CN111847650A - Algal bloom suppression device - Google Patents
Algal bloom suppression device Download PDFInfo
- Publication number
- CN111847650A CN111847650A CN202010727247.9A CN202010727247A CN111847650A CN 111847650 A CN111847650 A CN 111847650A CN 202010727247 A CN202010727247 A CN 202010727247A CN 111847650 A CN111847650 A CN 111847650A
- Authority
- CN
- China
- Prior art keywords
- algal
- algal bloom
- liquid
- gas
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/32—Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
- C02F3/322—Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae use of algae
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/34—Biological treatment of water, waste water, or sewage characterised by the microorganisms used
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Botany (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
技术领域technical field
本发明属于水体生态修复技术领域,涉及一种藻华抑制装置。The invention belongs to the technical field of water body ecological restoration, and relates to an algal bloom suppression device.
背景技术Background technique
人类社会的高速发展正在加速与人类社会近临水体的富营养化。受到水体富营养化加剧和气候变暖的驱动,近年来全球范围内的藻华事件频发,由藻华灾害带来的经济损失不断增加。藻华,是指蓝藻等光合自养微生物过量繁殖造成生态失衡的现象。其危害表现在多个方面:一是部分类型的藻华释放藻毒素,威胁饮用水源安全;二是藻毒素一旦产生会在食物链中累积,造成食品安全隐患;三是部分藻华生长过程产生强烈鱼腥味,藻华衰亡时又产生诸如硫化氢等恶臭有毒气体,严重威胁附近居民的健康和正常生活,严重损害城市形象;四是藻华夜间消耗大量水体溶解氧,造成其它水生生物缺氧死亡,引发区域性生态危机。The rapid development of human society is accelerating the eutrophication of water bodies adjacent to human society. Driven by the intensification of water eutrophication and climate warming, algal bloom events have occurred frequently around the world in recent years, and the economic losses caused by algal bloom disasters have continued to increase. Algal bloom refers to the phenomenon of ecological imbalance caused by excessive reproduction of photoautotrophic microorganisms such as cyanobacteria. Its harm is manifested in many aspects: first, some types of algal blooms release algal toxins, threatening the safety of drinking water sources; second, once algal toxins are produced, they will accumulate in the food chain and cause food safety hazards; third, some algal blooms are produced during the growth process. Strong fishy smell, odorous and toxic gases such as hydrogen sulfide are produced when algal blooms die, which seriously threatens the health and normal life of nearby residents, and seriously damages the image of the city. Fourth, algal blooms consume a lot of dissolved oxygen in water at night, causing shortage of other aquatic organisms. Oxygen death, triggering a regional ecological crisis.
占据生态优势地位的藻华一旦在大型水体中发生,其体量巨大难以逆转。例如,太湖水域面积2338平方公里,蓄水量为44亿立方米。较近的一些技术尝试,如中国专利CN105200969B,通过富集水体表面漂浮蓝藻,检测蓝藻浓度并利用涡井进行收集,虽然能够一定程度增加蓝藻生物质的采集效率,但不足以从生态层面逆转藻华在水体初级生产者中的优势地位。由于藻华达到高浓度时存在种群内部的负反馈调节机制,该方法将削弱藻华的负反馈机制,延长藻华危害时间。同时,该方法无法分辨具体的藻华物种,对目标水体进行无差别干预,存在一定的生态风险。Once the ecologically dominant algal bloom occurs in a large water body, its huge size is difficult to reverse. For example, Taihu Lake has a water area of 2,338 square kilometers and a water storage capacity of 4.4 billion cubic meters. Some recent technical attempts, such as Chinese patent CN105200969B, enrich the cyanobacteria floating on the surface of the water body, detect the concentration of cyanobacteria and collect them using vortex wells. Although the collection efficiency of cyanobacterial biomass can be increased to a certain extent, it is not enough to reverse the algae from the ecological level. China's dominant position among primary producers of water bodies. Since there is a negative feedback regulation mechanism within the population when the algal bloom reaches a high concentration, this method will weaken the negative feedback mechanism of the algal bloom and prolong the damage time of the algal bloom. At the same time, this method cannot distinguish specific algal bloom species, and indiscriminately intervene in the target water body, which has certain ecological risks.
一些技术方法能够在短时间内抑制蓝藻活性,但无法解决较长时间段内藻华复发的问题。如中国公开专利CN104310526B,通过红光激光快速抑制蓝藻活性,进而控制藻华爆发。以太湖地区为例,蓝藻生长期从每年4-5月份持续到10月份,而大多数蓝藻在对数生长期的生长翻倍时间只需要几个到十几个小时。通过短期抑制活性来控制藻华灾害的方法,只能够在将藻华的爆发延后几天甚至更短,加上运转成本过高,并不适用于大型水体的藻华灾害防控。Some technical methods can inhibit cyanobacterial activity in a short period of time, but cannot solve the problem of algal bloom recurrence in a longer period of time. For example, Chinese published patent CN104310526B uses red laser to rapidly inhibit the activity of cyanobacteria, thereby controlling the outbreak of algal blooms. Taking the Taihu Lake area as an example, the growth period of cyanobacteria lasts from April to May every year to October, while the doubling time of most cyanobacteria in the logarithmic growth period only takes a few to a dozen hours. The method of controlling algal bloom disasters by short-term inhibitory activity can only delay the outbreak of algal blooms for a few days or even shorter, and the operating cost is too high, so it is not suitable for the prevention and control of algal bloom disasters in large water bodies.
另一些技术方法通过锁磷等手段可以实现几周到几个月时间的藻华抑制,但会造成同一水体次年的藻华风险和治理难度大大增加。比如,中国公开专利CN109179857A,以底质锁磷为手段降低水体富营养化程度,同时辅助生物手段重建水体生态平衡。锁磷试剂对可溶性磷酸盐的锁定效果随时间降低,通常可以维持数周到数月。锁磷试剂投放后,可在短期内降低水体中的磷元素载量,试剂耗尽后,外源性磷元素将快速流入,同时被螯合的内源性磷酸盐释放将随着时间增加。长期来看,水体富营养化程度将持续恶化。由于以上原因,锁磷剂目前已经在太湖等藻华重点治理地区被淘汰,但是在外源性磷元素流入压力较小的地区,锁磷剂仍然在被使用。Other technical methods can achieve algal bloom suppression for several weeks to several months by locking phosphorus and other means, but it will greatly increase the risk of algal blooms in the same water body and the difficulty of governance in the following year. For example, Chinese published patent CN109179857A reduces the degree of eutrophication of water bodies by locking phosphorus in the substrate, and at the same time assists biological means to rebuild the ecological balance of water bodies. The locking effect of phospho-locking reagents on soluble phosphate decreases over time, usually for weeks to months. After the phosphorus-locking reagent is put in, the phosphorus content in the water can be reduced in a short period of time. After the reagent is exhausted, the exogenous phosphorus will flow in rapidly, and the release of the chelated endogenous phosphate will increase with time. In the long run, the degree of eutrophication of water bodies will continue to deteriorate. Due to the above reasons, phosphorus-locking agents have been eliminated in key algal bloom control areas such as Taihu Lake, but they are still being used in areas where exogenous phosphorus elements are under less pressure.
现有的藻华治理技术主要有三个发展方向:物理方法、化学方法和生物方法。尽管现有的技术方案众多,但事实是目前全世界范围内并不存在藻华灾害的有效应对措施。这主要是由于成本、二次污染和生态风险等原因。物理方法能耗高成本大,适用于小型水体藻华控制,但对于大型水体的藻华灾害,如中国太湖,美国加拿大交界的伊利湖等,受限于成本等原因,物理方法无法大规模展开。化学方法比如使用铜离子灭藻,使用生石灰改变水体酸碱度等,都存在二次污染风险且成本过高,同样不适用于大型水体的藻华治理。生物方法,如投放水生植物构成的生态浮岛,投放滤食性鱼类等。投放捕食者虽然能够消耗掉一小部分蓝藻,但同样会威胁到其它捕食蓝藻的小型浮游生物,进而破坏生态系统稳态。更进一步,生物方法容易造成藻毒素在食物链中的累积和传递,带来食品安全隐患。The existing algal bloom control technologies mainly have three development directions: physical methods, chemical methods and biological methods. Although there are many existing technical solutions, the fact is that there is currently no effective response to algal bloom disasters in the world. This is mainly due to reasons such as cost, secondary pollution and ecological risks. The physical method has high energy consumption and high cost, and is suitable for algal bloom control in small water bodies. However, for algal bloom disasters in large water bodies, such as Taihu Lake in China and Lake Erie at the junction of the United States and Canada, the physical method cannot be implemented on a large scale due to cost and other reasons. . Chemical methods, such as the use of copper ions to kill algae and the use of quicklime to change the pH of water bodies, all have secondary pollution risks and high costs, and are also not suitable for algal bloom control in large water bodies. Biological methods, such as placing ecological floating islands composed of aquatic plants, placing filter-feeding fish, etc. Dropping predators can deplete a small percentage of cyanobacteria, but it also threatens other small plankton that prey on cyanobacteria, thereby disrupting ecosystem homeostasis. Furthermore, biological methods are easy to cause the accumulation and transmission of algal toxins in the food chain, bringing food safety hazards.
发明内容SUMMARY OF THE INVENTION
本发明所要解决的技术问题在于针对上述现有技术的不足,提供了一种藻华抑制装置。与传统的藻华治理技术不同,本发明是基于藻华的生物学特性,利用抑制光能利用和二氧化碳吸收进而抑制有害藻华光合作用,采取物理手段进行针对性干预,属于兼具物理方法和生物方法的综合治理技术。本发明的藻华抑制装置适用于大型水体藻华灾害的管控,能够解决目前藻华治理技术中存在的高成本,低效率,高生态风险,低氮磷移除效率等技术问题,有效降低富营养化水体中有害藻华发生的面积和强度,增强水体自身的生态稳定性和自我修复能力。The technical problem to be solved by the present invention is to provide an algal bloom suppression device in view of the above-mentioned deficiencies of the prior art. Different from the traditional algal bloom treatment technology, the present invention is based on the biological characteristics of algal blooms, utilizes inhibition of light energy utilization and carbon dioxide absorption to inhibit photosynthesis of harmful algal blooms, and takes physical means for targeted intervention, which belongs to both physical methods. and biological methods of integrated management techniques. The algal bloom suppression device of the invention is suitable for the management and control of algal bloom disasters in large-scale water bodies, can solve the technical problems of high cost, low efficiency, high ecological risk, low nitrogen and phosphorus removal efficiency existing in the current algal bloom control technology, and can effectively reduce the abundance of algal blooms. The area and intensity of harmful algal blooms in nutrient water bodies enhance the water body's own ecological stability and self-healing ability.
为解决上述技术问题,本发明采用以下技术方案:一种藻华抑制装置,包括干涉特定波长光线透过率的遮光部、降低气体交换速率的隔气部、允许一定大小的无机或有机分子通过的半透部、促进气体液体混合的扰流部、开放空间及允许气体和液体进出的交换接口,所述开放空间由所述遮光部、隔气部和半透部包围形成。In order to solve the above-mentioned technical problems, the present invention adopts the following technical solutions: an algal bloom suppression device, comprising a light-shielding part that interferes with light transmittance of a specific wavelength, a gas-blocking part that reduces the gas exchange rate, and allows inorganic or organic molecules of a certain size to pass through. A semi-permeable part, a spoiler part for promoting gas-liquid mixing, an open space and an exchange interface for allowing gas and liquid to enter and exit, the open space is formed by the shading part, the gas barrier part and the semi-permeable part.
所述遮光部、隔气部、半透部和扰流部分别是功能各自独立的部件或两种或多种功能整合在一起的单一部件。The shading part, the air barrier part, the semi-permeable part and the spoiler part are respectively independent parts with independent functions or a single part with two or more functions integrated together.
所述开放空间内容纳有无色或者有色液体,所述液体是承载对有害藻华具有抑制作用的化学品或者微生物的溶剂。The open space contains a colorless or colored liquid, which is a solvent carrying chemicals or microorganisms that have an inhibitory effect on harmful algal blooms.
所述遮光部设置于装置底部或/和顶部,采用光学涂层或依靠材料本身的光学特性来影响波长范围在440~480nm和640~730nm区间光线的透射,所述影响作用包括仅允许上述波长范围内光线的透射而阻断其它可见光的透射,或仅阻断上述波长范围内光线的透射而允许其它可见光的透射。The shading part is arranged at the bottom or/and the top of the device, and uses an optical coating or relies on the optical properties of the material itself to affect the transmission of light in the wavelength range of 440-480nm and 640-730nm, and the effect includes allowing only the above wavelengths The transmission of light in the above wavelength range and the transmission of other visible light is blocked, or the transmission of only light in the above wavelength range is blocked and the transmission of other visible light is allowed.
所述隔气部位于装置底部或两侧直接接触水体的区间,采用疏水涂层或仅依靠材料本身的物理化学特性来降低隔气部两侧在液体环境下的微小气泡、氧气或二氧化碳交换。The air barrier is located at the bottom of the device or in the area where the two sides directly contact the water body, and a hydrophobic coating is used or the physical and chemical properties of the material itself are used to reduce the exchange of tiny air bubbles, oxygen or carbon dioxide on both sides of the air barrier in a liquid environment.
所述半透部设置于装置底部或者侧面接触藻华生长水域的区间,半透部的材质为天然纤维或者人工合成聚合物,能够延缓或者完全阻挡直径0.2微米以上颗粒的进入装置内部,并且允许分子质量在300kDa以下生物大分子进入装置内部,但不限制装置内部的液体或微生物向外扩散。The semi-permeable part is arranged in the area where the bottom or side of the device contacts the water where algal blooms grow. The semi-permeable part is made of natural fibers or synthetic polymers, which can delay or completely block the entry of particles larger than 0.2 microns in diameter into the device and allow Biomacromolecules with a molecular mass below 300kDa enter the device, but do not restrict the liquid or microorganisms inside the device from diffusing outward.
所述开放空间用于培养对藻华有抑制作用或者能够降解藻毒素的微生物,所述开放空间内微生物及其培养液所构成的液体对入射光线在440~480nm和640~730nm具有明显吸收峰。The open space is used for culturing microorganisms that have an inhibitory effect on algal blooms or can degrade algal toxins, and the liquid formed by the microorganisms and their culture solutions in the open space has obvious absorption peaks at 440-480 nm and 640-730 nm for incident light. .
所述开放空间用于盛放对藻华有抑制作用的液体试剂,所述试剂中添加染料以获得440~480nm和640~730nm的光吸收峰。The open space is used for holding liquid reagents that have an inhibitory effect on algal blooms, and dyes are added to the reagents to obtain light absorption peaks at 440-480 nm and 640-730 nm.
所述扰流部位于装置的底部或者顶部朝向装置内的位置,与遮光部或者隔气部直接连接,用于促进装置内容物的混合,同时扰流部内嵌气道,并设置有气道释放口。The spoiler is located at the position where the bottom or top of the device faces the inside of the device, and is directly connected to the shading portion or the air barrier to promote the mixing of the contents of the device. At the same time, the spoiler is embedded with an air channel and is provided with an air channel. release port.
所述交换接口为单一管道或者复合管道,用于液体和气体的进出,同时提供物理支撑以使得所述藻华抑制装置被固定于水体表面特定空间范围。The exchange interface is a single pipe or a composite pipe, which is used for the in and out of liquid and gas, and at the same time provides physical support so that the algal bloom suppression device is fixed in a specific space range on the surface of the water body.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
(1)本发明的藻华抑制装置能够降低水体中蓝藻等光合微生物的光合作用强度,在藻华发生之前对其进行干预,而不同于传统抑藻技术只能在藻华发生之后进行干预,将藻华灾害管控的窗口期大大提前。(1) The algal bloom suppression device of the present invention can reduce the photosynthetic intensity of photosynthetic microorganisms such as cyanobacteria in the water body, and intervene before the algal bloom occurs, which is different from the traditional algal suppression technology that can only intervene after the algal bloom occurs, The window period for algal bloom disaster management and control is greatly advanced.
(2)本发明通过在藻华抑制装置内部扶持无害或者低害的藻类品种取得竞争优势,实现装置内藻类的高浓度生长,通过向装置外释放次级代谢产物,利用化感作用实现对装置外藻华的抑制。(2) The present invention achieves a competitive advantage by supporting harmless or low-harm algae species inside the algal bloom suppression device, realizes high-concentration growth of algae in the device, releases secondary metabolites outside the device, and utilizes allelopathy Inhibition of algal blooms outside the device.
(3)本发明通过在藻华抑制装置内部扶持可降解藻毒素的异养微生物的生长,实现对水体中溶解的藻毒素的高效降解。(3) The present invention achieves efficient degradation of algal toxins dissolved in water by supporting the growth of heterotrophic microorganisms capable of degrading algal toxins inside the algal bloom suppression device.
(4)本发明通过装置内部的自养或者异养微生物的生长,以及对上述微生物的回收,实现对水体中氮磷元素的高效率富集和回收再利用。(4) The present invention achieves high-efficiency enrichment and recycling of nitrogen and phosphorus elements in the water body through the growth of autotrophic or heterotrophic microorganisms in the device and the recovery of the above-mentioned microorganisms.
(5)整个治理过程除了装置的铺设,维护和回收过程之外,所需能耗极低,同时碳排放为负值。(5) In addition to the installation, maintenance and recycling of the device, the entire treatment process requires extremely low energy consumption and negative carbon emissions.
附图说明Description of drawings
图1是本发明实施例1藻华抑制装置的结构透视图。FIG. 1 is a perspective view of the structure of an algal bloom suppressing device according to
图2是本发明实施例1藻华抑制装置的侧面结构透视图。FIG. 2 is a perspective view of the side structure of the algal bloom suppression device according to
图3是本发明实施例1藻华抑制装置的底部结构视图。FIG. 3 is a bottom structural view of the algal bloom suppression device in Example 1 of the present invention.
图4是本发明实施例1藻华抑制装置中扰流部的局部结构透视图。FIG. 4 is a perspective view of the partial structure of the turbulent part in the algal bloom suppression device according to
图5是本发明实施例1藻华抑制装置中扰流部的拆解结构仰视图。FIG. 5 is a bottom view of the disassembled structure of the spoiler in the algal bloom suppression device according to
图6是本发明实施例1藻华抑制装置在大型富营养化水体中抑制藻华发生的原理图。FIG. 6 is a schematic diagram of the algal bloom suppression device in Example 1 of the present invention for suppressing the occurrence of algal blooms in large eutrophic water bodies.
图7是本发明实施例1藻华抑制装置并联用于预防藻华发生的示意图。FIG. 7 is a schematic diagram of the parallel connection of algal bloom suppression devices in Example 1 of the present invention for preventing algal blooms.
图8是本发明实施例1藻华抑制装置并联用于抑制藻华扩散的示意图。FIG. 8 is a schematic diagram of the parallel connection of algal bloom suppressing devices in
图9是本发明实施例2藻华抑制装置的结构示意图。FIG. 9 is a schematic structural diagram of an algal bloom suppression device in Example 2 of the present invention.
图10是本发明实施例2藻华抑制装置的结构透视图。FIG. 10 is a perspective view of the structure of an algal bloom suppressing device according to
图11是本发明实施例2藻华抑制装置的侧面结构透视图。11 is a perspective view of the side structure of the algal bloom suppressing device according to the second embodiment of the present invention.
图12是本发明实施例2藻华抑制装置上半部分结构的仰视图。FIG. 12 is a bottom view of the structure of the upper half of the algal bloom suppression device according to the second embodiment of the present invention.
图中:1-遮光部;2-隔气部;3-半透部;4-扰流部;5-开放空间;6-交换接口;7-气道;8-气道释放口;9-藻液和气体输送管道;10-岸上存储罐;11-顶部遮光部;12-底部遮光部。In the figure: 1-shading part; 2-air barrier; 3-semipermeable part; 4-turbulent part; 5-open space; 6-exchange interface; 7-airway; 8-airway release port; 9- Algae liquid and gas delivery pipeline; 10-shore storage tank; 11-top shading part; 12-bottom shading part.
具体实施方式Detailed ways
本发明的工作原理是:The working principle of the present invention is:
1、在富营养化水体中,蓝藻等光合微生物生长的主要限制因素并不是氮磷等营养元素,而是作为光合作用基本原料的光能和二氧化碳。一方面,目前已知的能够驱动产氧光合作用的有效光能主要由叶绿素a, b, d和f的吸收,其吸收波峰大致位于440~480nm和640~730nm之间。因此,阻断此波段范围内的光线可以有效降低藻华的能量供应,从而降低其生长速度。另一方面,二氧化碳作为蓝藻的主要碳源,通常是先扩散进入水体,再以碳酸根形式跨膜进入藻类细胞内部。而二氧化碳在气-液相中的交换速率,是由空气和水体的接触面积决定,降低接触面积,可以降低二氧化碳扩散速度,从而限制藻类光合作用速率。1. In eutrophic water, the main limiting factors for the growth of photosynthetic microorganisms such as cyanobacteria are not nutrients such as nitrogen and phosphorus, but light energy and carbon dioxide as the basic raw materials for photosynthesis. On the one hand, the currently known effective light energy that can drive oxygen-producing photosynthesis is mainly absorbed by chlorophyll a, b, d and f, and its absorption peaks are roughly between 440-480 nm and 640-730 nm. Therefore, blocking light in this wavelength range can effectively reduce the energy supply of algal blooms, thereby reducing their growth rate. On the other hand, as the main carbon source of cyanobacteria, carbon dioxide usually diffuses into the water body first, and then enters the algal cell through the membrane in the form of carbonate. The exchange rate of carbon dioxide in the gas-liquid phase is determined by the contact area between air and water. Reducing the contact area can reduce the diffusion rate of carbon dioxide, thereby limiting the rate of algal photosynthesis.
2、培养藻类时,藻液可以达到的浓度上限主要由细胞大小以及可以自由交换营养要素和释放次级代谢产物的培养液体积决定。当达到一定浓度时,藻类群体具有负反馈机制,使得藻类的生长速度下降,进入稳定期,甚至衰亡期。达到生长的稳定或者衰亡期藻类,可以通过释放次级代谢产物来抑制其它藻类和光合生物的生长。2. When cultivating algae, the upper limit of the concentration that the algal fluid can reach is mainly determined by the size of the cells and the volume of the culture fluid that can freely exchange nutrients and release secondary metabolites. When a certain concentration is reached, the algae population has a negative feedback mechanism, which makes the growth rate of the algae decrease and enter a stable period or even a decay period. Algae that reach a stable or dying stage of growth can inhibit the growth of other algae and photosynthetic organisms by releasing secondary metabolites.
基于上述原理,本发明提供了一种装置,可以人为地抑制藻华的光合作用,从而对藻华灾害的发展进行干涉。Based on the above principles, the present invention provides a device that can artificially inhibit the photosynthesis of algal blooms, thereby interfering with the development of algal bloom disasters.
下面结合附图和实施例对本发明的技术方案进行详细说明。The technical solutions of the present invention will be described in detail below with reference to the accompanying drawings and embodiments.
实施例1Example 1
如图1-5所示,一种藻华抑制装置,包括降低特定波长光线透过率的遮光部1、降低气体交换速率的隔气部2、允许一定大小范围的无机或有机分子穿透的半透部3、促进气体液体混合的扰流部4、开放空间5及允许气体和液体进出的交换接口6,所述开放空间5由上述遮光部1、隔气部2和半透部3包围形成。As shown in Figure 1-5, an algal bloom suppression device includes a light-shielding
在本实施例中,所述遮光部1、隔气部2、半透部3和扰流部4是功能各自独立的部件,主要采用聚丙烯和聚碳酸酯等聚合物材料制作而成。In this embodiment, the
所述开放空间5内初始时容纳有一定体积的目标水体的水,该部分水已经过滤掉固体颗粒和藻类,同时经过过氧化氢灭菌。The
所述遮光部1设置于装置顶部和底部,顶部遮光部11采用红色光学涂层允许波长640~730nm之间光线能够透射,为装置内部的光合微生物提供光能;底部遮光部12采用绿色光学涂层限制波长范围在440~480nm和640~730nm之间的光线透射,阻碍装置外部藻华对光能的吸收。The
所述隔气部2采用厚度大于2毫米的聚丙烯涂层来防止外部藻华对装置的化学腐蚀,同时降低隔气部两侧的微小气泡、氧气或二氧化碳交换,隔气部2设置于装置四周直接接触水体的区间。The
所述半透部3位于装置底部接触藻华生长水域的区间,半透部3为聚丙烯纤维压制而成的滤网结构,能够延缓粒径0.2微米以上的微小颗粒通过自由扩散的方式进入装置内部,并且不阻断分子质量在300kDa以下生物大分子的自由扩散,也不能限制装置内部的液体向装置外扩散。半透部3与底部遮光部12具有一致的光线选择性,即限制波长范围在440~480nm和640~730nm之间光线的透射。The
所述开放空间5用于培养对藻华有抑制作用的竞争蓝藻(聚球藻Synechococcussp. PCC 11901或嗜热细长聚球藻Thermosynechococcus elongatus)或者能够降解藻毒素(鞘脂单胞菌属的Sphingopyxis和Sphingosinicella或新鞘脂菌属的Novosphingobium)的微生物。The
在并联使用本装置时,部分单元中的开放空间5也可以用于盛放对藻华有抑制作用的液体试剂(如低浓度过氧化氢);部分单元中的开放空间5可以添加固体颗粒物以阻碍波长范围在440~480nm和640~730nm的光线的透射。When the device is used in parallel, the
所述扰流部4设置在装置底部遮光部12朝向开放空间5的位置,在外力作用下随装置晃动促进装置内容物的混合,同时扰流部4内嵌气道7,并设置有气道释放口8,装置外部的空气经由交换接口6进入,从气道释放口8释放至装置内部,装置内部的液体经由气道释放口8和交换接口6输出至装置外部。The
所述交换接口6采用多通路阀门控制,用于液体和气体的进出,同时通过外接管道对装置提供物理支撑,以使得藻华抑制装置被固定于水体表面特定空间范围。The
如图6,本实施例的藻华抑制装置通过减弱透射光的光照强度和降低空气和水体的二氧化碳交换速率来来制约目标水体中藻华光合作用的强度,从而降低其生长速度。同时,装置内部的光合微生物通过生长和繁殖富集目标水体中的氮磷元素,并通过调节装置内部的微生物物种或者液体成分,实现本装置对外部藻华的化感作用抑制或直接化学杀伤。As shown in Figure 6, the algal bloom suppression device of this embodiment restricts the intensity of algal bloom photosynthesis in the target water body by reducing the illumination intensity of the transmitted light and reducing the carbon dioxide exchange rate between the air and the water body, thereby reducing its growth rate. At the same time, the photosynthetic microorganisms inside the device enrich the nitrogen and phosphorus elements in the target water body through growth and reproduction, and realize the allelopathy inhibition or direct chemical killing of the external algal bloom by the device by adjusting the microbial species or liquid components inside the device.
图7和图8展示的是实际应用演示图。图7展示的是本装置对大型水体藻华灾害的预防,在藻华开始之前1到2个月,将两个以上的本装置通过交换接口6和输送管道9进行并联至一条集中交换的水下输送管线上,铺设于藻华高风险水域,装置内部接种低浓度无害蓝藻,并联管道可将装置内藻液输出到水上和岸上的收集站10,同时可以将气体输入各个并联装置内。图8展示的是本装置对已经发生的大型水体藻华灾害的抑制,在藻华发生后,利用本装置进行并联在已经发生藻华的区域进行隔离治理,1%-99%的装置内部接种高浓度无害蓝藻,剩余的并联装置内通入提前培养的能够降解藻毒素的微生物,并联管道主要用于将气体输入装置。Figure 7 and Figure 8 show the actual application demonstration diagram. Figure 7 shows the prevention of algal bloom disasters in large water bodies by this device. One to two months before the start of algal blooms, two or more of the devices are connected in parallel to a centralized exchange water through the
实施例2Example 2
如图9-12所示,一种藻华抑制装置,包括降低特定波长光线透过率的遮光部1、降低气体交换速率的隔气部2、允许一定大小的无机或有机分子穿透的半透部3、促进气体液体混合的扰流部4、开放空间5及允许气体和液体进出的交换接口6,所述开放空间由上述遮光部1、隔气部2和半透部3包围形成。所述装置由上下两个尺寸完全一致的单元贴合制作而成,上下两个单元除遮光部的光学性质不同外,其它部位的材料对应一致。As shown in Figure 9-12, an algal bloom suppression device includes a light-shielding
在本实施例中,所述遮光部1、隔气部2、半透部3和扰流部4功能各自独立,主要采用聚丙烯和聚碳酸酯等聚合物材料制作而成。In this embodiment, the
所述开放空间5内初始时容纳有一定体积的目标水体的水,该部分水已经过滤掉固体颗粒和藻类,同时经过过氧化氢灭菌。The
所述遮光部1设置于装置顶部和底部非半透部的区间,顶部遮光部11采用红色光学涂层使640~730nm之间光线能够透射,为装置内部的光合微生物提供光能;底部遮光部12采用绿色光学涂层限制波长范围在440~480nm和640~730nm之间的光线透射,阻碍装置外部藻华对光能的吸收。The
所述隔气部2作为装置的侧面,采用厚度大于2毫米的聚丙烯涂层来防治外部藻华对装置的化学腐蚀,同时降低隔气部两侧的微小气泡、氧气或二氧化碳交换,隔气部2位于装置两侧直接接触水体的区间。The
所述半透部3位于装置底部接触藻华生长水域的区间,半透部3为聚丙烯纤维压制而成的滤网结构,能够延缓粒径0.2微米以上的微小颗粒通过自由扩散的方式进入装置内部,并且不阻断分子质量在300kDa以下生物大分子的自由扩散,也不能限制装置内部的液体向装置外扩散,半透部3与底部遮光部1具有一致的光线选择性,即限制波长范围在440~480nm和640~730nm之间光线的透射。The
所述开放空间5用于培养对藻华有抑制作用的竞争蓝藻(聚球藻Synechococcussp. PCC 11901或嗜热细长聚球藻Thermosynechococcus elongatus)或者能够降解藻毒素的微生物(鞘脂单胞菌属的Sphingopyxis和Sphingosinicella或新鞘脂菌属的Novosphingobium)。The
所述扰流部4固定在顶部遮光部11和底部遮光部12朝向开放空间5的位置,但是不与半透部3粘连,上下两个单元贴合时,两个单元的扰流部4呈现交叉状,扰流部4在外力作用下晃动时促进装置内容物的混合。The
所述交换接口6为单一通道,设置在顶部遮光部11和底部遮光部12,用于液体和气体的进出。在单独使用时,交换接口6设置有多样化的连接末端,如交换接口6凸起于顶部遮光部12,且内部设置有螺纹,能够连接具有匹配接口的聚合物容器,如矿泉水瓶,饮料瓶等,通过调节交换接口的连通状况,连接额外容器可以提供浮力和增加开放空间。The
以上仅就本发明较佳的实施例作了说明,但不能理解为是对权利要求的限制。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。The above only describes the preferred embodiments of the present invention, but should not be construed as limiting the claims. Those skilled in the art to which the present invention pertains can make various modifications or additions to the described specific embodiments or substitute in similar manners, but will not deviate from the spirit of the present invention or go beyond the definition of the appended claims range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010727247.9A CN111847650A (en) | 2020-07-27 | 2020-07-27 | Algal bloom suppression device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010727247.9A CN111847650A (en) | 2020-07-27 | 2020-07-27 | Algal bloom suppression device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111847650A true CN111847650A (en) | 2020-10-30 |
Family
ID=72950537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010727247.9A Pending CN111847650A (en) | 2020-07-27 | 2020-07-27 | Algal bloom suppression device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111847650A (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102010072A (en) * | 2010-11-15 | 2011-04-13 | 厦门理工学院 | Method for inhibiting growth of algae through allelopathy of aquatic plants |
KR20120021566A (en) * | 2010-08-09 | 2012-03-09 | 인하대학교 산학협력단 | Method for cultivating photosynthetic microalgae by co-cultivation |
US20130052719A1 (en) * | 2010-02-22 | 2013-02-28 | Inha-Industry Partnership Institute | Photobioreactor for mass culture of microalgae, and method for culturing microalgae by using same |
CN103025860A (en) * | 2010-07-01 | 2013-04-03 | Mbd能源有限公司 | Method and apparatus for growing photosynthetic organisms |
CN105209593A (en) * | 2013-04-05 | 2015-12-30 | 仁荷大学校产学协力团 | Photobioreactor for mass culturing of photosynthetic microorganism |
CN204981482U (en) * | 2015-06-12 | 2016-01-20 | 郑伟 | Device of alga in suppression water |
CN212476280U (en) * | 2020-07-27 | 2021-02-05 | 邵盛熙 | Algal bloom suppression device |
-
2020
- 2020-07-27 CN CN202010727247.9A patent/CN111847650A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130052719A1 (en) * | 2010-02-22 | 2013-02-28 | Inha-Industry Partnership Institute | Photobioreactor for mass culture of microalgae, and method for culturing microalgae by using same |
CN103025860A (en) * | 2010-07-01 | 2013-04-03 | Mbd能源有限公司 | Method and apparatus for growing photosynthetic organisms |
KR20120021566A (en) * | 2010-08-09 | 2012-03-09 | 인하대학교 산학협력단 | Method for cultivating photosynthetic microalgae by co-cultivation |
CN102010072A (en) * | 2010-11-15 | 2011-04-13 | 厦门理工学院 | Method for inhibiting growth of algae through allelopathy of aquatic plants |
CN105209593A (en) * | 2013-04-05 | 2015-12-30 | 仁荷大学校产学协力团 | Photobioreactor for mass culturing of photosynthetic microorganism |
CN204981482U (en) * | 2015-06-12 | 2016-01-20 | 郑伟 | Device of alga in suppression water |
CN212476280U (en) * | 2020-07-27 | 2021-02-05 | 邵盛熙 | Algal bloom suppression device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102276068B (en) | River channel ecological construction and water body restoring system | |
CN107012072B (en) | Optical biomembrane reactor and application thereof in sewage treatment, carbon fixation and microalgae collection | |
JP2023027093A (en) | Photo-bioreactor device and methods | |
CN107628689B (en) | Blue algae treatment method | |
CN104030455B (en) | A kind of ecological floating island and water treatment method with biomembrane reaction function | |
KR20160123375A (en) | Super-large scale photon capture bioreactor for water purification and operation method therefor | |
CN101632898B (en) | Method and equipment for adsorbing CO2 in flue by utilizing microalgae and on-line detection method | |
CN101767893A (en) | Device and method for coupling producing biological oil by utilizing microalgae to deeply treating wastewater | |
CN202415263U (en) | Solar composite biological floating island | |
CN106430526A (en) | River sewage treatment process | |
US20100273252A1 (en) | Algae cultivation apparatus | |
WO2022142552A1 (en) | Microalgae-sludge mabr reactor, self-light condensing microalgae-sludge mabr reactor, and microalgae-sludge eco-friendly wastewater treatment system | |
CN111849704B (en) | Stepped microalgae biofilm reactor for purifying biogas slurry | |
CN109095618A (en) | A kind of eco-environment restoration method suitable for lake and the pollution of river | |
CN212476280U (en) | Algal bloom suppression device | |
CN218202388U (en) | Exhaust port in-situ composite technology purification system | |
CN206736233U (en) | A kind of photo-biological membrane reactor | |
CN111847650A (en) | Algal bloom suppression device | |
CN109987711A (en) | The submersible type restoration of the ecosystem Water Cube promoted for black and odorous water improvement and water quality | |
CN202038919U (en) | Riverway ecology construction and water restoration system | |
WO2024216896A1 (en) | Suspended microalgae biofilm particle reactor and sewage treatment method | |
CN201040726Y (en) | Drift type multifunctional water purifying apparatus | |
CN105779271A (en) | Stepped drop type microalgae photoreactor | |
CN116272341A (en) | Sewage treatment system with zero carbon emission | |
Brechignac et al. | Photorespiration and internal CO2 accumulation in Chara corallina as inferred from the influence of DIC and O2 on photosynthesis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |