[go: up one dir, main page]

CN111852467B - Method and system for delineating extension range of sandstone uranium ore body - Google Patents

Method and system for delineating extension range of sandstone uranium ore body Download PDF

Info

Publication number
CN111852467B
CN111852467B CN202010736639.1A CN202010736639A CN111852467B CN 111852467 B CN111852467 B CN 111852467B CN 202010736639 A CN202010736639 A CN 202010736639A CN 111852467 B CN111852467 B CN 111852467B
Authority
CN
China
Prior art keywords
data
ore
seismic
wave impedance
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010736639.1A
Other languages
Chinese (zh)
Other versions
CN111852467A (en
Inventor
李子伟
曹成寅
黄昱丞
吴曲波
郭江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Research Institute of Uranium Geology
Original Assignee
Beijing Research Institute of Uranium Geology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Research Institute of Uranium Geology filed Critical Beijing Research Institute of Uranium Geology
Priority to CN202010736639.1A priority Critical patent/CN111852467B/en
Publication of CN111852467A publication Critical patent/CN111852467A/en
Application granted granted Critical
Publication of CN111852467B publication Critical patent/CN111852467B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/02Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Business, Economics & Management (AREA)
  • Geophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Animal Husbandry (AREA)
  • Agronomy & Crop Science (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Remote Sensing (AREA)
  • Soil Sciences (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种砂岩铀矿矿体延伸范围的圈定方法及系统。本发明属于砂岩铀矿勘查领域。所述方法包括以下步骤:在工业孔中进行测井和录井,获取测井数据、地质分层和岩性柱状图;在工业孔的含矿目的层取芯,测定岩石样品的纵波速度、横波速度和密度,计算纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板;在工业孔周围采集三维地震数据,完成数据处理和解释,在此基础上通过地震叠前反演,获取目的层的纵波阻抗分布和横波阻抗分布,依据岩石物理量板,在纵波阻抗分布图和横波阻抗分布图上圈定含矿岩石分布范围,获取砂岩铀矿矿体的延伸范围。该方法为砂岩铀矿矿体延伸范围的圈定提供技术方法,绿色环保的同时加快砂岩铀矿的勘探周期。

Figure 202010736639

The invention discloses a method and system for delineating the extension range of a sandstone uranium ore body. The invention belongs to the field of sandstone uranium ore exploration. The method comprises the following steps: performing well logging and mud logging in an industrial hole to obtain well logging data, geological stratification and lithology histogram; taking cores from the ore-bearing target layer of the industrial hole to measure the compressional wave velocity, S-wave velocity and density, calculate P-wave impedance and S-wave impedance, and make petrophysical quantity boards for distinguishing ore bodies and surrounding rocks; collect 3D seismic data around industrial holes, complete data processing and interpretation, and use seismic pre-stack reflection to complete data processing and interpretation. Obtain the P-wave impedance distribution and S-wave impedance distribution of the target layer, delineate the distribution range of ore-bearing rocks on the P-wave impedance distribution map and S-wave impedance distribution map according to the rock physical quantity plate, and obtain the extension range of the sandstone uranium ore body. This method provides a technical method for the delineation of the extension range of sandstone uranium deposits, which is environmentally friendly and speeds up the exploration cycle of sandstone uranium deposits.

Figure 202010736639

Description

一种砂岩铀矿矿体延伸范围的圈定方法及系统A method and system for delineating the extension range of a sandstone uranium ore body

技术领域technical field

本发明涉及砂岩铀矿勘查技术领域,特别涉及一种砂岩铀矿矿体延伸范围的圈定方法及系统。The invention relates to the technical field of sandstone uranium ore exploration, in particular to a method and system for delineating the extension range of a sandstone uranium ore body.

背景技术Background technique

在砂岩铀矿的勘查中,在发现一口具有开采价值的工业孔后,为确定砂岩铀矿矿体的延伸范围,需要布设大量的钻孔去调查矿体的延伸,圈定矿体范围,在投入大量经费的同时,还会对环境造成破坏。如何在无需布设大量的钻孔的条件下,实现砂岩铀矿矿体延伸范围的圈定,成为一个亟待解决的技术问题。In the exploration of sandstone uranium ore, after discovering an industrial hole with mining value, in order to determine the extension range of the sandstone uranium ore body, it is necessary to lay out a large number of drill holes to investigate the extension of the ore body, delineate the range of the ore body, and invest in While costing a lot of money, it will also cause damage to the environment. How to delineate the extension range of the sandstone uranium ore body without laying a large number of drill holes has become an urgent technical problem to be solved.

发明内容Contents of the invention

本发明的目的是提供一种砂岩铀矿矿体延伸范围的圈定方法及系统,以无需布设大量的钻孔的条件下,实现砂岩铀矿矿体延伸范围的圈定。The object of the present invention is to provide a method and system for delineating the extension range of sandstone uranium ore bodies, so as to realize the delineation of the extension range of sandstone uranium ore bodies without laying a large number of drill holes.

为实现上述目的,本发明提供了如下方案:To achieve the above object, the present invention provides the following scheme:

一种砂岩铀矿矿体延伸范围的圈定方法,所述圈定方法包括如下步骤:A method for delineating the extension range of a sandstone uranium ore body, said delineating method comprising the following steps:

对工业孔进行测井和录井操作,获取测井数据和录井数据;所述测井数据包括工业孔的不同深度的声波和密度,所述录井数据包括工业孔的地质分层和岩性柱状图;Perform well logging and mud logging operations on industrial holes to obtain well logging data and mud logging data; the logging data includes sound waves and densities at different depths of industrial holes, and the mud logging data includes geological layers and rock formations of industrial holes sex histogram;

在工业孔的含矿目的层进行取样,获得多个含矿样品和多个围岩样品;Sampling is carried out in the ore-bearing target layer of the industrial hole to obtain multiple ore-bearing samples and multiple surrounding rock samples;

根据每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板;Based on the compressional wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample, a petrophysical quantity board for distinguishing ore bodies and surrounding rocks is made;

通过地震仪采集所述工业孔周围待勘查区域的三维地震数据;Acquiring three-dimensional seismic data of the area to be surveyed around the industrial hole through a seismograph;

利用地震数据处理软件,对所述三维地震数据进行叠加处理和偏移处理,获取三维地震处理数据;所述地震处理数据包含纯波数据和成果数据;Using seismic data processing software, performing superposition processing and migration processing on the three-dimensional seismic data to obtain three-dimensional seismic processing data; the seismic processing data includes pure wave data and result data;

利用所述测井数据和所述录井数据对所述三维地震处理数据进行解释,获得三维地震数据的地震解释数据,所述地震解释数据包括含矿目的层的层位和断裂位置;Interpreting the three-dimensional seismic processing data by using the well logging data and the mud logging data to obtain seismic interpretation data of the three-dimensional seismic data, the seismic interpretation data including layers and fracture positions of ore-bearing target layers;

利用所述测井数据、所述录井数据和所述地震解释数据,对三维地震数据的地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布;Using the well logging data, the mud logging data and the seismic interpretation data, perform seismic prestack inversion on the seismic prestack gather data volume of the 3D seismic data, and obtain the compressional wave impedance distribution and shear wave impedance of the ore-bearing target layer distributed;

根据含矿目的层的纵波阻抗分布和横波阻抗分布,利用所述岩石物理量板圈定砂岩铀矿矿体延伸范围。According to the distribution of longitudinal wave impedance and shear wave impedance of the ore-bearing target layer, the extension range of the sandstone uranium ore body is delineated by using the petrophysical quantity plate.

可选的,所述对工业孔进行测井和录井操作,获取测井数据和录井数据,具体包括:Optionally, performing logging and mud logging operations on industrial holes to obtain logging data and mud logging data specifically includes:

利用测井仪测量工业孔的不同深度的声波和密度;Use logging tools to measure sound waves and densities at different depths in industrial boreholes;

对工业孔进行钻井取芯,获得岩芯;Drill and core industrial holes to obtain cores;

根据岩芯各段的岩性确定工业孔的地质分层;Determine the geological stratification of industrial holes according to the lithology of each section of the core;

根据岩芯的每个地质层的岩性建立岩性柱状图。A lithology histogram is built according to the lithology of each geological layer of the core.

可选的,所述根据每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板,具体包括:Optionally, according to the compressional wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample, making a petrophysical quantity board for distinguishing ore bodies and surrounding rocks specifically includes:

采用超声脉冲透射法分别测量每个含矿样品和每个围岩样品的纵波速度和横波速度;The longitudinal wave velocity and shear wave velocity of each ore-bearing sample and each surrounding rock sample were measured by ultrasonic pulse transmission method;

采用量积法分别测量每个含矿样品和每个围岩样品的密度;The density of each ore-bearing sample and each surrounding rock sample is measured separately by the volumetric method;

分别将每个含矿样品和每个围岩样品的纵波速度、横波速度与每个含矿样品和每个围岩样品的密度相乘,获得每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗;Multiply the compressional wave velocity and shear wave velocity of each ore-bearing sample and each surrounding rock sample by the density of each ore-bearing sample and each surrounding rock sample to obtain the compressional wave of each ore-bearing sample and each surrounding rock sample impedance and shear wave impedance;

以横波阻抗为岩石物理量板的横坐标轴,以纵波阻抗为岩石物理量板的纵坐标轴,建立坐标系;The coordinate system is established by taking the shear wave impedance as the abscissa axis of the petrophysical quantity plate, and taking the longitudinal wave impedance as the ordinate axis of the petrophysical quantity plate;

将每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗的交会点分别投影至所述坐标系上,获得交会图;projecting the intersection points of the longitudinal wave impedance and the shear wave impedance of each ore-bearing sample and each surrounding rock sample onto the coordinate system to obtain an intersection map;

在所述交会图上圈出含矿样品的区域,获得用于区分矿体和围岩的岩石物理量板。The ore-bearing sample area is circled on the intersection map to obtain a petrophysical quantity plate for distinguishing ore bodies and surrounding rocks.

可选的,所述利用所述测井数据和所述录井数据对所述三维地震处理数据进行解释,获得三维地震数据的地震解释数据,所述地震解释数据包括含矿目的层的层位和断裂位置,具体包括:Optionally, using the well logging data and the mud logging data to interpret the three-dimensional seismic processing data to obtain seismic interpretation data of the three-dimensional seismic data, the seismic interpretation data includes the horizon of the ore-bearing target layer and fracture locations, including:

采用三维地震数据解释软件,对所述三维地震处理数据和所述测井数据进行合成地震记录操作,完成对地震数据的含矿目的层的层位的标定;Using three-dimensional seismic data interpretation software, performing a synthetic seismic recording operation on the three-dimensional seismic processing data and the logging data, and completing the calibration of the horizon of the ore-bearing target layer of the seismic data;

对含矿目的层的层位的三维地震处理数据进行追踪,根据三维地震处理数据的同向轴特性确定含矿目的层的断裂位置。The three-dimensional seismic processing data of the layer of the ore-bearing target layer is tracked, and the fracture position of the ore-bearing target layer is determined according to the synaxial characteristics of the three-dimensional seismic processing data.

可选的,所述利用所述测井数据、所述录井数据和所述地震解释数据,对三维地震数据的地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布,具体包括:Optionally, using the well logging data, the mud logging data and the seismic interpretation data, perform seismic prestack inversion on the seismic prestack gather data volume of the 3D seismic data to obtain the ore-bearing target layer P-wave impedance distribution and shear-wave impedance distribution, specifically including:

利用三维地震数据处理软件对三维地震数据进行处理,获得地震叠前道集数据体;Use the 3D seismic data processing software to process the 3D seismic data to obtain the seismic pre-stack gather data volume;

利用所述测井数据、所述录井数据和所述地震解释数据,对所述地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布。Using the well logging data, the mud logging data and the seismic interpretation data, perform seismic prestack inversion on the seismic prestack gather data volume to obtain the distribution of compressional wave impedance and shear wave impedance of the ore-bearing target layer.

一种砂岩铀矿矿体延伸范围的圈定系统,所述圈定系统包括:A delineation system for the extended range of a sandstone uranium ore body, the delineation system comprising:

测井和录井模块,用于对工业孔进行测井和录井操作,获取测井数据和录井数据;所述测井数据包括工业孔的不同深度的声波和密度,所述录井数据包括工业孔的地质分层和岩性柱状图;The well logging and mud logging module is used to perform well logging and mud logging operations on industrial holes, and obtain well logging data and mud logging data; the well logging data includes sound waves and densities at different depths of industrial holes, and the mud logging data Geological stratification and lithology histograms including industrial boreholes;

样品获取模块,用于在工业孔的含矿目的层进行取样,获得多个含矿样品和多个围岩样品;The sample acquisition module is used to take samples in the ore-bearing target layer of the industrial hole, and obtain multiple ore-bearing samples and multiple surrounding rock samples;

岩石物理量板建立模块,用于根据每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板;The petrophysical quantity plate building module is used to make a petrophysical quantity plate for distinguishing ore bodies and surrounding rocks according to the compressional wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample;

三维地震数据采集模块,用于通过地震仪采集所述工业孔周围待勘查区域的三维地震数据;The three-dimensional seismic data acquisition module is used to collect the three-dimensional seismic data of the area to be investigated around the industrial hole through the seismograph;

三维地震数据处理模块,用于利用地震数据处理软件,对所述三维地震数据进行叠加处理和偏移处理,获取三维地震处理数据;所述地震处理数据包含纯波数据和成果数据;The three-dimensional seismic data processing module is used to use seismic data processing software to perform superposition processing and migration processing on the three-dimensional seismic data to obtain three-dimensional seismic processing data; the seismic processing data includes pure wave data and result data;

三维地震数据解释模块,用于利用所述测井数据和所述录井数据对所述三维地震处理数据进行解释,获得三维地震数据的地震解释数据,所述地震解释数据包括含矿目的层的层位和断裂位置;A three-dimensional seismic data interpretation module, configured to interpret the three-dimensional seismic processing data by using the well logging data and the mud logging data, and obtain seismic interpretation data of the three-dimensional seismic data, the seismic interpretation data including the ore-bearing target layer horizons and fracture locations;

三维地震数据反演模块,用于利用所述测井数据、所述录井数据和所述地震解释数据,对三维地震数据的地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布;The three-dimensional seismic data inversion module is used to perform seismic pre-stack inversion on the seismic pre-stack gather data volume of the three-dimensional seismic data by using the logging data, the mud logging data and the seismic interpretation data to obtain ore-bearing P-wave impedance distribution and shear-wave impedance distribution of the target layer;

圈定模块,用于根据含矿目的层的纵波阻抗分布和横波阻抗分布,利用所述岩石物理量板圈定砂岩铀矿矿体延伸范围。The delineation module is used to delineate the extension range of the sandstone uranium ore body by using the petrophysical quantity board according to the distribution of the longitudinal wave impedance and the shear wave impedance of the ore-bearing target layer.

可选的,所述测井和录井模块,具体包括:Optionally, the well logging and mud logging modules specifically include:

测井子模块,用于利用测井仪测量工业孔的不同深度的声波和密度;The logging sub-module is used to measure the acoustic wave and density of industrial holes at different depths with the logging instrument;

钻井取芯子模块,用于对工业孔进行钻井取芯,获得岩芯;The drilling and coring sub-module is used for drilling and coring industrial holes to obtain cores;

地质分层确定子模块,用于根据岩芯各段的岩性确定工业孔的地质分层;The sub-module for determining geological stratification is used to determine the geological stratification of industrial holes according to the lithology of each section of the core;

岩性柱状图建立子模块,用于根据岩芯的每个地质层的岩性建立岩性柱状图。The lithology histogram establishment sub-module is used for establishing the lithology histogram according to the lithology of each geological layer of the core.

可选的,所述岩石物理量板建立模块,具体包括:Optionally, the petrophysical quantity board building module specifically includes:

波速测量子模块,用于采用超声脉冲透射法分别测量每个含矿样品和每个围岩样品的纵波速度和横波速度;The wave velocity measurement sub-module is used to measure the longitudinal wave velocity and shear wave velocity of each ore-bearing sample and each surrounding rock sample by ultrasonic pulse transmission method;

密度测量子模块,用于采用量积法分别测量每个含矿样品和每个围岩样品的密度;The density measurement sub-module is used to measure the density of each ore-bearing sample and each surrounding rock sample respectively by the volumetric method;

阻抗计算子模块,用于分别将每个含矿样品和每个围岩样品的纵波速度、横波速度与每个含矿样品和每个围岩样品的密度相乘,获得每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗;The impedance calculation sub-module is used to multiply the compressional wave velocity and the shear wave velocity of each ore-bearing sample and each surrounding rock sample by the density of each ore-bearing sample and each surrounding rock sample to obtain each ore-bearing sample and each The compressional wave impedance and shear wave impedance of each surrounding rock sample;

坐标系建立子模块,用于以横波阻抗为岩石物理量板的横坐标轴,以纵波阻抗为岩石物理量板的纵坐标轴,建立坐标系;The coordinate system establishment sub-module is used to establish a coordinate system with the shear wave impedance as the abscissa axis of the petrophysical quantity plate and the longitudinal wave impedance as the ordinate axis of the petrophysical quantity plate;

交会点投影子模块,用于将每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗的交会点分别投影至所述坐标系上,获得交会图;The intersection point projection sub-module is used to project the intersection point of the longitudinal wave impedance and the shear wave impedance of each ore-bearing sample and each surrounding rock sample onto the coordinate system to obtain an intersection map;

含矿岩石阻抗分布范围圈定子模块,用于在所述交会图上圈出含矿样品的区域,获得用于区分矿体和围岩的岩石物理量板。The ore-bearing rock impedance distribution range delineation sub-module is used to delimit the ore-bearing sample area on the intersection map, and obtain a petrophysical quantity plate for distinguishing ore bodies and surrounding rocks.

可选的,所述三维地震数据解释模块,具体包括:Optionally, the 3D seismic data interpretation module specifically includes:

层位确定子模块,用于采用三维地震数据解释软件,对所述三维地震处理数据和所述测井数据进行合成地震记录操作,完成对地震数据的含矿目的层的层位的标定;The horizon determination sub-module is used to use the three-dimensional seismic data interpretation software to perform synthetic seismic recording operation on the three-dimensional seismic processing data and the well logging data, and complete the calibration of the horizon of the ore-bearing target layer of the seismic data;

断裂位置确定子模块,用于对含矿目的层的层位的三维地震处理数据进行追踪,根据三维地震处理数据的同向轴特性确定含矿目的层的断裂位置。The sub-module for determining the fracture position is used to track the 3D seismic processing data of the layer of the ore-bearing target layer, and determine the fracture position of the ore-bearing target layer according to the concentric axis characteristics of the 3D seismic processing data.

可选的,所述三维地震数据反演模块,具体包括:Optionally, the 3D seismic data inversion module specifically includes:

数据处理子模块,用于利用三维地震数据处理软件对三维地震数据进行处理,获得地震叠前道集数据体;The data processing sub-module is used to process the three-dimensional seismic data by using the three-dimensional seismic data processing software to obtain the seismic pre-stack gather data body;

阻抗反演子模块,用于利用所述测井数据、所述录井数据和所述地震解释数据,对所述地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布。The impedance inversion sub-module is used to perform seismic prestack inversion on the seismic prestack gather data volume by using the well logging data, the mud logging data and the seismic interpretation data, and obtain the ore-bearing target layer P-wave impedance distribution and shear-wave impedance distribution.

根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the invention, the invention discloses the following technical effects:

本发明公开了一种砂岩铀矿矿体延伸范围的圈定方法及系统。所述方法包括以下步骤:在工业孔中进行测井和录井,获取测井数据、地质分层和岩性柱状图;在工业孔的含矿目的层取芯,测定岩石样品的纵波速度、横波速度和密度,计算纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板;在工业孔周围采集三维地震数据,完成数据处理和解释,在此基础上通过地震叠前反演,获取目的层的纵波阻抗分布和横波阻抗分布,依据岩石物理量板,在纵波阻抗分布图和横波阻抗分布图上圈定含矿岩石分布范围,获取砂岩铀矿矿体的延伸范围。该方法为砂岩铀矿矿体延伸范围的圈定提供技术方法,绿色环保的同时加快砂岩铀矿的勘探周期。The invention discloses a method and system for delineating the extension range of a sandstone uranium ore body. The method comprises the following steps: performing well logging and mud logging in an industrial hole to obtain well logging data, geological stratification and lithology histogram; taking cores from the ore-bearing target layer of the industrial hole to measure the compressional wave velocity, S-wave velocity and density, calculate P-wave impedance and S-wave impedance, and make petrophysical quantity boards for distinguishing ore bodies and surrounding rocks; collect 3D seismic data around industrial holes, complete data processing and interpretation, and use seismic pre-stack reflection to complete data processing and interpretation. Obtain the P-wave impedance distribution and S-wave impedance distribution of the target layer, delineate the distribution range of ore-bearing rocks on the P-wave impedance distribution map and S-wave impedance distribution map according to the rock physical quantity plate, and obtain the extension range of the sandstone uranium ore body. This method provides a technical method for the delineation of the extension range of sandstone uranium deposits, which is environmentally friendly and speeds up the exploration cycle of sandstone uranium deposits.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the accompanying drawings required in the embodiments. Obviously, the accompanying drawings in the following description are only some of the present invention. Embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without paying creative labor.

图1为本发明提供的一种砂岩铀矿矿体延伸范围的圈定方法的流程图。Fig. 1 is a flow chart of a method for delineating the extension range of a sandstone uranium ore body provided by the present invention.

具体实施方式Detailed ways

本发明的目的是提供一种砂岩铀矿矿体延伸范围的圈定方法及系统,以无需布设大量的钻孔的条件下,实现砂岩铀矿矿体延伸范围的圈定。The object of the present invention is to provide a method and system for delineating the extension range of sandstone uranium ore bodies, so as to realize the delineation of the extension range of sandstone uranium ore bodies without laying a large number of drill holes.

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, the invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.

本发明为了解决以上技术问题,提出当发现一口工业孔之后,在周边部署地面勘查工作,即三维地震勘探,用以代替钻井,快速圈定砂岩铀矿矿体延伸范围,实现目的同时减少了对地表和地下的破坏,符合绿色勘查的要求。In order to solve the above technical problems, the present invention proposes that after an industrial hole is discovered, ground survey work, i.e. 3D seismic survey, is deployed in the surrounding area to replace drilling and quickly delineate the extension range of the sandstone uranium ore body. and underground destruction, meeting the requirements of green exploration.

如图1所示,本发明提供一种砂岩铀矿矿体延伸范围的圈定方法,所述圈定方法包括如下步骤:As shown in Figure 1, the present invention provides a kind of delineation method of sandstone uranium ore body extension range, and described delineation method comprises the following steps:

步骤101,对工业孔进行测井和录井操作,获取测井数据和录井数据;所述测井数据包括工业孔的不同深度的声波和密度,所述录井数据包括工业孔的地质分层和岩性柱状图。Step 101, perform logging and mud logging operations on industrial holes, and obtain logging data and mud logging data; the logging data includes sound waves and densities at different depths of industrial holes, and the mud logging data includes geological analysis of industrial holes. Layer and lithology histograms.

步骤101所述对工业孔进行测井和录井操作,获取测井数据和录井数据,具体包括:利用测井仪测量工业孔的不同深度的声波和密度;对工业孔进行钻井取芯,获得岩芯;根据岩芯各段的岩性确定工业孔的地质分层;根据岩芯的每个地质层的岩性建立岩性柱状图。In step 101, performing well logging and mud logging operations on industrial holes to obtain well logging data and mud logging data, specifically including: using a well logging instrument to measure sound waves and densities at different depths of industrial holes; drilling and coring industrial holes, Obtain the core; determine the geological stratification of the industrial hole according to the lithology of each section of the core; establish a lithology column diagram according to the lithology of each geological layer of the core.

具体的,所述步骤101中的测井数据是通过测井仪在井中采集,测井数据的采集过程是使用测井仪的参数探头向井下滑动,每隔0.05m测定一个数据。Specifically, the logging data in step 101 is collected in the well by the logging tool, and the logging data acquisition process is to use the parameter probe of the logging tool to slide downhole, and measure a data every 0.05m.

所述步骤101中的录井数据是地质人员依据钻井取芯,通过观察描述各段岩芯的岩性,根据区域地层特征确定地质分层,并利用软件绘制岩性柱状图。The mud logging data in the step 101 is obtained by geologists based on drilling and coring, describing the lithology of each section of core through observation, determining geological stratification according to regional stratum characteristics, and using software to draw a lithology columnar diagram.

步骤102,在工业孔的含矿目的层进行取样,获得多个含矿样品和多个围岩样品。Step 102: Sampling is carried out in the ore-bearing target layer of the industrial hole to obtain a plurality of ore-bearing samples and a plurality of surrounding rock samples.

步骤102中的取样为钻井岩心取样,取样的深度范围覆盖含矿目的层,取样的深度间隔均匀,在矿体处加密取样,含矿样品和围岩样品各自不少于10块。The sampling in step 102 is drilling core sampling, the sampling depth range covers the ore-bearing target layer, the sampling depth interval is uniform, and the ore body is densely sampled, and the ore-bearing samples and surrounding rock samples are not less than 10 pieces respectively.

步骤103,根据每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板。Step 103, according to the compressional wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample, make a petrophysical quantity board for distinguishing ore bodies and surrounding rocks.

步骤103所述根据每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板,具体包括:采用超声脉冲透射法分别测量每个含矿样品和每个围岩样品的纵波速度和横波速度;采用量积法分别测量每个含矿样品和每个围岩样品的密度;分别将每个含矿样品和每个围岩样品的纵波速度、横波速度与每个含矿样品和每个围岩样品的密度相乘,获得每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗;以横波阻抗为岩石物理量板的横坐标轴,以纵波阻抗为岩石物理量板的纵坐标轴,建立坐标系;将每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗的交会点分别投影至所述坐标系上,获得交会图;在所述交会图上圈出含矿样品的区域,获得用于区分矿体和围岩的岩石物理量板。In step 103, according to the longitudinal wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample, making a petrophysical quantity board for distinguishing the ore body and surrounding rock, specifically includes: using the ultrasonic pulse transmission method to measure each containing The compressional-wave velocity and shear-wave velocity of each ore-bearing sample and each surrounding-rock sample were measured; the density of each ore-bearing sample and each surrounding-rock sample was measured by the volumetric method; Velocity and shear wave velocity are multiplied by the density of each ore-bearing sample and each surrounding rock sample to obtain the compressional wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample; take the shear wave impedance as the abscissa of the petrophysical quantity plate Axis, taking the longitudinal wave impedance as the ordinate axis of the petrophysical quantity plate, a coordinate system is established; the intersection points of the longitudinal wave impedance and the shear wave impedance of each ore-bearing sample and each surrounding rock sample are respectively projected onto the coordinate system to obtain the intersection Figure; Circle the area containing the ore sample on the said intersection map to obtain a petrophysical quantity plate for distinguishing the ore body and the surrounding rock.

具体的,步骤103的波速测量采用的是弹性参数测量方法,采用超声脉冲透射法测量样品(含矿样品和围岩样品)的纵波速度和横波速度,利用量积法测量样品(含矿样品和围岩样品)的密度。Specifically, the wave velocity measurement in step 103 adopts an elastic parameter measurement method. The ultrasonic pulse transmission method is used to measure the longitudinal wave velocity and the shear wave velocity of the sample (mineral sample and surrounding rock sample), and the volume product method is used to measure the sample (mineral sample and surrounding rock sample). surrounding rock sample) density.

步骤103的纵波阻抗和横波阻抗的计算方式为:纵波阻抗=纵波速度×密度;横波阻抗=横波速度×密度。The calculation methods of the longitudinal wave impedance and the shear wave impedance in step 103 are: longitudinal wave impedance = longitudinal wave velocity × density; shear wave impedance = shear wave velocity × density.

所述步骤103的岩石物理量板的制作,是通过纵波阻抗和横波阻抗交会实现,岩石物理量板的横坐标轴为横波阻抗,纵坐标轴为纵波阻抗,将含矿样品和围岩样品的阻抗计算结果投影到交会图上,分别圈出含矿样品和围岩样品的区域,即完成岩石物理量板的制作。The making of the petrophysical quantity plate in the step 103 is realized by intersecting the longitudinal wave impedance and the shear wave impedance. The abscissa axis of the petrophysical quantity plate is the shear wave impedance, and the ordinate axis is the longitudinal wave impedance. The impedance of the ore-bearing sample and the surrounding rock sample is calculated The results are projected on the intersection map, and the areas of ore-bearing samples and surrounding rock samples are circled respectively, that is, the production of petrophysical quantity plates is completed.

步骤104,通过地震仪采集所述工业孔周围待勘查区域的三维地震数据。In step 104, the three-dimensional seismic data of the area to be surveyed around the industrial hole is collected by a seismograph.

步骤104的三维地震数据采集,是通过地震仪采集地震野外实测数据,观测系统面元≤10m×10m,覆盖次数不低于48次,最大偏移距根据勘探深度确定,计算方式为:最大偏移距≥勘探深度×1.5。The 3D seismic data acquisition in step 104 is to collect seismic field measured data through seismographs, the bins of the observation system are ≤10m×10m, the number of coverage times is not less than 48, and the maximum offset is determined according to the exploration depth. The calculation method is: maximum offset Shift distance ≥ exploration depth × 1.5.

步骤104的三维地震数据采集,检波器的主频不高于10Hz,震源可选用可控震源或炸药震源。For the three-dimensional seismic data acquisition in step 104, the main frequency of the geophone is not higher than 10 Hz, and the vibrator or the explosive source can be selected as the seismic source.

步骤105,利用地震数据处理软件,对所述三维地震数据进行叠加处理和偏移处理,获取三维地震处理数据;所述地震处理数据包含纯波数据和成果数据。Step 105, using seismic data processing software to perform stacking and migration processing on the 3D seismic data to obtain 3D seismic processing data; the seismic processing data includes pure wave data and result data.

步骤106,利用所述测井数据和所述录井数据对所述三维地震处理数据进行解释,获得三维地震数据的地震解释数据,所述地震解释数据包括含矿目的层的层位和断裂位置。Step 106, using the well logging data and the mud logging data to interpret the 3D seismic processing data to obtain seismic interpretation data of the 3D seismic data, the seismic interpretation data including the horizon and fracture position of the ore-bearing target layer .

步骤106所述利用所述测井数据和所述录井数据对所述三维地震处理数据进行解释,获得三维地震数据的地震解释数据,所述地震解释数据包括含矿目的层的层位和断裂位置,具体包括:采用三维地震数据解释软件,对所述三维地震处理数据和所述测井数据进行合成地震记录操作,完成对地震数据的含矿目的层的层位的标定;对含矿目的层的层位的三维地震处理数据进行追踪,根据三维地震处理数据的同向轴特性确定含矿目的层的断裂位置。In step 106, using the well logging data and the mud logging data to interpret the three-dimensional seismic processing data to obtain seismic interpretation data of the three-dimensional seismic data, the seismic interpretation data includes layers and fractures of ore-bearing target layers location, specifically including: using 3D seismic data interpretation software to perform synthetic seismic recording operations on the 3D seismic processing data and the well logging data, and to complete the calibration of the horizon of the ore-bearing target layer of the seismic data; According to the three-dimensional seismic processing data of the stratum, the fracture position of the ore-bearing target layer is determined according to the feature of the event axis of the three-dimensional seismic processing data.

步骤106的地震数据解释,具体的做法是利用地震数据解释软件,通过对测井数据进行合成地震记录,完成对地震数据的目的层位的标定,进而在地震数据上进行层位追踪,同时根据地震数据的同向轴特征,识别断裂位置,最终在地震数据体上解释出目的层的层位和断裂。Seismic data interpretation in step 106, the specific method is to use seismic data interpretation software to perform synthetic seismic records on well logging data to complete the calibration of the target horizon of seismic data, and then perform horizon tracking on seismic data, and at the same time according to The epicenter feature of the seismic data identifies the fault location, and finally interprets the horizon and fault of the target layer on the seismic data volume.

步骤107,利用所述测井数据、所述录井数据和所述地震解释数据,对三维地震数据的地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布。Step 107: Using the well logging data, the mud logging data and the seismic interpretation data, perform seismic prestack inversion on the seismic prestack gather data volume of the 3D seismic data, and obtain the P-wave impedance distribution of the ore-bearing target layer and shear wave impedance distribution.

步骤107所述利用所述测井数据、所述录井数据和所述地震解释数据,对三维地震数据的地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布,具体包括:利用三维地震数据处理软件对三维地震数据进行处理,获得地震叠前道集数据体,获得地震叠前道集数据体;利用所述测井数据、所述录井数据和所述地震解释数据,对所述地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布。In step 107, using the well logging data, the mud logging data and the seismic interpretation data, perform seismic prestack inversion on the seismic prestack gather data volume of the 3D seismic data, and obtain the compressional wave impedance of the ore-bearing target layer distribution and shear wave impedance distribution, specifically including: using 3D seismic data processing software to process 3D seismic data to obtain seismic prestack gather data volume, and obtaining seismic prestack gather data volume; using the logging data, the logging Well data and the seismic interpretation data, performing seismic pre-stack inversion on the seismic pre-stack gather data volume, to obtain the distribution of compressional wave impedance and shear wave impedance of the ore-bearing target layer.

所述步骤107的地震叠前反演是指,利用地震叠前反演软件,在地震叠前道集数据体上,开展地震叠前反演,获取目的层的纵波阻抗参数分布和横波阻抗参数分布。具体的做法是,首先,对测井数据、地震叠前道集数据体和地震解释数据开展合成地震记录操作,完成地震数据的井震标定,获得井震标定后的地震数据,然后从井震标定后的地震数据中提取地震子波,再结合地震数据和测井数据,建立反演初始模型,开展地震反演,通过反演计算求取目的层的纵波阻抗参数和横波阻抗参数,具体的,设置初始的目的层的纵波阻抗参数和横波阻抗参数,利用初始的目的层的纵波阻抗参数和横波阻抗参数建立反演初始模型,对地震子波和反演初始模型进行褶积运算,获得正演的地震数据,将正演的地震数据与测量得到的地震数据进行对比,当二者的差别在允许阈值范围内时,输出纵波阻抗参数和横波阻抗参数,当不在允许阈值范围内时,调整纵波阻抗参数和横波阻抗参数,重新建立反演模型,直到正演的地震数据与测量得到的地震数据的差值在允许阈值范围内。The seismic pre-stack inversion in step 107 refers to using seismic pre-stack inversion software to carry out seismic pre-stack inversion on the seismic pre-stack gather data volume to obtain the distribution of longitudinal wave impedance parameters and shear wave impedance parameters of the target layer distributed. The specific method is, first, carry out synthetic seismic recording operation on well logging data, seismic pre-stack gather data volume and seismic interpretation data, complete the well-seismic calibration of seismic data, obtain the seismic data after well-seismic calibration, and then obtain the seismic data from well-seismic Seismic wavelets are extracted from the calibrated seismic data, combined with seismic data and well logging data, the inversion initial model is established, seismic inversion is carried out, and the compressional wave impedance parameters and shear wave impedance parameters of the target layer are obtained through inversion calculation. , set the initial P-wave impedance parameters and S-wave impedance parameters of the target layer, use the initial P-wave impedance parameters and S-wave impedance parameters of the target layer to establish an initial inversion model, and perform convolution operations on the seismic wavelet and the initial inversion model to obtain positive The simulated seismic data is compared with the measured seismic data. When the difference between the two is within the allowable threshold range, the P-wave impedance parameters and S-wave impedance parameters are output. When the difference is not within the allowable threshold range, adjust P-wave impedance parameters and shear-wave impedance parameters, the inversion model is re-established until the difference between the forward seismic data and the measured seismic data is within the allowable threshold.

步骤108,根据含矿目的层的纵波阻抗分布和横波阻抗分布,利用所述岩石物理量板圈定砂岩铀矿矿体延伸范围。Step 108, according to the distribution of compressional wave impedance and shear wave impedance of the ore-bearing target layer, use the petrophysical quantity board to delineate the extension range of the sandstone uranium ore body.

步骤108中,在目的层的纵波阻抗和横波阻抗结果上,利用岩石物理量板,即可圈定出砂岩铀矿矿体的分布范围。In step 108, based on the results of compressional wave impedance and shear wave impedance of the target layer, the distribution range of the sandstone uranium ore body can be delineated by using the petrophysical quantity board.

本发明还提供一种砂岩铀矿矿体延伸范围的圈定系统,所述圈定系统包括:The present invention also provides a delineation system for the extension range of sandstone uranium ore body, the delineation system includes:

测井和录井模块,用于对工业孔进行测井和录井操作,获取测井数据和录井数据;所述测井数据包括工业孔的不同深度的声波和密度,所述录井数据包括工业孔的地质分层和岩性柱状图。The well logging and mud logging module is used to perform well logging and mud logging operations on industrial holes, and obtain well logging data and mud logging data; the well logging data includes sound waves and densities at different depths of industrial holes, and the mud logging data Includes geological stratification and lithology histograms for industrial bores.

所述测井和录井模块,具体包括:测井子模块,用于利用测井仪测量工业孔的不同深度的声波和密度;钻井取芯子模块,用于对工业孔进行钻井取芯,获得岩芯;地质分层确定子模块,用于根据岩芯各段的岩性确定工业孔的地质分层;岩性柱状图建立子模块,用于根据岩芯的每个地质层的岩性建立岩性柱状图。The well logging and mud logging module specifically includes: a well logging sub-module for measuring sound waves and densities at different depths of industrial holes with a well logging instrument; a drilling and coring sub-module for drilling and coring industrial holes, Obtain the rock core; determine the geological stratification sub-module, which is used to determine the geological stratification of the industrial hole according to the lithology of each section of the core; establish a sub-module according to the lithology of each geological layer of the core Create a lithology histogram.

样品获取模块,用于在工业孔的含矿目的层进行取样,获得多个含矿样品和多个围岩样品;The sample acquisition module is used to take samples in the ore-bearing target layer of the industrial hole, and obtain multiple ore-bearing samples and multiple surrounding rock samples;

岩石物理量板建立模块,用于根据每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板。The petrophysical quantity plate building module is used to make a petrophysical quantity plate for distinguishing ore bodies and surrounding rocks according to the compressional wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample.

所述岩石物理量板建立模块,具体包括:波速测量子模块,用于采用超声脉冲透射法分别测量每个含矿样品和每个围岩样品的纵波速度和横波速度;密度测量子模块,用于采用量积法分别测量每个含矿样品和每个围岩样品的密度;阻抗计算子模块,用于分别将每个含矿样品和每个围岩样品的纵波速度、横波速度与每个含矿样品和每个围岩样品的密度相乘,获得每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗;坐标系建立子模块,用于以横波阻抗为岩石物理量板的横坐标轴,以纵波阻抗为岩石物理量板的纵坐标轴,建立坐标系;交会点投影子模块,用于将每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗的交会点分别投影至所述坐标系上,获得交会图;含矿岩石阻抗分布范围圈定子模块,用于在所述交会图上圈出含矿样品的区域,获得用于区分矿体和围岩的岩石物理量板。The petrophysical quantity plate establishment module specifically includes: a wave velocity measurement submodule, which is used to measure the longitudinal wave velocity and shear wave velocity of each ore-bearing sample and each surrounding rock sample by ultrasonic pulse transmission method; the density measurement submodule is used for The density of each ore-bearing sample and each surrounding rock sample is measured by the volumetric method; the impedance calculation sub-module is used to compare the compressional wave velocity and shear wave velocity of each ore-bearing sample and each surrounding rock sample with each Multiply the density of the ore sample and each surrounding rock sample to obtain the longitudinal wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample; the coordinate system establishment sub-module is used to use the shear wave impedance as the abscissa of the petrophysical quantity plate Axis, taking the longitudinal wave impedance as the ordinate axis of the petrophysical quantity plate to establish a coordinate system; the intersection point projection sub-module is used to project the intersection point of the longitudinal wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample to the On the coordinate system, a cross map is obtained; the ore-bearing rock impedance distribution range delineation sub-module is used to circle the area of ore-bearing samples on the cross map, and obtain a petrophysical quantity board for distinguishing ore bodies and surrounding rocks.

三维地震数据采集模块,用于通过地震仪采集所述工业孔周围待勘查区域的三维地震数据;The three-dimensional seismic data acquisition module is used to collect the three-dimensional seismic data of the area to be investigated around the industrial hole through the seismograph;

三维地震数据处理模块,用于利用地震数据处理软件,对所述三维地震数据进行叠加处理和偏移处理,获取三维地震处理数据;所述地震处理数据包含纯波数据和成果数据;The three-dimensional seismic data processing module is used to use seismic data processing software to perform superposition processing and migration processing on the three-dimensional seismic data to obtain three-dimensional seismic processing data; the seismic processing data includes pure wave data and result data;

三维地震数据解释模块,用于利用所述测井数据和所述录井数据对所述三维地震处理数据进行解释,获得三维地震数据的地震解释数据,所述地震解释数据包括含矿目的层的层位和断裂位置。A three-dimensional seismic data interpretation module, configured to interpret the three-dimensional seismic processing data by using the well logging data and the mud logging data, and obtain seismic interpretation data of the three-dimensional seismic data, the seismic interpretation data including the ore-bearing target layer layers and fracture locations.

所述三维地震数据解释模块,具体包括:层位确定子模块,用于采用三维地震数据解释软件,对所述三维地震处理数据和所述测井数据进行合成地震记录操作,完成对地震数据的含矿目的层的层位的标定;断裂位置确定子模块,用于对含矿目的层的层位的三维地震处理数据进行追踪,根据三维地震处理数据的同向轴特性确定含矿目的层的断裂位置。The three-dimensional seismic data interpretation module specifically includes: a layer determination sub-module, which is used to use three-dimensional seismic data interpretation software to perform synthetic seismic recording operations on the three-dimensional seismic processing data and the logging data, and complete the seismic data interpretation. Calibration of the horizon of the ore-bearing target layer; the fracture position determination sub-module is used to track the 3D seismic processing data of the layer of the ore-bearing target layer, and determine the location of the ore-bearing target layer according to the synaxial characteristics of the 3D seismic processing data break location.

三维地震数据反演模块,用于利用所述测井数据、所述录井数据和所述地震解释数据,对三维地震数据的地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布。The three-dimensional seismic data inversion module is used to perform seismic pre-stack inversion on the seismic pre-stack gather data volume of the three-dimensional seismic data by using the logging data, the mud logging data and the seismic interpretation data to obtain ore-bearing P-wave impedance distribution and shear-wave impedance distribution of the target layer.

所述三维地震数据反演模块,具体包括:数据处理子模块,用于利用三维地震数据处理软件对三维地震数据进行处理,获得地震叠前道集数据体,获得地震叠前道集数据体;阻抗反演子模块,用于利用所述测井数据、所述录井数据和所述地震解释数据,对所述地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布。The three-dimensional seismic data inversion module specifically includes: a data processing sub-module, which is used to process three-dimensional seismic data using three-dimensional seismic data processing software to obtain a seismic pre-stack gather data volume, and obtain a seismic pre-stack gather data volume; The impedance inversion sub-module is used to perform seismic prestack inversion on the seismic prestack gather data volume by using the well logging data, the mud logging data and the seismic interpretation data, and obtain the ore-bearing target layer P-wave impedance distribution and shear-wave impedance distribution.

圈定模块,用于根据含矿目的层的纵波阻抗分布和横波阻抗分布,利用所述岩石物理量板圈定砂岩铀矿矿体延伸范围。The delineation module is used to delineate the extension range of the sandstone uranium ore body by using the petrophysical quantity board according to the distribution of the longitudinal wave impedance and the shear wave impedance of the ore-bearing target layer.

根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the invention, the invention discloses the following technical effects:

本发明公开了一种砂岩铀矿矿体延伸范围的圈定方法及系统。所述方法包括以下步骤:在工业孔中进行测井和录井,获取测井数据、地质分层和岩性柱状图;在工业孔的含矿目的层取芯,测定岩石样品的纵波速度、横波速度和密度,计算纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板;在工业孔周围采集三维地震数据,完成数据处理和解释,在此基础上通过地震叠前反演,获取目的层的纵波阻抗分布和横波阻抗分布,依据岩石物理量板,在纵波阻抗分布图和横波阻抗分布图上圈定含矿岩石分布范围,获取砂岩铀矿矿体的延伸范围。该方法为砂岩铀矿矿体延伸范围的圈定提供技术方法,绿色环保的同时加快砂岩铀矿的勘探周期。The invention discloses a method and system for delineating the extension range of a sandstone uranium ore body. The method comprises the following steps: performing well logging and mud logging in an industrial hole to obtain well logging data, geological stratification and lithology histogram; taking cores from the ore-bearing target layer of the industrial hole to measure the compressional wave velocity, S-wave velocity and density, calculate P-wave impedance and S-wave impedance, and make petrophysical quantity boards for distinguishing ore bodies and surrounding rocks; collect 3D seismic data around industrial holes, complete data processing and interpretation, and use seismic pre-stack reflection to complete data processing and interpretation. Obtain the P-wave impedance distribution and S-wave impedance distribution of the target layer, delineate the distribution range of ore-bearing rocks on the P-wave impedance distribution map and S-wave impedance distribution map according to the rock physical quantity plate, and obtain the extension range of the sandstone uranium ore body. This method provides a technical method for the delineation of the extension range of sandstone uranium deposits, which is environmentally friendly and speeds up the exploration cycle of sandstone uranium deposits.

本发明中提到的测井、录井、岩石样品测量、三维地震数据采集、处理、解释、反演等技术手段,均为本领域的通用技术手段,可以在不脱离本发明宗旨的前提下进行各种变化。只要是综合利用三维地震数据、测井数据、录井数据和岩石样品弹性数据资料,按照本发明专利的方案,采用本领域通用的现有技术,即可实现对砂岩铀矿矿体延伸范围的圈定。The technical means such as well logging, mud logging, rock sample measurement, three-dimensional seismic data acquisition, processing, interpretation, and inversion mentioned in the present invention are all general technical means in the field, and can be obtained without departing from the purpose of the present invention. Make various changes. As long as the three-dimensional seismic data, well logging data, mud logging data and rock sample elastic data are comprehensively used, according to the scheme of the patent of the present invention, the extension range of the sandstone uranium ore body can be realized by adopting the common existing technology in this field. Circled.

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.

本文中应用了具体个例对发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In this paper, specific examples are used to illustrate the principle and implementation of the invention. The description of the above embodiments is only used to help understand the method of the present invention and its core idea. The described embodiments are only part of the embodiments of the present invention. , not all of the embodiments, based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work, all belong to the protection scope of the present invention.

Claims (8)

1.一种砂岩铀矿矿体延伸范围的圈定方法,其特征在于,所述圈定方法包括如下步骤:1. a delineation method of sandstone uranium ore body extension range, it is characterized in that, described delineation method comprises the steps: 对工业孔进行测井和录井操作,获取测井数据和录井数据;所述测井数据包括工业孔的不同深度的声波和密度,所述录井数据包括工业孔的地质分层和岩性柱状图;Perform well logging and mud logging operations on industrial holes to obtain well logging data and mud logging data; the logging data includes sound waves and densities at different depths of industrial holes, and the mud logging data includes geological layers and rock formations of industrial holes sex histogram; 在工业孔的含矿目的层进行取样,获得多个含矿样品和多个围岩样品;Sampling is carried out in the ore-bearing target layer of the industrial hole to obtain multiple ore-bearing samples and multiple surrounding rock samples; 根据每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板,具体包括:According to the compressional wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample, a petrophysical quantity board for distinguishing ore bodies and surrounding rocks is made, including: 采用超声脉冲透射法分别测量每个含矿样品和每个围岩样品的纵波速度和横波速度;The longitudinal wave velocity and shear wave velocity of each ore-bearing sample and each surrounding rock sample were measured by ultrasonic pulse transmission method; 采用量积法分别测量每个含矿样品和每个围岩样品的密度;The density of each ore-bearing sample and each surrounding rock sample is measured separately by the volumetric method; 分别将每个含矿样品和每个围岩样品的纵波速度、横波速度与每个含矿样品和每个围岩样品的密度相乘,获得每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗;Multiply the compressional wave velocity and shear wave velocity of each ore-bearing sample and each surrounding rock sample by the density of each ore-bearing sample and each surrounding rock sample to obtain the compressional wave of each ore-bearing sample and each surrounding rock sample impedance and shear wave impedance; 以横波阻抗为岩石物理量板的横坐标轴,以纵波阻抗为岩石物理量板的纵坐标轴,建立坐标系;The coordinate system is established by taking the shear wave impedance as the abscissa axis of the petrophysical quantity plate, and taking the longitudinal wave impedance as the ordinate axis of the petrophysical quantity plate; 将每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗的交会点分别投影至所述坐标系上,获得交会图;projecting the intersection points of the longitudinal wave impedance and the shear wave impedance of each ore-bearing sample and each surrounding rock sample onto the coordinate system to obtain an intersection map; 在所述交会图上圈出含矿样品的区域和围岩样品的区域,获得用于区分矿体和围岩的岩石物理量板;Circle the area of the ore-bearing sample and the area of the surrounding rock sample on the intersection map, and obtain the petrophysical quantity plate for distinguishing the ore body and the surrounding rock; 通过地震仪采集所述工业孔周围待勘查区域的三维地震数据;Acquiring three-dimensional seismic data of the area to be surveyed around the industrial hole through a seismograph; 利用地震数据处理软件,对所述三维地震数据进行叠加处理和偏移处理,获取三维地震处理数据;所述地震处理数据包含纯波数据和成果数据;Using seismic data processing software, performing superposition processing and migration processing on the three-dimensional seismic data to obtain three-dimensional seismic processing data; the seismic processing data includes pure wave data and result data; 利用所述测井数据和所述录井数据对所述三维地震处理数据进行解释,获得三维地震数据的地震解释数据;所述地震解释数据包括含矿目的层的层位和断裂位置;Interpreting the three-dimensional seismic processing data by using the logging data and the logging data to obtain seismic interpretation data of the three-dimensional seismic data; the seismic interpretation data includes layers and fracture positions of ore-bearing target layers; 利用所述测井数据、所述录井数据和所述地震解释数据,对三维地震数据的地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布;Using the well logging data, the mud logging data and the seismic interpretation data, perform seismic prestack inversion on the seismic prestack gather data volume of the 3D seismic data, and obtain the compressional wave impedance distribution and shear wave impedance of the ore-bearing target layer distributed; 根据含矿目的层的纵波阻抗分布和横波阻抗分布,利用所述岩石物理量板圈定砂岩铀矿矿体延伸范围。According to the distribution of longitudinal wave impedance and shear wave impedance of the ore-bearing target layer, the extension range of the sandstone uranium ore body is delineated by using the petrophysical quantity plate. 2.根据权利要求1所述的砂岩铀矿矿体延伸范围的圈定方法,其特征在于,所述对工业孔进行测井和录井操作,获取测井数据和录井数据,具体包括:2. The delineation method of the sandstone uranium ore body extension range according to claim 1, characterized in that, said logging and mud logging operations are carried out to industrial holes to obtain logging data and mud logging data, specifically comprising: 利用测井仪测量工业孔的不同深度的声波和密度;Use logging tools to measure sound waves and densities at different depths in industrial boreholes; 对工业孔进行钻井取芯,获得岩芯;Drilling and coring industrial holes to obtain cores; 根据岩芯各段的岩性确定工业孔的地质分层;Determine the geological stratification of industrial holes according to the lithology of each section of the core; 根据岩芯的每个地质层的岩性建立岩性柱状图。A lithology histogram is built according to the lithology of each geological layer of the core. 3.根据权利要求1所述的砂岩铀矿矿体延伸范围的圈定方法,其特征在于,所述利用所述测井数据和所述录井数据对所述三维地震处理数据进行解释,获得三维地震数据的地震解释数据,所述地震解释数据包括含矿目的层的层位和断裂位置,具体包括:3. The method for delineating the extension range of a sandstone uranium ore body according to claim 1, characterized in that, using the logging data and the logging data to interpret the three-dimensional seismic processing data to obtain a three-dimensional Seismic interpretation data of seismic data, the seismic interpretation data includes horizons and fracture positions of ore-bearing target layers, specifically including: 采用三维地震数据解释软件,对所述三维地震处理数据和所述测井数据进行合成地震记录操作,完成对地震数据的含矿目的层的层位的标定;Using three-dimensional seismic data interpretation software, performing a synthetic seismic recording operation on the three-dimensional seismic processing data and the logging data, and completing the calibration of the horizon of the ore-bearing target layer of the seismic data; 对含矿目的层的层位的三维地震处理数据进行追踪,根据三维地震处理数据的同向轴特性确定含矿目的层的断裂位置。The three-dimensional seismic processing data of the layer of the ore-bearing target layer is tracked, and the fracture position of the ore-bearing target layer is determined according to the synaxial characteristics of the three-dimensional seismic processing data. 4.根据权利要求1所述的砂岩铀矿矿体延伸范围的圈定方法,其特征在于,所述利用所述测井数据、所述录井数据和所述地震解释数据,对三维地震数据的地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布,具体包括:4. the delineation method of sandstone uranium ore body extension range according to claim 1, is characterized in that, described utilizing described well logging data, described mud logging data and described seismic interpretation data, to the three-dimensional seismic data Seismic pre-stack inversion is performed on the seismic pre-stack gather data volume to obtain the distribution of P-wave impedance and S-wave impedance of the ore-bearing target layer, including: 利用三维地震数据处理软件对三维地震数据进行处理,获得地震叠前道集数据体;Use the 3D seismic data processing software to process the 3D seismic data to obtain the seismic pre-stack gather data volume; 利用所述测井数据、所述录井数据和所述地震解释数据,对所述地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布。Using the well logging data, the mud logging data and the seismic interpretation data, perform seismic prestack inversion on the seismic prestack gather data volume to obtain the distribution of compressional wave impedance and shear wave impedance of the ore-bearing target layer. 5.一种砂岩铀矿矿体延伸范围的圈定系统,其特征在于,所述圈定系统包括:5. A system for delineating the extension range of a sandstone uranium ore body, characterized in that the system for delineating includes: 测井和录井模块,用于对工业孔进行测井和录井操作,获取测井数据和录井数据;所述测井数据包括工业孔的不同深度的声波和密度,所述录井数据包括工业孔的地质分层和岩性柱状图;The well logging and mud logging module is used to perform well logging and mud logging operations on industrial holes, and obtain well logging data and mud logging data; the well logging data includes sound waves and densities at different depths of industrial holes, and the mud logging data Geological stratification and lithology histograms including industrial boreholes; 样品获取模块,用于在工业孔的含矿目的层进行取样,获得多个含矿样品和多个围岩样品;The sample acquisition module is used to take samples in the ore-bearing target layer of the industrial hole, and obtain multiple ore-bearing samples and multiple surrounding rock samples; 岩石物理量板建立模块,用于根据每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗,制作用于区分矿体和围岩的岩石物理量板;The petrophysical quantity plate building module is used to make a petrophysical quantity plate for distinguishing ore bodies and surrounding rocks according to the compressional wave impedance and shear wave impedance of each ore-bearing sample and each surrounding rock sample; 所述岩石物理量板建立模块,具体包括:The petrophysical quantity plate building module specifically includes: 波速测量子模块,用于采用超声脉冲透射法分别测量每个含矿样品和每个围岩样品的纵波速度和横波速度;The wave velocity measurement sub-module is used to measure the longitudinal wave velocity and shear wave velocity of each ore-bearing sample and each surrounding rock sample by ultrasonic pulse transmission method; 密度测量子模块,用于采用量积法分别测量每个含矿样品和每个围岩样品的密度;The density measurement sub-module is used to measure the density of each ore-bearing sample and each surrounding rock sample respectively by the volumetric method; 阻抗计算子模块,用于分别将每个含矿样品和每个围岩样品的纵波速度、横波速度与每个含矿样品和每个围岩样品的密度相乘,获得每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗;The impedance calculation sub-module is used to multiply the compressional wave velocity and shear wave velocity of each ore-bearing sample and each surrounding rock sample by the density of each ore-bearing sample and each surrounding rock sample to obtain each ore-bearing sample and each The compressional wave impedance and shear wave impedance of each surrounding rock sample; 坐标系建立子模块,用于以横波阻抗为岩石物理量板的横坐标轴,以纵波阻抗为岩石物理量板的纵坐标轴,建立坐标系;The coordinate system establishment sub-module is used to establish a coordinate system with the shear wave impedance as the abscissa axis of the petrophysical quantity plate and the longitudinal wave impedance as the ordinate axis of the petrophysical quantity plate; 交会点投影子模块,用于将每个含矿样品和每个围岩样品的纵波阻抗和横波阻抗的交会点分别投影至所述坐标系上,获得交会图;The intersection point projection sub-module is used to project the intersection point of the longitudinal wave impedance and the shear wave impedance of each ore-bearing sample and each surrounding rock sample onto the coordinate system to obtain an intersection map; 含矿岩石阻抗分布范围圈定子模块,用于在所述交会图上圈出含矿样品的区域,获得用于区分矿体和围岩的岩石物理量板;The ore-bearing rock impedance distribution range delimitation sub-module is used to circle the ore-bearing sample area on the intersection map, and obtain a petrophysical quantity plate for distinguishing ore bodies and surrounding rocks; 三维地震数据采集模块,用于通过地震仪采集所述工业孔周围待勘查区域的三维地震数据;The three-dimensional seismic data acquisition module is used to collect the three-dimensional seismic data of the area to be investigated around the industrial hole through the seismograph; 三维地震数据处理模块,用于利用地震数据处理软件,对所述三维地震数据进行叠加处理和偏移处理,获取三维地震处理数据;所述地震处理数据包含纯波数据和成果数据;The three-dimensional seismic data processing module is used to use seismic data processing software to perform superposition processing and migration processing on the three-dimensional seismic data to obtain three-dimensional seismic processing data; the seismic processing data includes pure wave data and result data; 三维地震数据解释模块,用于利用所述测井数据和所述录井数据对所述三维地震处理数据进行解释,获得三维地震数据的地震解释数据,所述地震解释数据包括含矿目的层的层位和断裂位置;A three-dimensional seismic data interpretation module, configured to interpret the three-dimensional seismic processing data by using the well logging data and the mud logging data, and obtain seismic interpretation data of the three-dimensional seismic data, the seismic interpretation data including the ore-bearing target layer horizons and fracture locations; 三维地震数据反演模块,用于利用所述测井数据、所述录井数据和所述地震解释数据,对三维地震数据的地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布;The three-dimensional seismic data inversion module is used to perform seismic pre-stack inversion on the seismic pre-stack gather data body of the three-dimensional seismic data by using the well logging data, the mud logging data and the seismic interpretation data to obtain ore-bearing P-wave impedance distribution and shear-wave impedance distribution of the target layer; 圈定模块,用于根据含矿目的层的纵波阻抗分布和横波阻抗分布,利用所述岩石物理量板圈定砂岩铀矿矿体延伸范围。The delineation module is used to delineate the extension range of the sandstone uranium ore body by using the petrophysical quantity board according to the distribution of the longitudinal wave impedance and the shear wave impedance of the ore-bearing target layer. 6.根据权利要求5所述的砂岩铀矿矿体延伸范围的圈定系统,其特征在于,所述测井和录井模块,具体包括:6. The delineation system of the sandstone uranium ore body extension range according to claim 5, characterized in that, the well logging and mud logging modules specifically include: 测井子模块,用于利用测井仪测量工业孔的不同深度的声波和密度;The logging sub-module is used to measure the acoustic wave and density of industrial holes at different depths with the logging instrument; 钻井取芯子模块,用于对工业孔进行钻井取芯,获得岩芯;The drilling and coring sub-module is used for drilling and coring industrial holes to obtain cores; 地质分层确定子模块,用于根据岩芯各段的岩性确定工业孔的地质分层;The sub-module for determining geological stratification is used to determine the geological stratification of industrial holes according to the lithology of each section of the core; 岩性柱状图建立子模块,用于根据岩芯的每个地质层的岩性建立岩性柱状图。The lithology histogram establishment sub-module is used for establishing the lithology histogram according to the lithology of each geological layer of the core. 7.根据权利要求5所述的砂岩铀矿矿体延伸范围的圈定系统,其特征在于,所述三维地震数据解释模块,具体包括:7. The delineation system of the sandstone uranium ore body extension range according to claim 5, wherein the three-dimensional seismic data interpretation module specifically includes: 层位确定子模块,用于采用三维地震数据解释软件,对所述三维地震处理数据和所述测井数据进行合成地震记录操作,完成对地震数据的含矿目的层的层位的标定;The horizon determination sub-module is used to use the three-dimensional seismic data interpretation software to perform synthetic seismic recording operation on the three-dimensional seismic processing data and the well logging data, and complete the calibration of the horizon of the ore-bearing target layer of the seismic data; 断裂位置确定子模块,用于对含矿目的层的层位的三维地震处理数据进行追踪,根据三维地震处理数据的同向轴特性确定含矿目的层的断裂位置。The sub-module for determining the fracture position is used to track the 3D seismic processing data of the horizon of the ore-bearing target layer, and determine the fracture position of the ore-bearing target layer according to the concentric axis characteristics of the 3D seismic processing data. 8.根据权利要求5所述的砂岩铀矿矿体延伸范围的圈定系统,其特征在于,所述三维地震数据反演模块,具体包括:8. The delineation system of the sandstone uranium ore body extension range according to claim 5, wherein the three-dimensional seismic data inversion module specifically includes: 数据处理子模块,用于利用三维地震数据处理软件对三维地震数据进行处理,获得地震叠前道集数据体;The data processing sub-module is used to process the three-dimensional seismic data by using the three-dimensional seismic data processing software to obtain the seismic pre-stack gather data body; 阻抗反演子模块,用于利用所述测井数据、所述录井数据和所述地震解释数据,对所述地震叠前道集数据体进行地震叠前反演,获取含矿目的层的纵波阻抗分布和横波阻抗分布。The impedance inversion sub-module is used to perform seismic prestack inversion on the seismic prestack gather data volume by using the well logging data, the mud logging data and the seismic interpretation data, and obtain the ore-bearing target layer P-wave impedance distribution and shear-wave impedance distribution.
CN202010736639.1A 2020-07-28 2020-07-28 Method and system for delineating extension range of sandstone uranium ore body Active CN111852467B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010736639.1A CN111852467B (en) 2020-07-28 2020-07-28 Method and system for delineating extension range of sandstone uranium ore body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010736639.1A CN111852467B (en) 2020-07-28 2020-07-28 Method and system for delineating extension range of sandstone uranium ore body

Publications (2)

Publication Number Publication Date
CN111852467A CN111852467A (en) 2020-10-30
CN111852467B true CN111852467B (en) 2023-04-07

Family

ID=72948852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010736639.1A Active CN111852467B (en) 2020-07-28 2020-07-28 Method and system for delineating extension range of sandstone uranium ore body

Country Status (1)

Country Link
CN (1) CN111852467B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117250658B (en) * 2023-11-17 2024-02-09 核工业北京地质研究院 Methods for establishing seismic data sets for the study area
CN117557401B (en) * 2024-01-12 2024-04-02 东华理工大学南昌校区 Geological big data-based uranium ore prospecting target area intelligent demarcating method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977618A (en) * 2014-04-09 2015-10-14 中国石油集团东方地球物理勘探有限责任公司 Method for evaluating shale gas reservoir and finding dessert area
CN106054248A (en) * 2016-07-15 2016-10-26 河海大学 Earthquake rock physical inversion method based on large area tight reservoir
CN106368691A (en) * 2015-07-24 2017-02-01 中国石油化工股份有限公司 Method for predicting three-dimensional abnormal pore pressure based on rock physical seismic information
CN108897041A (en) * 2018-08-16 2018-11-27 中国石油天然气股份有限公司 Prediction method and device for uranium ore enrichment area

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090028000A1 (en) * 2007-07-26 2009-01-29 O'brien Thomas B Method and process for the systematic exploration of uranium in the athabasca basin
CN103364822B (en) * 2012-04-05 2016-08-24 核工业北京地质研究院 A kind of layered approach being applicable to sedimentary basin shallow layer stratum
CN103954995B (en) * 2014-04-22 2016-12-07 核工业北京地质研究院 A kind of sand body recognition methods in exploration of sandstone type uranium deposits
CN105093306B (en) * 2014-05-15 2018-03-09 中国石油化工股份有限公司 Reservoir is explained and thickness acquiring method automatically in a kind of geophysical exploration
CN105044770A (en) * 2015-07-06 2015-11-11 成都理工大学 Compact glutenite gas reservoir quantificational prediction method
CN105403909A (en) * 2015-08-13 2016-03-16 核工业北京地质研究院 Method for detecting paleochannel type uranium mine
CN108802812B (en) * 2017-04-28 2020-02-14 中国石油天然气股份有限公司 Well-seismic fusion stratum lithology inversion method
CN107576982B (en) * 2017-09-01 2019-05-17 核工业北京地质研究院 A kind of sandstone-type uranium mineralization with respect Comprehensive Seismic Prediction method
CN109738947B (en) * 2018-12-12 2020-11-20 核工业北京地质研究院 A combined method of geophysical and geochemical prospecting to delineate the prospecting area of sandstone-type uranium deposits
CN111158052B (en) * 2020-01-07 2021-07-13 吉林大学 Delineation method of well-side distribution range of uranium-bearing sand bodies in three-dimensional reservoir inversion wells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977618A (en) * 2014-04-09 2015-10-14 中国石油集团东方地球物理勘探有限责任公司 Method for evaluating shale gas reservoir and finding dessert area
CN106368691A (en) * 2015-07-24 2017-02-01 中国石油化工股份有限公司 Method for predicting three-dimensional abnormal pore pressure based on rock physical seismic information
CN106054248A (en) * 2016-07-15 2016-10-26 河海大学 Earthquake rock physical inversion method based on large area tight reservoir
CN108897041A (en) * 2018-08-16 2018-11-27 中国石油天然气股份有限公司 Prediction method and device for uranium ore enrichment area

Also Published As

Publication number Publication date
CN111852467A (en) 2020-10-30

Similar Documents

Publication Publication Date Title
CN1275048C (en) A method for shallow water flow detection
US20190094397A1 (en) Surface detection and location of microseismic events and earthquakes without the use of a velocity model
CN105629325A (en) Foreland basin alluvial fan fine description and prediction method
CN108957521A (en) One kind is for tunnel method for forecasting advanced geology three-dimensional over long distances
CN107132573A (en) A kind of method that application wavelet decomposition reconfiguration technique recognizes the lower lithological pool of strong impedance shielding
CN111722284B (en) Method for establishing speed depth model based on gather data
CN110376660B (en) Real-time monitoring method for grouting effect of underground engineering geological disasters
CN105277976A (en) Earthquake forward modelling method based on rock outcrop radar detection
CN111852467B (en) Method and system for delineating extension range of sandstone uranium ore body
Liu et al. Detection of karst voids at pile foundation by full-waveform inversion of single borehole sonic data
Trapp et al. Non-gradient full waveform inversion approaches for exploration during mechanized tunneling applied to surrogate laboratory measurements
Xu et al. Imaging small geological structure in coal mines based on reflected acoustic logging of underground cross-seam boreholes
AU2014394076B2 (en) Methods and systems for identifying and plugging subterranean conduits
Li et al. Microseismic analysis to aid gas reservoir characterization
Liu et al. A system for inspecting karst voids during construction of cast-in-place pile foundations
CN104345337B (en) A kind of time control reservoir parameter modeling method for seismic inversion
RU2145101C1 (en) Method for estimation of service properties of gas-oil pool
CN113514884A (en) Compact sandstone reservoir prediction method
CN111983721A (en) Sandstone uranium ore mud-sand-mud geological structure identification method and system
CN117250658B (en) Methods for establishing seismic data sets for the study area
Lacazette et al. Passive Seismic Methods for Unconventional Resource Development
LU507694B1 (en) Exploration and evaluation method of deep gravel pore brine potash mine
CN112285782B (en) Near-surface seismic wave absorption attenuation investigation method and device
Riedel et al. Seismic imaging of the Kylylahti Cu-Au-Zn ore deposit using conventional and DAS VSP measurements supported by 3D full-waveform seismic modeling
Liu et al. Borehole Sonic Detection Analysis Method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant