CN111852467B - Method and system for delineating extension range of sandstone uranium ore body - Google Patents
Method and system for delineating extension range of sandstone uranium ore body Download PDFInfo
- Publication number
- CN111852467B CN111852467B CN202010736639.1A CN202010736639A CN111852467B CN 111852467 B CN111852467 B CN 111852467B CN 202010736639 A CN202010736639 A CN 202010736639A CN 111852467 B CN111852467 B CN 111852467B
- Authority
- CN
- China
- Prior art keywords
- data
- ore
- seismic
- wave impedance
- bearing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 229910052770 Uranium Inorganic materials 0.000 title claims abstract description 45
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 title claims abstract description 45
- 239000011435 rock Substances 0.000 claims abstract description 87
- 238000012545 processing Methods 0.000 claims abstract description 63
- 238000013517 stratification Methods 0.000 claims abstract description 16
- 238000005553 drilling Methods 0.000 claims description 11
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000005070 sampling Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000013508 migration Methods 0.000 claims description 6
- 230000005012 migration Effects 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 5
- 238000001739 density measurement Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000005755 formation reaction Methods 0.000 claims description 2
- 239000000523 sample Substances 0.000 description 75
- 230000006378 damage Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/02—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/12—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
- E21B47/14—Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Business, Economics & Management (AREA)
- Geophysics (AREA)
- Health & Medical Sciences (AREA)
- Strategic Management (AREA)
- Animal Husbandry (AREA)
- Agronomy & Crop Science (AREA)
- Economics (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Marine Sciences & Fisheries (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Acoustics & Sound (AREA)
- Remote Sensing (AREA)
- Soil Sciences (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明公开了一种砂岩铀矿矿体延伸范围的圈定方法及系统。本发明属于砂岩铀矿勘查领域。所述方法包括以下步骤:在工业孔中进行测井和录井,获取测井数据、地质分层和岩性柱状图;在工业孔的含矿目的层取芯,测定岩石样品的纵波速度、横波速度和密度,计算纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板;在工业孔周围采集三维地震数据,完成数据处理和解释,在此基础上通过地震叠前反演,获取目的层的纵波阻抗分布和横波阻抗分布,依据岩石物理量板,在纵波阻抗分布图和横波阻抗分布图上圈定含矿岩石分布范围,获取砂岩铀矿矿体的延伸范围。该方法为砂岩铀矿矿体延伸范围的圈定提供技术方法,绿色环保的同时加快砂岩铀矿的勘探周期。
The invention discloses a method and system for delineating the extension range of a sandstone uranium ore body. The invention belongs to the field of sandstone uranium ore exploration. The method comprises the following steps: performing well logging and mud logging in an industrial hole to obtain well logging data, geological stratification and lithology histogram; taking cores from the ore-bearing target layer of the industrial hole to measure the compressional wave velocity, S-wave velocity and density, calculate P-wave impedance and S-wave impedance, and make petrophysical quantity boards for distinguishing ore bodies and surrounding rocks; collect 3D seismic data around industrial holes, complete data processing and interpretation, and use seismic pre-stack reflection to complete data processing and interpretation. Obtain the P-wave impedance distribution and S-wave impedance distribution of the target layer, delineate the distribution range of ore-bearing rocks on the P-wave impedance distribution map and S-wave impedance distribution map according to the rock physical quantity plate, and obtain the extension range of the sandstone uranium ore body. This method provides a technical method for the delineation of the extension range of sandstone uranium deposits, which is environmentally friendly and speeds up the exploration cycle of sandstone uranium deposits.
Description
技术领域technical field
本发明涉及砂岩铀矿勘查技术领域,特别涉及一种砂岩铀矿矿体延伸范围的圈定方法及系统。The invention relates to the technical field of sandstone uranium ore exploration, in particular to a method and system for delineating the extension range of a sandstone uranium ore body.
背景技术Background technique
在砂岩铀矿的勘查中,在发现一口具有开采价值的工业孔后,为确定砂岩铀矿矿体的延伸范围,需要布设大量的钻孔去调查矿体的延伸,圈定矿体范围,在投入大量经费的同时,还会对环境造成破坏。如何在无需布设大量的钻孔的条件下,实现砂岩铀矿矿体延伸范围的圈定,成为一个亟待解决的技术问题。In the exploration of sandstone uranium ore, after discovering an industrial hole with mining value, in order to determine the extension range of the sandstone uranium ore body, it is necessary to lay out a large number of drill holes to investigate the extension of the ore body, delineate the range of the ore body, and invest in While costing a lot of money, it will also cause damage to the environment. How to delineate the extension range of the sandstone uranium ore body without laying a large number of drill holes has become an urgent technical problem to be solved.
发明内容Contents of the invention
本发明的目的是提供一种砂岩铀矿矿体延伸范围的圈定方法及系统,以无需布设大量的钻孔的条件下,实现砂岩铀矿矿体延伸范围的圈定。The object of the present invention is to provide a method and system for delineating the extension range of sandstone uranium ore bodies, so as to realize the delineation of the extension range of sandstone uranium ore bodies without laying a large number of drill holes.
为实现上述目的,本发明提供了如下方案:To achieve the above object, the present invention provides the following scheme:
一种砂岩铀矿矿体延伸范围的圈定方法,所述圈定方法包括如下步骤:A method for delineating the extension range of a sandstone uranium ore body, said delineating method comprising the following steps:
对工业孔进行测井和录井操作,获取测井数据和录井数据;所述测井数据包括工业孔的不同深度的声波和密度,所述录井数据包括工业孔的地质分层和岩性柱状图;Perform well logging and mud logging operations on industrial holes to obtain well logging data and mud logging data; the logging data includes sound waves and densities at different depths of industrial holes, and the mud logging data includes geological layers and rock formations of industrial holes sex histogram;
在工业孔的含矿目的层进行取样,获得多个含矿样品和多个围岩样品;Sampling is carried out in the ore-bearing target layer of the industrial hole to obtain multiple ore-bearing samples and multiple surrounding rock samples;
根据每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板;Based on the compressional wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample, a petrophysical quantity board for distinguishing ore bodies and surrounding rocks is made;
通过地震仪采集所述工业孔周围待勘查区域的三维地震数据;Acquiring three-dimensional seismic data of the area to be surveyed around the industrial hole through a seismograph;
利用地震数据处理软件,对所述三维地震数据进行叠加处理和偏移处理,获取三维地震处理数据;所述地震处理数据包含纯波数据和成果数据;Using seismic data processing software, performing superposition processing and migration processing on the three-dimensional seismic data to obtain three-dimensional seismic processing data; the seismic processing data includes pure wave data and result data;
利用所述测井数据和所述录井数据对所述三维地震处理数据进行解释,获得三维地震数据的地震解释数据,所述地震解释数据包括含矿目的层的层位和断裂位置;Interpreting the three-dimensional seismic processing data by using the well logging data and the mud logging data to obtain seismic interpretation data of the three-dimensional seismic data, the seismic interpretation data including layers and fracture positions of ore-bearing target layers;
利用所述测井数据、所述录井数据和所述地震解释数据,对三维地震数据的地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布;Using the well logging data, the mud logging data and the seismic interpretation data, perform seismic prestack inversion on the seismic prestack gather data volume of the 3D seismic data, and obtain the compressional wave impedance distribution and shear wave impedance of the ore-bearing target layer distributed;
根据含矿目的层的纵波阻抗分布和横波阻抗分布,利用所述岩石物理量板圈定砂岩铀矿矿体延伸范围。According to the distribution of longitudinal wave impedance and shear wave impedance of the ore-bearing target layer, the extension range of the sandstone uranium ore body is delineated by using the petrophysical quantity plate.
可选的,所述对工业孔进行测井和录井操作,获取测井数据和录井数据,具体包括:Optionally, performing logging and mud logging operations on industrial holes to obtain logging data and mud logging data specifically includes:
利用测井仪测量工业孔的不同深度的声波和密度;Use logging tools to measure sound waves and densities at different depths in industrial boreholes;
对工业孔进行钻井取芯,获得岩芯;Drill and core industrial holes to obtain cores;
根据岩芯各段的岩性确定工业孔的地质分层;Determine the geological stratification of industrial holes according to the lithology of each section of the core;
根据岩芯的每个地质层的岩性建立岩性柱状图。A lithology histogram is built according to the lithology of each geological layer of the core.
可选的,所述根据每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板,具体包括:Optionally, according to the compressional wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample, making a petrophysical quantity board for distinguishing ore bodies and surrounding rocks specifically includes:
采用超声脉冲透射法分别测量每个含矿样品和每个围岩样品的纵波速度和横波速度;The longitudinal wave velocity and shear wave velocity of each ore-bearing sample and each surrounding rock sample were measured by ultrasonic pulse transmission method;
采用量积法分别测量每个含矿样品和每个围岩样品的密度;The density of each ore-bearing sample and each surrounding rock sample is measured separately by the volumetric method;
分别将每个含矿样品和每个围岩样品的纵波速度、横波速度与每个含矿样品和每个围岩样品的密度相乘,获得每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗;Multiply the compressional wave velocity and shear wave velocity of each ore-bearing sample and each surrounding rock sample by the density of each ore-bearing sample and each surrounding rock sample to obtain the compressional wave of each ore-bearing sample and each surrounding rock sample impedance and shear wave impedance;
以横波阻抗为岩石物理量板的横坐标轴,以纵波阻抗为岩石物理量板的纵坐标轴,建立坐标系;The coordinate system is established by taking the shear wave impedance as the abscissa axis of the petrophysical quantity plate, and taking the longitudinal wave impedance as the ordinate axis of the petrophysical quantity plate;
将每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗的交会点分别投影至所述坐标系上,获得交会图;projecting the intersection points of the longitudinal wave impedance and the shear wave impedance of each ore-bearing sample and each surrounding rock sample onto the coordinate system to obtain an intersection map;
在所述交会图上圈出含矿样品的区域,获得用于区分矿体和围岩的岩石物理量板。The ore-bearing sample area is circled on the intersection map to obtain a petrophysical quantity plate for distinguishing ore bodies and surrounding rocks.
可选的,所述利用所述测井数据和所述录井数据对所述三维地震处理数据进行解释,获得三维地震数据的地震解释数据,所述地震解释数据包括含矿目的层的层位和断裂位置,具体包括:Optionally, using the well logging data and the mud logging data to interpret the three-dimensional seismic processing data to obtain seismic interpretation data of the three-dimensional seismic data, the seismic interpretation data includes the horizon of the ore-bearing target layer and fracture locations, including:
采用三维地震数据解释软件,对所述三维地震处理数据和所述测井数据进行合成地震记录操作,完成对地震数据的含矿目的层的层位的标定;Using three-dimensional seismic data interpretation software, performing a synthetic seismic recording operation on the three-dimensional seismic processing data and the logging data, and completing the calibration of the horizon of the ore-bearing target layer of the seismic data;
对含矿目的层的层位的三维地震处理数据进行追踪,根据三维地震处理数据的同向轴特性确定含矿目的层的断裂位置。The three-dimensional seismic processing data of the layer of the ore-bearing target layer is tracked, and the fracture position of the ore-bearing target layer is determined according to the synaxial characteristics of the three-dimensional seismic processing data.
可选的,所述利用所述测井数据、所述录井数据和所述地震解释数据,对三维地震数据的地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布,具体包括:Optionally, using the well logging data, the mud logging data and the seismic interpretation data, perform seismic prestack inversion on the seismic prestack gather data volume of the 3D seismic data to obtain the ore-bearing target layer P-wave impedance distribution and shear-wave impedance distribution, specifically including:
利用三维地震数据处理软件对三维地震数据进行处理,获得地震叠前道集数据体;Use the 3D seismic data processing software to process the 3D seismic data to obtain the seismic pre-stack gather data volume;
利用所述测井数据、所述录井数据和所述地震解释数据,对所述地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布。Using the well logging data, the mud logging data and the seismic interpretation data, perform seismic prestack inversion on the seismic prestack gather data volume to obtain the distribution of compressional wave impedance and shear wave impedance of the ore-bearing target layer.
一种砂岩铀矿矿体延伸范围的圈定系统,所述圈定系统包括:A delineation system for the extended range of a sandstone uranium ore body, the delineation system comprising:
测井和录井模块,用于对工业孔进行测井和录井操作,获取测井数据和录井数据;所述测井数据包括工业孔的不同深度的声波和密度,所述录井数据包括工业孔的地质分层和岩性柱状图;The well logging and mud logging module is used to perform well logging and mud logging operations on industrial holes, and obtain well logging data and mud logging data; the well logging data includes sound waves and densities at different depths of industrial holes, and the mud logging data Geological stratification and lithology histograms including industrial boreholes;
样品获取模块,用于在工业孔的含矿目的层进行取样,获得多个含矿样品和多个围岩样品;The sample acquisition module is used to take samples in the ore-bearing target layer of the industrial hole, and obtain multiple ore-bearing samples and multiple surrounding rock samples;
岩石物理量板建立模块,用于根据每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板;The petrophysical quantity plate building module is used to make a petrophysical quantity plate for distinguishing ore bodies and surrounding rocks according to the compressional wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample;
三维地震数据采集模块,用于通过地震仪采集所述工业孔周围待勘查区域的三维地震数据;The three-dimensional seismic data acquisition module is used to collect the three-dimensional seismic data of the area to be investigated around the industrial hole through the seismograph;
三维地震数据处理模块,用于利用地震数据处理软件,对所述三维地震数据进行叠加处理和偏移处理,获取三维地震处理数据;所述地震处理数据包含纯波数据和成果数据;The three-dimensional seismic data processing module is used to use seismic data processing software to perform superposition processing and migration processing on the three-dimensional seismic data to obtain three-dimensional seismic processing data; the seismic processing data includes pure wave data and result data;
三维地震数据解释模块,用于利用所述测井数据和所述录井数据对所述三维地震处理数据进行解释,获得三维地震数据的地震解释数据,所述地震解释数据包括含矿目的层的层位和断裂位置;A three-dimensional seismic data interpretation module, configured to interpret the three-dimensional seismic processing data by using the well logging data and the mud logging data, and obtain seismic interpretation data of the three-dimensional seismic data, the seismic interpretation data including the ore-bearing target layer horizons and fracture locations;
三维地震数据反演模块,用于利用所述测井数据、所述录井数据和所述地震解释数据,对三维地震数据的地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布;The three-dimensional seismic data inversion module is used to perform seismic pre-stack inversion on the seismic pre-stack gather data volume of the three-dimensional seismic data by using the logging data, the mud logging data and the seismic interpretation data to obtain ore-bearing P-wave impedance distribution and shear-wave impedance distribution of the target layer;
圈定模块,用于根据含矿目的层的纵波阻抗分布和横波阻抗分布,利用所述岩石物理量板圈定砂岩铀矿矿体延伸范围。The delineation module is used to delineate the extension range of the sandstone uranium ore body by using the petrophysical quantity board according to the distribution of the longitudinal wave impedance and the shear wave impedance of the ore-bearing target layer.
可选的,所述测井和录井模块,具体包括:Optionally, the well logging and mud logging modules specifically include:
测井子模块,用于利用测井仪测量工业孔的不同深度的声波和密度;The logging sub-module is used to measure the acoustic wave and density of industrial holes at different depths with the logging instrument;
钻井取芯子模块,用于对工业孔进行钻井取芯,获得岩芯;The drilling and coring sub-module is used for drilling and coring industrial holes to obtain cores;
地质分层确定子模块,用于根据岩芯各段的岩性确定工业孔的地质分层;The sub-module for determining geological stratification is used to determine the geological stratification of industrial holes according to the lithology of each section of the core;
岩性柱状图建立子模块,用于根据岩芯的每个地质层的岩性建立岩性柱状图。The lithology histogram establishment sub-module is used for establishing the lithology histogram according to the lithology of each geological layer of the core.
可选的,所述岩石物理量板建立模块,具体包括:Optionally, the petrophysical quantity board building module specifically includes:
波速测量子模块,用于采用超声脉冲透射法分别测量每个含矿样品和每个围岩样品的纵波速度和横波速度;The wave velocity measurement sub-module is used to measure the longitudinal wave velocity and shear wave velocity of each ore-bearing sample and each surrounding rock sample by ultrasonic pulse transmission method;
密度测量子模块,用于采用量积法分别测量每个含矿样品和每个围岩样品的密度;The density measurement sub-module is used to measure the density of each ore-bearing sample and each surrounding rock sample respectively by the volumetric method;
阻抗计算子模块,用于分别将每个含矿样品和每个围岩样品的纵波速度、横波速度与每个含矿样品和每个围岩样品的密度相乘,获得每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗;The impedance calculation sub-module is used to multiply the compressional wave velocity and the shear wave velocity of each ore-bearing sample and each surrounding rock sample by the density of each ore-bearing sample and each surrounding rock sample to obtain each ore-bearing sample and each The compressional wave impedance and shear wave impedance of each surrounding rock sample;
坐标系建立子模块,用于以横波阻抗为岩石物理量板的横坐标轴,以纵波阻抗为岩石物理量板的纵坐标轴,建立坐标系;The coordinate system establishment sub-module is used to establish a coordinate system with the shear wave impedance as the abscissa axis of the petrophysical quantity plate and the longitudinal wave impedance as the ordinate axis of the petrophysical quantity plate;
交会点投影子模块,用于将每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗的交会点分别投影至所述坐标系上,获得交会图;The intersection point projection sub-module is used to project the intersection point of the longitudinal wave impedance and the shear wave impedance of each ore-bearing sample and each surrounding rock sample onto the coordinate system to obtain an intersection map;
含矿岩石阻抗分布范围圈定子模块,用于在所述交会图上圈出含矿样品的区域,获得用于区分矿体和围岩的岩石物理量板。The ore-bearing rock impedance distribution range delineation sub-module is used to delimit the ore-bearing sample area on the intersection map, and obtain a petrophysical quantity plate for distinguishing ore bodies and surrounding rocks.
可选的,所述三维地震数据解释模块,具体包括:Optionally, the 3D seismic data interpretation module specifically includes:
层位确定子模块,用于采用三维地震数据解释软件,对所述三维地震处理数据和所述测井数据进行合成地震记录操作,完成对地震数据的含矿目的层的层位的标定;The horizon determination sub-module is used to use the three-dimensional seismic data interpretation software to perform synthetic seismic recording operation on the three-dimensional seismic processing data and the well logging data, and complete the calibration of the horizon of the ore-bearing target layer of the seismic data;
断裂位置确定子模块,用于对含矿目的层的层位的三维地震处理数据进行追踪,根据三维地震处理数据的同向轴特性确定含矿目的层的断裂位置。The sub-module for determining the fracture position is used to track the 3D seismic processing data of the layer of the ore-bearing target layer, and determine the fracture position of the ore-bearing target layer according to the concentric axis characteristics of the 3D seismic processing data.
可选的,所述三维地震数据反演模块,具体包括:Optionally, the 3D seismic data inversion module specifically includes:
数据处理子模块,用于利用三维地震数据处理软件对三维地震数据进行处理,获得地震叠前道集数据体;The data processing sub-module is used to process the three-dimensional seismic data by using the three-dimensional seismic data processing software to obtain the seismic pre-stack gather data body;
阻抗反演子模块,用于利用所述测井数据、所述录井数据和所述地震解释数据,对所述地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布。The impedance inversion sub-module is used to perform seismic prestack inversion on the seismic prestack gather data volume by using the well logging data, the mud logging data and the seismic interpretation data, and obtain the ore-bearing target layer P-wave impedance distribution and shear-wave impedance distribution.
根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the invention, the invention discloses the following technical effects:
本发明公开了一种砂岩铀矿矿体延伸范围的圈定方法及系统。所述方法包括以下步骤:在工业孔中进行测井和录井,获取测井数据、地质分层和岩性柱状图;在工业孔的含矿目的层取芯,测定岩石样品的纵波速度、横波速度和密度,计算纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板;在工业孔周围采集三维地震数据,完成数据处理和解释,在此基础上通过地震叠前反演,获取目的层的纵波阻抗分布和横波阻抗分布,依据岩石物理量板,在纵波阻抗分布图和横波阻抗分布图上圈定含矿岩石分布范围,获取砂岩铀矿矿体的延伸范围。该方法为砂岩铀矿矿体延伸范围的圈定提供技术方法,绿色环保的同时加快砂岩铀矿的勘探周期。The invention discloses a method and system for delineating the extension range of a sandstone uranium ore body. The method comprises the following steps: performing well logging and mud logging in an industrial hole to obtain well logging data, geological stratification and lithology histogram; taking cores from the ore-bearing target layer of the industrial hole to measure the compressional wave velocity, S-wave velocity and density, calculate P-wave impedance and S-wave impedance, and make petrophysical quantity boards for distinguishing ore bodies and surrounding rocks; collect 3D seismic data around industrial holes, complete data processing and interpretation, and use seismic pre-stack reflection to complete data processing and interpretation. Obtain the P-wave impedance distribution and S-wave impedance distribution of the target layer, delineate the distribution range of ore-bearing rocks on the P-wave impedance distribution map and S-wave impedance distribution map according to the rock physical quantity plate, and obtain the extension range of the sandstone uranium ore body. This method provides a technical method for the delineation of the extension range of sandstone uranium deposits, which is environmentally friendly and speeds up the exploration cycle of sandstone uranium deposits.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the accompanying drawings required in the embodiments. Obviously, the accompanying drawings in the following description are only some of the present invention. Embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without paying creative labor.
图1为本发明提供的一种砂岩铀矿矿体延伸范围的圈定方法的流程图。Fig. 1 is a flow chart of a method for delineating the extension range of a sandstone uranium ore body provided by the present invention.
具体实施方式Detailed ways
本发明的目的是提供一种砂岩铀矿矿体延伸范围的圈定方法及系统,以无需布设大量的钻孔的条件下,实现砂岩铀矿矿体延伸范围的圈定。The object of the present invention is to provide a method and system for delineating the extension range of sandstone uranium ore bodies, so as to realize the delineation of the extension range of sandstone uranium ore bodies without laying a large number of drill holes.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, the invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
本发明为了解决以上技术问题,提出当发现一口工业孔之后,在周边部署地面勘查工作,即三维地震勘探,用以代替钻井,快速圈定砂岩铀矿矿体延伸范围,实现目的同时减少了对地表和地下的破坏,符合绿色勘查的要求。In order to solve the above technical problems, the present invention proposes that after an industrial hole is discovered, ground survey work, i.e. 3D seismic survey, is deployed in the surrounding area to replace drilling and quickly delineate the extension range of the sandstone uranium ore body. and underground destruction, meeting the requirements of green exploration.
如图1所示,本发明提供一种砂岩铀矿矿体延伸范围的圈定方法,所述圈定方法包括如下步骤:As shown in Figure 1, the present invention provides a kind of delineation method of sandstone uranium ore body extension range, and described delineation method comprises the following steps:
步骤101,对工业孔进行测井和录井操作,获取测井数据和录井数据;所述测井数据包括工业孔的不同深度的声波和密度,所述录井数据包括工业孔的地质分层和岩性柱状图。
步骤101所述对工业孔进行测井和录井操作,获取测井数据和录井数据,具体包括:利用测井仪测量工业孔的不同深度的声波和密度;对工业孔进行钻井取芯,获得岩芯;根据岩芯各段的岩性确定工业孔的地质分层;根据岩芯的每个地质层的岩性建立岩性柱状图。In
具体的,所述步骤101中的测井数据是通过测井仪在井中采集,测井数据的采集过程是使用测井仪的参数探头向井下滑动,每隔0.05m测定一个数据。Specifically, the logging data in
所述步骤101中的录井数据是地质人员依据钻井取芯,通过观察描述各段岩芯的岩性,根据区域地层特征确定地质分层,并利用软件绘制岩性柱状图。The mud logging data in the
步骤102,在工业孔的含矿目的层进行取样,获得多个含矿样品和多个围岩样品。Step 102: Sampling is carried out in the ore-bearing target layer of the industrial hole to obtain a plurality of ore-bearing samples and a plurality of surrounding rock samples.
步骤102中的取样为钻井岩心取样,取样的深度范围覆盖含矿目的层,取样的深度间隔均匀,在矿体处加密取样,含矿样品和围岩样品各自不少于10块。The sampling in
步骤103,根据每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板。
步骤103所述根据每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板,具体包括:采用超声脉冲透射法分别测量每个含矿样品和每个围岩样品的纵波速度和横波速度;采用量积法分别测量每个含矿样品和每个围岩样品的密度;分别将每个含矿样品和每个围岩样品的纵波速度、横波速度与每个含矿样品和每个围岩样品的密度相乘,获得每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗;以横波阻抗为岩石物理量板的横坐标轴,以纵波阻抗为岩石物理量板的纵坐标轴,建立坐标系;将每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗的交会点分别投影至所述坐标系上,获得交会图;在所述交会图上圈出含矿样品的区域,获得用于区分矿体和围岩的岩石物理量板。In
具体的,步骤103的波速测量采用的是弹性参数测量方法,采用超声脉冲透射法测量样品(含矿样品和围岩样品)的纵波速度和横波速度,利用量积法测量样品(含矿样品和围岩样品)的密度。Specifically, the wave velocity measurement in
步骤103的纵波阻抗和横波阻抗的计算方式为:纵波阻抗=纵波速度×密度;横波阻抗=横波速度×密度。The calculation methods of the longitudinal wave impedance and the shear wave impedance in
所述步骤103的岩石物理量板的制作,是通过纵波阻抗和横波阻抗交会实现,岩石物理量板的横坐标轴为横波阻抗,纵坐标轴为纵波阻抗,将含矿样品和围岩样品的阻抗计算结果投影到交会图上,分别圈出含矿样品和围岩样品的区域,即完成岩石物理量板的制作。The making of the petrophysical quantity plate in the
步骤104,通过地震仪采集所述工业孔周围待勘查区域的三维地震数据。In
步骤104的三维地震数据采集,是通过地震仪采集地震野外实测数据,观测系统面元≤10m×10m,覆盖次数不低于48次,最大偏移距根据勘探深度确定,计算方式为:最大偏移距≥勘探深度×1.5。The 3D seismic data acquisition in
步骤104的三维地震数据采集,检波器的主频不高于10Hz,震源可选用可控震源或炸药震源。For the three-dimensional seismic data acquisition in
步骤105,利用地震数据处理软件,对所述三维地震数据进行叠加处理和偏移处理,获取三维地震处理数据;所述地震处理数据包含纯波数据和成果数据。
步骤106,利用所述测井数据和所述录井数据对所述三维地震处理数据进行解释,获得三维地震数据的地震解释数据,所述地震解释数据包括含矿目的层的层位和断裂位置。
步骤106所述利用所述测井数据和所述录井数据对所述三维地震处理数据进行解释,获得三维地震数据的地震解释数据,所述地震解释数据包括含矿目的层的层位和断裂位置,具体包括:采用三维地震数据解释软件,对所述三维地震处理数据和所述测井数据进行合成地震记录操作,完成对地震数据的含矿目的层的层位的标定;对含矿目的层的层位的三维地震处理数据进行追踪,根据三维地震处理数据的同向轴特性确定含矿目的层的断裂位置。In
步骤106的地震数据解释,具体的做法是利用地震数据解释软件,通过对测井数据进行合成地震记录,完成对地震数据的目的层位的标定,进而在地震数据上进行层位追踪,同时根据地震数据的同向轴特征,识别断裂位置,最终在地震数据体上解释出目的层的层位和断裂。Seismic data interpretation in
步骤107,利用所述测井数据、所述录井数据和所述地震解释数据,对三维地震数据的地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布。Step 107: Using the well logging data, the mud logging data and the seismic interpretation data, perform seismic prestack inversion on the seismic prestack gather data volume of the 3D seismic data, and obtain the P-wave impedance distribution of the ore-bearing target layer and shear wave impedance distribution.
步骤107所述利用所述测井数据、所述录井数据和所述地震解释数据,对三维地震数据的地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布,具体包括:利用三维地震数据处理软件对三维地震数据进行处理,获得地震叠前道集数据体,获得地震叠前道集数据体;利用所述测井数据、所述录井数据和所述地震解释数据,对所述地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布。In
所述步骤107的地震叠前反演是指,利用地震叠前反演软件,在地震叠前道集数据体上,开展地震叠前反演,获取目的层的纵波阻抗参数分布和横波阻抗参数分布。具体的做法是,首先,对测井数据、地震叠前道集数据体和地震解释数据开展合成地震记录操作,完成地震数据的井震标定,获得井震标定后的地震数据,然后从井震标定后的地震数据中提取地震子波,再结合地震数据和测井数据,建立反演初始模型,开展地震反演,通过反演计算求取目的层的纵波阻抗参数和横波阻抗参数,具体的,设置初始的目的层的纵波阻抗参数和横波阻抗参数,利用初始的目的层的纵波阻抗参数和横波阻抗参数建立反演初始模型,对地震子波和反演初始模型进行褶积运算,获得正演的地震数据,将正演的地震数据与测量得到的地震数据进行对比,当二者的差别在允许阈值范围内时,输出纵波阻抗参数和横波阻抗参数,当不在允许阈值范围内时,调整纵波阻抗参数和横波阻抗参数,重新建立反演模型,直到正演的地震数据与测量得到的地震数据的差值在允许阈值范围内。The seismic pre-stack inversion in
步骤108,根据含矿目的层的纵波阻抗分布和横波阻抗分布,利用所述岩石物理量板圈定砂岩铀矿矿体延伸范围。
步骤108中,在目的层的纵波阻抗和横波阻抗结果上,利用岩石物理量板,即可圈定出砂岩铀矿矿体的分布范围。In
本发明还提供一种砂岩铀矿矿体延伸范围的圈定系统,所述圈定系统包括:The present invention also provides a delineation system for the extension range of sandstone uranium ore body, the delineation system includes:
测井和录井模块,用于对工业孔进行测井和录井操作,获取测井数据和录井数据;所述测井数据包括工业孔的不同深度的声波和密度,所述录井数据包括工业孔的地质分层和岩性柱状图。The well logging and mud logging module is used to perform well logging and mud logging operations on industrial holes, and obtain well logging data and mud logging data; the well logging data includes sound waves and densities at different depths of industrial holes, and the mud logging data Includes geological stratification and lithology histograms for industrial bores.
所述测井和录井模块,具体包括:测井子模块,用于利用测井仪测量工业孔的不同深度的声波和密度;钻井取芯子模块,用于对工业孔进行钻井取芯,获得岩芯;地质分层确定子模块,用于根据岩芯各段的岩性确定工业孔的地质分层;岩性柱状图建立子模块,用于根据岩芯的每个地质层的岩性建立岩性柱状图。The well logging and mud logging module specifically includes: a well logging sub-module for measuring sound waves and densities at different depths of industrial holes with a well logging instrument; a drilling and coring sub-module for drilling and coring industrial holes, Obtain the rock core; determine the geological stratification sub-module, which is used to determine the geological stratification of the industrial hole according to the lithology of each section of the core; establish a sub-module according to the lithology of each geological layer of the core Create a lithology histogram.
样品获取模块,用于在工业孔的含矿目的层进行取样,获得多个含矿样品和多个围岩样品;The sample acquisition module is used to take samples in the ore-bearing target layer of the industrial hole, and obtain multiple ore-bearing samples and multiple surrounding rock samples;
岩石物理量板建立模块,用于根据每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板。The petrophysical quantity plate building module is used to make a petrophysical quantity plate for distinguishing ore bodies and surrounding rocks according to the compressional wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample.
所述岩石物理量板建立模块,具体包括:波速测量子模块,用于采用超声脉冲透射法分别测量每个含矿样品和每个围岩样品的纵波速度和横波速度;密度测量子模块,用于采用量积法分别测量每个含矿样品和每个围岩样品的密度;阻抗计算子模块,用于分别将每个含矿样品和每个围岩样品的纵波速度、横波速度与每个含矿样品和每个围岩样品的密度相乘,获得每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗;坐标系建立子模块,用于以横波阻抗为岩石物理量板的横坐标轴,以纵波阻抗为岩石物理量板的纵坐标轴,建立坐标系;交会点投影子模块,用于将每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗的交会点分别投影至所述坐标系上,获得交会图;含矿岩石阻抗分布范围圈定子模块,用于在所述交会图上圈出含矿样品的区域,获得用于区分矿体和围岩的岩石物理量板。The petrophysical quantity plate establishment module specifically includes: a wave velocity measurement submodule, which is used to measure the longitudinal wave velocity and shear wave velocity of each ore-bearing sample and each surrounding rock sample by ultrasonic pulse transmission method; the density measurement submodule is used for The density of each ore-bearing sample and each surrounding rock sample is measured by the volumetric method; the impedance calculation sub-module is used to compare the compressional wave velocity and shear wave velocity of each ore-bearing sample and each surrounding rock sample with each Multiply the density of the ore sample and each surrounding rock sample to obtain the longitudinal wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample; the coordinate system establishment sub-module is used to use the shear wave impedance as the abscissa of the petrophysical quantity plate Axis, taking the longitudinal wave impedance as the ordinate axis of the petrophysical quantity plate to establish a coordinate system; the intersection point projection sub-module is used to project the intersection point of the longitudinal wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample to the On the coordinate system, a cross map is obtained; the ore-bearing rock impedance distribution range delineation sub-module is used to circle the area of ore-bearing samples on the cross map, and obtain a petrophysical quantity board for distinguishing ore bodies and surrounding rocks.
三维地震数据采集模块,用于通过地震仪采集所述工业孔周围待勘查区域的三维地震数据;The three-dimensional seismic data acquisition module is used to collect the three-dimensional seismic data of the area to be investigated around the industrial hole through the seismograph;
三维地震数据处理模块,用于利用地震数据处理软件,对所述三维地震数据进行叠加处理和偏移处理,获取三维地震处理数据;所述地震处理数据包含纯波数据和成果数据;The three-dimensional seismic data processing module is used to use seismic data processing software to perform superposition processing and migration processing on the three-dimensional seismic data to obtain three-dimensional seismic processing data; the seismic processing data includes pure wave data and result data;
三维地震数据解释模块,用于利用所述测井数据和所述录井数据对所述三维地震处理数据进行解释,获得三维地震数据的地震解释数据,所述地震解释数据包括含矿目的层的层位和断裂位置。A three-dimensional seismic data interpretation module, configured to interpret the three-dimensional seismic processing data by using the well logging data and the mud logging data, and obtain seismic interpretation data of the three-dimensional seismic data, the seismic interpretation data including the ore-bearing target layer layers and fracture locations.
所述三维地震数据解释模块,具体包括:层位确定子模块,用于采用三维地震数据解释软件,对所述三维地震处理数据和所述测井数据进行合成地震记录操作,完成对地震数据的含矿目的层的层位的标定;断裂位置确定子模块,用于对含矿目的层的层位的三维地震处理数据进行追踪,根据三维地震处理数据的同向轴特性确定含矿目的层的断裂位置。The three-dimensional seismic data interpretation module specifically includes: a layer determination sub-module, which is used to use three-dimensional seismic data interpretation software to perform synthetic seismic recording operations on the three-dimensional seismic processing data and the logging data, and complete the seismic data interpretation. Calibration of the horizon of the ore-bearing target layer; the fracture position determination sub-module is used to track the 3D seismic processing data of the layer of the ore-bearing target layer, and determine the location of the ore-bearing target layer according to the synaxial characteristics of the 3D seismic processing data break location.
三维地震数据反演模块,用于利用所述测井数据、所述录井数据和所述地震解释数据,对三维地震数据的地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布。The three-dimensional seismic data inversion module is used to perform seismic pre-stack inversion on the seismic pre-stack gather data volume of the three-dimensional seismic data by using the logging data, the mud logging data and the seismic interpretation data to obtain ore-bearing P-wave impedance distribution and shear-wave impedance distribution of the target layer.
所述三维地震数据反演模块,具体包括:数据处理子模块,用于利用三维地震数据处理软件对三维地震数据进行处理,获得地震叠前道集数据体,获得地震叠前道集数据体;阻抗反演子模块,用于利用所述测井数据、所述录井数据和所述地震解释数据,对所述地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布。The three-dimensional seismic data inversion module specifically includes: a data processing sub-module, which is used to process three-dimensional seismic data using three-dimensional seismic data processing software to obtain a seismic pre-stack gather data volume, and obtain a seismic pre-stack gather data volume; The impedance inversion sub-module is used to perform seismic prestack inversion on the seismic prestack gather data volume by using the well logging data, the mud logging data and the seismic interpretation data, and obtain the ore-bearing target layer P-wave impedance distribution and shear-wave impedance distribution.
圈定模块,用于根据含矿目的层的纵波阻抗分布和横波阻抗分布,利用所述岩石物理量板圈定砂岩铀矿矿体延伸范围。The delineation module is used to delineate the extension range of the sandstone uranium ore body by using the petrophysical quantity board according to the distribution of the longitudinal wave impedance and the shear wave impedance of the ore-bearing target layer.
根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the invention, the invention discloses the following technical effects:
本发明公开了一种砂岩铀矿矿体延伸范围的圈定方法及系统。所述方法包括以下步骤:在工业孔中进行测井和录井,获取测井数据、地质分层和岩性柱状图;在工业孔的含矿目的层取芯,测定岩石样品的纵波速度、横波速度和密度,计算纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板;在工业孔周围采集三维地震数据,完成数据处理和解释,在此基础上通过地震叠前反演,获取目的层的纵波阻抗分布和横波阻抗分布,依据岩石物理量板,在纵波阻抗分布图和横波阻抗分布图上圈定含矿岩石分布范围,获取砂岩铀矿矿体的延伸范围。该方法为砂岩铀矿矿体延伸范围的圈定提供技术方法,绿色环保的同时加快砂岩铀矿的勘探周期。The invention discloses a method and system for delineating the extension range of a sandstone uranium ore body. The method comprises the following steps: performing well logging and mud logging in an industrial hole to obtain well logging data, geological stratification and lithology histogram; taking cores from the ore-bearing target layer of the industrial hole to measure the compressional wave velocity, S-wave velocity and density, calculate P-wave impedance and S-wave impedance, and make petrophysical quantity boards for distinguishing ore bodies and surrounding rocks; collect 3D seismic data around industrial holes, complete data processing and interpretation, and use seismic pre-stack reflection to complete data processing and interpretation. Obtain the P-wave impedance distribution and S-wave impedance distribution of the target layer, delineate the distribution range of ore-bearing rocks on the P-wave impedance distribution map and S-wave impedance distribution map according to the rock physical quantity plate, and obtain the extension range of the sandstone uranium ore body. This method provides a technical method for the delineation of the extension range of sandstone uranium deposits, which is environmentally friendly and speeds up the exploration cycle of sandstone uranium deposits.
本发明中提到的测井、录井、岩石样品测量、三维地震数据采集、处理、解释、反演等技术手段,均为本领域的通用技术手段,可以在不脱离本发明宗旨的前提下进行各种变化。只要是综合利用三维地震数据、测井数据、录井数据和岩石样品弹性数据资料,按照本发明专利的方案,采用本领域通用的现有技术,即可实现对砂岩铀矿矿体延伸范围的圈定。The technical means such as well logging, mud logging, rock sample measurement, three-dimensional seismic data acquisition, processing, interpretation, and inversion mentioned in the present invention are all general technical means in the field, and can be obtained without departing from the purpose of the present invention. Make various changes. As long as the three-dimensional seismic data, well logging data, mud logging data and rock sample elastic data are comprehensively used, according to the scheme of the patent of the present invention, the extension range of the sandstone uranium ore body can be realized by adopting the common existing technology in this field. Circled.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
本文中应用了具体个例对发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In this paper, specific examples are used to illustrate the principle and implementation of the invention. The description of the above embodiments is only used to help understand the method of the present invention and its core idea. The described embodiments are only part of the embodiments of the present invention. , not all of the embodiments, based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work, all belong to the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010736639.1A CN111852467B (en) | 2020-07-28 | 2020-07-28 | Method and system for delineating extension range of sandstone uranium ore body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010736639.1A CN111852467B (en) | 2020-07-28 | 2020-07-28 | Method and system for delineating extension range of sandstone uranium ore body |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111852467A CN111852467A (en) | 2020-10-30 |
CN111852467B true CN111852467B (en) | 2023-04-07 |
Family
ID=72948852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010736639.1A Active CN111852467B (en) | 2020-07-28 | 2020-07-28 | Method and system for delineating extension range of sandstone uranium ore body |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111852467B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117250658B (en) * | 2023-11-17 | 2024-02-09 | 核工业北京地质研究院 | Methods for establishing seismic data sets for the study area |
CN117557401B (en) * | 2024-01-12 | 2024-04-02 | 东华理工大学南昌校区 | Geological big data-based uranium ore prospecting target area intelligent demarcating method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104977618A (en) * | 2014-04-09 | 2015-10-14 | 中国石油集团东方地球物理勘探有限责任公司 | Method for evaluating shale gas reservoir and finding dessert area |
CN106054248A (en) * | 2016-07-15 | 2016-10-26 | 河海大学 | Earthquake rock physical inversion method based on large area tight reservoir |
CN106368691A (en) * | 2015-07-24 | 2017-02-01 | 中国石油化工股份有限公司 | Method for predicting three-dimensional abnormal pore pressure based on rock physical seismic information |
CN108897041A (en) * | 2018-08-16 | 2018-11-27 | 中国石油天然气股份有限公司 | Prediction method and device for uranium ore enrichment area |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090028000A1 (en) * | 2007-07-26 | 2009-01-29 | O'brien Thomas B | Method and process for the systematic exploration of uranium in the athabasca basin |
CN103364822B (en) * | 2012-04-05 | 2016-08-24 | 核工业北京地质研究院 | A kind of layered approach being applicable to sedimentary basin shallow layer stratum |
CN103954995B (en) * | 2014-04-22 | 2016-12-07 | 核工业北京地质研究院 | A kind of sand body recognition methods in exploration of sandstone type uranium deposits |
CN105093306B (en) * | 2014-05-15 | 2018-03-09 | 中国石油化工股份有限公司 | Reservoir is explained and thickness acquiring method automatically in a kind of geophysical exploration |
CN105044770A (en) * | 2015-07-06 | 2015-11-11 | 成都理工大学 | Compact glutenite gas reservoir quantificational prediction method |
CN105403909A (en) * | 2015-08-13 | 2016-03-16 | 核工业北京地质研究院 | Method for detecting paleochannel type uranium mine |
CN108802812B (en) * | 2017-04-28 | 2020-02-14 | 中国石油天然气股份有限公司 | Well-seismic fusion stratum lithology inversion method |
CN107576982B (en) * | 2017-09-01 | 2019-05-17 | 核工业北京地质研究院 | A kind of sandstone-type uranium mineralization with respect Comprehensive Seismic Prediction method |
CN109738947B (en) * | 2018-12-12 | 2020-11-20 | 核工业北京地质研究院 | A combined method of geophysical and geochemical prospecting to delineate the prospecting area of sandstone-type uranium deposits |
CN111158052B (en) * | 2020-01-07 | 2021-07-13 | 吉林大学 | Delineation method of well-side distribution range of uranium-bearing sand bodies in three-dimensional reservoir inversion wells |
-
2020
- 2020-07-28 CN CN202010736639.1A patent/CN111852467B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104977618A (en) * | 2014-04-09 | 2015-10-14 | 中国石油集团东方地球物理勘探有限责任公司 | Method for evaluating shale gas reservoir and finding dessert area |
CN106368691A (en) * | 2015-07-24 | 2017-02-01 | 中国石油化工股份有限公司 | Method for predicting three-dimensional abnormal pore pressure based on rock physical seismic information |
CN106054248A (en) * | 2016-07-15 | 2016-10-26 | 河海大学 | Earthquake rock physical inversion method based on large area tight reservoir |
CN108897041A (en) * | 2018-08-16 | 2018-11-27 | 中国石油天然气股份有限公司 | Prediction method and device for uranium ore enrichment area |
Also Published As
Publication number | Publication date |
---|---|
CN111852467A (en) | 2020-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1275048C (en) | A method for shallow water flow detection | |
US20190094397A1 (en) | Surface detection and location of microseismic events and earthquakes without the use of a velocity model | |
CN105629325A (en) | Foreland basin alluvial fan fine description and prediction method | |
CN108957521A (en) | One kind is for tunnel method for forecasting advanced geology three-dimensional over long distances | |
CN107132573A (en) | A kind of method that application wavelet decomposition reconfiguration technique recognizes the lower lithological pool of strong impedance shielding | |
CN111722284B (en) | Method for establishing speed depth model based on gather data | |
CN110376660B (en) | Real-time monitoring method for grouting effect of underground engineering geological disasters | |
CN105277976A (en) | Earthquake forward modelling method based on rock outcrop radar detection | |
CN111852467B (en) | Method and system for delineating extension range of sandstone uranium ore body | |
Liu et al. | Detection of karst voids at pile foundation by full-waveform inversion of single borehole sonic data | |
Trapp et al. | Non-gradient full waveform inversion approaches for exploration during mechanized tunneling applied to surrogate laboratory measurements | |
Xu et al. | Imaging small geological structure in coal mines based on reflected acoustic logging of underground cross-seam boreholes | |
AU2014394076B2 (en) | Methods and systems for identifying and plugging subterranean conduits | |
Li et al. | Microseismic analysis to aid gas reservoir characterization | |
Liu et al. | A system for inspecting karst voids during construction of cast-in-place pile foundations | |
CN104345337B (en) | A kind of time control reservoir parameter modeling method for seismic inversion | |
RU2145101C1 (en) | Method for estimation of service properties of gas-oil pool | |
CN113514884A (en) | Compact sandstone reservoir prediction method | |
CN111983721A (en) | Sandstone uranium ore mud-sand-mud geological structure identification method and system | |
CN117250658B (en) | Methods for establishing seismic data sets for the study area | |
Lacazette et al. | Passive Seismic Methods for Unconventional Resource Development | |
LU507694B1 (en) | Exploration and evaluation method of deep gravel pore brine potash mine | |
CN112285782B (en) | Near-surface seismic wave absorption attenuation investigation method and device | |
Riedel et al. | Seismic imaging of the Kylylahti Cu-Au-Zn ore deposit using conventional and DAS VSP measurements supported by 3D full-waveform seismic modeling | |
Liu et al. | Borehole Sonic Detection Analysis Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |