[go: up one dir, main page]

CN111859669B - Decomposition furnace temperature control method based on thermal analysis-data driving model - Google Patents

Decomposition furnace temperature control method based on thermal analysis-data driving model Download PDF

Info

Publication number
CN111859669B
CN111859669B CN202010704399.7A CN202010704399A CN111859669B CN 111859669 B CN111859669 B CN 111859669B CN 202010704399 A CN202010704399 A CN 202010704399A CN 111859669 B CN111859669 B CN 111859669B
Authority
CN
China
Prior art keywords
calciner
formula
model
temperature
per unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010704399.7A
Other languages
Chinese (zh)
Other versions
CN111859669A (en
Inventor
褚彪
张宏图
陈薇
李鑫
余玲
高翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Cement Research and Design Institute Co Ltd
Original Assignee
Hefei Cement Research and Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Cement Research and Design Institute Co Ltd filed Critical Hefei Cement Research and Design Institute Co Ltd
Priority to CN202010704399.7A priority Critical patent/CN111859669B/en
Publication of CN111859669A publication Critical patent/CN111859669A/en
Application granted granted Critical
Publication of CN111859669B publication Critical patent/CN111859669B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/43Heat treatment, e.g. precalcining, burning, melting; Cooling
    • C04B7/44Burning; Melting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

The invention discloses a decomposition furnace temperature control method based on a thermal analysis-data driving model, which is applied to a cement sintering system consisting of a cyclone preheater, a decomposition furnace, a rotary kiln and a grate cooler, and comprises the following steps: 1, building a thermal analysis model; 2, establishing a thermal analysis discretization simplified model; 3, establishing a thermal analysis-data driven decomposing furnace outlet temperature model; 4 GPC control of the decomposing furnace outlet temperature is realized based on a thermal analysis-data driving model. The invention can accurately control the outlet temperature of the decomposing furnace, thereby ensuring the quality of the cement burned clinker and the stable operation of the preheating decomposing system.

Description

一种基于热工分析-数据驱动模型的分解炉温度控制方法A Calciner Temperature Control Method Based on Thermal Analysis-Data-Driven Model

技术领域technical field

本发明涉及分解炉温度建模与控制领域,具体的说是一种基于热工分析-数据驱动模型的分解炉温度控制方法。The invention relates to the field of calciner temperature modeling and control, in particular to a calciner temperature control method based on a thermal analysis-data-driven model.

背景技术Background technique

分解炉出口温度是一个非常重要的工艺参数,它对于水泥烧成熟料的品质以及预热分解系统的稳定运行有着十分关键的作用,建立其数学模型并进行优化控制非常重要。Calciner outlet temperature is a very important process parameter. It plays a key role in the quality of cement clinker and the stable operation of the preheating decomposition system. It is very important to establish its mathematical model and optimize its control.

一方面,热工分析模型都需要复杂的原理分析、流体力学和热力学的分析,这种模型都是建立在一定的假设条件上,需要计算的量特别多,运算量比较大,且变量之间大都是耦合的,具有强非线性,表达式中的某些系数还难以确定,很难建立水泥分解炉出口温度精确的数学表达式,不能满足实际工程需求。另一方面,水泥分解炉具有丰富的在线测量数据,可通过在线学习与计算便可获得系统的各种动静态特性。On the one hand, thermal analysis models all require complex principle analysis, fluid dynamics and thermodynamics analysis. This kind of model is based on certain assumptions. It requires a lot of calculations, the amount of calculation is relatively large, and most of the variables are coupled with strong nonlinearity. Some coefficients in the expressions are still difficult to determine. It is difficult to establish an accurate mathematical expression for the outlet temperature of the cement calciner, which cannot meet the actual engineering needs. On the other hand, the cement calciner has abundant online measurement data, and various dynamic and static characteristics of the system can be obtained through online learning and calculation.

目前由于新型干法水泥生产系统是个复杂的流程工业,具有时滞、耦合、干扰、时变等特点,使得大多数水泥企业采用常规的人工调节方法或基于经验的控制方法的来控制温度,能耗成本较高。At present, because the new dry process cement production system is a complex process industry with time-lag, coupling, interference, and time-varying characteristics, most cement enterprises use conventional manual adjustment methods or experience-based control methods to control temperature, and the energy consumption cost is high.

发明内容Contents of the invention

本发明是为了解决上述现有技术存在的不足之处,提出一种基于热工分析-数据驱动模型的分解炉温度控制方法,以期能准确控制分解炉出口温度,从而保障水泥烧成熟料的品质以及预热分解系统的稳定运行。In order to solve the shortcomings of the above-mentioned prior art, the present invention proposes a thermal analysis-data-driven model-based calciner temperature control method in order to accurately control the outlet temperature of the calciner, thereby ensuring the quality of cement clinker and the stable operation of the preheating decomposition system.

本发明为达到上述发明目的,采用如下技术方案:The present invention adopts following technical scheme in order to achieve the above-mentioned purpose of the invention:

本发明一种基于热工分析-数据驱动模型的分解炉温度控制方法,是应用于由旋风预热器、分解炉、回转窑和篦冷机所组成水泥烧成系统中,其特点是,所述分解炉温度控制方法是按如下步骤进行:A thermal analysis-data-driven model-based calciner temperature control method of the present invention is applied to a cement firing system composed of a cyclone preheater, a calciner, a rotary kiln and a grate cooler, and is characterized in that the calciner temperature control method is carried out as follows:

步骤1.建立热工分析模型:Step 1. Establish a thermal analysis model:

步骤1.1.利用式(1)建立物料平衡模型:Step 1.1. Utilize formula (1) to establish material balance model:

式(1)中,为所述分解炉内物料的质量;F1为单位时间内喷入所述分解炉的煤粉质量;Fgf1为单位时间内煤粉送风质量;Fg3为单位时间内三次风质量;/>为单位时间内从所述旋风预热器的第4或第5级进入到所述分解炉的生料质量;/>为单位时间内从所述回转窑进入分解炉的气体质量;/>为单位时间内从所述分解炉进入到所述旋风预热器的第5或第6级的生料质量;/>为单位时间内从所述分解炉进入到所述旋风预热器的第5或第6级的气体质量;In formula (1), is the quality of the material in the calciner; F is the quality of pulverized coal sprayed into the calciner per unit time; F gf1 is the quality of pulverized coal air supply per unit time; F g3 is the quality of tertiary air per unit time; is the mass of raw material entering the calciner from the 4th or 5th stage of the cyclone preheater per unit time; /> is the gas mass entering the calciner from the rotary kiln per unit time; /> is the mass of raw material entering the fifth or sixth stage of the cyclone preheater from the calciner per unit time; /> is the mass of gas entering the fifth or sixth stage of the cyclone preheater from the calciner per unit time;

步骤1.2.利用式(2)建立热量平衡模型:Step 1.2. Utilize formula (2) to establish heat balance model:

式(2)中,为所述分解炉内的热量;Q1为单位时间内喷入所述分解炉煤的热量,并有:In formula (2), Be the heat in the calciner; Q 1 is the heat that is sprayed into the coal of the calciner per unit time, and has:

Q1=CcF1T1 (3)Q 1 =C c F 1 T 1 (3)

式(3)中,Cc为煤的比热容;T1为煤粉温度;In formula (3), Cc is the specific heat capacity of coal; T1 is the temperature of pulverized coal;

式(2)中,Qgf1为单位时间内煤送风的热量,并有:In formula (2), Q gf1 is the heat of coal air supply per unit time, and there are:

Qgf1=Cgf1Fgf1Tgf1 (4)Q gf1 = C gf1 F gf1 T gf1 (4)

式(4)中,Cgf1为煤送风的比热容;Tgf1为煤送风的温度;In formula (4), C gf1 is the specific heat capacity of coal supply air; T gf1 is the temperature of coal supply air;

式(2)中,Qg3为单位时间内流入的三次风的热量,并有:In formula (2), Q g3 is the heat of the tertiary wind flowing in per unit time, and there are:

Qg3=Cg3Fg3Tg3 (5)Q g3 =C g3 F g3 T g3 (5)

式(5)中,Cg3为三次风的比热容;Tg3为三次风温;In formula (5), C g3 is the specific heat capacity of the tertiary air; T g3 is the temperature of the tertiary air;

式(2)中,为单位时间内从所述旋风预热器第4或第5级进入到分解炉生料的热量,并有:In formula (2), is the heat of raw material entering the calciner from the 4th or 5th stage of the cyclone preheater per unit time, and has:

式(6)中,为CaCO3的比热容;TC4为旋风预热器第4或第5级下料口温度;In formula (6), is the specific heat capacity of CaCO 3 ; T C4 is the temperature of the 4th or 5th stage feeding port of the cyclone preheater;

式(2)中,为单位时间内从回转窑进入所述分解炉的气体的热量,并有:In formula (2), is the heat of gas entering the calciner from the rotary kiln per unit time, and has:

式(7)中,Cg为气体的比热容;为窑尾气体温度;In formula (7), Cg is the specific heat capacity of gas; is the kiln tail gas temperature;

式(2)中,为单位时间内从所述分解炉进入到旋风预热器的第5或第6级的生料的热量,并有:In formula (2), is the heat of raw meal entering the 5th or 6th stage of the cyclone preheater from the calciner per unit time, and has:

式(8)中,Ccao为CaO的比热容;TA1为分解炉温度;In formula (8), C cao is the specific heat capacity of CaO; T A1 is the decomposition furnace temperature;

式(2)中,为单位时间内从所述分解炉进入到旋风预热器第5或第6级的高温气体的热量,并有:In formula (2), is the heat of the high-temperature gas entering the fifth or sixth stage of the cyclone preheater from the calciner per unit time, and has:

式(2)中,Qmsf为单位时间内分解炉中煤燃烧释放的热量,并有:In formula (2), Q msf is the heat released by coal combustion in the calciner per unit time, and has:

Qmsf=HcF1 (10)Q msf = H c F 1 (10)

式(10)中,Hc是煤的热值;In formula (10), Hc is the calorific value of coal;

式(2)中,为单位时间内分解炉中CaCO3吸热分解消耗的热量,并有:In formula (2), is the heat consumed by the endothermic decomposition of CaCO3 in the calciner per unit time, and has:

式(11)中,Mol为CaCO3的摩尔质量;为CaCO3吸热分解消耗的热量;In formula (11), Mol is CaCO Molar mass; The heat consumed for the endothermic decomposition of CaCO3 ;

步骤2.建立热工分析离散化简化模型:Step 2. Establish a simplified thermal analysis discretization model:

步骤2.1.将式(1)和式(2)整理简化后得到式(12):Step 2.1. Formula (12) is obtained after formula (1) and formula (2) are simplified:

式(12)中,表示第一参数,且/>KT表示时间常数,且/>K1表示喂煤量增益参数,且/>K2表示三次风温增益参数,且/>K3表示物料增益参数,且/>K4表示出分解炉气体增益参数,且/>K5表示煤送风增益参数,且/> In formula (12), denotes the first parameter, and /> K T represents the time constant, and /> K 1 represents the coal feeding amount gain parameter, and/> K 2 represents the third air temperature gain parameter, and /> K 3 represents the material gain parameter, and /> K 4 represents the gas gain parameter of the calciner, and /> K 5 represents the coal air supply gain parameter, and />

步骤2.2.对式(12)进行拉氏变化,并忽略Fgf1的影响,从而利用式(13)获得热工分析简化模型:Step 2.2. Carry out Laplace change to formula (12), and ignore The influence of F gf1 , thus using formula (13) to obtain the simplified model of thermal analysis:

步骤2.3.对式(13)进行离散化,从而利用式(14)建立热工分析离散化模型:Step 2.3. Discretize formula (13), thereby using formula (14) to establish a thermal analysis discretization model:

式(14)中,a表示第一模型参数,且b表示第二模型参数,且b=K1(1-a),c表示第三模型参数,且c=K2(1-a),d1表示第一时滞参数,且/>并取整,d2表示第二时滞参数,且/>并取整,Ts为采样周期,τ1为分解炉喂煤量滞后时间,τ2为三次风温滞后时间;In formula (14), a represents the first model parameter, and b represents the second model parameter, and b=K 1 (1-a), c represents the third model parameter, and c=K 2 (1-a), d 1 represents the first delay parameter, and /> and rounded, d 2 represents the second delay parameter, and /> And rounded up, T s is the sampling period, τ 1 is the lag time of coal feed to the calciner, and τ 2 is the lag time of the third air temperature;

步骤3.建立热工分析-数据驱动的分解炉出口温度模型:Step 3. Establish thermal analysis-data-driven calciner outlet temperature model:

步骤3.1.实时采集分解炉系统数据其中,/>表示第k次采样时刻的分解炉出口温度值,F1(k)表示第k次采样时刻的分解炉喂煤量值,Tg3(k)表示第k次采样时刻的三次风温值;Step 3.1. Real-time collection of calciner system data where, /> Indicates the outlet temperature value of the calciner at the kth sampling moment, F 1 (k) represents the coal feed value of the calciner at the kth sampling moment, T g3 (k) represents the tertiary wind temperature value at the kth sampling moment;

步骤3.2.采用移动平均滤波器对所述解炉系统数据进行预处理,获得滤波后的解炉系统数据其中,/>表示第k次采样时刻的分解炉出口温度滤波值,/>表示第k次采样时刻的分解炉喂煤量滤波值,/>表示第k次采样时刻的三次风温滤波值;Step 3.2. Using a moving average filter to process the furnace system data Perform preprocessing to obtain filtered furnace system data where, /> Indicates the filtered value of the temperature at the outlet of the decomposition furnace at the kth sampling time, /> Represents the filter value of the calciner coal feed amount at the kth sampling time, /> Indicates the third wind temperature filter value at the kth sampling moment;

步骤3.3.采用min-max归一化算法,对滤波后的解炉系统数据进行规则化处理,获得规则化后的解炉系统数据其中,/>表示第k次采样时刻的分解炉出口温度归一化值,/>表示第k次采样时刻的分解炉喂煤量归一化值,/>表示第k次第k次采样时刻的三次风温归一化值;Step 3.3. Use the min-max normalization algorithm to filter the furnace system data Carry out regularization processing to obtain the regularized furnace solution system data where, /> Indicates the normalized value of the calciner outlet temperature at the kth sampling moment, /> Indicates the normalized value of the calciner coal feed amount at the kth sampling time, /> Indicates the normalized value of the cubic wind temperature at the kth sampling moment of the kth time;

步骤3.4.采用均方误差作为误差性能准则,确定两个时滞参数d1,d2Step 3.4. Using the mean square error as the error performance criterion, determine two time-delay parameters d 1 and d 2 ;

步骤3.5.根据所述规则化后的解炉系统数据采用递推最小二乘法辨识所述热工分析离散化模型中的三个参数a,b,c;Step 3.5. According to the regularized furnace system data Using the recursive least squares method to identify three parameters a, b, and c in the thermal analysis discretization model;

步骤3.6.对所述热工分析离散化模型进行拟合度检验,若满足精度要求,则表示获得最终的热工分析离散化模型并作为分解炉出口温度模型,否则,返回步骤3.1顺序执行;Step 3.6. Carry out a fitting degree test on the thermal analysis discretization model, if the accuracy requirement is met, it means that the final thermal analysis discretization model is obtained and used as the calciner outlet temperature model, otherwise, return to step 3.1 for sequential execution;

步骤4.基于热工分析-数据驱动模型实现分解炉出口温度的GPC控制:Step 4. Realize GPC control of calciner outlet temperature based on thermal analysis-data-driven model:

根据所述分解炉出口温度模型,预测分解炉出口温度未来的输出曲线,并与分解炉出口温度期望柔化曲线进行比较获得偏差序列,从而根据所述偏差序列与分解炉喂煤量增量构成GPC性能指标;并由所述分解炉喂煤量增量的上下限约束、分解炉喂煤量的上下限约束构成GPC控制约束;According to the calciner outlet temperature model, predict the future output curve of the calciner outlet temperature, and compare it with the expected softening curve of the calciner outlet temperature to obtain a deviation sequence, thereby forming a GPC performance index according to the deviation sequence and the calciner coal feed increment; and constituting the GPC control constraints of the calciner coal feed increment and the calciner coal feed increment;

在第k次采样时刻针对所述GPC性能指标和所述GPC控制约束进行GPC优化控制,从而获得第k次采样时刻喂煤量的优化值,用于控制实际分解炉出口温度。Performing GPC optimization control on the GPC performance index and the GPC control constraints at the k-th sampling time, so as to obtain the optimal value of the coal feed amount at the k-th sampling time, which is used to control the actual calciner outlet temperature.

与现有技术相比,本发明的有益效果在于:Compared with prior art, the beneficial effect of the present invention is:

1.本发明根据质量、热量守恒定律建立分解炉的热工分析模型,由于系统模型复杂,对热工分析模型进行合理化简化,在此基础上采用数据驱动方法辨识热工分析模型中的参数,可更好的描述分解炉出口温度的数学模型关系,且具有明确的物理含义。相比较传统的只考虑热工分析模型或数据驱动模型,更具有系统性。1. The present invention establishes the thermal analysis model of the calciner according to the law of conservation of mass and heat. Due to the complexity of the system model, the thermal analysis model is rationalized and simplified. On this basis, a data-driven method is used to identify the parameters in the thermal analysis model, which can better describe the mathematical model relationship of the calciner outlet temperature, and has a clear physical meaning. Compared with the traditional thermal analysis model or data-driven model, it is more systematic.

2.本发明采用基于热工分析-数据驱动模型的分解炉温度GPC控制方法,不在选用传统的数据驱动模型而采用热工分析-数据驱动模型,在保证精确度的同时减小了计算复杂度。2. The present invention adopts the calciner temperature GPC control method based on the thermal analysis-data-driven model, instead of using the traditional data-driven model, the thermal analysis-data-driven model is used, which reduces the computational complexity while ensuring accuracy.

附图说明Description of drawings

图1为本发明分解炉运行原理图;Fig. 1 is the operating principle diagram of calciner of the present invention;

图2为本发明分解炉原始数据图;Fig. 2 is the original data figure of calciner of the present invention;

图3为本发明分解炉温度控制原理图。Fig. 3 is a principle diagram of the temperature control of the decomposition furnace of the present invention.

具体实施方式Detailed ways

本实施例中,如图1所示,水泥烧成系统由旋风预热器、分解炉、回转窑和篦冷机等设备组成。生料从旋风预热器的第4或第5级进入分解炉与煤粉、煤粉送风、三次风混合燃烧,在回转窑窑尾烟气的喷腾作用下,进入旋风预热器的第5或第6级中分离后至回转窑内进行煅烧。熟料煅烧把所需的60%左右的燃料转移到分解炉内,并将其燃烧热迅速应用于碳酸盐分解进程,炉内温度一般在890℃左右,并且使得入窑生料的碳酸盐分解率达到90-95%。故分解炉出口温度是一个非常重要的工艺参数,它对于水泥烧成熟料的品质有着十分关键的作用。In this embodiment, as shown in Figure 1, the cement firing system is composed of equipment such as cyclone preheater, calciner, rotary kiln and grate cooler. The raw material enters the calciner from the 4th or 5th stage of the cyclone preheater and is mixed with coal powder, coal powder supply air, and tertiary air for combustion. Under the action of the exhaust gas of the rotary kiln, it enters the 5th or 6th stage of the cyclone preheater for separation and then is calcined in the rotary kiln. Clinker calcination transfers about 60% of the required fuel to the calciner, and quickly applies its combustion heat to the carbonate decomposition process. The temperature in the furnace is generally around 890°C, and the carbonate decomposition rate of raw materials entering the kiln reaches 90-95%. Therefore, the outlet temperature of the calciner is a very important process parameter, which plays a key role in the quality of cement clinker.

具体实施中,一种基于热工分析-数据驱动模型的分解炉温度控制方法,是按如下步骤进行:In concrete implementation, a kind of calciner temperature control method based on thermal analysis-data-driven model is to carry out as follows:

步骤1.建立热工分析模型:Step 1. Establish a thermal analysis model:

步骤1.1.利用式(1)建立物料平衡模型:Step 1.1. Utilize formula (1) to establish material balance model:

式(1)中,为分解炉内物料的质量;F1为单位时间内喷入分解炉的煤粉质量;Fgf1为单位时间内煤粉送风质量;Fg3为单位时间内三次风质量;/>为单位时间内从旋风预热器的第4或第5级进入到分解炉的生料质量;/>为单位时间内从回转窑进入分解炉的气体质量;/>为单位时间内从分解炉进入到旋风预热器的第5或第6级的生料质量;/>为单位时间内从分解炉进入到旋风预热器的第5或第6级的气体质量;In formula (1), is the mass of materials in the calciner; F 1 is the mass of pulverized coal sprayed into the calciner per unit time; F gf1 is the quality of pulverized coal air supply per unit time; F g3 is the quality of tertiary air per unit time; It is the mass of raw material entering the calciner from the 4th or 5th stage of the cyclone preheater per unit time; /> is the mass of gas entering the calciner from the rotary kiln per unit time; /> It is the mass of raw material entering the fifth or sixth stage from the calciner to the cyclone preheater per unit time; /> It is the gas quality of the 5th or 6th stage entering the cyclone preheater from the calciner per unit time;

步骤1.2.利用式(2)建立热量平衡模型:Step 1.2. Utilize formula (2) to establish heat balance model:

式(2)中,为分解炉内的热量;Q1为单位时间内喷入分解炉煤的热量,并有:In formula (2), is the heat in the calciner; Q1 is the heat injected into the coal in the calciner per unit time, and has:

Q1=CcF1T1 (3)Q 1 =C c F 1 T 1 (3)

式(3)中,Cc为煤的比热容;T1为煤粉温度;In formula (3), Cc is the specific heat capacity of coal; T1 is the temperature of pulverized coal;

式(2)中,Qgf1为单位时间内煤送风的热量,并有:In formula (2), Q gf1 is the heat of coal air supply per unit time, and there are:

Qgf1=Cgf1Fgf1Tgf1 (4)Q gf1 = C gf1 F gf1 T gf1 (4)

式(4)中,Cgf1为煤送风的比热容;Tgf1为煤送风的温度;In formula (4), C gf1 is the specific heat capacity of coal supply air; T gf1 is the temperature of coal supply air;

式(2)中,Qg3为单位时间内流入的三次风的热量,并有:In formula (2), Q g3 is the heat of the tertiary wind flowing in per unit time, and there are:

Qg3=Cg3Fg3Tg3 (5)Q g3 =C g3 F g3 T g3 (5)

式(5)中,Cg3为三次风的比热容;Tg3为三次风温;In formula (5), C g3 is the specific heat capacity of the tertiary air; T g3 is the temperature of the tertiary air;

式(2)中,为单位时间内从旋风预热器第4或第5级进入到分解炉生料的热量,并有:In formula (2), It is the heat of the raw material entering the calciner from the 4th or 5th stage of the cyclone preheater per unit time, and has:

式(6)中,为CaCO3的比热容;TC4为旋风预热器第4或第5级下料口温度;In formula (6), is the specific heat capacity of CaCO 3 ; T C4 is the temperature of the 4th or 5th stage feeding port of the cyclone preheater;

式(2)中,为单位时间内从回转窑进入分解炉的气体的热量,并有:In formula (2), is the heat of gas entering the calciner from the rotary kiln per unit time, and has:

式(7)中,Cg为气体的比热容;为窑尾气体温度;In formula (7), Cg is the specific heat capacity of gas; is the kiln tail gas temperature;

式(2)中,为单位时间内从分解炉进入到旋风预热器的第5或第6级的生料的热量,并有:In formula (2), is the heat of raw meal entering the 5th or 6th stage of the cyclone preheater from the calciner per unit time, and has:

式(8)中,Ccao为CaO的比热容;TA1为分解炉温度;In formula (8), C cao is the specific heat capacity of CaO; T A1 is the decomposition furnace temperature;

式(2)中,为单位时间内从分解炉进入到旋风预热器第5或第6级的高温气体的热量,并有:In formula (2), is the heat of the high-temperature gas entering the fifth or sixth stage of the cyclone preheater from the calciner per unit time, and has:

式(2)中,Qmsf为单位时间内分解炉中煤燃烧释放的热量,并有:In formula (2), Q msf is the heat released by coal combustion in the calciner per unit time, and has:

Qmsf=HcF1 (10)Q msf = H c F 1 (10)

式(10)中,Hc是煤的热值;In formula (10), Hc is the calorific value of coal;

式(2)中,为单位时间内分解炉中CaCO3吸热分解消耗的热量,并有:In formula (2), is the heat consumed by the endothermic decomposition of CaCO3 in the calciner per unit time, and has:

式(11)中,Mol为CaCO3的摩尔质量;为CaCO3吸热分解消耗的热量;In formula (11), Mol is CaCO Molar mass; The heat consumed for the endothermic decomposition of CaCO3 ;

步骤2.建立热工分析离散化简化模型:Step 2. Establish a simplified thermal analysis discretization model:

步骤2.1.将式(1)和式(2)整理简化后得到式(12):Step 2.1. Formula (12) is obtained after formula (1) and formula (2) are simplified:

式(12)中,表示第一参数,且/>KT表示时间常数,且/>K1表示喂煤量增益参数,且/>K2表示三次风温增益参数,且/>K3表示物料增益参数,且/>K4表示出分解炉气体增益参数,且/>K5表示煤送风增益参数,且/> In formula (12), denotes the first parameter, and /> K T represents the time constant, and /> K 1 represents the coal feeding amount gain parameter, and/> K 2 represents the third air temperature gain parameter, and /> K 3 represents the material gain parameter, and /> K 4 represents the gas gain parameter of the calciner, and /> K 5 represents the coal air supply gain parameter, and />

步骤2.2.对式(12)进行拉氏变化,并忽略Fgf1的影响,从而利用式(13)获得热工分析简化模型:Step 2.2. Carry out Laplace change to formula (12), and ignore The influence of F gf1 , thus using formula (13) to obtain the simplified model of thermal analysis:

步骤2.3.对式(13)进行离散化,从而利用式(14)建立热工分析离散化模型:Step 2.3. Discretize formula (13), thereby using formula (14) to establish a thermal analysis discretization model:

式(14)中,a表示第一模型参数,且b表示第二模型参数,且b=K1(1-a),c表示第三模型参数,且c=K2(1-a),d1表示第一时滞参数,且/>并取整,d2表示第二时滞参数,且/>并取整,Ts为采样周期,τ1为分解炉喂煤量滞后时间,τ2为三次风温滞后时间;In formula (14), a represents the first model parameter, and b represents the second model parameter, and b=K 1 (1-a), c represents the third model parameter, and c=K 2 (1-a), d 1 represents the first delay parameter, and /> and rounded, d 2 represents the second delay parameter, and /> And rounded up, T s is the sampling period, τ 1 is the lag time of coal feed to the calciner, and τ 2 is the lag time of the third air temperature;

步骤3.建立热工分析-数据驱动的分解炉出口温度模型:Step 3. Establish thermal analysis-data-driven calciner outlet temperature model:

步骤3.1.实时采集分解炉系统数据其中,/>表示第k次采样时刻的分解炉出口温度值,F1(k)表示第k次采样时刻的分解炉喂煤量值,Tg3(k)表示第k次采样时刻的三次风温值;采集的数据如图2所示,选取工况正常情况下的某水泥厂的2020年4月17日700组数据,采样周期为5秒。Step 3.1. Real-time collection of calciner system data where, /> Indicates the outlet temperature value of the calciner at the kth sampling moment, F 1 (k) represents the coal feed value of the calciner at the kth sampling moment, and T g3 (k) represents the tertiary wind temperature value at the kth sampling moment; the collected data is shown in Figure 2, and 700 sets of data from a cement plant under normal working conditions on April 17, 2020 were selected, and the sampling period was 5 seconds.

步骤3.2.水泥预热分解系统内部干扰因素较多,数据采集和传送误差等都会影响数据质量,这些噪声误差都是来源于传感器的测量以及信号干扰。采用移动平均滤波器对解炉系统数据进行预处理,获得滤波后的解炉系统数据其中,/>表示第k次采样时刻的分解炉出口温度滤波值,/>表示第k次采样时刻的分解炉喂煤量滤波值,/>表示第k次采样时刻的三次风温滤波值。Step 3.2. There are many internal interference factors in the cement preheating decomposition system, and data acquisition and transmission errors will affect the data quality. These noise errors are all derived from sensor measurement and signal interference. Solving Furnace System Data Using Moving Average Filter Perform preprocessing to obtain filtered furnace system data where, /> Indicates the filtered value of the temperature at the outlet of the decomposition furnace at the kth sampling time, /> Represents the filter value of the calciner coal feed amount at the kth sampling time, /> Indicates the third air temperature filter value at the kth sampling moment.

步骤3.3.数据归一化处理是为了使输入输出数据能够更好的进行数据分析,避免因为数据量纲属性的不同,造成信息特征的丢失进而给模型和辨识带来不必要的影响。原始数据经过处理后,都处于同一量纲级别,各自表征的信息都能够在模型中无差别的显现。数据归一化还可以提升模型的收敛速度和训练精度。因此采用min-max归一化算法,对滤波后的解炉系统数据进行规则化处理,获得规则化后的解炉系统数据/>其中,/>表示第k次采样时刻的分解炉出口温度归一化值,/>表示第k次采样时刻的分解炉喂煤量归一化值,/>表示第k次第k次采样时刻的三次风温归一化值;Step 3.3. Data normalization processing is to make the input and output data better for data analysis, avoiding the loss of information features due to the difference in data dimensional attributes and thus bringing unnecessary impact on the model and identification. After the original data are processed, they are all at the same dimension level, and the information represented by each can be displayed in the model without distinction. Data normalization can also improve the convergence speed and training accuracy of the model. Therefore, the min-max normalization algorithm is used to filter the furnace system data Carry out regularization processing to obtain the regularized furnace solution system data/> where, /> Indicates the normalized value of the calciner outlet temperature at the kth sampling moment, /> Indicates the normalized value of the calciner coal feed amount at the kth sampling time, /> Indicates the normalized value of the cubic wind temperature at the kth sampling moment of the kth time;

步骤3.4.采用均方误差作为误差性能准则,确定两个时滞参数d1,d2;,见表1、表2.Step 3.4. Using the mean square error as the error performance criterion, determine two time-delay parameters d 1 and d 2 ; see Table 1 and Table 2.

表1时滞参数d1选择Table 1 Delay parameter d 1 selection

表2时滞参数d2选择Table 2 Delay parameter d 2 selection

本实施例中,选择d1=3,d2=1。In this embodiment, d 1 =3 and d 2 =1 are selected.

步骤3.5.根据规则化后的解炉系统数据采用递推最小二乘法辨识热工分析离散化模型中的三个参数a,b,c;从而得到模型参数值a=0.9889,b=0.6567,c=0.235。Step 3.5. According to the regularized furnace system data The three parameters a, b, c in the thermal analysis discretization model were identified by recursive least square method; thus the model parameter values a=0.9889, b=0.6567, c=0.235 were obtained.

步骤3.6.对热工分析离散化模型进行拟合度检验,若满足精度要求,则表示获得最终的热工分析离散化模型并作为分解炉出口温度模型,否则,返回步骤3.1顺序执行;Step 3.6. Carry out a fitting degree test on the thermal analysis discretization model, if the accuracy requirement is met, it means that the final thermal analysis discretization model is obtained and used as the calciner outlet temperature model, otherwise, return to step 3.1 and execute in sequence;

步骤4.基于热工分析-数据驱动模型实现分解炉出口温度的GPC控制:Step 4. Realize GPC control of calciner outlet temperature based on thermal analysis-data-driven model:

如图3所示,根据分解炉出口温度模型,预测分解炉出口温度未来的输出曲线,并与分解炉出口温度期望柔化曲线进行比较获得偏差序列,从而根据偏差序列与分解炉喂煤量增量构成GPC性能指标;并由分解炉喂煤量增量的上下限约束、分解炉喂煤量的上下限约束构成GPC控制约束;As shown in Figure 3, according to the calciner outlet temperature model, the future output curve of the calciner outlet temperature is predicted, and the deviation sequence is obtained by comparing with the expected softening curve of the calciner outlet temperature, so that the GPC performance index is formed according to the deviation sequence and the calciner coal feed increment; and the upper and lower limits of the calciner coal feed increment, and the calciner coal feed upper and lower limit constraints constitute the GPC control constraints;

在第k次采样时刻针对GPC性能指标和GPC控制约束进行GPC优化控制,从而获得喂煤量的优化值,用于控制实际分解炉出口温度。At the kth sampling time, the GPC optimization control is carried out according to the GPC performance index and the GPC control constraints, so as to obtain the optimal value of the coal feeding amount, which is used to control the actual calciner outlet temperature.

Claims (1)

1.一种基于热工分析-数据驱动模型的分解炉温度控制方法,是应用于由旋风预热器、分解炉、回转窑和篦冷机所组成水泥烧成系统中,其特征是,所述分解炉温度控制方法是按如下步骤进行:1. a kind of calciner temperature control method based on thermal analysis-data-driven model is to be applied in the cement firing system that is formed by cyclone preheater, calciner, rotary kiln and grate cooler, it is characterized in that, described calciner temperature control method is to carry out as follows: 步骤1.建立热工分析模型:Step 1. Establish a thermal analysis model: 步骤1.1.利用式(1)建立物料平衡模型:Step 1.1. Utilize formula (1) to establish material balance model: 式(1)中,为所述分解炉内物料的质量;F1为单位时间内喷入所述分解炉的煤粉质量;Fgf1为单位时间内煤粉送风质量;Fg3为单位时间内三次风质量;/>为单位时间内从所述旋风预热器的第4或第5级进入到所述分解炉的生料质量;/>为单位时间内从所述回转窑进入分解炉的气体质量;/>为单位时间内从所述分解炉进入到所述旋风预热器的第5或第6级的生料质量;/>为单位时间内从所述分解炉进入到所述旋风预热器的第5或第6级的气体质量;In formula (1), is the quality of the material in the calciner; F is the quality of pulverized coal sprayed into the calciner per unit time; F gf1 is the quality of pulverized coal air supply per unit time; F g3 is the quality of tertiary air per unit time; is the mass of raw material entering the calciner from the 4th or 5th stage of the cyclone preheater per unit time; /> is the gas mass entering the calciner from the rotary kiln per unit time; /> is the mass of raw material entering the fifth or sixth stage of the cyclone preheater from the calciner per unit time; /> is the mass of gas entering the fifth or sixth stage of the cyclone preheater from the calciner per unit time; 步骤1.2.利用式(2)建立热量平衡模型:Step 1.2. Utilize formula (2) to establish heat balance model: 式(2)中,为所述分解炉内的热量;Q1为单位时间内喷入所述分解炉煤的热量,并有:In formula (2), Be the heat in the calciner; Q 1 is the heat that is sprayed into the coal of the calciner per unit time, and has: Q1=CcF1T1 (3)Q 1 =C c F 1 T 1 (3) 式(3)中,Cc为煤的比热容;T1为煤粉温度;In formula (3), Cc is the specific heat capacity of coal; T1 is the temperature of pulverized coal; 式(2)中,Qgf1为单位时间内煤送风的热量,并有:In formula (2), Q gf1 is the heat of coal air supply per unit time, and there are: Qgf1=Cgf1Fgf1Tgf1 (4)Q gf1 = C gf1 F gf1 T gf1 (4) 式(4)中,Cgf1为煤送风的比热容;Tgf1为煤送风的温度;In formula (4), C gf1 is the specific heat capacity of coal supply air; T gf1 is the temperature of coal supply air; 式(2)中,Qg3为单位时间内流入的三次风的热量,并有:In formula (2), Q g3 is the heat of the tertiary wind flowing in per unit time, and there are: Qg3=Cg3Fg3Tg3 (5)Q g3 =C g3 F g3 T g3 (5) 式(5)中,Cg3为三次风的比热容;Tg3为三次风温;In formula (5), C g3 is the specific heat capacity of the tertiary air; T g3 is the temperature of the tertiary air; 式(2)中,为单位时间内从所述旋风预热器第4或第5级进入到分解炉生料的热量,并有:In formula (2), is the heat of raw material entering the calciner from the 4th or 5th stage of the cyclone preheater per unit time, and has: 式(6)中,为CaCO3的比热容;TC4为旋风预热器第4或第5级下料口温度;In formula (6), is the specific heat capacity of CaCO 3 ; T C4 is the temperature of the 4th or 5th stage feeding port of the cyclone preheater; 式(2)中,为单位时间内从回转窑进入所述分解炉的气体的热量,并有:In formula (2), is the heat of gas entering the calciner from the rotary kiln per unit time, and has: 式(7)中,Cg为气体的比热容;为窑尾气体温度;In formula (7), Cg is the specific heat capacity of gas; is the kiln tail gas temperature; 式(2)中,为单位时间内从所述分解炉进入到旋风预热器的第5或第6级的生料的热量,并有:In formula (2), is the heat of raw meal entering the 5th or 6th stage of the cyclone preheater from the calciner per unit time, and has: 式(8)中,Ccao为CaO的比热容;TA1为分解炉温度;In formula (8), C cao is the specific heat capacity of CaO; T A1 is the decomposition furnace temperature; 式(2)中,为单位时间内从所述分解炉进入到旋风预热器第5或第6级的高温气体的热量,并有:In formula (2), is the heat of the high-temperature gas entering the fifth or sixth stage of the cyclone preheater from the calciner per unit time, and has: 式(2)中,Qmsf为单位时间内分解炉中煤燃烧释放的热量,并有:In formula (2), Q msf is the heat released by coal combustion in the calciner per unit time, and has: Qmsf=HcF1 (10)Q msf = H c F 1 (10) 式(10)中,Hc是煤的热值;In formula (10), Hc is the calorific value of coal; 式(2)中,为单位时间内分解炉中CaCO3吸热分解消耗的热量,并有:In formula (2), is the heat consumed by the endothermic decomposition of CaCO3 in the calciner per unit time, and has: 式(11)中,Mol为CaCO3的摩尔质量;为CaCO3吸热分解消耗的热量;In formula (11), Mol is CaCO Molar mass; The heat consumed for the endothermic decomposition of CaCO3 ; 步骤2.建立热工分析离散化简化模型:Step 2. Establish a simplified thermal analysis discretization model: 步骤2.1.将式(1)和式(2)整理简化后得到式(12):Step 2.1. Formula (12) is obtained after formula (1) and formula (2) are simplified: 式(12)中,表示第一参数,且/>KT表示时间常数,且K1表示喂煤量增益参数,且/>K2表示三次风温增益参数,且K3表示物料增益参数,且/>K4表示出分解炉气体增益参数,且/>K5表示煤送风增益参数,且/> In formula (12), denotes the first parameter, and /> K T represents the time constant, and K 1 represents the coal feeding amount gain parameter, and/> K 2 represents the third air temperature gain parameter, and K 3 represents the material gain parameter, and /> K 4 represents the gas gain parameter of the calciner, and /> K 5 represents the coal air supply gain parameter, and /> 步骤2.2.对式(12)进行拉氏变化,并忽略Fgf1的影响,从而利用式(13)获得热工分析简化模型:Step 2.2. Carry out Laplace change to formula (12), and ignore The influence of F gf1 , thus using formula (13) to obtain the simplified model of thermal analysis: 步骤2.3.对式(13)进行离散化,从而利用式(14)建立热工分析离散化模型:Step 2.3. Discretize formula (13), thereby using formula (14) to establish a thermal analysis discretization model: 式(14)中,a表示第一模型参数,且b表示第二模型参数,且b=K1(1-a),c表示第三模型参数,且c=K2(1-a),d1表示第一时滞参数,且/>并取整,d2表示第二时滞参数,且/>并取整,Ts为采样周期,τ1为分解炉喂煤量滞后时间,τ2为三次风温滞后时间;In formula (14), a represents the first model parameter, and b represents the second model parameter, and b=K 1 (1-a), c represents the third model parameter, and c=K 2 (1-a), d 1 represents the first delay parameter, and /> and rounded, d 2 represents the second delay parameter, and /> And rounded up, T s is the sampling period, τ 1 is the lag time of coal feed to the calciner, and τ 2 is the lag time of the third air temperature; 步骤3.建立热工分析-数据驱动的分解炉出口温度模型:Step 3. Establish thermal analysis-data-driven calciner outlet temperature model: 步骤3.1.实时采集分解炉系统数据其中,/>表示第k次采样时刻的分解炉出口温度值,F1(k)表示第k次采样时刻的分解炉喂煤量值,Tg3(k)表示第k次采样时刻的三次风温值;Step 3.1. Real-time collection of calciner system data where, /> Indicates the outlet temperature value of the calciner at the kth sampling moment, F 1 (k) represents the coal feed value of the calciner at the kth sampling moment, T g3 (k) represents the tertiary wind temperature value at the kth sampling moment; 步骤3.2.采用移动平均滤波器对所述解炉系统数据进行预处理,获得滤波后的解炉系统数据/>其中,/>表示第k次采样时刻的分解炉出口温度滤波值,/>表示第k次采样时刻的分解炉喂煤量滤波值,/>表示第k次采样时刻的三次风温滤波值;Step 3.2. Using a moving average filter to process the furnace system data Perform preprocessing to obtain filtered furnace system data/> where, /> Indicates the filtered value of the temperature at the outlet of the decomposition furnace at the kth sampling time, /> Represents the filter value of the calciner coal feed amount at the kth sampling time, /> Indicates the third wind temperature filter value at the kth sampling moment; 步骤3.3.采用min-max归一化算法,对滤波后的解炉系统数据进行规则化处理,获得规则化后的解炉系统数据其中,/>表示第k次采样时刻的分解炉出口温度归一化值,/>表示第k次采样时刻的分解炉喂煤量归一化值,/>表示第k次第k次采样时刻的三次风温归一化值;Step 3.3. Use the min-max normalization algorithm to filter the furnace system data Carry out regularization processing to obtain the regularized furnace solution system data where, /> Indicates the normalized value of the calciner outlet temperature at the kth sampling moment, /> Indicates the normalized value of the calciner coal feed amount at the kth sampling time, /> Indicates the normalized value of the cubic wind temperature at the kth sampling moment of the kth time; 步骤3.4.采用均方误差作为误差性能准则,确定两个时滞参数d1,d2Step 3.4. Using the mean square error as the error performance criterion, determine two time-delay parameters d 1 and d 2 ; 步骤3.5.根据所述规则化后的解炉系统数据采用递推最小二乘法辨识所述热工分析离散化模型中的三个参数a,b,c;Step 3.5. According to the regularized furnace system data Using the recursive least squares method to identify three parameters a, b, and c in the thermal analysis discretization model; 步骤3.6.对所述热工分析离散化模型进行拟合度检验,若满足精度要求,则表示获得最终的热工分析离散化模型并作为分解炉出口温度模型,否则,返回步骤3.1顺序执行;Step 3.6. Carry out a fitting degree test on the thermal analysis discretization model, if the accuracy requirement is met, it means that the final thermal analysis discretization model is obtained and used as the calciner outlet temperature model, otherwise, return to step 3.1 for sequential execution; 步骤4.基于热工分析-数据驱动模型实现分解炉出口温度的GPC控制:Step 4. Realize GPC control of calciner outlet temperature based on thermal analysis-data-driven model: 根据所述分解炉出口温度模型,预测分解炉出口温度未来的输出曲线,并与分解炉出口温度期望柔化曲线进行比较获得偏差序列,从而根据所述偏差序列与分解炉喂煤量增量构成GPC性能指标;并由所述分解炉喂煤量增量的上下限约束、分解炉喂煤量的上下限约束构成GPC控制约束;According to the calciner outlet temperature model, predict the future output curve of the calciner outlet temperature, and compare it with the expected softening curve of the calciner outlet temperature to obtain a deviation sequence, thereby forming a GPC performance index according to the deviation sequence and the calciner coal feed increment; and constituting the GPC control constraints of the calciner coal feed increment and the calciner coal feed increment; 在第k次采样时刻针对所述GPC性能指标和所述GPC控制约束进行GPC优化控制,从而获得第k次采样时刻喂煤量的优化值,用于控制实际分解炉出口温度。Performing GPC optimization control on the GPC performance index and the GPC control constraints at the k-th sampling time, so as to obtain the optimal value of the coal feed amount at the k-th sampling time, which is used to control the actual calciner outlet temperature.
CN202010704399.7A 2020-07-21 2020-07-21 Decomposition furnace temperature control method based on thermal analysis-data driving model Active CN111859669B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010704399.7A CN111859669B (en) 2020-07-21 2020-07-21 Decomposition furnace temperature control method based on thermal analysis-data driving model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010704399.7A CN111859669B (en) 2020-07-21 2020-07-21 Decomposition furnace temperature control method based on thermal analysis-data driving model

Publications (2)

Publication Number Publication Date
CN111859669A CN111859669A (en) 2020-10-30
CN111859669B true CN111859669B (en) 2023-07-25

Family

ID=73002440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010704399.7A Active CN111859669B (en) 2020-07-21 2020-07-21 Decomposition furnace temperature control method based on thermal analysis-data driving model

Country Status (1)

Country Link
CN (1) CN111859669B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112577332A (en) * 2020-11-02 2021-03-30 合肥工业大学 Cement sintering decomposing furnace temperature optimization control method
CN114739538B (en) * 2022-04-19 2024-10-29 合肥水泥研究设计院有限公司 Method for judging internal circulation quantity of preheater
CN114942659B (en) * 2022-06-30 2023-08-29 佛山仙湖实验室 Kiln temperature control method, system, device and storage medium
CN116199441B (en) * 2022-12-09 2025-01-21 中国中材国际工程股份有限公司 A method for determining the target value of decomposition furnace outlet temperature based on dual drive of data and rules

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104503236A (en) * 2014-12-10 2015-04-08 济南大学 Outlet temperature sliding mode control method for decomposing furnace based on regression model
CN104765350A (en) * 2015-04-03 2015-07-08 燕山大学 Cement decomposing furnace control method and system based on combined model predicting control technology
WO2018076403A1 (en) * 2016-10-25 2018-05-03 浙江邦业科技股份有限公司 One-dimensional simulation method for predicting quality of clinker in rotary cement kiln

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104503236A (en) * 2014-12-10 2015-04-08 济南大学 Outlet temperature sliding mode control method for decomposing furnace based on regression model
CN104765350A (en) * 2015-04-03 2015-07-08 燕山大学 Cement decomposing furnace control method and system based on combined model predicting control technology
WO2018076403A1 (en) * 2016-10-25 2018-05-03 浙江邦业科技股份有限公司 One-dimensional simulation method for predicting quality of clinker in rotary cement kiln

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
新型干法水泥分解炉温度控制的ANFIS辨识与仿真;熊蕴远;万春红;张东宁;;电气技术(第11期);全文 *

Also Published As

Publication number Publication date
CN111859669A (en) 2020-10-30

Similar Documents

Publication Publication Date Title
CN111859669B (en) Decomposition furnace temperature control method based on thermal analysis-data driving model
CN111665809B (en) Segmentation mechanism modeling method and system for rotary cement kiln
CN103332878B (en) Optimization method for production full process of novel dry-process cement clinker
CN104503236B (en) A kind of decomposition furnace outlet temperature sliding-mode control based on regression model
CN105259335B (en) The evaluation method and calcine technology optimization method of clinker performance
CN104498706B (en) A kind of drying grate-rotary kiln-circular cooler Trinitarian pelletizing production optimization method
CN104794263A (en) Hybrid modeling method for rotary cement kiln burning zone temperature based on LS_SVM soft measurement
CN105865215B (en) Cement kiln temperature Multi-parameter control system
CN117406601A (en) An energy-saving and emission-reducing alternative fuel combustion optimization control method for cement decomposition furnaces
CN116523075A (en) Cement clinker strength prediction method, device, electronic equipment and storage medium
CN104536396A (en) Soft measurement modeling method used in cement raw material decomposing process in decomposing furnace
CN105808945B (en) A kind of hybrid intelligent boiler efficiency burning optimization method
CN114968997B (en) A sintering endpoint prediction method based on spatiotemporal feature extraction
Yang et al. Temperature prediction and analysis based on BP and Elman neural network for cement rotary kiln
CN107145751A (en) A Method of Setting Optimum Operating Point of Cement Burning System
CN114334025A (en) Construction and verification method of a cement clinker calcining environment variable
CN112365935B (en) Cement free calcium soft measurement method based on multi-scale depth network
CN105785761A (en) Method for controlling temperature intelligent switching of cement raw materials in the course of decomposition
CN202766420U (en) Automatic control system for gas-burning lime shaft kiln production process
CN104656436B (en) A kind of decomposition furnace outlet Temperature Modeling method
CN116382371A (en) Decomposing furnace temperature control method under garbage co-treatment
CN105624394B (en) A kind of sinter bed Warm status recognition methods based on bellows EGT
Li et al. Research on optimal setting of cement decomposing furnace temperature based on case reasoning
CN104699039A (en) Expert control method for burning double-chamber lime furnace
CN109212977A (en) A kind of mixed control method based on Petri network

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant