[go: up one dir, main page]

CN111849794B - A kind of Saccharomyces cerevisiae recombinant bacteria and its construction method and application - Google Patents

A kind of Saccharomyces cerevisiae recombinant bacteria and its construction method and application Download PDF

Info

Publication number
CN111849794B
CN111849794B CN202010606941.5A CN202010606941A CN111849794B CN 111849794 B CN111849794 B CN 111849794B CN 202010606941 A CN202010606941 A CN 202010606941A CN 111849794 B CN111849794 B CN 111849794B
Authority
CN
China
Prior art keywords
saccharomyces cerevisiae
ala
leu
gene
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010606941.5A
Other languages
Chinese (zh)
Other versions
CN111849794A (en
Inventor
周萍萍
岳春磊
杜艺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202010606941.5A priority Critical patent/CN111849794B/en
Publication of CN111849794A publication Critical patent/CN111849794A/en
Application granted granted Critical
Publication of CN111849794B publication Critical patent/CN111849794B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/08Oxidoreductases acting on the CH-CH group of donors (1.3) with flavin as acceptor (1.3.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/14Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)
    • C12Y114/140094-Hydroxyphenylacetate 3-monooxygenase (1.14.14.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y403/00Carbon-nitrogen lyases (4.3)
    • C12Y403/01Ammonia-lyases (4.3.1)
    • C12Y403/01025Phenylalanine-tyrosine ammonia-lyase (4.3.1.25)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种酿酒酵母重组菌,所述酿酒酵母重组菌在基因组中整合了RgTAL基因、HpaB基因和HpaC基因。本发明还公开了酿酒酵母重组菌的构建方法及其应用。本发明最后还公开了一种咖啡酸的生产方法。本发明通过将咖啡酸合成所需的三个外源基因整合到酿酒酵母染色体中,并通过竞争途径基因的敲除,反馈抑制步骤的消除、以及限速酶的过表达,实现了从葡萄糖到咖啡酸的全合成,摇瓶产量达到了760 mg/L左右,是目前报道中酵母产量的最高水平,为咖啡酸的工业化生产提供了新的方法。

Figure 202010606941

The invention discloses a Saccharomyces cerevisiae recombinant bacterium, which integrates RgTAL gene, HpaB gene and HpaC gene in the genome. The invention also discloses the construction method and application of Saccharomyces cerevisiae recombinant bacteria. Finally, the invention also discloses a production method of caffeic acid. The present invention integrates three exogenous genes required for caffeic acid synthesis into the chromosome of Saccharomyces cerevisiae, and through the knockout of competition pathway genes, the elimination of feedback inhibition steps, and the overexpression of rate-limiting enzymes, the transition from glucose to For the total synthesis of caffeic acid, the shake flask yield reached about 760 mg/L, which is the highest level of yeast yield reported so far, which provides a new method for the industrial production of caffeic acid.

Figure 202010606941

Description

一种酿酒酵母重组菌及其构建方法和应用A kind of Saccharomyces cerevisiae recombinant bacteria and its construction method and application

技术领域technical field

本发明所属生物工程技术领域,具体涉及一种酿酒酵母重组菌及其构建方法和应用。The invention belongs to the technical field of bioengineering, and in particular relates to a Saccharomyces cerevisiae recombinant bacterium and a construction method and application thereof.

背景技术Background technique

咖啡酸(Caffeic acid),是一种在植物中分布广泛的次级代谢产物,不仅具有抗菌抗病等生物学活性,而且是医药的一种重要原料和中间体。目前咖啡酸的主要来源是化学合成和植物提取。化学合成咖啡酸存在合成步骤多、工艺复杂、环境不友好等问题,而植物提取产量低且价格昂贵,随着合成生物学技术的发展,利用微生物发酵生产咖啡酸成了重要选项。Caffeic acid is a secondary metabolite widely distributed in plants. It not only has biological activities such as antibacterial and disease resistance, but also is an important raw material and intermediate for medicine. At present, the main sources of caffeic acid are chemical synthesis and plant extraction. The chemical synthesis of caffeic acid has problems such as many synthesis steps, complex process, and unfriendly environment. However, the yield of plant extraction is low and the price is expensive. With the development of synthetic biology technology, the use of microbial fermentation to produce caffeic acid has become an important option.

已有专利(CN 108949652 A)报道通过构建大肠杆菌基因工程菌实现了葡萄糖发酵产咖啡酸,该方法通过在大肠杆菌工程菌中表达L-乳酸脱氢酶,从而以菌体内的NAD 为辅酶将L-乳酸脱氢生成丙酮酸和NADH,外源表达的酪氨酸酚裂解酶则进一步催化丙酮酸、氨根离子、邻苯二酚生成左旋多巴,左旋多巴则被引入的酪氨酸氨裂解酶催化生成咖啡酸,在该方法中需要添加前体物质乳酸和邻苯二酚,因此,成本高,不具经济性。此外,大肠杆菌属于非食品安全性菌株,自身能够产生内毒素,也不利于咖啡酸的生产。而酿酒酵母作为生物安全菌株,其遗传背景清晰且高密度发酵技术成熟,是天然产物合成的理想底盘细胞。目前,已有少数文献通过改造酿酒酵母实现了咖啡酸的生产 (ACS Synthetic Biology2020,9:756-765;Engineering 2019,5:287-295),但产量比较低,最高只达到289.4mg/L,且需要依赖前体L-酪氨酸的添加。前体的供应不足以及外源途径酶的催化效率低是限制咖啡酸合成的主要原因。The existing patent (CN 108949652 A) reported that the production of caffeic acid by glucose fermentation was achieved by constructing Escherichia coli genetic engineering bacteria. This method expresses L-lactate dehydrogenase in the Escherichia coli engineering bacteria, so that NAD in the bacteria is used as a coenzyme to convert caffeic acid. L-lactate is dehydrogenated to generate pyruvate and NADH, and the exogenously expressed tyrosine phenol lyase further catalyzes pyruvate, ammonia ions, and catechol to generate L-dopa, and L-dopa is introduced into tyrosine Ammonia lyase catalyzes the production of caffeic acid. In this method, the precursor substances lactic acid and catechol need to be added. Therefore, the cost is high and it is not economical. In addition, Escherichia coli is a non-food-safe strain and can produce endotoxin by itself, which is not conducive to the production of caffeic acid. As a biosafety strain, Saccharomyces cerevisiae has a clear genetic background and mature high-density fermentation technology, making it an ideal chassis cell for natural product synthesis. At present, a few literatures have achieved the production of caffeic acid by transforming Saccharomyces cerevisiae (ACS Synthetic Biology 2020, 9: 756-765; Engineering 2019, 5: 287-295), but the yield is relatively low, the highest only reaching 289.4 mg/L, And need to rely on the addition of the precursor L-tyrosine. Insufficient supply of precursors and low catalytic efficiency of exogenous pathway enzymes are the main reasons for limiting caffeic acid synthesis.

发明内容SUMMARY OF THE INVENTION

发明目的:为了实现上述生产咖啡酸工程菌株的构建,本发明所涉及的出发菌株为 YXWP-113(来自于浙江大学于洪巍教授课题组,该菌株是通过敲除野生型酿酒酵母BY4741的GAL80基因构建获得,Metabolic Engineering,2015,30:69-78),本发明所要解决的技术问题是提供了低成本生产咖啡酸的酿酒酵母重组菌。Purpose of the invention: In order to realize the construction of the above-mentioned caffeic acid production engineering strain, the starting strain involved in the present invention is YXWP-113 (from the research group of Professor Yu Hongwei of Zhejiang University, this strain is GAL80 by knocking out wild-type Saccharomyces cerevisiae BY4741. Obtained by gene construction, Metabolic Engineering, 2015, 30: 69-78), the technical problem to be solved by the present invention is to provide a recombinant Saccharomyces cerevisiae that produces caffeic acid at low cost.

本发明还要解决的技术问题是提供了该酿酒酵母重组菌的构建方法。The technical problem to be solved by the present invention is to provide a method for constructing the recombinant Saccharomyces cerevisiae.

本发明还要解决的技术问题是提供了该酿酒酵母重组菌的应用。The technical problem to be solved by the present invention is to provide the application of the Saccharomyces cerevisiae recombinant bacteria.

本发明最后要解决的技术问题是提供了一种咖啡酸的生产方法。The final technical problem to be solved by the present invention is to provide a production method of caffeic acid.

为解决上述技术问题,本发明采用的技术方案如下:一种酿酒酵母重组菌,所述酿酒酵母重组菌在基因组中整合了RgTAL基因、HpaB基因和HpaC基因。In order to solve the above-mentioned technical problems, the technical solution adopted in the present invention is as follows: a recombinant Saccharomyces cerevisiae, the recombinant Saccharomyces cerevisiae has integrated the RgTAL gene, the HpaB gene and the HpaC gene in the genome.

其中,所述RgTAL基因的碱基序列如SEQ ID NO:1所示,所述HpaB基因的碱基序列如SEQ ID NO:2所示,所述HpaC基因的碱基序列如SEQ ID NO:3所示。Wherein, the base sequence of the RgTAL gene is shown in SEQ ID NO: 1, the base sequence of the HpaB gene is shown in SEQ ID NO: 2, and the base sequence of the HpaC gene is shown in SEQ ID NO: 3 shown.

其中,所述RgTAL基因对应的氨基酸序列如SEQ ID NO:5所示,所述HpaB基因对应的氨基酸序列如SEQ ID NO:6所示,所述HpaC基因对应的氨基酸序列如SEQ ID NO:7所示。The amino acid sequence corresponding to the RgTAL gene is shown in SEQ ID NO: 5, the amino acid sequence corresponding to the HpaB gene is shown in SEQ ID NO: 6, and the amino acid sequence corresponding to the HpaC gene is shown in SEQ ID NO: 7 shown.

其中,为了提高酿酒酵母重组菌株咖啡酸产量,所述酿酒酵母重组菌还包括敲除了酿酒酵母染色体上Aro3和Aro10基因的一种或者两种组合;和/或过表达不受酪氨酸反馈抑制的突变体Aro4K229L和Aro7G141S基因的一种或者两种组合;和/或过表达运动发酵单胞菌来源的预苯酸脱氢酶TyrC。Wherein, in order to improve the caffeic acid production of the recombinant strain of Saccharomyces cerevisiae, the recombinant strain of Saccharomyces cerevisiae also includes knocking out one or both of the Aro3 and Aro10 genes on the chromosome of Saccharomyces cerevisiae; and/or overexpression is not inhibited by tyrosine feedback One or a combination of the mutant Aro4 K229L and Aro7 G141S genes; and/or overexpressing the Zymomonas mobilis-derived prephenate dehydrogenase TyrC.

以上的重点在于优化了酿酒酵母中咖啡酸途径,增强酿酒酵母咖啡酸的合成能力。The above focus is to optimize the caffeic acid pathway in Saccharomyces cerevisiae and enhance the caffeic acid synthesis ability of Saccharomyces cerevisiae.

其中,编码所述预苯酸脱氢酶TyrC的基因序列如SEQ ID NO:4所示,其相应的氨基酸序列如SEQ ID NO:8所示。本发明的所述的TyrC基因是根据酿酒酵母的密码子偏好进行优化后,通过全基因合成获得。Wherein, the gene sequence encoding the prephenate dehydrogenase TyrC is shown in SEQ ID NO: 4, and the corresponding amino acid sequence thereof is shown in SEQ ID NO: 8. The TyrC gene of the present invention is obtained by whole gene synthesis after optimization according to the codon preference of Saccharomyces cerevisiae.

本发明内容还包括所述的酿酒酵母重组菌的构建方法,所述重组菌的构建方法包括如下步骤:The content of the present invention also includes the construction method of described Saccharomyces cerevisiae recombinant bacteria, and the construction method of described recombinant bacteria comprises the following steps:

1)重组载体pUMRI-13-HpaB-HpaC和pUMRI-11-RgTAL质粒的获得;1) Obtaining the recombinant vectors pUMRI-13-HpaB-HpaC and pUMRI-11-RgTAL plasmids;

2)将重组载体pUMRI-13-HpaB-HpaC导入酿酒酵母得到YCA113-1B;2) The recombinant vector pUMRI-13-HpaB-HpaC was introduced into Saccharomyces cerevisiae to obtain YCA113-1B;

2)将步骤1)得到的pUMRI-11-RgTAL质粒导入YCA113-1B中得到酿酒酵母重组菌株。2) The pUMRI-11-RgTAL plasmid obtained in step 1) was introduced into YCA113-1B to obtain a recombinant strain of Saccharomyces cerevisiae.

其中,所述重组菌的构建方法包括所述的构建方法外还包括将所得到的酿酒酵母重组菌染色体上Aro3和/或Aro10基因敲除;和/或过表达不受酪氨酸反馈抑制的突变体Aro4K229L和Aro7G141S基因的一种或者两种组合;和/或过表达运动发酵单胞菌来源的预苯酸脱氢酶TyrC。Wherein, the construction method of the recombinant bacteria includes, in addition to the construction method, knocking out the Aro3 and/or Aro10 genes on the chromosome of the obtained Saccharomyces cerevisiae recombinant bacteria; and/or overexpression of genes that are not inhibited by tyrosine feedback One or a combination of the mutant Aro4K229L and Aro7G141S genes; and/or overexpressing the Zymomonas mobilis-derived prephenate dehydrogenase TyrC.

本发明内容还包括所述的酿酒酵母重组菌在咖啡酸的生产中的应用。The content of the present invention also includes the application of the recombinant Saccharomyces cerevisiae in the production of caffeic acid.

本发明内容还包括一种咖啡酸的生产方法,所述方法包括将所述的酿酒酵母重组菌进行发酵培养即得。The content of the present invention also includes a method for producing caffeic acid, which comprises fermenting and culturing the recombinant Saccharomyces cerevisiae.

本发明以酿酒酵母芳香族氨基酸途径为基础,整合了咖啡酸的合成所需的三个外源基因:酪氨酸解氨酶基因、4-羟基苯乙酸-3-单加氧酶(HpaB)基因和NADPH-黄素氧化还原酶(HpaC)基因,并对细胞内限制前体合成的步骤进行了调控,从而获得的稳定高产的酿酒酵母工程菌,实现了葡萄糖到咖啡酸的一步合成,无需添加其它外源前体物质,为咖啡酸的绿色生产提供了参考,为工业化发酵生产提供基础。The present invention is based on the Saccharomyces cerevisiae aromatic amino acid pathway, and integrates three exogenous genes required for the synthesis of caffeic acid: tyrosine ammonia lyase gene, 4-hydroxyphenylacetic acid-3-monooxygenase (HpaB) gene and NADPH-flavin oxidoreductase (HpaC) gene, and regulated the steps of limiting the synthesis of precursors in cells, so as to obtain a stable and high-yielding Saccharomyces cerevisiae engineering bacteria, which realizes the one-step synthesis of glucose to caffeic acid without the need for Adding other exogenous precursor substances provides a reference for the green production of caffeic acid and a basis for industrial fermentation production.

有益效果:本发明通过将咖啡酸合成突进所需的三个外源基因整合到酿酒酵母染色体中,并通过竞争途径基因的敲除,反馈抑制步骤的消除、以及限速酶的过表达(所构建的途径如图1所示),实现了从葡萄糖到咖啡酸的全合成,摇瓶产量达到了760mg/L 左右,是目前报道中酵母产量的最高水平,为咖啡酸的工业化生产提供了新的方法。Beneficial effects: the present invention integrates three exogenous genes required for the synthesis of caffeic acid into the chromosome of Saccharomyces cerevisiae, and through the knockout of the competitive pathway gene, the elimination of the feedback inhibition step, and the overexpression of the rate-limiting enzyme. The constructed pathway is shown in Figure 1), which realizes the total synthesis from glucose to caffeic acid, and the yield of the shake flask reaches about 760 mg/L, which is the highest level of yeast yield in the current report, and provides a new way for the industrial production of caffeic acid. Methods.

附图说明Description of drawings

图1本发明构建的从头生物合成咖啡酸的途径示意图。Fig. 1 is a schematic diagram of the de novo biosynthesis of caffeic acid constructed by the present invention.

图2咖啡酸标准品及发酵产物液相色谱。Figure 2. Liquid chromatograms of caffeic acid standards and fermentation products.

图3 RgTAL,HpaB,HpaC基因PCR产物凝胶电泳图。Figure 3. Gel electrophoresis of PCR products of RgTAL, HpaB and HpaC genes.

具体实施方式Detailed ways

下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。The embodiments of the present invention will be described in detail below with reference to the examples, but those skilled in the art will understand that the following examples are only used to illustrate the present invention, and should not be regarded as limiting the scope of the present invention. If the specific conditions are not indicated in the examples, it is carried out according to the conventional conditions or the conditions suggested by the manufacturer. The reagents or instruments used without the manufacturer's indication are conventional products that can be obtained from the market.

实施例所用培养基、储存液:The culture medium and storage solution used in the examples:

Luria-Bertani(LB)培养基:购于上海生物工程有限公司,115℃灭菌21min。Luria-Bertani (LB) medium: purchased from Shanghai Bioengineering Co., Ltd., sterilized at 115° C. for 21 min.

Yeast Extract Peptone Dextrose(YPD)培养基:10g/L酵母浸出粉,20g/L蛋白胨, 20g/L葡萄糖,固体YPD培养基添加1.5-2%的琼脂粉,115℃灭菌21min。Yeast Extract Peptone Dextrose (YPD) medium: 10g/L yeast extract powder, 20g/L peptone, 20g/L glucose, solid YPD medium with 1.5-2% agar powder, sterilized at 115°C for 21min.

卡那霉素储存液(50mg/mL):取0.5g卡那霉素溶于10mL ddH2O中,过滤除菌,于-20℃保存,使用时稀释1000倍使终浓度为50μg/mL。Kanamycin stock solution (50 mg/mL): Dissolve 0.5 g of kanamycin in 10 mL of ddH 2 O, sterilize by filtration, store at -20°C, and dilute 1000 times to make the final concentration 50 μg/mL when used.

遗传霉素(G418)储存液(20mg/mL):取0.2g G418溶于10mL ddH2O中,过滤除菌,于-20℃保存,使用时稀释100倍使终浓度为200μg/mL。Geneticin (G418) stock solution (20 mg/mL): Dissolve 0.2 g of G418 in 10 mL of ddH2O, filter sterilize, store at -20°C, and dilute 100 times to make the final concentration 200 μg/mL when used.

5-氟乳清酸(FOA)储存液(100mg/mL):取0.1g 5-FOA溶于1mL二甲基亚砜中,使用时直接取1mL母液加到100mL SD固体培养基中,用于制作SD-FOA平板。5-fluoroorotic acid (FOA) stock solution (100mg/mL): dissolve 0.1g of 5-FOA in 1mL of dimethyl sulfoxide, and directly add 1mL of mother liquor to 100mL of SD solid medium for use. Make SD-FOA plates.

10×YNB储存液:称取1.7%YNB和5%(NH4)2SO4溶于ddH2O中,用0.22μm无菌针式过滤器过滤除菌,于4℃冰箱保存,使用时稀释10倍。10×YNB stock solution: Weigh 1.7% YNB and 5% (NH 4 ) 2 SO 4 and dissolve in ddH 2 O, filter and sterilize with a 0.22 μm sterile needle filter, store in a refrigerator at 4°C, and dilute before use 10 times.

10×氨基酸混合储存液:按以下配方称取各种氨基酸混合并溶于ddH2O中,浓度为: L-腺嘌呤硫酸盐200mg/L,L-精氨酸200mg/L,L-组氨酸200mg/L,L-异亮氨酸300 mg/L,L-亮氨酸1000mg/L,L-赖氨酸300mg/L,L-蛋氨酸200mg/L,L-苯丙氨酸500 mg/L,L-苏氨酸2000mg/L,L-色氨酸200mg/L,L-酪氨酸300mg/L,L-尿嘧啶200mg/L, L-缬氨酸1500mg/L(注:配制上述氨基酸母液时,根据营养筛选的不同,缺失相应的氨基酸)。用0.22μm无菌针式过滤器过滤除菌,于4℃冰箱存放。使用时稀释10倍。10× Amino Acid Mixed Storage Solution: Weigh various amino acids and mix them in ddH 2 O according to the following formula. The concentrations are: L-Adenine Sulfate 200mg/L, L-Arginine 200mg/L, L-Histidine Acid 200mg/L, L-Isoleucine 300 mg/L, L-Leucine 1000mg/L, L-Lysine 300mg/L, L-Methionine 200mg/L, L-Phenylalanine 500mg/L L, L-threonine 2000mg/L, L-tryptophan 200mg/L, L-tyrosine 300mg/L, L-uracil 200mg/L, L-valine 1500mg/L (Note: the preparation of the above When amino acid stock solution, the corresponding amino acid is deleted according to the difference of nutritional screening). Filter sterilize with a 0.22 μm sterile syringe filter and store in a refrigerator at 4°C. Dilute 10 times when using.

Synthetic Defined(SD)培养基:2%葡萄糖,10%(V/V)的10×YNB母液,10% (V/V)的10×氨基酸混合母液。配置100mL SD培养基具体流程如下:取2g葡萄糖溶于80mL水中,115℃高压灭菌21min中,待培养基冷却到60℃以下,加入10mL 的10×YNB母液和10mL的10×氨基酸混合母液。固体SD培养基添加1.5-2%的琼脂粉。其中SD-URA-表示缺尿嘧啶的SD培养基。Synthetic Defined (SD) medium: 2% glucose, 10% (V/V) 10X YNB stock solution, 10% (V/V) 10X amino acid mixed stock solution. The specific process of configuring 100 mL SD medium is as follows: Dissolve 2 g of glucose in 80 mL of water, sterilize in 115 ℃ for 21 min by autoclaving, and after the medium is cooled to below 60 ℃, add 10 mL of 10×YNB mother liquor and 10 mL of 10× amino acid mixed mother liquor. Add 1.5-2% agar powder to solid SD medium. Wherein SD-URA- means SD medium deficient in uracil.

实施例所用试剂:Examples of reagents used:

高保真酶DNA聚合酶(Prime STARTM HS DNA polymeras)、DNA限制性内切酶、 T4DNA连接酶均购于大连宝生物公司(Takara,大连);DNA marker(1kb DNA ladder) 购于Thermo Scientific;核酸电泳相关试剂和酵母基因组抽提试剂盒购买与上海生物工程有限公司;细菌质粒抽提试剂盒、PCR产物纯化试剂盒、DNA凝胶纯化试剂盒购于杭州Axygen公司;无氨基酵母氮碱(Yeast nitrogen base without amino acids,YNB)购于上海生物工程有限公司用于合成培养基的制备;PCR引物合成及测序服务由上海生物工程有限公司或者上海博尚生物技术有限公司提供。High-fidelity DNA polymerase (Prime STARTM HS DNA polymeras), DNA restriction endonuclease, and T4 DNA ligase were purchased from Dalian Bao Biological Company (Takara, Dalian); DNA marker (1kb DNA ladder) was purchased from Thermo Scientific; nucleic acid Electrophoresis-related reagents and yeast genome extraction kits were purchased from Shanghai Bioengineering Co., Ltd.; bacterial plasmid extraction kits, PCR product purification kits, and DNA gel purification kits were purchased from Hangzhou Axygen Company; amino-free yeast nitrogen base (Yeast nitrogen base without amino acids, YNB) was purchased from Shanghai Bioengineering Co., Ltd. for the preparation of synthetic medium; PCR primer synthesis and sequencing services were provided by Shanghai Bioengineering Co., Ltd. or Shanghai Boshang Biotechnology Co., Ltd.

实施例所用常规的技术方法:The conventional technical method used in the embodiment:

大肠杆菌感受态制备:E. coli competent preparation:

(1)将E.coli DH5α在LB固体平板上划线,37℃过夜培养15h左右;然后挑取单菌落接种到5mL LB液体培养基中,220rpm,37℃过夜培养,取1mL接菌液转接至100mL LB液体培养基中,37℃,200rpm培养至OD600约为0.35-0.40。(1) Streak E.coli DH5α on the LB solid plate, and cultivate it overnight at 37 °C for about 15 hours; then pick a single colony and inoculate it into 5 mL of LB liquid medium, cultivate at 220 rpm and 37 °C overnight, and take 1 mL of the inoculum for transfer. It was then added to 100 mL of LB liquid medium, and cultured at 37 °C at 200 rpm to an OD 600 of about 0.35-0.40.

(2)每管分装25mL菌液至预冷的50mL离心管中,冰浴10min后,用3000rpm 4℃离心10min,收集菌体,弃上清;(2) Dispense 25 mL of bacterial solution into a pre-cooled 50 mL centrifuge tube in each tube. After ice bathing for 10 min, centrifuge at 3000 rpm for 10 min at 4°C to collect the bacterial cells and discard the supernatant;

(3)每管菌体中加入30mL预冷的CaCl2-MgCl2溶液(80mmol/L MgCl2,20mmol/LCaCl2),重悬菌体(冰上操作),用3000rpm低温离心10min收集菌体,弃上清;(3) Add 30 mL of pre-cooled CaCl 2 -MgCl 2 solution (80 mmol/L MgCl 2 , 20 mmol/LCaCl 2 ) to each tube of cells, resuspend the cells (operate on ice), and collect cells by low-temperature centrifugation at 3000 rpm for 10 min , discard the supernatant;

(4)用2mL预冷的0.1M CaCl2-甘油溶液(含0.1mol/L的CaCl2和15%的甘油) 重悬菌体,混匀后按每管100μL分装于预冷的1.5mL离心管,-80℃保存备用。(4) Resuspend the cells with 2 mL of pre-cooled 0.1M CaCl 2 -glycerol solution (containing 0.1 mol/L CaCl 2 and 15% glycerol), and after mixing, dispense 100 μL per tube into pre-cooled 1.5 mL centrifuge tube, stored at -80°C for later use.

大肠杆菌化转方法:Escherichia coli transformation method:

(1)将大肠杆菌感受态从-80℃冰箱取出,冰上融化。(1) Take out the E. coli competent cells from the -80°C refrigerator and thaw on ice.

(2)加入10μL重组质粒,冰上放置20min。(2) Add 10 μL of recombinant plasmid and place on ice for 20 min.

(3)42℃热击90s,立即冰浴5min。(3) Heat shock at 42°C for 90s, and immediately ice bath for 5min.

(4)加入1mL LB混匀,37摇床复苏50min。(4) Add 1 mL of LB and mix well, 37 shaker for recovery for 50 min.

(5)12000rpm离心1min,去上清,留100μL重悬,涂含有相应抗性的LB平板, 37℃培养过夜。(5) Centrifuge at 12,000 rpm for 1 min, remove the supernatant, leave 100 μL for resuspending, coat on LB plate containing the corresponding resistance, and culture at 37°C overnight.

酿酒酵母醋酸锂转化法:Saccharomyces cerevisiae lithium acetate conversion method:

(1)挑取单克隆接种到5mL YPD试管,30℃,220rpm培养过夜,取1mL的接种量转接到含有50mL YPD的250mL三角瓶中,30℃,220rpm培养5h左右,OD600约为2。(1) Pick a single clone and inoculate it into a 5mL YPD test tube, inoculate at 30°C and 220rpm overnight, transfer 1mL of the inoculum to a 250mL conical flask containing 50mL YPD, incubate at 30°C, 220rpm for about 5h, and the OD 600 is about 2 .

(2)将菌液转移到50mL灭过菌的离心管中,5000×g,离心5min后去上清。(2) Transfer the bacterial solution to a 50 mL sterilized centrifuge tube, centrifuge at 5000 × g for 5 min, and remove the supernatant.

(3)加30mL灭菌水洗涤菌体,5000×g离心5min后去上清。(3) Add 30 mL of sterilized water to wash the cells, centrifuge at 5000 × g for 5 min, and then remove the supernatant.

(4)加800μL灭菌水重悬菌体,混匀后按每管100μL分装于1.5mL EP管,12000×g离心1min后去上清,备用。(4) Add 800 μL of sterilized water to resuspend the bacterial cells, and after mixing, distribute 100 μL per tube into 1.5 mL EP tubes, centrifuge at 12,000 × g for 1 min, and remove the supernatant for later use.

(5)在上述1.5mL EP管的菌体中依次加入240μL PEG MW3350(50%w/v),36μL 的1.0M醋酸锂,30μL灭菌水,50μL的单链DNA(Single-stranded carrier DNA,2.0 mg/mL),线性化质粒片段4μL,剩余加灭菌水至总体积360μL,重悬菌体,充分混匀。(5) Add 240 μL of PEG MW3350 (50% w/v), 36 μL of 1.0 M lithium acetate, 30 μL of sterile water, and 50 μL of single-stranded DNA (Single-stranded carrier DNA, 2.0 mg/mL), 4 μL of the linearized plasmid fragment, and the rest with sterile water to a total volume of 360 μL, resuspend the cells, and mix well.

(6)将1.5mL EP管放置42℃水浴锅中热击40min。(6) Place the 1.5mL EP tube in a 42°C water bath for thermal shock for 40min.

(7)热击结束后,12000×g离心1min,去上清。(7) After the heat shock, centrifuge at 12,000 × g for 1 min, and remove the supernatant.

(8)加入1mL YPD培养基,混匀细胞后放置于30℃,220rpm摇床复苏1.5-2h。(8) Add 1 mL of YPD medium, mix the cells, place at 30°C, and recover with a shaker at 220 rpm for 1.5-2 hours.

(9)复苏后的细胞,12000×g离心1min,去上清培养基,再用1mL灭菌纯净水水洗沉淀,12000×g离心1min,去上清,最后加入1mL灭菌纯净水重选细胞,取15μL 涂到相应的G418平板,于30℃培养箱培养3天。(9) After the recovery of the cells, centrifuge at 12,000 × g for 1 min, remove the supernatant medium, wash the precipitate with 1 mL of sterilized purified water, centrifuge at 12,000 × g for 1 min, remove the supernatant, and finally add 1 mL of sterilized purified water to reselect the cells , 15μL was spread on the corresponding G418 plate, and cultured in a 30 ℃ incubator for 3 days.

酿酒酵母培养方法:Saccharomyces cerevisiae culture method:

从琼脂平板上挑取单个克隆,接种到5mL新鲜的YPD试管中,于30℃、220rpm 的恒温摇床中过夜培养15h左右。然后转接到含有50mL YPD培养基的250mL三角瓶中,使摇瓶中的初始OD600为0.05,放置30℃,220rpm的恒温摇床中培养72h。Pick a single clone from the agar plate, inoculate it into a 5 mL fresh YPD test tube, and culture it in a constant temperature shaker at 30°C and 220 rpm for about 15 hours overnight. Then, it was transferred to a 250 mL Erlenmeyer flask containing 50 mL of YPD medium, the initial OD 600 in the shake flask was 0.05, and it was placed in a constant temperature shaker at 30 °C and 220 rpm for 72 h.

实施例1咖啡酸合成所需的重组质粒构建Example 1 Construction of recombinant plasmids required for caffeic acid synthesis

首先以肠炎沙门菌C50336的基因组(扬州大学生物科学与技术学院顾丹老师馈赠) 为模板,以HpaC-F(EcoR I)(GCGGAATTCATGCAAGTAGATG AACAACGT)和HpaC-R (Bgl II)(CCTTAGATCTTTAAACAGGCGCTTCCATC TC)为引物,扩增出HpaC基因 (图3),然后用EcoR I和Bgl II进行双酶切,得到的片段与同样EcoR I和Bgl II双酶切的pUMRI-13(GenBank:KM216415.1)质粒连接做转化,构建得到pUMRI-13-HpaC 质粒。First, the genome of Salmonella enteritidis C50336 (gifted by Mr. Gu Dan, School of Bioscience and Technology, Yangzhou University) was used as the template, and the primers were HpaC-F(EcoR I)(GCGGAATTCATGCAAGTAGATG AACAACGT) and HpaC-R(Bgl II)(CCTTAGATCTTTAAACAGGCGCTTCCATC TC) , the HpaC gene was amplified (Fig. 3), and then double digested with EcoR I and Bgl II, and the obtained fragment was ligated with the pUMRI-13 (GenBank: KM216415.1) plasmid that was double digested with the same EcoR I and Bgl II. After transformation, the pUMRI-13-HpaC plasmid was constructed.

PCR反应体系如下:The PCR reaction system is as follows:

Figure BDA0002559715540000061
Figure BDA0002559715540000061

PCR程序如下:The PCR procedure is as follows:

Figure BDA0002559715540000062
Figure BDA0002559715540000062

质粒或基因片段酶切体系如下:The plasmid or gene fragment restriction enzyme digestion system is as follows:

Figure BDA0002559715540000063
Figure BDA0002559715540000063

Figure BDA0002559715540000071
Figure BDA0002559715540000071

37℃,酶切2h。酶切产物经1.0%琼脂糖凝胶电泳分离,切下带有基因片段的凝胶,并用胶回收试剂盒纯化回收。37℃, digested for 2h. The digested products were separated by 1.0% agarose gel electrophoresis, and the gel with gene fragments was excised, and purified and recovered with a gel recovery kit.

连接体系如下:The connection system is as follows:

Figure BDA0002559715540000072
Figure BDA0002559715540000072

22℃,酶接50min,连接产物转化至大肠杆菌感受态中,放置于37℃培养箱培养过夜得到的阳性克隆用于质粒抽提。22°C, enzymatic ligation for 50 min, the ligation product was transformed into E. coli competent, and placed in a 37°C incubator overnight to obtain positive clones for plasmid extraction.

以密码子优化后合成的基因HpaB为模板,用HpaB-F(BamH I)(GCGGGATCCATGAAGCCAGAAGACTTCAG)和HpaB-R(Sal I)(GGAAGTCGACTTATTGTCTGATTCTGTCCA)扩增出两端含有BamH I和Sal I酶切位点的HpaB基因(图3),然后用BamH I和Sal I进行双酶切,得到的片段与BamH I和Xho I双酶切的pUMRI-13-HpaC质粒按照上述方式进行连接转化,构建得到 pUMRI-13-HpaB-HpaC质粒。The gene HpaB synthesized after codon optimization was used as a template, and HpaB-F (BamH I) (GCGGGATCCATGAAGCCAGAAGACTTCAG) and HpaB-R (Sal I) (GGAAGTCGACTTATTGTCTGATTCTGTCCA) were used to amplify the two ends containing BamH I and Sal I restriction sites. The HpaB gene (Fig. 3) was then double digested with BamH I and Sal I, and the obtained fragment was ligated and transformed with the pUMRI-13-HpaC plasmid double digested by BamH I and Xho I according to the above method, and the pUMRI-13 was constructed to obtain pUMRI-13 -HpaB-HpaC plasmid.

以密码子优化后合成的基因RgTAL为模板,以RgTAL-F(BamH I)(GCGGGATCCATGGCTCCAAGACCAACTTC)和RgTAL-R(Sal I)(GGAAGTCGACTTAAGCCAACATCTTCAACA)为引物扩增出两端含有BamH I和Sal I酶切位点的RgTAL基因(图3),然后用BamH I和Sal I进行双酶切,得到的片段与 BamH I和Xho I双酶切的pUMRI-11质粒(GenBank:KM216413.1)按照上述方式进行连接转化,构建得到pUMRI-11-RgTAL质粒。The gene RgTAL synthesized after codon optimization was used as a template, and RgTAL-F(BamH I)(GCGGGATCCATGGCTCCAAGACCAACTTC) and RgTAL-R(Sal I)(GGAAGTCGACTTAAGCCAACATCTTCAACA) were used as primers to amplify the restriction sites containing BamH I and Sal I at both ends. RgTAL gene (Figure 3), then double-enzyme digestion with BamH I and Sal I, and the obtained fragment was ligated with the pUMRI-11 plasmid (GenBank: KM216413.1) double-digested with BamH I and Xho I as described above. After transformation, the pUMRI-11-RgTAL plasmid was constructed.

实施例2咖啡酸生产菌株的构建The construction of embodiment 2 caffeic acid producing strain

重组载体pUMRI-13-HpaB-HpaC中含有Sfi I位点,首次通过Sfi I酶切方法将载体线性化。The recombinant vector pUMRI-13-HpaB-HpaC contains Sfi I site, and the vector was linearized by Sfi I digestion method for the first time.

酶切体系:总体系50μL,质粒43.5μL,10×Quick Cut Buffer 5μL,Quick cut SfiI 酶1.5μL。Enzyme digestion system: total system 50 μL, plasmid 43.5 μL, 10×Quick Cut Buffer 5 μL, Quick cut SfiI enzyme 1.5 μL.

酶切条件:放置50℃酶切2-3小时。Enzyme digestion conditions: place at 50°C for digestion for 2-3 hours.

将线性化的质粒pUMRI-13-HpaB-HpaC导入酿酒酵母YXWP-113中,利用含G418 抗性的YPD平板筛选得到阳性重组酵母,命名为YCA113-1B。由于pUMRI-13-HpaB-HpaC含有URA3和KanMX(在酵母中编码遗传霉素G418抗性)双重选择标记,其中URA3编码乳清苷-5-磷酸脱氢酶(orotidine 5-phosphate decarboxylase),该酶在酵母RNA嘧啶核苷酸的合成过程中,催化其中的一个关键的反应。当在培养基中加入5-氟乳清酸(5-FOA)时,正常原养型酵母细胞的乳清苷5-磷酸脱羧酶可以将 5-FOA转化为致死细胞的5-氟尿嘧啶(5-fluorouracil)。将酿酒酵母菌株在YPD液体培养基中传代培养,URA3和KanMX两端的正向重复片段间能发生同源重组,URA3和 KanMX基因在这过程中会自然丢失,因此可以在SD-FOA平板上筛选出抗性丢失的克隆。然后将挑选出来的克隆分别点在不含G418抗性YPD以及含有G418抗性的YPD 平板上进行验证,去掉筛选抗性的菌株用于下一轮基因的整合。进一步,利用上述相同方式将pUMRI-11-ORgTAL用Sfi I线性化,并整合到重组酿酒酵母YCA113-1B中,得到咖啡酸生产菌株YCA113-2B。The linearized plasmid pUMRI-13-HpaB-HpaC was introduced into Saccharomyces cerevisiae YXWP-113, and the positive recombinant yeast was obtained by screening the YPD plate containing G418 resistance, which was named YCA113-1B. Since pUMRI-13-HpaB-HpaC contains URA3 and KanMX (encoding geneticin G418 resistance in yeast) dual selectable markers, URA3 encodes orotidine 5-phosphate decarboxylase, this The enzyme catalyzes a key reaction in the synthesis of yeast RNA pyrimidine nucleotides. When 5-fluoroorotic acid (5-FOA) is added to the medium, the orotidine 5-phosphate decarboxylase of normal prototrophic yeast cells can convert 5-FOA to cell-killing 5-fluorouracil (5-fluorouracil). fluorouracil). Saccharomyces cerevisiae strains are subcultured in YPD liquid medium, homologous recombination can occur between the forward repeats at both ends of URA3 and KanMX, URA3 and KanMX genes will be naturally lost during this process, so they can be screened on SD-FOA plates clones with lost resistance. Then, the selected clones were spotted on YPD plates without G418 resistance and YPD plates with G418 resistance respectively for verification, and the selected resistant strains were removed for the next round of gene integration. Further, pUMRI-11-ORgTAL was linearized with Sfi I in the same manner as above, and integrated into recombinant Saccharomyces cerevisiae YCA113-1B to obtain a caffeic acid-producing strain YCA113-2B.

实施例3咖啡酸产量分析与检测Example 3 Analysis and detection of caffeic acid yield

将出发菌株YXWP-113和工程菌株YCA113-2B按照酿酒酵母培养方法在YPD摇瓶中培养72h,培养结束后,取2mL发酵液置于2mL EP管,12000×g离心1分钟,去上清,加入2mL纯净水清洗细胞,12000×g离心1分钟,去上清后,将离心管放置 100℃烘箱烘至恒重用于干重测量。The starting strain YXWP-113 and the engineering strain YCA113-2B were cultured in a YPD shake flask for 72 hours according to the Saccharomyces cerevisiae culture method. After the culture, 2 mL of the fermentation broth was placed in a 2 mL EP tube, centrifuged at 12,000 × g for 1 minute, and the supernatant was removed. Add 2 mL of purified water to wash the cells, and centrifuge at 12,000 × g for 1 minute. After removing the supernatant, place the centrifuge tube in a 100°C oven to dry to constant weight for dry weight measurement.

并按照以下步骤进行样品处理和产量分析:And follow the steps below for sample processing and yield analysis:

(1)取1mL发酵液至1.5mL EP管,常温下12000×g离心1min。(1) Transfer 1 mL of fermentation broth to a 1.5 mL EP tube, and centrifuge at 12,000 × g for 1 min at room temperature.

(2)取50μL上清至新1.5mL EP管中,加入950μL纯净水稀释20倍。(2) Take 50 μL of supernatant into a new 1.5 mL EP tube, add 950 μL of purified water to dilute 20 times.

(3)用0.22μm的水系针式滤头过滤获得样品用于咖啡酸测定。(3) Filter the sample with a 0.22 μm water-based needle filter for the determination of caffeic acid.

咖啡酸的定量分析:样品采用Agilent 1200高效液相色谱仪进行分析。色谱条件为:流动相A泵为0.1%甲酸水溶液,B泵为100%乙腈,梯度洗脱方式如下:Quantitative analysis of caffeic acid: The samples were analyzed using an Agilent 1200 high performance liquid chromatograph. The chromatographic conditions are: mobile phase A pump is 0.1% formic acid aqueous solution, B pump is 100% acetonitrile, and the gradient elution method is as follows:

Figure BDA0002559715540000081
Figure BDA0002559715540000081

采用

Figure 1
QS-C18 Plus色谱柱(4.6×250mm,5μm),流速1mL/min、柱温35℃、进样量20μL,检测波长320nm。结果如图2所示,在YCA113-2B发酵液中成功检测到了咖啡酸的积累,产量达到313.8mg/L。use
Figure 1
QS-C18 Plus chromatographic column (4.6×250mm, 5μm), flow rate 1mL/min, column temperature 35℃, injection volume 20μL, detection wavelength 320nm. The results are shown in Figure 2. The accumulation of caffeic acid was successfully detected in the YCA113-2B fermentation broth, and the yield reached 313.8 mg/L.

实施例4消除莽草酸途径中的反馈抑制步骤提高酿酒酵母咖啡酸产量Example 4 Elimination of Feedback Inhibitory Step in Shikimic Acid Pathway to Improve Saccharomyces cerevisiae Caffeic Acid Production

在咖啡酸的前体合成途径中,莽草酸途径中的两个3-脱氧-D-阿拉伯糖-庚糖醛酸-7- 磷酸合酶Aro3和Aro4催化磷酸烯醇式丙酮酸(PEP)和赤藓糖-4-磷酸(E4P)反应生成咖啡酸重要的前体3-脱氧-D-阿拉伯-庚酮-7-磷酸,但这两个酶分别受苯丙氨酸和酪氨酸的反馈抑制。此外分支酸变位酶Aro7催化分支酸生成预苯丙酸,竞争色氨酸生物合成的碳流,使其转移到酪氨酸生物合成途径,但同样Aro7酶活性受到酪氨酸反馈抑制。如果能够解除这些反馈抑制步骤,则有望提高咖啡酸前体供应,从而对咖啡酸的生产具有很大意义。在前期我们获得了Aro3基因敲除质粒pUMRI-ΔAro3以及带有酪氨酸反馈不敏感突变体基因Aro4K229L和Aro7G141S的pUMRI-ΔAro3-Aro4K229L和 pUMRI-ΔAro3-Aro4K229L-Aro7G141S质粒(三个质粒由浙江大学化学工程与生物工程学院于洪巍教授馈赠)(沈斌酿酒酵母中异源合成维生素E(生育三烯酚)的研究[D]浙江大学2019)。In the precursor synthesis pathway of caffeic acid, two 3-deoxy-D-arabinose-hepturonic acid-7-phosphate synthases Aro3 and Aro4 in the shikimate pathway catalyze phosphoenolpyruvate (PEP) and Erythrose-4-phosphate (E4P) reacts to generate 3-deoxy-D-arabino-heptan-7-phosphate, an important precursor of caffeic acid, but these two enzymes are fed back by phenylalanine and tyrosine, respectively inhibition. In addition, the chorismate mutase Aro7 catalyzes the formation of prephenylpropionate from chorismate, which competes for the carbon flow of tryptophan biosynthesis and transfers it to the tyrosine biosynthesis pathway. However, the Aro7 enzyme activity is also inhibited by tyrosine feedback. If these feedback-inhibitory steps can be relieved, it is expected to increase the supply of caffeic acid precursors, which has great implications for caffeic acid production. In the previous stage, we obtained the Aro3 knockout plasmid pUMRI-ΔAro3 and pUMRI-ΔAro3-Aro4 K229L and pUMRI-ΔAro3-Aro4 K229L -Aro7 G141S plasmids with tyrosine feedback-insensitive mutant genes Aro4 K229L and Aro7 G141S (three Each plasmid was gifted by Professor Yu Hongwei from the School of Chemical Engineering and Bioengineering, Zhejiang University) (Shen Bin's research on the heterologous synthesis of vitamin E (tocotrienol) in Saccharomyces cerevisiae [D] Zhejiang University 2019).

按照实施例2,将pUMRI-ΔAro3质粒用Sfi I线性化,导入到YCA113-2B菌株中,所构酿酒酵母命名为YCA113-3B,同实施例2筛选去掉URA3和KanMX标签的 YCA113-3B菌株,进一步分别整合Sfi I线性化的pUMRI-ΔAro3-Aro4K229L和 pUMRI-ΔAro3-Aro4K229L-Aro7G141S质粒,分别得到YCA113-4B和YCA113-5B菌株。将 YCA113-2B,YCA113-3B,YCA113-4B,YCA113-5B进行摇瓶培养,结束后按照实施例3的方法进行高效液相色谱分析,测定咖啡酸产量,结果如表1。According to Example 2, the pUMRI-ΔAro3 plasmid was linearized with Sfi I and introduced into the YCA113-2B strain. The constructed Saccharomyces cerevisiae was named YCA113-3B. The YCA113-3B strain with URA3 and KanMX tags removed was screened as in Example 2, The Sfi I-linearized pUMRI-ΔAro3-Aro4 K229L and pUMRI-ΔAro3-Aro4 K229L -Aro7 G141S plasmids were further integrated to obtain YCA113-4B and YCA113-5B strains, respectively. YCA113-2B, YCA113-3B, YCA113-4B, and YCA113-5B were cultured in shake flasks, and after completion, high-performance liquid chromatography was performed according to the method in Example 3, and the caffeic acid yield was determined. The results are shown in Table 1.

表1为消除酪氨酸反馈抑制步骤对咖啡酸产量的影响Table 1 shows the effect of eliminating tyrosine feedback inhibition step on caffeic acid production

Figure BDA0002559715540000091
Figure BDA0002559715540000091

其中YCA113-5B咖啡酸产量最高,相比于YCA113-2B提高了1.76倍,因此选用YCA113-5B进行下一步研究。Among them, YCA113-5B produced the highest caffeic acid, which was 1.76 times higher than that of YCA113-2B. Therefore, YCA113-5B was selected for further research.

实施例5敲除竞争途径以及过表达限速酶提高酿酒酵母咖啡酸产量Example 5 Knockout of competitive pathway and overexpression of rate-limiting enzyme improves caffeic acid production in Saccharomyces cerevisiae

在咖啡酸合成途径中,酿酒酵母内源的预苯酸脱氢酶Tyr1催化预苯酸生成咖啡酸的重要前体4-羟基苯丙酮酸(4-HPP),但在酿酒酵母体内会受苯丙氨酸的反馈抑制,因此会限制4-羟基苯丙酮酸合成。但来源于运动发酵单胞菌(Zymomonas mobilis)的预苯酸脱氢酶TyrC不受芳香族氨基酸的反馈抑制,因此可以替代Tyr1的功能。此外酿酒酵母内源的苯丙酮酸脱羧酶Aro10会与咖啡酸合成途径竞争4-HPP,将其转化成其它副产物,因此敲除Aro10基因液有望提高咖啡酸产量。在本发明中,我们获得了由浙江大学化学工程与生物工程学院于洪巍教授馈赠的Aro10基因敲除质粒pUMRI-ΔAro10以及表达TyrC的pUMRI-ΔAro10-TyrC质粒(沈斌酿酒酵母中异源合成维生素E(生育三烯酚)的研究[D]浙江大学2019)。将Sfi I的线性化pUMRI-ΔAro10以及 pUMRI-ΔAro10-TyrC质粒按照实施例2的方式分别转化到去掉URA3和KanMX标签的 YCA113-5B菌株中,所获得的酿酒酵母菌株分别命名为YCA113-6B和YCA113-8B。将 YCA113-6B,YCA113-8B菌株按照酿酒酵母培养方法进行摇瓶培养,并按照实施例3 分析咖啡酸产量。结果如表2所示:In the caffeic acid synthesis pathway, the endogenous prephenate dehydrogenase Tyr1 of Saccharomyces cerevisiae catalyzes the production of 4-hydroxyphenylpyruvate (4-HPP), an important precursor of caffeic acid from prephenate, but in Saccharomyces cerevisiae it is affected by benzene Feedback inhibition by alanine thus limits 4-hydroxyphenylpyruvate synthesis. However, the prephenate dehydrogenase TyrC derived from Zymomonas mobilis is not subject to feedback inhibition by aromatic amino acids, so it can replace the function of Tyr1. In addition, the endogenous phenylpyruvate decarboxylase Aro10 in Saccharomyces cerevisiae competes with the caffeic acid synthesis pathway to convert 4-HPP into other by-products. Therefore, knocking out Aro10 gene fluid is expected to improve caffeic acid production. In the present invention, we obtained the Aro10 gene knockout plasmid pUMRI-ΔAro10 and the TyrC-expressing pUMRI-ΔAro10-TyrC plasmid (heterologous synthesis in S. Research on Vitamin E (Tocotrienols [D] Zhejiang University 2019). The linearized pUMRI-ΔAro10 and pUMRI-ΔAro10-TyrC plasmids of Sfi I were transformed into YCA113-5B strains with URA3 and KanMX tags removed respectively according to the method in Example 2, and the obtained Saccharomyces cerevisiae strains were named as YCA113-6B and YCA113-8B. The YCA113-6B and YCA113-8B strains were cultured in shake flasks according to the Saccharomyces cerevisiae culture method, and the production of caffeic acid was analyzed according to Example 3. The results are shown in Table 2:

表2为敲除Aro10和过表达TyrC对咖啡酸产量的影响Table 2 shows the effect of knockout Aro10 and overexpression of TyrC on caffeic acid production

Figure BDA0002559715540000101
Figure BDA0002559715540000101

通过敲除Aro10和过表达TryC,咖啡酸产量得到显著提高,达到了769.3mg/L,是目前酵母报道的一个最高水平,为咖啡酸的工业化生产奠定了基础。By knocking out Aro10 and overexpressing TryC, the production of caffeic acid was significantly improved, reaching 769.3 mg/L, which is the highest level reported by yeast so far, laying the foundation for the industrial production of caffeic acid.

序列表sequence listing

<110> 扬州大学<110> Yangzhou University

<120> 一种酿酒酵母重组菌及其构建方法和应用<120> A Saccharomyces cerevisiae recombinant strain and its construction method and application

<160> 8<160> 8

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 2082<211> 2082

<212> DNA<212> DNA

<213> RgTAL基因(Artificial Sequence)<213> RgTAL gene (Artificial Sequence)

<400> 1<400> 1

atggctccaa gaccaacttc tcaatctcaa gctagaactt gtccaactac tcaagttact 60atggctccaa gaccaacttc tcaatctcaa gctagaactt gtccaactac tcaagttact 60

caagttgaca tcgttgaaaa gatgttggct gctccaactg actctacttt ggaattggac 120caagttgaca tcgttgaaaa gatgttggct gctccaactg actctacttt ggaattggac 120

ggttactctt tgaacttggg tgacgttgtt tctgctgcta gaaagggtag accagttaga 180ggttactctt tgaacttggg tgacgttgtt tctgctgcta gaaagggtag accagttaga 180

gttaaggact ctgacgaaat cagatctaag atcgacaagt ctgttgaatt cttgagatct 240gttaaggact ctgacgaaat cagatctaag atcgacaagt ctgttgaatt cttgagatct 240

caattgtcta tgtctgttta cggtgttact actggtttcg gtggttctgc tgacactaga 300caattgtcta tgtctgttta cggtgttact actggtttcg gtggttctgc tgacactaga 300

actgaagacg ctatctcgct ccaaaaggcg ttgttggaac accagctctg cggtgtcctc 360actgaagacg ctatctcgct ccaaaaggcg ttgttggaac accagctctg cggtgtcctc 360

ccatcttctt tcgactcttt cagattgggt agaggcctcg aaaacagctt gccattggaa 420ccatcttctt tcgactcttt cagattgggt agaggcctcg aaaacagctt gccattggaa 420

gttgttagag gtgctatgac tatcagagtt aactctttga ctagaggtca ctctgctgtt 480gttgttagag gtgctatgac tatcagagtt aactctttga ctagaggtca ctctgctgtt 480

agattggttg ttttggaagc tttgactaac ttcttgaacc acggtatcac tccaatcgtt 540agattggttg ttttggaagc tttgactaac ttcttgaacc acggtatcac tccaatcgtt 540

ccattgagag gtactatctc tgcttctggt gacttgtctc cattgtctta catcgctgct 600ccattgagag gtactatctc tgcttctggt gacttgtctc cattgtctta catcgctgct 600

gctatctctg gtcacccaga ctctaaggtt cacgttgttc acgaaggtaa ggaaaagatc 660gctatctctg gtcacccaga ctctaaggtt cacgttgttc acgaaggtaa ggaaaagatc 660

ttgtacgcta gagaagcgat ggcgttgttc aacctcgagc cagttgtcct cggtccaaag 720ttgtacgcta gagaagcgat ggcgttgttc aacctcgagc cagttgtcct cggtccaaag 720

gagggcttgg gcttggttaa cggtactgct gtttctgctt ctatggctac tctcgctctc 780gagggcttgg gcttggttaa cggtactgct gtttctgctt ctatggctac tctcgctctc 780

cacgacgctc atatgttgtc tttgttgtct caatctttga ctgctatgac tgttgaagct 840cacgacgctc atatgttgtc tttgttgtct caatctttga ctgctatgac tgttgaagct 840

atggttggtc acgctggttc tttccaccca ttcttgcacg acgttactag accacaccca 900atggttggtc acgctggttc tttccaccca ttcttgcacg acgttactag accacaccca 900

actcaaatcg aagttgctgg taacatcaga aagttgttgg aaggttctag attcgctgtt 960actcaaatcg aagttgctgg taacatcaga aagttgttgg aaggttctag attcgctgtt 960

caccacgaag aagaagttaa ggttaaggac gacgaaggta tcttgagaca agacagatac 1020caccacgaag aagaagttaa ggttaaggac gacgaaggta tcttgagaca agacagatac 1020

ccattgagaa cttctccaca gtggcttggt ccattggtaa gcgacttgat ccacgctcac 1080ccattgagaa cttctccaca gtggcttggt ccattggtaa gcgacttgat ccacgctcac 1080

gctgttttga ctatcgaagc tggtcaatct actactgaca acccattgat cgacgttgaa 1140gctgttttga ctatcgaagc tggtcaatct actactgaca acccattgat cgacgttgaa 1140

aacaagactt ctcaccacgg tggtaacttc caagctgctg ctgttgctaa cactatggaa 1200aacaagactt ctcaccacgg tggtaacttc caagctgctg ctgttgctaa cactatggaa 1200

aagactagat tgggtttggc tcaaatcggt aagttgaact tcactcaatt gactgaaatg 1260aagactagat tgggtttggc tcaaatcggt aagttgaact tcactcaatt gactgaaatg 1260

ttgaacgctg gtatgaacag aggtttgcca tcttgtttgg ctgctgaaga cccatctttg 1320ttgaacgctg gtatgaacag aggtttgcca tcttgtttgg ctgctgaaga cccatctttg 1320

tcttatcatt gtaagggtct cgacatcgct gcggctgctt acacttctga attgggtcac 1380tcttatcatt gtaagggtct cgacatcgct gcggctgctt acacttctga attgggtcac 1380

ttggctaacc cagttactac tcacgttcaa ccagctgaaa tggctaacca agctgttaac 1440ttggctaacc cagttactac tcacgttcaa ccagctgaaa tggctaacca agctgttaac 1440

tctttggctt tgatctctgc tagaagaact actgaatcta acgacgttct cagcttgttg 1500tctttggctt tgatctctgc tagaagaact actgaatcta acgacgttct cagcttgttg 1500

ctcgctactc acttgtactg tgttttgcaa gctatcgact tgagagctat cgaattcgaa 1560ctcgctactc acttgtactg tgttttgcaa gctatcgact tgagagctat cgaattcgaa 1560

ttcaagaagc aattcggtcc agctatcgtt tctttgatcg accaacactt cggttctgct 1620ttcaagaagc aattcggtcc agctatcgtt tctttgatcg accaacactt cggttctgct 1620

atgactggtt ctaacttgag agacgaattg gttgaaaagg ttaacaagac tttggctaag 1680atgactggtt ctaacttgag agacgaattg gttgaaaagg ttaacaagac tttggctaag 1680

agattggaac aaactaactc ttacgacttg gttccaagat ggcacgacgc tttctctttc 1740agattggaac aaactaactc ttacgacttg gttccaagat ggcacgacgc tttctctttc 1740

gctgctggta ctgttgttga agttttgtct tctacttctt tgtctttggc tgctgttaac 1800gctgctggta ctgttgttga agttttgtct tctacttctt tgtctttggc tgctgttaac 1800

gcttggaagg ttgctgctgc tgaatctgct atctctttga ctagacaagt tcgtgaaaca 1860gcttggaagg ttgctgctgc tgaatctgct atctctttga ctagacaagt tcgtgaaaca 1860

ttctggtctg ctgcgtctac ttcttctcca gctttgtctt acttgtctcc aagaactcaa 1920ttctggtctg ctgcgtctac ttcttctcca gctttgtctt acttgtctcc aagaactcaa 1920

atcttgtacg ctttcgttag agaagaattg ggtgttaagg ctagaagagg tgacgttttc 1980atcttgtacg ctttcgttag agaagaattg ggtgttaagg ctagaagagg tgacgttttc 1980

ttgggtaagc aagaagttac tatcggttct aacgtttcta agatctacga agctatcaag 2040ttgggtaagc aagaagttac tatcggttct aacgtttcta agatctacga agctatcaag 2040

tctggtagaa tcaacaacgt tttgttgaag atgttggctt aa 2082tctggtagaa tcaacaacgt tttgttgaag atgttggctt aa 2082

<210> 2<210> 2

<211> 1563<211> 1563

<212> DNA<212> DNA

<213> HpaB基因(Artificial Sequence)<213> HpaB gene (Artificial Sequence)

<400> 2<400> 2

atgaagccag aagacttcag agcttctgct actagaccat tcactggtga agaatacttg 60atgaagccag aagacttcag agcttctgct actagaccat tcactggtga agaatacttg 60

gcttctttga gagacgacag agaaatctac atctacggtg acagagttaa ggacgttact 120gcttctttga gagacgacag agaaatctac atctacggtg acagagttaa ggacgttact 120

tctcacccag ctttcagaaa cgctgctgct tctatggcta gattgtacga cgctttgcac 180tctcacccag ctttcagaaa cgctgctgct tctatggcta gattgtacga cgctttgcac 180

gacccacaat ctaaggaaaa gttgtgttgg gaaactgaca ctggtaacgg tggttacact 240gacccacaat ctaaggaaaa gttgtgttgg gaaactgaca ctggtaacgg tggttacact 240

cacaagttct tcagatacgc tagatctgct gacgaattga gacaacaaag agacgctatc 300cacaagttct tcagatacgc tagatctgct gacgaattga gacaacaaag agacgctatc 300

gctgaatggt ctagattgac ttacggttgg atgggtagaa ctccagacta caaggctgct 360gctgaatggt ctagattgac ttacggttgg atgggtagaa ctccagacta caaggctgct 360

ttcggttctg ctttgggtgc taacccaggt ttctacggta gattcgaaga caacgctaag 420ttcggttctg ctttgggtgc taacccaggt ttctacggta gattcgaaga caacgctaag 420

acttggtaca agagaatcca agaagcttgt ttgtacttga accacgctat cgttaaccca 480acttggtaca agagaatcca agaagcttgt ttgtacttga accacgctat cgttaaccca 480

ccaatcgaca gagacaagcc agttgaccaa gttaaggacg ttttcatctc tgttgacgaa 540ccaatcgaca gagacaagcc agttgaccaa gttaaggacg ttttcatctc tgttgacgaa 540

gaagttgacg gtggtatcgt tgtttctggt gctaaggttg ttgctactaa ctctgctttg 600gaagttgacg gtggtatcgt tgtttctggt gctaaggttg ttgctactaa ctctgctttg 600

actcactaca acttcgttgg tcaaggttct gctcaattgt tgggtgacaa cactgacttc 660actcactaca acttcgttgg tcaaggttct gctcaattgt tgggtgacaa cactgacttc 660

gctttgatgt tcatcgctcc aatgaacact ccaggtatga agttgatctg tagaccatct 720gctttgatgt tcatcgctcc aatgaacact ccaggtatga agttgatctg tagaccatct 720

tacgaattgg ttgctggtat cgctggttct ccattcgact acccattgtc ttctagattc 780tacgaattgg ttgctggtat cgctggttct ccattcgact acccattgtc ttctagattc 780

gacgaaaacg acgctatctt ggttatggac aaggttttca tcccatggga aaacgttttg 840gacgaaaacg acgctatctt ggttatggac aaggttttca tcccatggga aaacgttttg 840

atctacagag acttcgaaag atgtaagcaa tggttcccac aaggtggttt cggtagattg 900atctacagag acttcgaaag atgtaagcaa tggttcccac aaggtggttt cggtagattg 900

ttcccaatgc aaggttgtac tagattggct gttaagttgg acttcatcac tggtgctttg 960ttcccaatgc aaggttgtac tagattggct gttaagttgg acttcatcac tggtgctttg 960

tacaaggctt tgcaatgtac tggttctttg gaattcagag gtgttcaagc tcaagttggt 1020tacaaggctt tgcaatgtac tggttctttg gaattcagag gtgttcaagc tcaagttggt 1020

gaagttgttg cttggagaaa cttgttctgg tctttgactg acgctatgta cggtaacgct 1080gaagttgttg cttggagaaa cttgttctgg tctttgactg acgctatgta cggtaacgct 1080

tctgaatggc acggtggtgc tttcttgcca tctgctgaag ctttgcaagc ttacagagtt 1140tctgaatggc acggtggtgc tttcttgcca tctgctgaag ctttgcaagc ttacagagtt 1140

ttggctccac aagcttaccc agaaatcaag aagactatcg aacaagttgt tgcttctggt 1200ttggctccac aagcttaccc agaaatcaag aagactatcg aacaagttgt tgcttctggt 1200

ttgatctact tgccatctgg tgttagagac ttgcacaacc cacaattgga caagtacttg 1260ttgatctact tgccatctgg tgttagagac ttgcacaacc cacaattgga caagtacttg 1260

tctacttact gtagaggttc tggtggtatg ggtcacagag aaagaatcaa gatcttgaag 1320tctacttact gtagaggttc tggtggtatg ggtcacagag aaagaatcaa gatcttgaag 1320

ttgttgtggg acgctatcgg ttctgaattc ggtggtagac acgaattgta cgaaatcaac 1380ttgttgtggg acgctatcgg ttctgaattc ggtggtagac acgaattgta cgaaatcaac 1380

tacgctggtt ctcaagacga aatcagaatg caagctttga gacaagctat cggttctggt 1440tacgctggtt ctcaagacga aatcagaatg caagctttga gacaagctat cggttctggt 1440

gctatgaagg gtatgttggg tatggttgaa caatgtatgg gtgactacga cgaaaacggt 1500gctatgaagg gtatgttggg tatggttgaa caatgtatgg gtgactacga cgaaaacggt 1500

tggactgttc cacacttgca caacccagac gacatcaacg ttttggacag aatcagacaa 1560tggactgttc cacacttgca caacccagac gacatcaacg ttttggacag aatcagacaa 1560

taa 1563taa 1563

<210> 3<210> 3

<211> 513<211> 513

<212> DNA<212> DNA

<213> HpaC 基因(Artificial Sequence)<213> HpaC gene (Artificial Sequence)

<400> 3<400> 3

atgcaagtag atgaacaacg tctgcgtttt cgcgatgcga tggcaagtct ggcggcagcg 60atgcaagtag atgaacaacg tctgcgtttt cgcgatgcga tggcaagtct ggcggcagcg 60

gtcaacatcg taaccacggc gggtcacgcc ggacgctgcg gtatcaccgc aacagcggtc 120gtcaacatcg taaccacggc gggtcacgcc ggacgctgcg gtatcaccgc aacagcggtc 120

tgttccgtca ccgatacgcc gccctccgtg atggtatgta ttaatgccaa tagcgccatg 180tgttccgtca ccgatacgcc gccctccgtg atggtatgta ttaatgccaa tagcgccatg 180

aaccccgtct ttcagggcaa cggcaagctg tgcattaatg tacttaacca tgagcaggag 240aaccccgtct ttcagggcaa cggcaagctg tgcattaatg tacttaacca tgagcaggag 240

ctgatggcgc gccactttgc cggtatgacg gggatggcga tggaagagcg ttttcaccag 300ctgatggcgc gccactttgc cggtatgacg gggatggcga tggaagagcg ttttcaccag 300

ccatgttggc aaaacgggcc gctgggccag ccggtactta acggcgcgct ggccggtctt 360ccatgttggc aaaacgggcc gctgggccag ccggtactta acggcgcgct ggccggtctt 360

gaaggcgaga tcagcgaggt acaaaccatt ggcacgcatc tggtgtatct ggtggcgatc 420gaaggcgaga tcagcgaggt acaaaccatt ggcacgcatc tggtgtatct ggtggcgatc 420

aaaaatatta ttcttagcca ggatgggcat ggcctgattt atttcaaacg ccgttttcat 480aaaaatatta ttcttagcca ggatgggcat ggcctgattt atttcaaacg ccgttttcat 480

ccggtcagac ttgagatgga agcgcctgtt taa 513ccggtcagac ttgagatgga agcgcctgtt taa 513

<210> 4<210> 4

<211> 882<211> 882

<212> DNA<212> DNA

<213> TyrC基因(Artificial Sequence)<213> TyrC gene (Artificial Sequence)

<400> 4<400> 4

atgacagttt ttaaacatat tgcaattatt ggtttgggtt tgattggttc ttcagcagct 60atgacagttt ttaaacatat tgcaattatt ggtttgggtt tgattggttc ttcagcagct 60

agagctacta aagcatattg tccagatgtt acagtttctt tgtatgataa atctgaattt 120agagctacta aagcatattg tccagatgtt acagtttctt tgtatgataa atctgaattt 120

gtttgtgata gggcaagggc tttgaattta ggtgataatg ttactgatga tattcaagat 180gtttgtgata gggcaagggc tttgaattta ggtgataatg ttactgatga tattcaagat 180

gctgttagag aagctgattt agttttgttg tgtgttccag ttagagctat gggtattgtt 240gctgttagag aagctgattt agttttgttg tgtgttccag ttagagctat gggtattgtt 240

gcagcagcta tggctcctgc tttgaaaaaa gatgttatta tttgtgatac tggttctgtt 300gcagcagcta tggctcctgc tttgaaaaaa gatgttatta tttgtgatac tggttctgtt 300

aaagtttcag ttattaaaac tttacaagat aatttaccta atcatattat tgttccttct 360aaagtttcag ttattaaaac tttacaagat aatttaccta atcatattat tgttccttct 360

catccattag caggtacaga aaataatggt cctgatgcag gttttgcaga attgtttcaa 420catccattag caggtacaga aaataatggt cctgatgcag gttttgcaga attgtttcaa 420

gatcatccag ttattttgac accagatgca catacacctg cacaagcaat tgcttatatt 480gatcatccag ttattttgac accagatgca catacacctg cacaagcaat tgcttattatt 480

gcagattatt gggaagaaat tggtggtagg attaatttaa tgtcagctga acatcatgat 540gcagattatt gggaagaaat tggtggtagg attaatttaa tgtcagctga acatcatgat 540

catgttttag ctttgacttc acatttacca catgttattg catatcaatt aattggtatg 600catgttttag ctttgacttc acatttacca catgttattg catatcaatt aattggtatg 600

gtttctggtt atgaaaaaaa atctaggact ccaattatga ggtattcagc aggttctttt 660gtttctggtt atgaaaaaaa atctaggact ccaattatga ggtattcagc aggttctttt 660

agggatgcta ctagagttgc tgcatctgaa cctaggttgt ggcaagatat tatgttggaa 720agggatgcta ctagagttgc tgcatctgaa cctaggttgt ggcaagatat tatgttggaa 720

aatgctcctg cattgttacc agttttggat cattttattg ctgatttgaa aaaattaagg 780aatgctcctg cattgttacc agttttggat cattttattg ctgatttgaa aaaattaagg 780

acagcaattg cttctcaaga tgaagattat ttgttggaac attttaaaga atctcaaaaa 840acagcaattg cttctcaaga tgaagattat ttgttggaac attttaaaga atctcaaaaa 840

gcaaggttgg cattgaaaac agatcatgat attcatccat aa 882gcaaggttgg cattgaaaac agatcatgat attcatccat aa 882

<210> 5<210> 5

<211> 693<211> 693

<212> PRT<212> PRT

<213> RgTAL基因(Artificial Sequence)<213> RgTAL gene (Artificial Sequence)

<400> 5<400> 5

Met Ala Pro Arg Pro Thr Ser Gln Ser Gln Ala Arg Thr Cys Pro ThrMet Ala Pro Arg Pro Thr Ser Gln Ser Gln Ala Arg Thr Cys Pro Thr

1 5 10 151 5 10 15

Thr Gln Val Thr Gln Val Asp Ile Val Glu Lys Met Leu Ala Ala ProThr Gln Val Thr Gln Val Asp Ile Val Glu Lys Met Leu Ala Ala Pro

20 25 30 20 25 30

Thr Asp Ser Thr Leu Glu Leu Asp Gly Tyr Ser Leu Asn Leu Gly AspThr Asp Ser Thr Leu Glu Leu Asp Gly Tyr Ser Leu Asn Leu Gly Asp

35 40 45 35 40 45

Val Val Ser Ala Ala Arg Lys Gly Arg Pro Val Arg Val Lys Asp SerVal Val Ser Ala Ala Arg Lys Gly Arg Pro Val Arg Val Lys Asp Ser

50 55 60 50 55 60

Asp Glu Ile Arg Ser Lys Ile Asp Lys Ser Val Glu Phe Leu Arg SerAsp Glu Ile Arg Ser Lys Ile Asp Lys Ser Val Glu Phe Leu Arg Ser

65 70 75 8065 70 75 80

Gln Leu Ser Met Ser Val Tyr Gly Val Thr Thr Gly Phe Gly Gly SerGln Leu Ser Met Ser Val Tyr Gly Val Thr Thr Gly Phe Gly Gly Ser

85 90 95 85 90 95

Ala Asp Thr Arg Thr Glu Asp Ala Ile Ser Leu Gln Lys Ala Leu LeuAla Asp Thr Arg Thr Glu Asp Ala Ile Ser Leu Gln Lys Ala Leu Leu

100 105 110 100 105 110

Glu His Gln Leu Cys Gly Val Leu Pro Ser Ser Phe Asp Ser Phe ArgGlu His Gln Leu Cys Gly Val Leu Pro Ser Ser Phe Asp Ser Phe Arg

115 120 125 115 120 125

Leu Gly Arg Gly Leu Glu Asn Ser Leu Pro Leu Glu Val Val Arg GlyLeu Gly Arg Gly Leu Glu Asn Ser Leu Pro Leu Glu Val Val Arg Gly

130 135 140 130 135 140

Ala Met Thr Ile Arg Val Asn Ser Leu Thr Arg Gly His Ser Ala ValAla Met Thr Ile Arg Val Asn Ser Leu Thr Arg Gly His Ser Ala Val

145 150 155 160145 150 155 160

Arg Leu Val Val Leu Glu Ala Leu Thr Asn Phe Leu Asn His Gly IleArg Leu Val Val Leu Glu Ala Leu Thr Asn Phe Leu Asn His Gly Ile

165 170 175 165 170 175

Thr Pro Ile Val Pro Leu Arg Gly Thr Ile Ser Ala Ser Gly Asp LeuThr Pro Ile Val Pro Leu Arg Gly Thr Ile Ser Ala Ser Gly Asp Leu

180 185 190 180 185 190

Ser Pro Leu Ser Tyr Ile Ala Ala Ala Ile Ser Gly His Pro Asp SerSer Pro Leu Ser Tyr Ile Ala Ala Ala Ile Ser Gly His Pro Asp Ser

195 200 205 195 200 205

Lys Val His Val Val His Glu Gly Lys Glu Lys Ile Leu Tyr Ala ArgLys Val His Val Val His Glu Gly Lys Glu Lys Ile Leu Tyr Ala Arg

210 215 220 210 215 220

Glu Ala Met Ala Leu Phe Asn Leu Glu Pro Val Val Leu Gly Pro LysGlu Ala Met Ala Leu Phe Asn Leu Glu Pro Val Val Leu Gly Pro Lys

225 230 235 240225 230 235 240

Glu Gly Leu Gly Leu Val Asn Gly Thr Ala Val Ser Ala Ser Met AlaGlu Gly Leu Gly Leu Val Asn Gly Thr Ala Val Ser Ala Ser Met Ala

245 250 255 245 250 255

Thr Leu Ala Leu His Asp Ala His Met Leu Ser Leu Leu Ser Gln SerThr Leu Ala Leu His Asp Ala His Met Leu Ser Leu Leu Ser Gln Ser

260 265 270 260 265 270

Leu Thr Ala Met Thr Val Glu Ala Met Val Gly His Ala Gly Ser PheLeu Thr Ala Met Thr Val Glu Ala Met Val Gly His Ala Gly Ser Phe

275 280 285 275 280 285

His Pro Phe Leu His Asp Val Thr Arg Pro His Pro Thr Gln Ile GluHis Pro Phe Leu His Asp Val Thr Arg Pro His Pro Thr Gln Ile Glu

290 295 300 290 295 300

Val Ala Gly Asn Ile Arg Lys Leu Leu Glu Gly Ser Arg Phe Ala ValVal Ala Gly Asn Ile Arg Lys Leu Leu Glu Gly Ser Arg Phe Ala Val

305 310 315 320305 310 315 320

His His Glu Glu Glu Val Lys Val Lys Asp Asp Glu Gly Ile Leu ArgHis His Glu Glu Glu Val Lys Val Lys Asp Asp Glu Gly Ile Leu Arg

325 330 335 325 330 335

Gln Asp Arg Tyr Pro Leu Arg Thr Ser Pro Gln Trp Leu Gly Pro LeuGln Asp Arg Tyr Pro Leu Arg Thr Ser Pro Gln Trp Leu Gly Pro Leu

340 345 350 340 345 350

Val Ser Asp Leu Ile His Ala His Ala Val Leu Thr Ile Glu Ala GlyVal Ser Asp Leu Ile His Ala His Ala Val Leu Thr Ile Glu Ala Gly

355 360 365 355 360 365

Gln Ser Thr Thr Asp Asn Pro Leu Ile Asp Val Glu Asn Lys Thr SerGln Ser Thr Thr Asp Asn Pro Leu Ile Asp Val Glu Asn Lys Thr Ser

370 375 380 370 375 380

His His Gly Gly Asn Phe Gln Ala Ala Ala Val Ala Asn Thr Met GluHis His Gly Gly Asn Phe Gln Ala Ala Ala Val Ala Asn Thr Met Glu

385 390 395 400385 390 395 400

Lys Thr Arg Leu Gly Leu Ala Gln Ile Gly Lys Leu Asn Phe Thr GlnLys Thr Arg Leu Gly Leu Ala Gln Ile Gly Lys Leu Asn Phe Thr Gln

405 410 415 405 410 415

Leu Thr Glu Met Leu Asn Ala Gly Met Asn Arg Gly Leu Pro Ser CysLeu Thr Glu Met Leu Asn Ala Gly Met Asn Arg Gly Leu Pro Ser Cys

420 425 430 420 425 430

Leu Ala Ala Glu Asp Pro Ser Leu Ser Tyr His Cys Lys Gly Leu AspLeu Ala Ala Glu Asp Pro Ser Leu Ser Tyr His Cys Lys Gly Leu Asp

435 440 445 435 440 445

Ile Ala Ala Ala Ala Tyr Thr Ser Glu Leu Gly His Leu Ala Asn ProIle Ala Ala Ala Ala Tyr Thr Ser Glu Leu Gly His Leu Ala Asn Pro

450 455 460 450 455 460

Val Thr Thr His Val Gln Pro Ala Glu Met Ala Asn Gln Ala Val AsnVal Thr Thr His Val Gln Pro Ala Glu Met Ala Asn Gln Ala Val Asn

465 470 475 480465 470 475 480

Ser Leu Ala Leu Ile Ser Ala Arg Arg Thr Thr Glu Ser Asn Asp ValSer Leu Ala Leu Ile Ser Ala Arg Arg Thr Thr Glu Ser Asn Asp Val

485 490 495 485 490 495

Leu Ser Leu Leu Leu Ala Thr His Leu Tyr Cys Val Leu Gln Ala IleLeu Ser Leu Leu Leu Ala Thr His Leu Tyr Cys Val Leu Gln Ala Ile

500 505 510 500 505 510

Asp Leu Arg Ala Ile Glu Phe Glu Phe Lys Lys Gln Phe Gly Pro AlaAsp Leu Arg Ala Ile Glu Phe Glu Phe Lys Lys Lys Gln Phe Gly Pro Ala

515 520 525 515 520 525

Ile Val Ser Leu Ile Asp Gln His Phe Gly Ser Ala Met Thr Gly SerIle Val Ser Leu Ile Asp Gln His Phe Gly Ser Ala Met Thr Gly Ser

530 535 540 530 535 540

Asn Leu Arg Asp Glu Leu Val Glu Lys Val Asn Lys Thr Leu Ala LysAsn Leu Arg Asp Glu Leu Val Glu Lys Val Asn Lys Thr Leu Ala Lys

545 550 555 560545 550 555 560

Arg Leu Glu Gln Thr Asn Ser Tyr Asp Leu Val Pro Arg Trp His AspArg Leu Glu Gln Thr Asn Ser Tyr Asp Leu Val Pro Arg Trp His Asp

565 570 575 565 570 575

Ala Phe Ser Phe Ala Ala Gly Thr Val Val Glu Val Leu Ser Ser ThrAla Phe Ser Phe Ala Ala Gly Thr Val Val Glu Val Leu Ser Ser Thr

580 585 590 580 585 590

Ser Leu Ser Leu Ala Ala Val Asn Ala Trp Lys Val Ala Ala Ala GluSer Leu Ser Leu Ala Ala Val Asn Ala Trp Lys Val Ala Ala Ala Glu

595 600 605 595 600 605

Ser Ala Ile Ser Leu Thr Arg Gln Val Arg Glu Thr Phe Trp Ser AlaSer Ala Ile Ser Leu Thr Arg Gln Val Arg Glu Thr Phe Trp Ser Ala

610 615 620 610 615 620

Ala Ser Thr Ser Ser Pro Ala Leu Ser Tyr Leu Ser Pro Arg Thr GlnAla Ser Thr Ser Ser Pro Ala Leu Ser Tyr Leu Ser Pro Arg Thr Gln

625 630 635 640625 630 635 640

Ile Leu Tyr Ala Phe Val Arg Glu Glu Leu Gly Val Lys Ala Arg ArgIle Leu Tyr Ala Phe Val Arg Glu Glu Leu Gly Val Lys Ala Arg Arg

645 650 655 645 650 655

Gly Asp Val Phe Leu Gly Lys Gln Glu Val Thr Ile Gly Ser Asn ValGly Asp Val Phe Leu Gly Lys Gln Glu Val Thr Ile Gly Ser Asn Val

660 665 670 660 665 670

Ser Lys Ile Tyr Glu Ala Ile Lys Ser Gly Arg Ile Asn Asn Val LeuSer Lys Ile Tyr Glu Ala Ile Lys Ser Gly Arg Ile Asn Asn Val Leu

675 680 685 675 680 685

Leu Lys Met Leu AlaLeu Lys Met Leu Ala

690 690

<210> 6<210> 6

<211> 520<211> 520

<212> PRT<212> PRT

<213> HpaB基因(Artificial Sequence)<213> HpaB gene (Artificial Sequence)

<400> 6<400> 6

Met Lys Pro Glu Asp Phe Arg Ala Ser Ala Thr Arg Pro Phe Thr GlyMet Lys Pro Glu Asp Phe Arg Ala Ser Ala Thr Arg Pro Phe Thr Gly

1 5 10 151 5 10 15

Glu Glu Tyr Leu Ala Ser Leu Arg Asp Asp Arg Glu Ile Tyr Ile TyrGlu Glu Tyr Leu Ala Ser Leu Arg Asp Asp Arg Glu Ile Tyr Ile Tyr

20 25 30 20 25 30

Gly Asp Arg Val Lys Asp Val Thr Ser His Pro Ala Phe Arg Asn AlaGly Asp Arg Val Lys Asp Val Thr Ser His Pro Ala Phe Arg Asn Ala

35 40 45 35 40 45

Ala Ala Ser Met Ala Arg Leu Tyr Asp Ala Leu His Asp Pro Gln SerAla Ala Ser Met Ala Arg Leu Tyr Asp Ala Leu His Asp Pro Gln Ser

50 55 60 50 55 60

Lys Glu Lys Leu Cys Trp Glu Thr Asp Thr Gly Asn Gly Gly Tyr ThrLys Glu Lys Leu Cys Trp Glu Thr Asp Thr Gly Asn Gly Gly Tyr Thr

65 70 75 8065 70 75 80

His Lys Phe Phe Arg Tyr Ala Arg Ser Ala Asp Glu Leu Arg Gln GlnHis Lys Phe Phe Arg Tyr Ala Arg Ser Ala Asp Glu Leu Arg Gln Gln

85 90 95 85 90 95

Arg Asp Ala Ile Ala Glu Trp Ser Arg Leu Thr Tyr Gly Trp Met GlyArg Asp Ala Ile Ala Glu Trp Ser Arg Leu Thr Tyr Gly Trp Met Gly

100 105 110 100 105 110

Arg Thr Pro Asp Tyr Lys Ala Ala Phe Gly Ser Ala Leu Gly Ala AsnArg Thr Pro Asp Tyr Lys Ala Ala Phe Gly Ser Ala Leu Gly Ala Asn

115 120 125 115 120 125

Pro Gly Phe Tyr Gly Arg Phe Glu Asp Asn Ala Lys Thr Trp Tyr LysPro Gly Phe Tyr Gly Arg Phe Glu Asp Asn Ala Lys Thr Trp Tyr Lys

130 135 140 130 135 140

Arg Ile Gln Glu Ala Cys Leu Tyr Leu Asn His Ala Ile Val Asn ProArg Ile Gln Glu Ala Cys Leu Tyr Leu Asn His Ala Ile Val Asn Pro

145 150 155 160145 150 155 160

Pro Ile Asp Arg Asp Lys Pro Val Asp Gln Val Lys Asp Val Phe IlePro Ile Asp Arg Asp Lys Pro Val Asp Gln Val Lys Asp Val Phe Ile

165 170 175 165 170 175

Ser Val Asp Glu Glu Val Asp Gly Gly Ile Val Val Ser Gly Ala LysSer Val Asp Glu Glu Val Asp Gly Gly Ile Val Val Ser Gly Ala Lys

180 185 190 180 185 190

Val Val Ala Thr Asn Ser Ala Leu Thr His Tyr Asn Phe Val Gly GlnVal Val Ala Thr Asn Ser Ala Leu Thr His Tyr Asn Phe Val Gly Gln

195 200 205 195 200 205

Gly Ser Ala Gln Leu Leu Gly Asp Asn Thr Asp Phe Ala Leu Met PheGly Ser Ala Gln Leu Leu Gly Asp Asn Thr Asp Phe Ala Leu Met Phe

210 215 220 210 215 220

Ile Ala Pro Met Asn Thr Pro Gly Met Lys Leu Ile Cys Arg Pro SerIle Ala Pro Met Asn Thr Pro Gly Met Lys Leu Ile Cys Arg Pro Ser

225 230 235 240225 230 235 240

Tyr Glu Leu Val Ala Gly Ile Ala Gly Ser Pro Phe Asp Tyr Pro LeuTyr Glu Leu Val Ala Gly Ile Ala Gly Ser Pro Phe Asp Tyr Pro Leu

245 250 255 245 250 255

Ser Ser Arg Phe Asp Glu Asn Asp Ala Ile Leu Val Met Asp Lys ValSer Ser Arg Phe Asp Glu Asn Asp Ala Ile Leu Val Met Asp Lys Val

260 265 270 260 265 270

Phe Ile Pro Trp Glu Asn Val Leu Ile Tyr Arg Asp Phe Glu Arg CysPhe Ile Pro Trp Glu Asn Val Leu Ile Tyr Arg Asp Phe Glu Arg Cys

275 280 285 275 280 285

Lys Gln Trp Phe Pro Gln Gly Gly Phe Gly Arg Leu Phe Pro Met GlnLys Gln Trp Phe Pro Gln Gly Gly Phe Gly Arg Leu Phe Pro Met Gln

290 295 300 290 295 300

Gly Cys Thr Arg Leu Ala Val Lys Leu Asp Phe Ile Thr Gly Ala LeuGly Cys Thr Arg Leu Ala Val Lys Leu Asp Phe Ile Thr Gly Ala Leu

305 310 315 320305 310 315 320

Tyr Lys Ala Leu Gln Cys Thr Gly Ser Leu Glu Phe Arg Gly Val GlnTyr Lys Ala Leu Gln Cys Thr Gly Ser Leu Glu Phe Arg Gly Val Gln

325 330 335 325 330 335

Ala Gln Val Gly Glu Val Val Ala Trp Arg Asn Leu Phe Trp Ser LeuAla Gln Val Gly Glu Val Val Ala Trp Arg Asn Leu Phe Trp Ser Leu

340 345 350 340 345 350

Thr Asp Ala Met Tyr Gly Asn Ala Ser Glu Trp His Gly Gly Ala PheThr Asp Ala Met Tyr Gly Asn Ala Ser Glu Trp His Gly Gly Ala Phe

355 360 365 355 360 365

Leu Pro Ser Ala Glu Ala Leu Gln Ala Tyr Arg Val Leu Ala Pro GlnLeu Pro Ser Ala Glu Ala Leu Gln Ala Tyr Arg Val Leu Ala Pro Gln

370 375 380 370 375 380

Ala Tyr Pro Glu Ile Lys Lys Thr Ile Glu Gln Val Val Ala Ser GlyAla Tyr Pro Glu Ile Lys Lys Thr Ile Glu Gln Val Val Ala Ser Gly

385 390 395 400385 390 395 400

Leu Ile Tyr Leu Pro Ser Gly Val Arg Asp Leu His Asn Pro Gln LeuLeu Ile Tyr Leu Pro Ser Gly Val Arg Asp Leu His Asn Pro Gln Leu

405 410 415 405 410 415

Asp Lys Tyr Leu Ser Thr Tyr Cys Arg Gly Ser Gly Gly Met Gly HisAsp Lys Tyr Leu Ser Thr Tyr Cys Arg Gly Ser Gly Gly Met Gly His

420 425 430 420 425 430

Arg Glu Arg Ile Lys Ile Leu Lys Leu Leu Trp Asp Ala Ile Gly SerArg Glu Arg Ile Lys Ile Leu Lys Leu Leu Trp Asp Ala Ile Gly Ser

435 440 445 435 440 445

Glu Phe Gly Gly Arg His Glu Leu Tyr Glu Ile Asn Tyr Ala Gly SerGlu Phe Gly Gly Arg His Glu Leu Tyr Glu Ile Asn Tyr Ala Gly Ser

450 455 460 450 455 460

Gln Asp Glu Ile Arg Met Gln Ala Leu Arg Gln Ala Ile Gly Ser GlyGln Asp Glu Ile Arg Met Gln Ala Leu Arg Gln Ala Ile Gly Ser Gly

465 470 475 480465 470 475 480

Ala Met Lys Gly Met Leu Gly Met Val Glu Gln Cys Met Gly Asp TyrAla Met Lys Gly Met Leu Gly Met Val Glu Gln Cys Met Gly Asp Tyr

485 490 495 485 490 495

Asp Glu Asn Gly Trp Thr Val Pro His Leu His Asn Pro Asp Asp IleAsp Glu Asn Gly Trp Thr Val Pro His Leu His Asn Pro Asp Asp Ile

500 505 510 500 505 510

Asn Val Leu Asp Arg Ile Arg GlnAsn Val Leu Asp Arg Ile Arg Gln

515 520 515 520

<210> 7<210> 7

<211> 170<211> 170

<212> PRT<212> PRT

<213> HpaC 基因(Artificial Sequence)<213> HpaC gene (Artificial Sequence)

<400> 7<400> 7

Met Gln Val Asp Glu Gln Arg Leu Arg Phe Arg Asp Ala Met Ala SerMet Gln Val Asp Glu Gln Arg Leu Arg Phe Arg Asp Ala Met Ala Ser

1 5 10 151 5 10 15

Leu Ala Ala Ala Val Asn Ile Val Thr Thr Ala Gly His Ala Gly ArgLeu Ala Ala Ala Val Asn Ile Val Thr Thr Ala Gly His Ala Gly Arg

20 25 30 20 25 30

Cys Gly Ile Thr Ala Thr Ala Val Cys Ser Val Thr Asp Thr Pro ProCys Gly Ile Thr Ala Thr Ala Val Cys Ser Val Thr Asp Thr Pro Pro

35 40 45 35 40 45

Ser Val Met Val Cys Ile Asn Ala Asn Ser Ala Met Asn Pro Val PheSer Val Met Val Cys Ile Asn Ala Asn Ser Ala Met Asn Pro Val Phe

50 55 60 50 55 60

Gln Gly Asn Gly Lys Leu Cys Ile Asn Val Leu Asn His Glu Gln GluGln Gly Asn Gly Lys Leu Cys Ile Asn Val Leu Asn His Glu Gln Glu

65 70 75 8065 70 75 80

Leu Met Ala Arg His Phe Ala Gly Met Thr Gly Met Ala Met Glu GluLeu Met Ala Arg His Phe Ala Gly Met Thr Gly Met Ala Met Glu Glu

85 90 95 85 90 95

Arg Phe His Gln Pro Cys Trp Gln Asn Gly Pro Leu Gly Gln Pro ValArg Phe His Gln Pro Cys Trp Gln Asn Gly Pro Leu Gly Gln Pro Val

100 105 110 100 105 110

Leu Asn Gly Ala Leu Ala Gly Leu Glu Gly Glu Ile Ser Glu Val GlnLeu Asn Gly Ala Leu Ala Gly Leu Glu Gly Glu Ile Ser Glu Val Gln

115 120 125 115 120 125

Thr Ile Gly Thr His Leu Val Tyr Leu Val Ala Ile Lys Asn Ile IleThr Ile Gly Thr His Leu Val Tyr Leu Val Ala Ile Lys Asn Ile Ile

130 135 140 130 135 140

Leu Ser Gln Asp Gly His Gly Leu Ile Tyr Phe Lys Arg Arg Phe HisLeu Ser Gln Asp Gly His Gly Leu Ile Tyr Phe Lys Arg Arg Phe His

145 150 155 160145 150 155 160

Pro Val Arg Leu Glu Met Glu Ala Pro ValPro Val Arg Leu Glu Met Glu Ala Pro Val

165 170 165 170

<210> 8<210> 8

<211> 293<211> 293

<212> PRT<212> PRT

<213> TyrC基因(Artificial Sequence)<213> TyrC gene (Artificial Sequence)

<400> 8<400> 8

Met Thr Val Phe Lys His Ile Ala Ile Ile Gly Leu Gly Leu Ile GlyMet Thr Val Phe Lys His Ile Ala Ile Ile Gly Leu Gly Leu Ile Gly

1 5 10 151 5 10 15

Ser Ser Ala Ala Arg Ala Thr Lys Ala Tyr Cys Pro Asp Val Thr ValSer Ser Ala Ala Arg Ala Thr Lys Ala Tyr Cys Pro Asp Val Thr Val

20 25 30 20 25 30

Ser Leu Tyr Asp Lys Ser Glu Phe Val Cys Asp Arg Ala Arg Ala LeuSer Leu Tyr Asp Lys Ser Glu Phe Val Cys Asp Arg Ala Arg Ala Leu

35 40 45 35 40 45

Asn Leu Gly Asp Asn Val Thr Asp Asp Ile Gln Asp Ala Val Arg GluAsn Leu Gly Asp Asn Val Thr Asp Asp Ile Gln Asp Ala Val Arg Glu

50 55 60 50 55 60

Ala Asp Leu Val Leu Leu Cys Val Pro Val Arg Ala Met Gly Ile ValAla Asp Leu Val Leu Leu Cys Val Pro Val Arg Ala Met Gly Ile Val

65 70 75 8065 70 75 80

Ala Ala Ala Met Ala Pro Ala Leu Lys Lys Asp Val Ile Ile Cys AspAla Ala Ala Met Ala Pro Ala Leu Lys Lys Asp Val Ile Ile Cys Asp

85 90 95 85 90 95

Thr Gly Ser Val Lys Val Ser Val Ile Lys Thr Leu Gln Asp Asn LeuThr Gly Ser Val Lys Val Ser Val Ile Lys Thr Leu Gln Asp Asn Leu

100 105 110 100 105 110

Pro Asn His Ile Ile Val Pro Ser His Pro Leu Ala Gly Thr Glu AsnPro Asn His Ile Ile Val Pro Ser His Pro Leu Ala Gly Thr Glu Asn

115 120 125 115 120 125

Asn Gly Pro Asp Ala Gly Phe Ala Glu Leu Phe Gln Asp His Pro ValAsn Gly Pro Asp Ala Gly Phe Ala Glu Leu Phe Gln Asp His Pro Val

130 135 140 130 135 140

Ile Leu Thr Pro Asp Ala His Thr Pro Ala Gln Ala Ile Ala Tyr IleIle Leu Thr Pro Asp Ala His Thr Pro Ala Gln Ala Ile Ala Tyr Ile

145 150 155 160145 150 155 160

Ala Asp Tyr Trp Glu Glu Ile Gly Gly Arg Ile Asn Leu Met Ser AlaAla Asp Tyr Trp Glu Glu Ile Gly Gly Arg Ile Asn Leu Met Ser Ala

165 170 175 165 170 175

Glu His His Asp His Val Leu Ala Leu Thr Ser His Leu Pro His ValGlu His His Asp His Val Leu Ala Leu Thr Ser His Leu Pro His Val

180 185 190 180 185 190

Ile Ala Tyr Gln Leu Ile Gly Met Val Ser Gly Tyr Glu Lys Lys SerIle Ala Tyr Gln Leu Ile Gly Met Val Ser Gly Tyr Glu Lys Lys Ser

195 200 205 195 200 205

Arg Thr Pro Ile Met Arg Tyr Ser Ala Gly Ser Phe Arg Asp Ala ThrArg Thr Pro Ile Met Arg Tyr Ser Ala Gly Ser Phe Arg Asp Ala Thr

210 215 220 210 215 220

Arg Val Ala Ala Ser Glu Pro Arg Leu Trp Gln Asp Ile Met Leu GluArg Val Ala Ala Ser Glu Pro Arg Leu Trp Gln Asp Ile Met Leu Glu

225 230 235 240225 230 235 240

Asn Ala Pro Ala Leu Leu Pro Val Leu Asp His Phe Ile Ala Asp LeuAsn Ala Pro Ala Leu Leu Pro Val Leu Asp His Phe Ile Ala Asp Leu

245 250 255 245 250 255

Lys Lys Leu Arg Thr Ala Ile Ala Ser Gln Asp Glu Asp Tyr Leu LeuLys Lys Leu Arg Thr Ala Ile Ala Ser Gln Asp Glu Asp Tyr Leu Leu

260 265 270 260 265 270

Glu His Phe Lys Glu Ser Gln Lys Ala Arg Leu Ala Leu Lys Thr AspGlu His Phe Lys Glu Ser Gln Lys Ala Arg Leu Ala Leu Lys Thr Asp

275 280 285 275 280 285

His Asp Ile His ProHis Asp Ile His Pro

290 290

Claims (4)

1. The saccharomyces cerevisiae recombinant strain is characterized in that the saccharomyces cerevisiae recombinant strain integrates genomeRgTALGene, gene,HpaBGenes andHpaCa gene ofRgTALThe base sequence of the gene is shown as SEQ ID NO: 1, saidHpaBThe base sequence of the gene is shown as SEQ ID NO: 2, saidHpaCThe base sequence of the gene is shown as SEQ ID NO: 3, saidRgTALThe corresponding amino acid sequence of the gene is shown as SEQ ID NO: 5, saidHpaBThe corresponding amino acid sequence of the gene is shown as SEQ ID NO: 6, said HpaCThe corresponding amino acid sequence of the gene is shown as SEQ ID NO: 7, the saccharomyces cerevisiae recombinant strain also comprises a strain with a knockout on a saccharomyces cerevisiae chromosomeAro3AndAro10a gene; overexpression of mutants not subject to feedback inhibition by tyrosineAro4 K229L AndAro7 G141S a gene; the gene sequence of the preprenzoate dehydrogenase TyrC which is over-expressed and derived from zymomonas mobilis is shown as SEQ ID NO: 4, and the corresponding amino acid sequence is shown as SEQ ID NO: 8, the construction method of the saccharomyces cerevisiae recombinant bacteria comprises the following steps:
1) recombinant vector pUMRI-13-HpaB-HpaCAnd pUMRI-11-RgTALObtaining a plasmid;
2) recombinant vector pUMRI-13-HpaB-HpaCIntroducing Saccharomyces cerevisiae to obtain YCA 113-1B;
3) the pUMRI-11-one obtained in the step 1)RgTALIntroducing the plasmid into YCA113-1B to obtain Saccharomyces cerevisiae recombinant strain YCA 113-2B;
4) pUMRI-ΔAro3-Aro4 K229L -Aro7 G141S Introducing into Saccharomyces cerevisiae recombinant strain YCA113-2B to obtain YCA113-5B strain in the recombinant strain;
5) pUMRI-ΔAro10-TyrCThe strain was introduced into YCA113-5B to obtain a recombinant strain YCA 113-8B.
2. The construction method of the saccharomyces cerevisiae recombinant bacteria, which is characterized by comprising the following steps:
1) recombinant vector pUMRI-13-HpaB-HpaCAnd pUMRI-11- RgTALObtaining a plasmid;
2) recombinant vector pUMRI-13-HpaB-HpaCIntroducing Saccharomyces cerevisiae to obtain YCA 113-1B;
3) the pUMRI-11-one obtained in the step 1)RgTALIntroducing the plasmid into YCA113-1B to obtain Saccharomyces cerevisiae recombinant strain YCA 113-2B;
4) pUMRI-ΔAro3-Aro4 K229L -Aro7 G141S Introducing into Saccharomyces cerevisiae recombinant strain YCA113-2B to obtain YCA113-5B strain in the recombinant strain;
5) pUMRI-ΔAro10-TyrCThe strain was introduced into YCA113-5B to obtain a recombinant strain YCA 113-8B.
3. The recombinant Saccharomyces cerevisiae strain of claim 1 for use in the production of caffeic acid.
4. A production method of caffeic acid, which is characterized in that the method comprises the step of carrying out fermentation culture on the saccharomyces cerevisiae recombinant strain of claim 1.
CN202010606941.5A 2020-06-29 2020-06-29 A kind of Saccharomyces cerevisiae recombinant bacteria and its construction method and application Active CN111849794B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010606941.5A CN111849794B (en) 2020-06-29 2020-06-29 A kind of Saccharomyces cerevisiae recombinant bacteria and its construction method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010606941.5A CN111849794B (en) 2020-06-29 2020-06-29 A kind of Saccharomyces cerevisiae recombinant bacteria and its construction method and application

Publications (2)

Publication Number Publication Date
CN111849794A CN111849794A (en) 2020-10-30
CN111849794B true CN111849794B (en) 2022-05-31

Family

ID=72989812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010606941.5A Active CN111849794B (en) 2020-06-29 2020-06-29 A kind of Saccharomyces cerevisiae recombinant bacteria and its construction method and application

Country Status (1)

Country Link
CN (1) CN111849794B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111411101B (en) * 2020-05-15 2022-05-10 扬州大学 Linalool synthase mutant, recombinant expression vector and linalool production engineering bacteria
CN112553098B (en) * 2020-12-09 2022-02-01 江南大学 Biological preparation method of caffeic acid
CN113174375B (en) * 2021-04-23 2022-11-04 天津大学 ARO3 protein mutants and their applications
CN114410494B (en) * 2021-12-31 2024-04-16 扬州大学 Saccharomyces cerevisiae engineering bacteria for producing rosmarinic acid and construction method and application thereof
CN114350697A (en) * 2022-02-14 2022-04-15 南京合谷生命生物科技有限公司 Preparation method and catalytic application of strain for improving caffeic acid yield
CN114774297B (en) * 2022-03-25 2023-09-12 湖北工业大学 Recombinant saccharomyces cerevisiae for producing T-juniper alcohol and application thereof
CN117866867B (en) * 2024-03-12 2024-05-28 天津科技大学 Caffeic acid production strain, construction method and application thereof
CN118530928B (en) * 2024-07-29 2024-10-18 浙江熙正霖生物科技有限公司 Engineering bacterium for producing salidroside and construction method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191490A1 (en) * 2012-06-21 2013-12-27 한국생명공학연구원 Method for producing 4-coumaric acid, caffeic acid, and ferulic acid through artificial metabolic pathway in high tyrosine-producing strain
CN108949652A (en) * 2018-04-19 2018-12-07 江南大学 A kind of engineering bacteria and its caffeinic application of production

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1226265B1 (en) * 1999-08-06 2008-10-22 E.I. Du Pont De Nemours And Company Bioproduction of para-hydroxycinnamic acid
US8809028B2 (en) * 2011-11-07 2014-08-19 University Of Georgia Research Foundation, Inc. Biosynthesis of caffeic acid and caffeic acid derivatives by recombinant microorganisms
EP2957629A1 (en) * 2014-06-18 2015-12-23 Rhodia Opérations Improved production of vanilloids by fermentation
US10954543B2 (en) * 2015-11-02 2021-03-23 Rensselaer Polytechnic Institute Microbial polycultures and methods of use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191490A1 (en) * 2012-06-21 2013-12-27 한국생명공학연구원 Method for producing 4-coumaric acid, caffeic acid, and ferulic acid through artificial metabolic pathway in high tyrosine-producing strain
CN108949652A (en) * 2018-04-19 2018-12-07 江南大学 A kind of engineering bacteria and its caffeinic application of production

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
4-hydroxyphenylacetate 3-monooxygenase, reductase component [Salmonella enterica subsp. enterica serovar Newport str. SL254];Fricke,W. F.等;《GenBank》;20140731;ACF63300 *
cyclohexadienyl dehydrogenase [Zymomonas mobilis subsp. mobilis str. CP4=NRRL B-140232];Zhao G.等;《GenBank》;19931029;AAA27684 *
Engineering the Biosynthesis of Caffeic Acid in Saccharomyces cerevisiae with Heterologous Enzyme Combinations;Lanqing Liu等;《Engineering》;20190302;第5卷(第2期);表2 *
Lanqing Liu等.Engineering the Biosynthesis of Caffeic Acid in Saccharomyces cerevisiae with Heterologous Enzyme Combinations.《Engineering》.2019, *
Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid;Pingping Zhou等;《Biotechniological Products and Process Engineering》;20210720;全文 *
MULTISPECIES: 4-hydroxyphenylacetate 3-monooxygenase, oxygenase component [Pseudomonas];NCBI;《GenBank》;20190616;WP_003104533 *
Synthetic construct tyrosine ammonia lyase (TAL) gene, complete cds;Liu D.等;《GenBank》;20170328;KX671121 *
合成生物学中动态代谢途径调控策略的研究进展;周萍萍等;《生物产业技术》;20190115;全文 *
微生物医院合成咖啡酸及其酯类衍生物研究进展;王震等;《中国生物工程杂志》;20200508;第91页左栏第1段、右栏第1段 *

Also Published As

Publication number Publication date
CN111849794A (en) 2020-10-30

Similar Documents

Publication Publication Date Title
CN111849794B (en) A kind of Saccharomyces cerevisiae recombinant bacteria and its construction method and application
US9121041B2 (en) Method for the preparation of diols
CN109988722B (en) A kind of recombinant Saccharomyces cerevisiae strain and its application and production method of tyrosol and/or salidroside
CN112204146B (en) Acid-tolerant yeast having an inhibited ethanol production pathway and method for producing lactic acid using same
WO2010085731A2 (en) Production of 1,4 butanediol in a microorganism
WO2016138641A1 (en) Generation and use of candida and carbonyl reductase thereof
CN106929521A (en) A kind of aldehyde ketone reductase gene recombinant co-expression carrier, engineering bacteria and its application
CN115261346A (en) Engineered microorganisms expressing acetoacetyl-CoA reductase variants and methods for increasing PHA production
WO2020264400A2 (en) Compositions and methods for synthesis of terpenoids
CN116656641A (en) Caffeic acid O-methyltransferase mutant and application thereof
CN108866117B (en) A method for synthesizing 3-hydroxypropionic acid using photosynthetic bacteria and its corresponding recombinant cell and application
US20240301367A1 (en) Peroxidase activity towards 10-acetyl-3,7-dihydroxyphenoxazine
KR101262999B1 (en) Recombinant yeast by overexpression of pyruvate decarboxylase and alcohol dehydrogenase for improving productivity of bioethanol and Method for producing ethanol using the same
CN114410494B (en) Saccharomyces cerevisiae engineering bacteria for producing rosmarinic acid and construction method and application thereof
CN112852847B (en) A kind of recombinant Saccharomyces cerevisiae strain and its construction method and application
US20220049235A1 (en) Engineering Bacteria for Ferulic Acid Production, Preparation Method and Use Thereof
CN116113699B (en) Modified phosphoenolpyruvate carboxylase and its application in improving amino acid production in Corynebacterium glutamicum
CN110331153A (en) A kind of gram Lyu Wall Salmonella tyrosine phenol lyase mutant and its application
CN104560832B (en) A kind of Lactobacillus brevis, aldolase and its gene and the method for preparing statin intermediate
EP4477738A1 (en) Engineered strain of yeast having mitochondrion-positioned reductive tca pathway and efficiently producing succinic acid, construction method therefor and use thereof
KR101994772B1 (en) New klebsiella pneumoniae strain for production of 1,3-propanediol from glucose and method for proding 1,3-propanediol using the same
CN117070485A (en) Conjugated polyketone reductase, mutant thereof, co-expression engineering bacteria and application
CN112921012B (en) Corynebacterium glutamicum meso-2,6-diaminopimelate dehydrogenase mutant and its application
CN112126614B (en) A method for preparing raspberry ketone by whole cell transformation
CN112941002B (en) Recombinant strain of escherichia coli for producing dopamine as well as construction method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant