CN111856853A - A micro-lens array projection system with compound micro-prism - Google Patents
A micro-lens array projection system with compound micro-prism Download PDFInfo
- Publication number
- CN111856853A CN111856853A CN202010824884.8A CN202010824884A CN111856853A CN 111856853 A CN111856853 A CN 111856853A CN 202010824884 A CN202010824884 A CN 202010824884A CN 111856853 A CN111856853 A CN 111856853A
- Authority
- CN
- China
- Prior art keywords
- lens
- micro
- projection
- microprism
- array surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000001875 compounds Chemical class 0.000 title claims description 10
- 239000002131 composite material Substances 0.000 claims abstract description 31
- 230000003287 optical effect Effects 0.000 claims abstract description 29
- 239000011295 pitch Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 5
- 230000005499 meniscus Effects 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/142—Adjusting of projection optics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B3/00—Simple or compound lenses
- G02B3/0006—Arrays
- G02B3/0037—Arrays characterized by the distribution or form of lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/04—Prisms
- G02B5/045—Prism arrays
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Projection Apparatus (AREA)
Abstract
Description
技术领域technical field
本发明涉及投影系统,具体公开了一种复合微棱镜的微透镜阵列投影系统。The invention relates to a projection system, and specifically discloses a microlens array projection system of a compound microprism.
背景技术Background technique
投影系统是将物体照明后成像于投影屏上的光学系统。短距离的投影系统可应用于汽车侧面用于迎宾,也可以应用于汽车前后用作警示提醒,还能设于应用于桌面投影,如键盘图像的投影。The projection system is an optical system that illuminates the object and images it on the projection screen. The short-distance projection system can be applied to the side of the car to welcome guests, to the front and rear of the car as a warning reminder, and can also be applied to desktop projection, such as keyboard image projection.
投影系统主要包括三个重要部件:光源、投影源以及成像单元。以投影源中的图像是否重复出现在接收面上为依据,分为单通道投影系统和多通道投影系统。The projection system mainly includes three important components: light source, projection source and imaging unit. According to whether the image in the projection source appears repeatedly on the receiving surface, it is divided into single-channel projection system and multi-channel projection system.
单通道投影系统如图1所示,设置多片式的成像单元,包括LED、准直透镜、菲林片等投影源和投影单元镜片组,可以在不同的距离获得清晰度较高的投影实像,但景深较浅,镜片数目较多,系统的总长度大。As shown in Figure 1, the single-channel projection system is equipped with multi-piece imaging units, including projection sources such as LEDs, collimating lenses, film films, and projection unit lens groups, which can obtain high-definition projected real images at different distances. However, the depth of field is shallow, the number of lenses is large, and the overall length of the system is large.
多通道投影系统如图2所示,包括光源、准直透镜、第一微透镜阵列、投影源和第二微透镜阵列,可实现远场的成像,但接收面距离较近时,微透镜单元的高度相较于投影实像的像高较大,不能忽略,如微透镜单元的高度与投影实像的高度比大于1/50时,由于每个成像光路的偏移,会造成像面上多个像面相互叠加,导致最终无法形成清晰且单一的投影实像。The multi-channel projection system is shown in Figure 2, including a light source, a collimating lens, a first microlens array, a projection source and a second microlens array, which can achieve far-field imaging, but when the receiving surface is close, the microlens unit Compared with the image height of the projected real image, the height cannot be ignored. For example, when the ratio of the height of the microlens unit to the height of the projected real image is greater than 1/50, due to the offset of each imaging optical path, multiple images on the image surface will be caused. The image planes are superimposed on each other, resulting in the final inability to form a clear and single projected real image.
现有技术中的投影系统无法同时获得近距离投影、投影实像清晰单一以及系统总长度小的性能。The projection system in the prior art cannot simultaneously achieve the performance of short-range projection, clear and single projected real image, and small total length of the system.
发明内容SUMMARY OF THE INVENTION
基于此,有必要针对现有技术问题,提供一种复合微棱镜的微透镜阵列投影系统,能够在近距离实现清晰单一投影效果,系统的总长度小。Based on this, it is necessary to address the problems of the prior art to provide a microlens array projection system with a compound microprism, which can achieve a clear and single projection effect at a short distance, and the total length of the system is small.
为解决现有技术问题,本发明公开一种复合微棱镜的微透镜阵列投影系统,包括依次设置的光源、复合准直镜模块、投影源、复合投影镜模块和接收面,复合准直镜模块包括准直聚光面和第一微透镜阵列面,准直聚光面位于第一微透镜阵列面远离投影源的一侧,第一微透镜阵列面包括m个阵列排布的第一微透镜单元,投影源包括m个阵列排布的投影图像单元;In order to solve the problems of the prior art, the present invention discloses a composite microprism microlens array projection system, comprising a light source, a composite collimating mirror module, a projection source, a composite projection mirror module and a receiving surface arranged in sequence, and the composite collimating mirror module It includes a collimating light collecting surface and a first microlens array surface, the collimating light collecting surface is located on the side of the first microlens array surface away from the projection source, and the first microlens array surface includes m first microlenses arranged in an array unit, the projection source includes m projection image units arranged in an array;
复合投影镜模块包括微棱镜阵列面和第二微透镜阵列面,微棱镜阵列面位于第二微透镜阵列面靠近投影源的一侧,微棱镜阵列面包括m个阵列排布的楔形微棱镜单元,第二微透镜阵列面包括m个阵列排布的第二微透镜单元,各个楔形微棱镜单元分别与两侧相对应的第一微透镜单元和第二微透镜单元具有共同的中心轴,各个投影图像单元分别位于各个楔形微棱镜单元的中心轴上;The composite projection mirror module includes a microprism array surface and a second microlens array surface, the microprism array surface is located on the side of the second microlens array surface close to the projection source, and the microprism array surface includes m wedge-shaped microprism units arranged in an array , the second microlens array surface includes m second microlens units arranged in an array, and each wedge-shaped microprism unit has a common central axis with the first microlens unit and the second microlens unit corresponding to both sides, and each The projection image units are respectively located on the central axis of each wedge-shaped microprism unit;
第一微透镜阵列面和第二微透镜阵列面之间的距离为s,微棱镜阵列面与接收面之间的距离为L′,第一微透镜单元的焦距f1=s,第二微透镜单元的焦距为f2=(L′*s)/(L′+s);The distance between the first microlens array surface and the second microlens array surface is s, the distance between the microprism array surface and the receiving surface is L', the focal length of the first microlens unit f 1 =s, the second microlens The focal length of the lens unit is f 2 =(L'*s)/(L'+s);
楔形微棱镜单元的楔角为αi,i*d<<L′,距离系统光轴的第i个楔形微棱镜单元的楔角满足以下关系式:The wedge angle of the wedge-shaped microprism unit is α i , i*d<<L′, and the wedge angle of the i-th wedge-shaped microprism unit away from the optical axis of the system satisfies the following relationship:
其中,相邻两个第一微透镜单元的间距、相邻两个第二微透镜单元的间距和相邻两个楔形微棱镜单元的间距均为d,n为折射率。Wherein, the distance between two adjacent first micro-lens units, the distance between two adjacent second micro-lens units, and the distance between two adjacent wedge-shaped micro-prism units are all d, and n is the refractive index.
进一步的,准直聚光面设于准直透镜上,第一微透镜阵列面设于第一多通道透镜上。Further, the collimating light collecting surface is arranged on the collimating lens, and the first microlens array surface is arranged on the first multi-channel lens.
进一步的,第一微透镜阵列面位于第一多通道透镜远离投影源的一侧,第一多通道透镜靠近投影源的一侧为平面,投影源与第一多通道透镜的平面紧贴接触。Further, the first microlens array surface is located on the side of the first multi-channel lens away from the projection source, the side of the first multi-channel lens close to the projection source is a plane, and the projection source is in close contact with the plane of the first multi-channel lens.
进一步的,投影源包括至少两种具有不同投影图像的投影图像单元。Further, the projection source includes at least two projection image units having different projection images.
进一步的,微棱镜阵列面设于偏折镜片上,第二微透镜阵列面设于第二多通道透镜上。Further, the microprism array surface is arranged on the deflecting lens, and the second microlens array surface is arranged on the second multi-channel lens.
进一步的,偏折镜片的两侧面均设有微棱镜阵列面。Further, both sides of the deflecting lens are provided with microprism array surfaces.
进一步的,偏折镜片靠近投影源的一侧为微棱镜阵列面,偏折镜片远离投影源的一侧为平面;第二多通道透镜靠近接收面的一侧为第二微透镜阵列面,第二多通道透镜远离接收面的一侧为平面,偏折镜片的平面与第二多通道透镜的平面紧贴接触。Further, the side of the deflection lens close to the projection source is a microprism array surface, and the side of the deflection lens away from the projection source is a plane; the side of the second multi-channel lens close to the receiving surface is a second microlens array surface, and the first The side of the second multi-channel lens away from the receiving surface is a plane, and the plane of the deflecting lens is in close contact with the plane of the second multi-channel lens.
进一步的,微棱镜阵列面和第二微透镜阵列面均设于投影复合镜片上。Further, both the microprism array surface and the second microlens array surface are arranged on the projection composite lens.
本发明的有益效果为:本发明公开一种复合微棱镜的微透镜阵列投影系统,设置有第一微透镜阵列面和第二微透镜阵列面,相对的第一微透镜单元和第二微透镜单元具有共同的光轴,可有效避免相邻光通道之间发生光信息串扰,在投影源和第二微透镜阵列面之间设置有微棱镜阵列面,通过楔形微棱镜单元能够对第二微透镜单元的子物像单元实现具有针对性的偏折,偏折后的子物像单元再经过第二微透镜单元形成子实像单元,最终各个子实像单元在接收面上复合重叠形成清晰单一的投影实像,系统总长度小、结构简单。The beneficial effects of the present invention are as follows: the present invention discloses a composite microprism microlens array projection system, which is provided with a first microlens array surface and a second microlens array surface, and the first microlens unit and the second microlens are opposite to each other. The units have a common optical axis, which can effectively avoid crosstalk of optical information between adjacent optical channels. A microprism array surface is arranged between the projection source and the second microlens array surface. The sub-object image unit of the lens unit realizes targeted deflection, and the deflected sub-object image unit passes through the second micro-lens unit to form a sub-real image unit. Finally, each sub-real image unit is compounded and overlapped on the receiving surface to form a clear and single image. Projecting a real image, the total length of the system is small and the structure is simple.
附图说明Description of drawings
图1为现有技术中单通道投影系统的光路结构示意图。FIG. 1 is a schematic diagram of an optical path structure of a single-channel projection system in the prior art.
图2为现有技术中多通道投影系统的光路结构示意图。FIG. 2 is a schematic diagram of an optical path structure of a multi-channel projection system in the prior art.
图3为本发明的光路结构示意图。FIG. 3 is a schematic diagram of an optical path structure of the present invention.
图4为本发明的局部结构示意图。FIG. 4 is a schematic diagram of a partial structure of the present invention.
图5为本发明一实施例的光路结构示意图。FIG. 5 is a schematic diagram of an optical path structure according to an embodiment of the present invention.
图6为本发明另一实施例的光路结构示意图。FIG. 6 is a schematic diagram of an optical path structure according to another embodiment of the present invention.
图7为本发明又一实施例的光路结构示意图。FIG. 7 is a schematic diagram of an optical path structure according to another embodiment of the present invention.
附图标记为:光源10、复合准直镜模块20、准直聚光面21、准直透镜21A、第二微透镜阵列面22、第二微透镜单元221、第一多通道透镜22A、投影源30、投影图像单元31、复合投影镜模块40、微棱镜阵列面41、楔形微棱镜单元411、偏折镜片41A、第二微透镜阵列面42、第二微透镜单元421、第二多通道透镜42A、投影复合镜片43、接收面50。Reference numerals are:
具体实施方式Detailed ways
为能进一步了解本发明的特征、技术手段以及所达到的具体目的、功能,下面结合附图与具体实施方式对本发明作进一步详细描述。In order to further understand the features, technical means, and specific goals and functions of the present invention, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.
参考图3至图7。Refer to FIGS. 3 to 7 .
本发明基础实施例公开一种复合微棱镜的微透镜阵列投影系统,如图3所示,包括依次设置的光源10、复合准直镜模块20、投影源30、复合投影镜模块40和接收面50,优选地,光源10可以为LED灯珠,复合准直镜模块20包括准直聚光面21和第一微透镜阵列面22,优选地,准直聚光面21为具有正光焦度的非球面,准直聚光面21位于第一微透镜阵列面22远离投影源30的一侧,第一微透镜阵列面22包括m个阵列排布的第一微透镜单元221,投影源30包括m个阵列排布的投影图像单元31,投影源30可以为菲林片、液晶屏等,接收面50可为墙面、地面、白屏等;The basic embodiment of the present invention discloses a composite microprism microlens array projection system, as shown in FIG. 3 , including a
复合投影镜模块40包括微棱镜阵列面41和第二微透镜阵列面42,微棱镜阵列面41位于第二微透镜阵列面42靠近投影源30的一侧,微棱镜阵列面41包括m个阵列排布的楔形微棱镜单元411,第二微透镜阵列面42包括m个阵列排布的第二微透镜单元421,楔形微棱镜单元411的截面为直角三角形,同一水平位置上的各个第一微透镜单元221、微棱镜单元和第二微透镜单元421一一对应,各个楔形微棱镜单元411分别与两侧相对应的第一微透镜单元221和第二微透镜单元421具有共同的中心轴,能有效避免相邻的光通道之间发生光信息串扰而导致最终所获投影实像形成重影,各个投影图像单元31分别位于各个楔形微棱镜单元411的中心轴上,相对的第一微透镜单元221、第二微透镜单元421和楔形微棱镜单元411形成光通道,各个投影图像单元31分别位于各个光通道中;The composite
如图4所示,第一微透镜阵列面22和第二微透镜阵列面42之间的距离为s,微棱镜阵列面41与接收面50之间的距离为L′,L′为投影距离,为确保经准直聚光面21准直之后的光能够准确到达第二微透镜单元421对应的光通道且不发生串光,第一微透镜单元221作为场镜其焦点设置在对应第二微透镜单元421的主点,第一微透镜单元221的焦距f1=s,第二微透镜单元421的焦距为f2=(L′*s)/(L′+s);As shown in FIG. 4 , the distance between the first
如图4所示,整体系统的光轴平行线穿过各个楔形微棱镜单元411的斜面,任一微透镜单元的光轴与系统的光轴所组成的平面,垂直于该微透镜单元对应的楔形微棱镜单元411的斜面,楔形微棱镜单元411的楔角为αi,楔角为系统光轴所垂直的平面与楔形微棱镜的斜面之间的夹角,图4中,具有同一中心轴的两个楔形微棱镜单元411的两个斜面之间的夹角为楔角,相邻两个第一微透镜单元221中心的间距、相邻两个第二微透镜单元421中心的间距和相邻两个楔形微棱镜单元411中心的间距均为d,n为微棱镜阵列面41所在镜片的折射率,当第一微透镜单元221或第二微透镜单元421距离系统光轴的位置相对投影距离足够小时,即i*d<<L′,此时光线的入射角Ii很小,此时光线在楔形微棱镜单元411处的入射角也很小,因而楔角αi也很小,故而该角度的正弦值可近似为该角弧度,可知简化的偏角公式为:δi=(n-1)*αi,根据图中的几何关系,可知偏角δi=(i*d)/L′,楔形微棱镜单元411的楔角为αi,i*d<<L′,综合以上两式,可以得出距离系统光轴的第i个楔形微棱镜单元411的楔角满足以下关系式:As shown in FIG. 4 , the parallel line of the optical axis of the overall system passes through the inclined surface of each wedge-
其中,i取0~m的整数,i=0是中心处,上述角度的单位采用弧度制。Wherein, i takes an integer from 0 to m, i=0 is the center, and the unit of the above angle adopts the radian system.
通过上述关系式计算获得的数值为设计参考值,在具体应用中可根据实际情况进行调整以适配对应的需求。The value obtained by the calculation of the above relational formula is the design reference value, which can be adjusted according to the actual situation in the specific application to adapt to the corresponding demand.
工作时,光源10发出的光依次到达准直聚光面21、第一微透镜阵列面22、投影源30、微棱镜阵列面41、第二微透镜阵列面42和接收面50,具体原理为:光源10发出的光线被准直聚光面21准直后到达第一微透镜阵列面22,从而形成m个光束单元,各个光束单元被各个对应的投影图像单元31选择输出后形成m个子物像单元,各个子物像单元被各个对应的楔形微棱镜单元411偏折调整后,进入各个对应的第二微透镜单元421,获得m个子实像单元,各个子实像单元在接收面50上实现复合叠加,最终获得清晰的投影实像。本系统通过增设微棱镜阵列面41对物像进行的偏折调整,且每个光通道中的物像都能够获得独立的偏折,能够对投影系统实现多通道的光路成像复合叠加,从而获得清晰的投影实像。During operation, the light emitted by the
复合投影镜模组从数学角度看事实上是个光学加法器,接收面5050的照度分布满足以下关系式:E(x,y)=∑i=1..mEi(xi,yi),其中(x,y)为接收面5050的位置坐标,E为接收面50的照度,(xi,yi)为投影源30的位置坐标,Ei(xi,yi)为投影图像单元31在接收面50的照度。The composite projection mirror module is actually an optical adder from a mathematical point of view, and the illuminance distribution of the receiving surface 5050 satisfies the following relationship: E(x, y)=∑ i=1..m E i (x i , y i ) , where (x, y) is the position coordinate of the receiving surface 5050, E is the illuminance of the
在本实施例中,准直聚光面21设于准直透镜21A上,第一微透镜阵列面22设于第一多通道透镜22A上,准直透镜21A位于第一多通道透镜22A远离投影源30的一侧,第一微透镜单元221可以是平凸透镜、双凸透镜、凸平透镜或凹凸透镜,甚至可以是多微透镜组合。In this embodiment, the collimating light-converging
基于上述实施例,第一微透镜阵列面22位于第一多通道透镜22A远离投影源30的一侧,第一多通道透镜22A靠近投影源30的一侧为平面,投影源30与第一多通道透镜22A的平面紧贴接触,能够有效提高投影源30对光能的利用率,同时能够有效缩短整体系统的长度。Based on the above embodiment, the first
在本实施例中,投影源30包括至少两种具有不同投影图像的投影图像单元31,如图5所示,投影图像单元31设置有至少两种,不同种投影图像单元31的投影图像不相同,最终所形成图像不同的各种子实像单元在接收面50上复合叠加,从而形成图像特定的投影实像。In this embodiment, the
在本实施例中,如图3、5、6所示,投影源30和接收面50之间设有偏折镜片41A和第二多通道透镜42A,第二多通道透镜42A位于偏折镜片41A远离接收面50的一侧,微棱镜阵列面41设于偏折镜片41A上,微棱镜阵列面41可位于偏折镜片41A的任一侧,偏折镜片41A的厚度小,能够有效缩短系统的总长度,第二微透镜阵列面42设于第二多通道透镜42A上,第二微透镜阵列面42可位于第二多通道透镜42A的任一侧,被投影源30选择后的光线依次经过微棱镜阵列面41和第二微透镜阵列面42,第二微透镜单元421可以是平凸透镜、双凸透镜、凸平透镜或凹凸透镜,甚至可以是多微透镜组合。In this embodiment, as shown in FIGS. 3 , 5 and 6 , a
基于上述实施例,如图3、4、5所示,偏折镜片41A的两侧面均设有微棱镜阵列面41,即微棱镜阵列面41设有两个,两个微棱镜阵列面41分别位于偏折镜片41A的两侧面,两侧的微棱镜阵列面41关于偏折镜片41A对称,具有同一中心轴的两个楔形微棱镜单元411的两个斜面之间的夹角为楔角。Based on the above-mentioned embodiment, as shown in FIGS. 3 , 4 and 5 , both sides of the deflecting
在本实施例中,如图6所示,偏折镜片41A靠近投影源30的一侧为微棱镜阵列面41,偏折镜片41A远离投影源30的一侧为平面;第二多通道透镜42A靠近接收面50的一侧为第二微透镜阵列面42,第二多通道透镜42A远离接收面50的一侧为平面,偏折镜片41A的平面与第二多通道透镜42A的平面紧贴接触,能够进一步提高光能的利用率,同时能够有效缩短系统的长度。In this embodiment, as shown in FIG. 6 , the side of the
在本实施例中,如图7所示,投影源30和接收面50之间设有投影复合镜片43,微棱镜阵列面41和第二微透镜阵列面42均设于投影复合镜片43上,即微棱镜阵列面41和第二微透镜阵列面42分别位于投影复合镜片43的两表面,能够有效减少系统的光学零件的数目,系统结构简洁,系统成本低,且由于光学零件会对光能造成损耗,本系统减少光学零件的使用还能够有效减少光能损失,从而提高光能的利用率;优选地,准直聚光面21和第一微透镜阵列面22设于同一透镜上,能进一步简化系统结构,减少光能损耗。In this embodiment, as shown in FIG. 7 , a
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the patent of the present invention. It should be pointed out that for those skilled in the art, without departing from the concept of the present invention, several modifications and improvements can be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention should be subject to the appended claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010824884.8A CN111856853B (en) | 2020-08-17 | 2020-08-17 | Micro-lens array projection system of composite micro-prism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010824884.8A CN111856853B (en) | 2020-08-17 | 2020-08-17 | Micro-lens array projection system of composite micro-prism |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111856853A true CN111856853A (en) | 2020-10-30 |
CN111856853B CN111856853B (en) | 2021-03-02 |
Family
ID=72968760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010824884.8A Active CN111856853B (en) | 2020-08-17 | 2020-08-17 | Micro-lens array projection system of composite micro-prism |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111856853B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113031130A (en) * | 2021-03-31 | 2021-06-25 | 广东烨嘉光电科技股份有限公司 | Micro-lens array projection system for oblique projection |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5703722A (en) * | 1995-02-27 | 1997-12-30 | Blankenbecler; Richard | Segmented axial gradinet array lens |
EP1398973A2 (en) * | 2002-08-20 | 2004-03-17 | Seiko Epson Corporation | Image display device and projector |
JP2004361939A (en) * | 2003-05-12 | 2004-12-24 | Seiko Epson Corp | Projector and display device |
JP2005077545A (en) * | 2003-08-29 | 2005-03-24 | Sharp Corp | Polarization conversion optical system, its manufacturing method and liquid crystal display |
CN101013198A (en) * | 2002-07-30 | 2007-08-08 | 三星电子株式会社 | High-resolution display including pixel moving optical system |
CN101999093A (en) * | 2008-04-16 | 2011-03-30 | 夏普株式会社 | Liquid crystal display device |
CN102681319A (en) * | 2011-03-08 | 2012-09-19 | 精工爱普生株式会社 | Illumination device and projector |
CN102710902A (en) * | 2011-02-16 | 2012-10-03 | 意法半导体(R&D)有限公司 | multi-channel image sensor |
US8488244B1 (en) * | 2010-07-12 | 2013-07-16 | Alliance Fiber Optic Products, Inc. | Ultra compact optical multiplexer or demultiplexer |
CN103852960A (en) * | 2012-12-07 | 2014-06-11 | 扬明光学股份有限公司 | Projection device and light-gathering module |
CN204258928U (en) * | 2014-11-03 | 2015-04-08 | 北京蚁视科技有限公司 | Optical field imaging system |
JP2015169675A (en) * | 2014-03-04 | 2015-09-28 | セイコーエプソン株式会社 | Illumination device and projector |
JP2017097189A (en) * | 2015-11-25 | 2017-06-01 | 株式会社リコー | Screen, image display device, and object device |
CN206460250U (en) * | 2016-12-22 | 2017-09-01 | 鲜善洪 | Projection arrangement and system |
CN208092339U (en) * | 2017-12-21 | 2018-11-13 | 广东烨嘉光电科技股份有限公司 | A VR lens system with Fresnel structure |
CN108873181A (en) * | 2017-05-11 | 2018-11-23 | 苏州旭创科技有限公司 | light path control system and optical module |
US20190101815A1 (en) * | 2017-09-29 | 2019-04-04 | Canon Kabushiki Kaisha | Polarization beam splitter and image projection apparatus using the same |
CN209288524U (en) * | 2018-12-19 | 2019-08-23 | 湖北银琅兴科技发展有限公司 | A kind of device with laser engraving production strip wide cut dealuminzation film strips |
CN110308553A (en) * | 2019-07-29 | 2019-10-08 | 天津大学 | A mid-infrared imaging optical system based on microlens array for field-of-view switching |
-
2020
- 2020-08-17 CN CN202010824884.8A patent/CN111856853B/en active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5703722A (en) * | 1995-02-27 | 1997-12-30 | Blankenbecler; Richard | Segmented axial gradinet array lens |
CN101013198A (en) * | 2002-07-30 | 2007-08-08 | 三星电子株式会社 | High-resolution display including pixel moving optical system |
EP1398973A2 (en) * | 2002-08-20 | 2004-03-17 | Seiko Epson Corporation | Image display device and projector |
JP2004361939A (en) * | 2003-05-12 | 2004-12-24 | Seiko Epson Corp | Projector and display device |
JP2005077545A (en) * | 2003-08-29 | 2005-03-24 | Sharp Corp | Polarization conversion optical system, its manufacturing method and liquid crystal display |
CN101999093A (en) * | 2008-04-16 | 2011-03-30 | 夏普株式会社 | Liquid crystal display device |
US8488244B1 (en) * | 2010-07-12 | 2013-07-16 | Alliance Fiber Optic Products, Inc. | Ultra compact optical multiplexer or demultiplexer |
CN102710902A (en) * | 2011-02-16 | 2012-10-03 | 意法半导体(R&D)有限公司 | multi-channel image sensor |
CN102681319A (en) * | 2011-03-08 | 2012-09-19 | 精工爱普生株式会社 | Illumination device and projector |
CN103852960A (en) * | 2012-12-07 | 2014-06-11 | 扬明光学股份有限公司 | Projection device and light-gathering module |
JP2015169675A (en) * | 2014-03-04 | 2015-09-28 | セイコーエプソン株式会社 | Illumination device and projector |
CN204258928U (en) * | 2014-11-03 | 2015-04-08 | 北京蚁视科技有限公司 | Optical field imaging system |
JP2017097189A (en) * | 2015-11-25 | 2017-06-01 | 株式会社リコー | Screen, image display device, and object device |
CN206460250U (en) * | 2016-12-22 | 2017-09-01 | 鲜善洪 | Projection arrangement and system |
CN108873181A (en) * | 2017-05-11 | 2018-11-23 | 苏州旭创科技有限公司 | light path control system and optical module |
US20190101815A1 (en) * | 2017-09-29 | 2019-04-04 | Canon Kabushiki Kaisha | Polarization beam splitter and image projection apparatus using the same |
CN208092339U (en) * | 2017-12-21 | 2018-11-13 | 广东烨嘉光电科技股份有限公司 | A VR lens system with Fresnel structure |
CN209288524U (en) * | 2018-12-19 | 2019-08-23 | 湖北银琅兴科技发展有限公司 | A kind of device with laser engraving production strip wide cut dealuminzation film strips |
CN110308553A (en) * | 2019-07-29 | 2019-10-08 | 天津大学 | A mid-infrared imaging optical system based on microlens array for field-of-view switching |
Non-Patent Citations (1)
Title |
---|
刘晨: "《工程光学》", 31 August 2012 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113031130A (en) * | 2021-03-31 | 2021-06-25 | 广东烨嘉光电科技股份有限公司 | Micro-lens array projection system for oblique projection |
CN113031130B (en) * | 2021-03-31 | 2022-08-09 | 广东烨嘉光电科技股份有限公司 | Micro-lens array projection system for oblique projection |
Also Published As
Publication number | Publication date |
---|---|
CN111856853B (en) | 2021-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111856851B (en) | Projection system of composite micro lens and micro prism | |
US20200174279A1 (en) | Three-dimensional display device | |
WO2022033020A1 (en) | Optical projection system with micro-lens arrays | |
US20140267639A1 (en) | Image display apparatus | |
US10890706B2 (en) | Optical device | |
CN102445762A (en) | Naked eye 3D (three-dimensional) projection screen and naked eye 3D projection system | |
US10613375B2 (en) | Backlight module and liquid crystal display device | |
TWI768354B (en) | Backlight module, display device | |
US20220035094A1 (en) | Optical waveguide unit, array, and flat lens | |
CN111856850B (en) | Multichannel microlens array projection system | |
CN208833940U (en) | Backlight panel, anti-peep display device and device for realizing naked-eye three-dimensional image display | |
CN111856853A (en) | A micro-lens array projection system with compound micro-prism | |
CN101551477A (en) | Prism sheet | |
CN117850130A (en) | Projection system, vehicle head-up display device and vehicle | |
CN211905753U (en) | Optical lens | |
CN113031130B (en) | Micro-lens array projection system for oblique projection | |
CN108802888B (en) | Backlight module and stereoscopic display device of its application | |
CN211452246U (en) | Structured light inclined projection device for three-dimensional measurement | |
CN211905883U (en) | Multi-viewpoint aerial imaging device | |
CN101470301A (en) | Composite light guide film module | |
CN210181311U (en) | Optical waveguide unit, array and flat lens | |
CN114815298A (en) | Waveguide type high-uniformity directional backlight system for naked eye three-dimensional display | |
CN1790093A (en) | Projection display system | |
CN217425913U (en) | Micro-lens array projection device with prism | |
CN211905758U (en) | Optical waveguide imaging lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |