equipment, and transmit the obtained data parameters to the comprehensive data management module twenty four. The comprehensive data processing equipment can analyze and process the acquired downhole information and surface engineering parameter signals to obtain surface decision parameters and downhole decision parameters respectively, wherein the surface decision parameters are transmitted to the surface
在所述井下信息输入综合数据处理设备之前还包括将所述井下信息进行数据预处理,所述数据预处理包括:噪声去除、缺失值处理、异常值处理、数据压缩。Before the downhole information is input into the comprehensive data processing equipment, it also includes data preprocessing on the downhole information, and the data preprocessing includes: noise removal, missing value processing, outlier processing, and data compression.
在本实施例中,噪声去除是去除停泵,起下钻、修井作业、关井等非钻井过程期间产生的数据。缺失值处理是用于填补部分缺失数据,提高数据的完整性。异常值处理是对由于传感器失常、起下钻速度过快,导致的数据异常(过低或过高)进行处理,通过设置上下限阈值,防止过度异常值的产生,然后通过前后时段数据,取平均值对异常数据进行修改。在数据量压缩处理过程中,钻井过程中数据的获取多为每秒产生一次,但在钻井分析和数据传输的过程中一方面数据传输难度大、实时分析困难,另一方面由于时间果断,数据多不稳定,因此需要对每一分钟的数据进行平均处理,每分钟传输一次数据分析一次,从而达到数据高校处理分析精度高的目的。In this embodiment, noise removal is to remove data generated during non-drilling processes such as pump shutdown, tripping, workover operations, and well shut-in. Missing value processing is used to fill in some missing data and improve data integrity. Outlier processing is to deal with abnormal data (too low or too high) caused by sensor abnormality and too fast tripping speed. By setting upper and lower thresholds, the generation of excessive abnormal values can be prevented. The mean is modified for abnormal data. In the process of data volume compression, data acquisition during drilling is mostly generated once per second, but in the process of drilling analysis and data transmission, on the one hand, data transmission is difficult and real-time analysis is difficult. It is unstable, so it is necessary to averagely process the data every minute, and transmit the data analysis once every minute, so as to achieve the purpose of high data processing and analysis accuracy.
在本实施例中,所述寻优模型可以从机器学习算法和深度学习算法中优选出一种算法来构建上述寻优模型。机器学习算法可以包括:随机森林、支持向量机、朴素贝叶斯等。深度学习算法包括:BP神经网络、循环神经网络、卷积神经网络、长短期记忆网络等。In this embodiment, the optimization model may select an algorithm from a machine learning algorithm and a deep learning algorithm to construct the optimization model. Machine learning algorithms can include: Random Forests, Support Vector Machines, Naive Bayes, etc. Deep learning algorithms include: BP neural network, recurrent neural network, convolutional neural network, long short-term memory network, etc.
在本实施方式中,在将所述地面工程参数和所述井下信息输入至寻优模型之前,还包括:获取所述目标井的至少一个邻井的井下信息和地面工程参数,对所述至少一个邻井的井下信息和地面工程参数进行训练得到所述寻优模型。当然,在其他实施例中,在将所述地面工程参数和所述井下信息输入综合数据处理设备之前,还包括:获取所述目标井的历史数据中的井下信息和地面工程参数,对所述历史数据中的井下信息和地面工程参数进行训练得到所述寻优模型。所述历史数据和所述至少一个邻井数据可以存储在综合数据管理模块24中。In this embodiment, before inputting the surface engineering parameters and the downhole information into the optimization model, the method further includes: acquiring downhole information and surface engineering parameters of at least one offset well of the target well, and for the at least one offset well. The optimization model is obtained by training the downhole information and surface engineering parameters of an offset well. Of course, in other embodiments, before inputting the surface engineering parameters and the downhole information into the comprehensive data processing equipment, the method further includes: acquiring the downhole information and surface engineering parameters in the historical data of the target well, The optimization model is obtained by training the downhole information and surface engineering parameters in the historical data. The historical data and the at least one offset well data may be stored in the integrated
进一步的,在得到井下决策参数和地面决策参数的步骤中,可以根据输入的地面工程参数和井下信息和已建立的寻优模型建立多目标协同优化模型,如NSGA2、PSO多目标优化算法,并根据变量是否具有时间依赖性对算法进行动态优化,并对模型生成的解决方案进行排序。后续可以根据协同优化决策模型生成的多种参数匹配工作方案以及推荐排名,由经验丰富的钻井工程师进行挑选,选择最优的参数匹配方案。Further, in the step of obtaining downhole decision parameters and surface decision parameters, a multi-objective collaborative optimization model, such as NSGA2 and PSO multi-objective optimization algorithms, can be established according to the input surface engineering parameters and downhole information and the established optimization model. Algorithms are dynamically optimized based on whether variables are time-dependent and the solutions generated by the model are ranked. In the follow-up, according to the various parameter matching work plans and recommended rankings generated by the collaborative optimization decision model, experienced drilling engineers will select the optimal parameter matching plan.
本申请实施方式提供的钻头钻速的控制系统能够通过第一反馈回路和第二反馈回路形成双闭环控制回路,实时调节地面工程设备和钻头,并将地面工程参数和钻头工作参数处于最佳组合状态,从而获得最优的钻进速度。The control system for the drilling rate of the drill bit provided by the embodiment of the present application can form a double closed-loop control loop through the first feedback loop and the second feedback loop, adjust the surface engineering equipment and the drill bit in real time, and keep the surface engineering parameters and the drill bit working parameters in an optimal combination state, so as to obtain the optimal drilling speed.
上述实施例阐明的设备、模块、单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。The devices, modules and units described in the above embodiments may be specifically implemented by computer chips or entities, or by products with certain functions.
为了描述的方便,描述以上装置时以功能分为各种模块分别描述。当然,在实施本申请时可以把各模块的功能在同一个或多个软件和/或硬件中实现。For the convenience of description, when describing the above device, the functions are divided into various modules and described respectively. Of course, when implementing the present application, the functions of each module may be implemented in one or more software and/or hardware.
上述实施例只为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请精神实质所作的等效变化或修饰,都应涵盖在本申请的保护范围之内。The above-mentioned embodiments are only intended to illustrate the technical concept and characteristics of the present application, and the purpose is to enable those who are familiar with the technology to understand the content of the present application and implement them accordingly, and cannot limit the protection scope of the present application. All equivalent changes or modifications made according to the spirit and spirit of this application should be covered within the protection scope of this application.
披露的所有文章和参考资料,包括专利申请和出版物,出于各种目的通过援引结合于此。描述组合的术语“基本由…构成”应该包括所确定的元件、成分、部件或步骤以及实质上没有影响该组合的基本新颖特征的其他元件、成分、部件或步骤。使用术语“包含”或“包括”来描述这里的元件、成分、部件或步骤的组合也想到了基本由这些元件、成分、部件或步骤构成的实施方式。这里通过使用术语“可以”,旨在说明“可以”包括的所描述的任何属性都是可选的。All articles and references disclosed, including patent applications and publications, are hereby incorporated by reference for all purposes. The term "consisting essentially of" describing a combination shall include the identified element, ingredient, component or step as well as other elements, components, components or steps that do not materially affect the essential novel characteristics of the combination. Use of the terms "comprising" or "comprising" to describe combinations of elements, ingredients, components or steps herein also contemplates embodiments consisting essentially of those elements, ingredients, components or steps. By use of the term "may" herein, it is intended to indicate that "may" include any described attributes that are optional.
多个元件、成分、部件或步骤能够由单个集成元件、成分、部件或步骤来提供。另选地,单个集成元件、成分、部件或步骤可以被分成分离的多个元件、成分、部件或步骤。用来描述元件、成分、部件或步骤的公开“一”或“一个”并不说为了排除其他的元件、成分、部件或步骤。A plurality of elements, components, components or steps can be provided by a single integrated element, component, component or step. Alternatively, a single integrated element, component, component or step may be divided into separate multiple elements, components, components or steps. The disclosure of "a" or "an" used to describe an element, ingredient, part or step is not intended to exclude other elements, ingredients, parts or steps.
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。It should be understood that the above description is for purposes of illustration and not limitation. From reading the above description, many embodiments and many applications beyond the examples provided will be apparent to those skilled in the art. The disclosures of all articles and references, including patent applications and publications, are incorporated herein by reference for the purpose of being comprehensive.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010655211.4A CN111878055B (en) | 2020-07-09 | 2020-07-09 | Control system and control method for drilling speed of drill bit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010655211.4A CN111878055B (en) | 2020-07-09 | 2020-07-09 | Control system and control method for drilling speed of drill bit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111878055A true CN111878055A (en) | 2020-11-03 |
CN111878055B CN111878055B (en) | 2022-03-25 |
Family
ID=73151521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010655211.4A Active CN111878055B (en) | 2020-07-09 | 2020-07-09 | Control system and control method for drilling speed of drill bit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111878055B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112727433A (en) * | 2020-12-24 | 2021-04-30 | 四川宏华电气有限责任公司 | Drilling parameter optimization method |
CN112796747A (en) * | 2021-03-03 | 2021-05-14 | 中国石油大学(北京) | Multi-objective-based oil and gas drilling strategy prediction method and device |
CN112855113A (en) * | 2021-01-28 | 2021-05-28 | 北京三一智造科技有限公司 | Automatic drilling method and controller of rotary drilling rig, storage medium and electronic equipment |
CN113847009A (en) * | 2020-11-09 | 2021-12-28 | 中国石油天然气集团有限公司 | Data processing method and device for PDC drill bit |
CN116122789A (en) * | 2021-11-12 | 2023-05-16 | 中油国家油气钻井装备工程技术研究中心有限公司 | Intelligent control system and method for petroleum drilling machine |
CN117328850A (en) * | 2023-09-22 | 2024-01-02 | 安百拓(张家口)建筑矿山设备有限公司 | Drilling machine control method, device, terminal and storage medium |
CN118774761A (en) * | 2024-09-10 | 2024-10-15 | 德州联合石油科技股份有限公司 | Mud pulse signal encoding method and device for near-bit geological steering system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050284659A1 (en) * | 2004-06-28 | 2005-12-29 | Hall David R | Closed-loop drilling system using a high-speed communications network |
CN102852511A (en) * | 2012-09-28 | 2013-01-02 | 中国科学院自动化研究所 | Intelligent drilling control system and method for petroleum drilling machine |
CN103132984A (en) * | 2011-11-29 | 2013-06-05 | 杨亚军 | Automatic bit feeding control system of petroleum drilling machine and automatic bit feeding control method thereof |
CN106121621A (en) * | 2016-07-15 | 2016-11-16 | 西南石油大学 | A kind of intelligent drilling specialist system |
CN107201877A (en) * | 2016-03-18 | 2017-09-26 | 中国石油化工股份有限公司 | The closed loop control method and system of a kind of rotary steerable drilling |
-
2020
- 2020-07-09 CN CN202010655211.4A patent/CN111878055B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050284659A1 (en) * | 2004-06-28 | 2005-12-29 | Hall David R | Closed-loop drilling system using a high-speed communications network |
CN103132984A (en) * | 2011-11-29 | 2013-06-05 | 杨亚军 | Automatic bit feeding control system of petroleum drilling machine and automatic bit feeding control method thereof |
CN102852511A (en) * | 2012-09-28 | 2013-01-02 | 中国科学院自动化研究所 | Intelligent drilling control system and method for petroleum drilling machine |
CN107201877A (en) * | 2016-03-18 | 2017-09-26 | 中国石油化工股份有限公司 | The closed loop control method and system of a kind of rotary steerable drilling |
CN106121621A (en) * | 2016-07-15 | 2016-11-16 | 西南石油大学 | A kind of intelligent drilling specialist system |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113847009A (en) * | 2020-11-09 | 2021-12-28 | 中国石油天然气集团有限公司 | Data processing method and device for PDC drill bit |
CN112727433A (en) * | 2020-12-24 | 2021-04-30 | 四川宏华电气有限责任公司 | Drilling parameter optimization method |
CN112855113A (en) * | 2021-01-28 | 2021-05-28 | 北京三一智造科技有限公司 | Automatic drilling method and controller of rotary drilling rig, storage medium and electronic equipment |
CN112796747A (en) * | 2021-03-03 | 2021-05-14 | 中国石油大学(北京) | Multi-objective-based oil and gas drilling strategy prediction method and device |
CN116122789A (en) * | 2021-11-12 | 2023-05-16 | 中油国家油气钻井装备工程技术研究中心有限公司 | Intelligent control system and method for petroleum drilling machine |
CN117328850A (en) * | 2023-09-22 | 2024-01-02 | 安百拓(张家口)建筑矿山设备有限公司 | Drilling machine control method, device, terminal and storage medium |
CN117328850B (en) * | 2023-09-22 | 2024-05-14 | 安百拓(张家口)建筑矿山设备有限公司 | Drilling machine control method, device, terminal and storage medium |
CN118774761A (en) * | 2024-09-10 | 2024-10-15 | 德州联合石油科技股份有限公司 | Mud pulse signal encoding method and device for near-bit geological steering system |
Also Published As
Publication number | Publication date |
---|---|
CN111878055B (en) | 2022-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111878055A (en) | Control system and control method for drilling speed of drill bit | |
EP3385497B1 (en) | Method of optimizing drilling operation using empirical data | |
EP2834461B1 (en) | Drilling control and information system | |
CA2759641C (en) | Method and apparatus for automated drilling of a borehole in a subsurface formation | |
US10400573B2 (en) | System and method for controlling drilling process | |
US20180334897A1 (en) | Drilling control based on brittleness index correlation | |
US10584536B2 (en) | Apparatus, systems, and methods for efficiently communicating a geosteering trajectory adjustment | |
US20240151113A1 (en) | Flow rate pressure control during mill-out operations | |
NO20170515A1 (en) | Automated optimal path design for directional drilling | |
US20150322778A1 (en) | Data Transmission During Drilling | |
US12000261B2 (en) | System and methodology for determining appropriate rate of penetration in downhole applications | |
WO2018204902A1 (en) | Rotational oscillation control using weight | |
WO2022216302A1 (en) | Real time dull bit grading modeling and process technique | |
US10060246B2 (en) | Real-time performance analyzer for drilling operations | |
US12071845B2 (en) | Controlling operating parameters of a surface drilling rig to optimize bottom-hole assembly (“BHA”) drilling performance | |
Hovda et al. | Potential of Ultra High—Speed Drill String Telemetry in Future Improvements of the Drilling Process Control | |
CN112836406B (en) | A WOB Modeling Method Considering Uncertain Damping Coefficients During Drilling | |
US20240426204A1 (en) | Systems and methods for automated coiled tubing drilling operations | |
CN119047338B (en) | A real-time drilling parameter optimization method and system based on extreme value optimization | |
US11199082B2 (en) | Sensor integrated drill bit and method of drilling employing a sensor integrated drill bit | |
WO2023204852A1 (en) | Retrofitting existing rig hardware and performing bit forensic for dull bit grading through software | |
WO2025059002A1 (en) | Systems and methods for inferring reservoir pressure based on initial coiled tubing run conditions | |
AU2023377449A1 (en) | Event detection using hydraulic simulations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |