CN111834390B - Full-color triode luminescent tube display device and manufacturing method - Google Patents
Full-color triode luminescent tube display device and manufacturing method Download PDFInfo
- Publication number
- CN111834390B CN111834390B CN202010535701.0A CN202010535701A CN111834390B CN 111834390 B CN111834390 B CN 111834390B CN 202010535701 A CN202010535701 A CN 202010535701A CN 111834390 B CN111834390 B CN 111834390B
- Authority
- CN
- China
- Prior art keywords
- unit
- semiconductor layer
- contact electrode
- layer
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 63
- 239000010410 layer Substances 0.000 claims description 417
- 239000004065 semiconductor Substances 0.000 claims description 258
- 239000000758 substrate Substances 0.000 claims description 18
- 230000005540 biological transmission Effects 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 4
- 238000002310 reflectometry Methods 0.000 claims description 3
- 239000002356 single layer Substances 0.000 claims description 3
- 101000775252 Arabidopsis thaliana NADPH-dependent oxidoreductase 2-alkenal reductase Proteins 0.000 claims 2
- 101100442490 Artemisia annua DBR2 gene Proteins 0.000 claims 2
- 101001041031 Homo sapiens Lariat debranching enzyme Proteins 0.000 claims 2
- 102100021155 Lariat debranching enzyme Human genes 0.000 claims 2
- 239000000463 material Substances 0.000 description 15
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 12
- 101100420149 Mus musculus Mrps34 gene Proteins 0.000 description 11
- 239000002096 quantum dot Substances 0.000 description 8
- 229910052594 sapphire Inorganic materials 0.000 description 7
- 239000010980 sapphire Substances 0.000 description 7
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 238000005215 recombination Methods 0.000 description 6
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 4
- 239000002346 layers by function Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 2
- 229910005540 GaP Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- QRJOYPHTNNOAOJ-UHFFFAOYSA-N copper gold Chemical compound [Cu].[Au] QRJOYPHTNNOAOJ-UHFFFAOYSA-N 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 210000000712 G cell Anatomy 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H29/00—Integrated devices, or assemblies of multiple devices, comprising at least one light-emitting semiconductor element covered by group H10H20/00
- H10H29/10—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00
- H10H29/14—Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00 comprising multiple light-emitting semiconductor components
- H10H29/142—Two-dimensional arrangements, e.g. asymmetric LED layout
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/33—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
- H10H20/841—Reflective coatings, e.g. dielectric Bragg reflectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Led Devices (AREA)
Abstract
Description
技术领域Technical field
本发明涉及半导体显示发光器件设计技术领域,特别是一种全彩化三极发光管显示器件及制造方法。The present invention relates to the technical field of semiconductor display light-emitting device design, in particular to a full-color triode light-emitting tube display device and a manufacturing method.
背景技术Background technique
发光二极管(LED)凭借其寿命长、体积小、低功耗、高亮度、响应速度快等诸多优点在显示方面的应用越来越广泛。由其衍生的微发光二极管(μLED)是指将传统LED微缩化后形成微米级间距LED阵列以达到超高密度像素分辨率,可广泛应用软性、透明显示器、AR、VR等领域,是最具潜力的下一代显示设备之一。相比OLED和LCD显示,μLED显示色彩更容易准确调试,发光寿命长和亮度高,是唯一能够具备驱动、发光、及信号传输为一体的高发光效率低功耗器件,并实现超大规模集成发光单元的显示器件。Light-emitting diodes (LEDs) are increasingly used in displays due to their long life, small size, low power consumption, high brightness, fast response and many other advantages. The micro-light-emitting diode (μLED) derived from it refers to the miniaturization of traditional LEDs to form micron-level pitch LED arrays to achieve ultra-high-density pixel resolution. It can be widely used in soft, transparent displays, AR, VR and other fields. It is the latest One of the most promising next-generation display devices. Compared with OLED and LCD displays, μLED display colors are easier to adjust accurately, have long luminous life and high brightness. It is the only high luminous efficiency and low power consumption device that can integrate driving, lighting, and signal transmission, and realizes ultra-large-scale integrated luminescence. display device of the unit.
尽管存在着众多优势,但对于LED或μLED显示,全彩化问题都是其应用在显示上必须解决的关键技术之一。全彩化解决方案分为两大类,一种是RGB三基色芯片直接发光,一种是单色芯片配合色彩转换层。虽然前者技术目前相对成熟,但在同一衬底上生长不同波长的RGB三色工艺上芯片还比较困难,而且三色要分别驱动,驱动电路复杂、成本高,因此现在比较被看好的全彩化技术当属后者。该技术是将三基色荧光转换层置于单一短波长的μLED阵列上,从而将芯片发出的光转换为RGB三色,实现全彩化显示。目前对于实现μLED全彩显示的方法主要有蓝光μLED+红绿量子点的色彩转换法、纳米柱RGB像素光源、光学棱镜合成法以及Chromover波长变换技术。其中蓝光μLED+红绿量子点的色彩转换是目前实现全彩色μLED显示的主流技术路线。然而,当下市面上的LED无论是垂直结构还是倒装结构,基本都是两电极驱动,即只存在两接触电极作用于LED两端。而这种驱动方式虽然较为通用,但是控制芯片输出的小功率信号往往不能直接驱动LED,中间需要进行功率放大。这些功率放大电路将显著提高驱动电路的设计复杂度。特别是对于μLED,复杂的驱动电路不利于高集成度系统的构建。Despite its many advantages, for LED or μLED displays, full-color issues are one of the key technologies that must be solved for their display applications. Full-color solutions are divided into two categories, one is the RGB three-color chip that directly emits light, and the other is the monochrome chip combined with the color conversion layer. Although the former technology is relatively mature at present, it is still difficult to grow RGB three-color chips with different wavelengths on the same substrate. Moreover, the three colors must be driven separately, and the driving circuit is complex and costly. Therefore, full-color technology is now more promising. Technology is definitely the latter. This technology places a three-primary color fluorescence conversion layer on a single short-wavelength μLED array, thereby converting the light emitted by the chip into RGB three colors to achieve full-color display. At present, the main methods for realizing μLED full-color display include the color conversion method of blue μLED + red and green quantum dots, nano-column RGB pixel light source, optical prism synthesis method and Chromover wavelength conversion technology. Among them, the color conversion of blue μLED + red and green quantum dots is currently the mainstream technical route to achieve full-color μLED display. However, whether the LEDs on the market today are vertical structures or flip-chip structures, they are basically driven by two electrodes, that is, there are only two contact electrodes acting on both ends of the LED. Although this driving method is relatively common, the low-power signal output by the control chip often cannot directly drive the LED, and power amplification is required in the middle. These power amplifier circuits will significantly increase the design complexity of the drive circuit. Especially for μLEDs, complex driving circuits are not conducive to the construction of highly integrated systems.
发明内容Contents of the invention
有鉴于此,本发明的目的是提出一种全彩化三极发光管显示器件及制造方法,实现用小功率输入信号驱动发光芯片发光而激发色彩转换层,从而实现全彩化显示。In view of this, the purpose of the present invention is to propose a full-color triode light-emitting tube display device and a manufacturing method, which can use a low-power input signal to drive the light-emitting chip to emit light and excite the color conversion layer, thereby realizing full-color display.
本发明采用以下方案实现:一种全彩化三极发光管显示器件,包括缓冲层、设置于缓冲层上的第一半导体层、以及设置于第一半导体层上的第一接触电极、用以显示红光的R单元、用以显示绿光的G单元和用于显示蓝光的B单元;The present invention adopts the following solution: a full-color triode light-emitting tube display device, including a buffer layer, a first semiconductor layer provided on the buffer layer, and a first contact electrode provided on the first semiconductor layer. R unit to display red light, G unit to display green light, and B unit to display blue light;
所述R单元、G单元与B单元均自下至上依次包括第二半导体层、第三半导体层、蓝光发光层、第四半导体层与第三接触电极;其中R单元、G单元与B单元均还包括一个设置于第二半导体层上的第二接触电极;其中R单元还包括依次设置于本单元中第三接触电极上的红光色彩转换层与分布式布拉格反射层DBR1,G单元还包括依次设置于本单元中第三接触电极上的绿光色彩转换层与分布式布拉格反射层DBR2,B单元还包括设置于本单元中第三接触电极上的分布式布拉格反射层DBR3;The R unit, G unit and B unit all include a second semiconductor layer, a third semiconductor layer, a blue light emitting layer, a fourth semiconductor layer and a third contact electrode from bottom to top; wherein the R unit, G unit and B unit all include It also includes a second contact electrode disposed on the second semiconductor layer; wherein the R unit also includes a red color conversion layer and a distributed Bragg reflection layer DBR1 disposed on the third contact electrode in this unit in sequence, and the G unit also includes The green light color conversion layer and the distributed Bragg reflective layer DBR2 are sequentially provided on the third contact electrode in this unit. Unit B also includes a distributed Bragg reflection layer DBR3 provided on the third contact electrode in this unit;
其中,在所述第一接触电极和R单元、G单元、B单元中的第二接触电极之间分别施加一个可变输入信号,在所述第一接触电极和R单元、G单元、B单元中的第三接触电极之间分别施加一个正向偏置电压,使得R单元、G单元和B单元发光。Wherein, a variable input signal is applied between the first contact electrode and the second contact electrode in the R unit, G unit and B unit respectively, and between the first contact electrode and the R unit, G unit and B unit A forward bias voltage is applied between the third contact electrodes, causing the R unit, G unit and B unit to emit light.
其中,第一半导体层、第二半导体层、第三半导体层,第一接触电极、R单元内的第二接触电极(SCE1)、G单元内的第二接触电极(SCE2)及B单元内的第二接触电极(SCE3)构成三极管结构;第三半导体层、蓝光发光层、第四半导体层以及第三接触电极构成发光芯片结构;R单元内的红光色彩转换层与分布式布拉格反射层(DBR1)、G单元内的绿光色彩转换层与分布式布拉格反射层(DBR2)以及B单元内的分布式布拉格反射层(DBR3)构成色彩转换结构。Among them, the first semiconductor layer, the second semiconductor layer, the third semiconductor layer, the first contact electrode, the second contact electrode (SCE1) in the R unit, the second contact electrode (SCE2) in the G unit, and the second contact electrode (SCE2) in the B unit. The second contact electrode (SCE3) constitutes a triode structure; the third semiconductor layer, the blue light emitting layer, the fourth semiconductor layer and the third contact electrode constitute the light emitting chip structure; the red light color conversion layer and the distributed Bragg reflection layer in the R unit ( DBR1), the green color conversion layer and the distributed Bragg reflection layer (DBR2) in the G unit, and the distributed Bragg reflection layer (DBR3) in the B unit constitute the color conversion structure.
所述三极管结构对输入信号进行功率放大,实现用小功率输入信号驱动所述发光芯片发光,从而激发光转换层,实现全彩化显示;同时,所述三极管还可以有效降低发光器件的驱动电路设计复杂度,提高显示装置的集成度。其中,第三半导体层是所述三极管结构的集电极,也是发光芯片的阴极或阳极。The triode structure amplifies the power of the input signal, enabling the low-power input signal to drive the light-emitting chip to emit light, thereby stimulating the light conversion layer and achieving full-color display; at the same time, the triode can also effectively reduce the driving circuit of the light-emitting device. Design complexity and improve the integration of display devices. Wherein, the third semiconductor layer is the collector of the triode structure and also the cathode or anode of the light-emitting chip.
进一步地,所述第一半导体层为N型半导体层、第二半导体层为P型半导体层、第三半导体层为N型半导体层、第四半导体层为P型半导体层;或者所述第一半导体层为P型半导体层、第二半导体层为N型半导体层、第三半导体层为P型半导体层、第四半导体层为N型半导体层。Further, the first semiconductor layer is an N-type semiconductor layer, the second semiconductor layer is a P-type semiconductor layer, the third semiconductor layer is an N-type semiconductor layer, and the fourth semiconductor layer is a P-type semiconductor layer; or the first semiconductor layer is an N-type semiconductor layer. The semiconductor layer is a P-type semiconductor layer, the second semiconductor layer is an N-type semiconductor layer, the third semiconductor layer is a P-type semiconductor layer, and the fourth semiconductor layer is an N-type semiconductor layer.
进一步地,当第一半导体层为N型半导体层、第二半导体层为P型半导体层、第三半导体层为N型半导体层、第四半导体层为P型半导体层时,施加在第一接触电极和R单元、G单元和B单元中的第二接触电极之间的电压信号为正极性,即R单元内的第二接触电极SCE1、G单元内的第二接触电极SCE2和B单元内的第二接触电极SCE3的电位高于第一接触电极的电位,施加在第一接触电极和R单元、G单元和B单元中的第三接触电极之间的电压信号为正极性,即R单元内的第三接触电极TCE1、G单元内的第三接触电极TCE2和B单元内的第三接触电极TCE3的电位高于第一接触电极的电位。Further, when the first semiconductor layer is an N-type semiconductor layer, the second semiconductor layer is a P-type semiconductor layer, the third semiconductor layer is an N-type semiconductor layer, and the fourth semiconductor layer is a P-type semiconductor layer, the The voltage signal between the electrode and the second contact electrode in unit R, unit G and unit B is positive polarity, that is, the second contact electrode SCE1 in unit R, the second contact electrode SCE2 in unit G and the second contact electrode SCE2 in unit B are positive. The potential of the second contact electrode SCE3 is higher than the potential of the first contact electrode, and the voltage signal applied between the first contact electrode and the third contact electrode in the R unit, G unit and B unit is of positive polarity, that is, in the R unit The potential of the third contact electrode TCE1, the third contact electrode TCE2 in the G unit and the third contact electrode TCE3 in the B unit is higher than the potential of the first contact electrode.
进一步地,当第一半导体层为P型半导体层、第二半导体层为N型半导体层、第三半导体层为P型半导体层、第四半导体层为N型半导体层时,施加在第一接触电极和R单元、G单元和B单元中的第二接触电极之间的电压信号为负极性,即R单元内的第二接触电极SCE1、G单元内的第二接触电极SCE2和B单元内的第二接触电极SCE3的电位低于第一接触电极的电位,施加在第一接触电极和R单元、G单元和B单元中的第三接触电极之间的电压型号为负极性,即R单元内的第三接触电极TCE1、G单元内的第三接触电极TCE2和B单元内的第三接触电极TCE3的电位低于第一接触电极的电位。Further, when the first semiconductor layer is a P-type semiconductor layer, the second semiconductor layer is an N-type semiconductor layer, the third semiconductor layer is a P-type semiconductor layer, and the fourth semiconductor layer is an N-type semiconductor layer, the The voltage signal between the electrode and the second contact electrode in the R unit, G unit, and B unit is negative polarity, that is, the second contact electrode SCE1 in the R unit, the second contact electrode SCE2 in the G unit, and the second contact electrode SCE2 in the B unit The potential of the second contact electrode SCE3 is lower than the potential of the first contact electrode, and the voltage model applied between the first contact electrode and the third contact electrode in the R unit, G unit and B unit is negative polarity, that is, in the R unit The potential of the third contact electrode TCE1, the third contact electrode TCE2 in the G unit and the third contact electrode TCE3 in the B unit is lower than the potential of the first contact electrode.
进一步地,所述第一半导体层为重掺杂浓度的半导体层,比所述第二半导体层的掺杂浓度高1至5个数量级。Further, the first semiconductor layer is a semiconductor layer with a heavily doped concentration, which is 1 to 5 orders of magnitude higher than the doping concentration of the second semiconductor layer.
进一步地,施加在第一接触电极和R单元、G单元、B单元中的第二接触电极之间电压幅值小于施加在第一接触电极和R单元、G单元、B单元中的第三接触电极之间的电压幅值。Further, the voltage amplitude applied between the first contact electrode and the second contact electrode in the R unit, G unit, and B unit is smaller than the voltage amplitude applied between the first contact electrode and the third contact in the R unit, G unit, and B unit. voltage amplitude between electrodes.
进一步地,设置在R单元、G单元以及B单元中的分布式布拉格反射层均由具有高折射率和低折射率的两种薄膜堆叠而成,各层薄膜厚度由确定,其中n为薄膜折射率,d为薄膜厚度,θ为光入射角,λ为中心波长,q为常数,q≥0,且当q为正奇数时,反射率有极值;设三个分布式布拉格反射层的薄膜堆叠层数分别为x、y、z,则三者均为N或N+0.5,N为正整数。Further, the distributed Bragg reflection layers provided in the R unit, G unit and B unit are all stacked by two types of films with high refractive index and low refractive index. The thickness of each layer of film is: Determine, where n is the refractive index of the film, d is the film thickness, θ is the light incident angle, λ is the central wavelength, q is a constant, q≥0, and when q is a positive odd number, the reflectivity has an extreme value; set three The number of film stack layers of the distributed Bragg reflective layer are x, y, and z respectively, then all three are N or N+0.5, and N is a positive integer.
进一步地,所述R单元中的分布式布拉格反射层DBR1用于全反射蓝光、高透射红光,所述G单元中的分布式布拉格反射层DBR2用于全反射蓝光、高透射绿光,所述B单元中的分布式布拉格反射层DBR3用于反射部分蓝光、调节出光强度,从而调控RGB三色光的出光比例,更好的实现全彩显示。Further, the distributed Bragg reflection layer DBR1 in the R unit is used for total reflection of blue light and high transmission red light, and the distributed Bragg reflection layer DBR2 in the G unit is used for total reflection of blue light and high transmission green light, so The distributed Bragg reflective layer DBR3 in unit B is used to reflect part of the blue light and adjust the light intensity, thereby regulating the light output ratio of the RGB three-color light to better achieve full-color display.
进一步地,所述缓冲层、第一半导体层、第二半导体层、第三半导体层、蓝光发光层、第四半导体层为具有相同掺杂浓度的单层半导体结构,或为具有渐变或缓变掺杂浓度的多层半导体结构。Further, the buffer layer, the first semiconductor layer, the second semiconductor layer, the third semiconductor layer, the blue light emitting layer, and the fourth semiconductor layer are single-layer semiconductor structures with the same doping concentration, or have gradient or gradual changes. Doped multilayer semiconductor structure.
本发明还提供了一种全彩化三极发光管显示器件的制造方法,包括以下步骤:The invention also provides a method for manufacturing a full-color triode light-emitting tube display device, which includes the following steps:
在衬底上依次生长缓冲层、第一半导体层、第二半导体层、第三半导体层、蓝光发光层和第四半导体层;sequentially growing a buffer layer, a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, a blue light emitting layer and a fourth semiconductor layer on the substrate;
在上述层刻蚀至露出部分第二半导体层,形成阵列化模块,并将其划分为R单元、G单元与B单元;Etch the above layer to expose part of the second semiconductor layer to form an array module, and divide it into R units, G units and B units;
在露出的第二半导体层上继续刻蚀至露出第一半导体层;Continue etching on the exposed second semiconductor layer until the first semiconductor layer is exposed;
在露出的第一半导体层(最右侧)上生长第一接触电极;并在R单元、G单元、B单元中露出的第二半导体层上分别生长一个第二接触电极;Grow a first contact electrode on the exposed first semiconductor layer (far right); and grow a second contact electrode on the exposed second semiconductor layer in the R unit, G unit, and B unit respectively;
在R单元、G单元、B单元内的第四半导体层表面分别生长一个第三接触电极;A third contact electrode is grown on the surface of the fourth semiconductor layer in the R unit, G unit, and B unit respectively;
在R单元和G单元的第三接触电极表面(通过沉积方式)分别制备红光色彩转换层和绿光色彩转换层,两者的长度分别小于第三接触电极TCE1和TCE2;A red light color conversion layer and a green light color conversion layer are respectively prepared on the third contact electrode surfaces of the R unit and the G unit (by deposition), and the lengths of the two are respectively shorter than the third contact electrodes TCE1 and TCE2;
在R单元和G单元的红光色彩转换层、绿光色彩转换层以及B单元的第三接触电极表面分别沉积一个分布式布拉格反射层。B单元中的分布式布拉格反射层DBR3的长度小于第三接触电极TCE3,通过调节分布式布拉格反射层的高低折射率薄膜的厚度和交替堆叠的薄膜层数来控制出射光的波长、反射光的波长及透射和反射的比例。DBR1用于全反射蓝光、高透射红光,DBR2用于全反射蓝光、高透射绿光,DBR3用于反射部分蓝光、调节出光强度,从而调控RGB三色光的出光比例,更好的实现全彩显示。A distributed Bragg reflection layer is deposited on the red light color conversion layer, the green light color conversion layer of the R unit and the G unit, and the third contact electrode surface of the B unit respectively. The length of the distributed Bragg reflective layer DBR3 in unit B is shorter than the third contact electrode TCE3. By adjusting the thickness of the high and low refractive index films of the distributed Bragg reflective layer and the number of alternately stacked film layers, the wavelength of the emitted light and the intensity of the reflected light are controlled. Wavelength and the ratio of transmission and reflection. DBR1 is used for total reflection blue light and high transmission red light, DBR2 is used for total reflection blue light and high transmission green light, and DBR3 is used to reflect part of the blue light and adjust the light intensity, thereby regulating the light output ratio of RGB three-color light to better achieve full color. show.
较佳的,所述第二半导体层的厚度为0.5nm至2μm。所述第二半导体层的主体材料可以但不限于为GaAs、GaP、GaN、ZnSe、SiC、Si、ZnSe、石墨烯、黑磷、MoS2、CNT,也可以但不限于为CuPc、Alq3等有机半导体材料。Preferably, the thickness of the second semiconductor layer is 0.5 nm to 2 μm. The host material of the second semiconductor layer may be, but is not limited to, GaAs, GaP, GaN, ZnSe, SiC, Si, ZnSe, graphene, black phosphorus, MoS 2 , CNT, or may be, but is not limited to, CuPc, Alq3 and other organic materials. Semiconductor material.
较佳的,所述第一半导体层的厚度为0.5μm至5μm,所述第三半导体层的厚度为0.5μm至5μm,所述第四半导体层的厚度为10nm至2μm。所述第一半导体层、第三半导体层、第四半导体层的主体材料可以但不限于为GaAs、GaP、GaN、ZnSe、SiC、Si、ZnSe等无机半导体材料,也可以但不限于为CuPc、Alq3等有机半导体材料。Preferably, the thickness of the first semiconductor layer is 0.5 μm to 5 μm, the thickness of the third semiconductor layer is 0.5 μm to 5 μm, and the thickness of the fourth semiconductor layer is 10 nm to 2 μm. The host materials of the first semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer may be, but are not limited to, inorganic semiconductor materials such as GaAs, GaP, GaN, ZnSe, SiC, Si, ZnSe, etc., and may also be, but are not limited to, CuPc, Alq3 and other organic semiconductor materials.
其中,所述第一接触电极与所述第一半导体层形成欧姆接触;所述第二接触电极(R单元内的SCE1、G单元内的SCE2和B单元内的SCE3)和所述第二半导体层形成欧姆接触;所述第三接触电极(R单元内的TCE1、G单元内的TCE2和B单元内的TCE3)分别与所述第四半导体层形成欧姆接触,且所述第三接触电极为透明电极。Wherein, the first contact electrode forms an ohmic contact with the first semiconductor layer; the second contact electrode (SCE1 in the R unit, SCE2 in the G unit and SCE3 in the B unit) and the second semiconductor layer The third contact electrode (TCE1 in the R unit, TCE2 in the G unit, and TCE3 in the B unit) respectively forms an ohmic contact with the fourth semiconductor layer, and the third contact electrode is Transparent electrode.
较佳的,所述的蓝光发光层包括多量子阱有源层及用以提高载流子复合效率的空穴阻挡层或者电子阻挡层;也可以但不限于为具有发光功能的有机薄膜及用于提高载流子复合效率的功能层;也可以但不限于为具有发光功能的纳米材料薄膜及用于提高载流子复合效率的功能层。Preferably, the blue light-emitting layer includes a multi-quantum well active layer and a hole blocking layer or electron blocking layer to improve carrier recombination efficiency; it can also be, but is not limited to, an organic film with a light-emitting function and a A functional layer for improving carrier recombination efficiency; it may also be, but is not limited to, a nanomaterial film with a light-emitting function and a functional layer for improving carrier recombination efficiency.
较佳的,所述R单元内的红光是由所述蓝光发光层激发红色光转换层而得;所述红色光转换层可以是红色量子点材料或荧光粉或两者与其他聚合物的结合体。所述G单元内的绿光是由所述蓝光发光层激发绿色光转换层而得;所述绿色光转换层可以是绿色量子点材料或荧光粉或两者与其他聚合物的结合体。Preferably, the red light in the R unit is obtained by exciting the red light conversion layer from the blue light emitting layer; the red light conversion layer can be a red quantum dot material or phosphor or a combination of both and other polymers. hybrid. The green light in the G unit is obtained by exciting the green light conversion layer from the blue light emitting layer; the green light conversion layer may be a green quantum dot material or a phosphor or a combination of the two and other polymers.
较佳的,所述衬底可以但不限于蓝宝石、GaAs、GaP、GaN、ZnSe、SiC、Si、ZnSe;所述衬底可以保留在器件上,也可以在波长转换的三极管发光器件制作过程中去除。Preferably, the substrate can be, but is not limited to, sapphire, GaAs, GaP, GaN, ZnSe, SiC, Si, ZnSe; the substrate can remain on the device, or can be used during the manufacturing process of the wavelength-converted triode light-emitting device. Remove.
较佳的,所述缓冲层、第一半导体层、第二半导体层、第三半导体层、发光层和第四半导体层可以但不限于用外延、沉积、镀膜、组装、转移、贴合方式形成。Preferably, the buffer layer, the first semiconductor layer, the second semiconductor layer, the third semiconductor layer, the light-emitting layer and the fourth semiconductor layer can be formed by, but are not limited to, epitaxy, deposition, coating, assembly, transfer, and lamination. .
与现有技术相比,本发明有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)对比寻常彩色LED,本发明提出的全彩化三极发光管显示器件,是将外围放大驱动电路集成在发光芯片中,多出一个驱动电极作为控制端,对输入信号的功率放大作用,实现用小功率输入信号驱动发光芯片,有效降低LED显示装置特别是μLED显示装置的驱动电路设计复杂度,提高LED显示装置的集成度。(1) Compared with ordinary color LEDs, the full-color triode light-emitting tube display device proposed by the present invention integrates the peripheral amplification driving circuit into the light-emitting chip, and has an extra driving electrode as a control terminal to amplify the power of the input signal. , realizing driving the light-emitting chip with a low-power input signal, effectively reducing the complexity of the drive circuit design of the LED display device, especially the μLED display device, and improving the integration of the LED display device.
(2)本发明可利用蓝色发光芯片激发R单元和G单元内的红色和绿色光转换层而发出红光/绿光,实现全彩化显示。同时,利用光转换层上的DBR层,有效地全反射发光芯片激发出的光,高透射光转换层产生的光,提高器件转换效率。(2) The present invention can use the blue light-emitting chip to excite the red and green light conversion layers in the R unit and G unit to emit red/green light to achieve full-color display. At the same time, the DBR layer on the light conversion layer is used to effectively fully reflect the light excited by the light-emitting chip and the light generated by the high-transmission light conversion layer to improve the device conversion efficiency.
(3)本发明提出的制造方法简便、成本低,能快速、有效在同一衬底上制备R、G、B显色模块,从而实现全彩化显示;且显色性、色纯度及转换效率高,有利于促进μLED显示的产业化效率及市场竞争力。(3) The manufacturing method proposed by the present invention is simple and low-cost, and can quickly and effectively prepare R, G, and B color modules on the same substrate, thereby achieving full-color display; and has good color rendering, color purity and conversion efficiency. High, which is conducive to promoting the industrialization efficiency and market competitiveness of μLED display.
附图说明Description of the drawings
图1为本发明实施例的全彩化三极发光管显示器件截面示意图。Figure 1 is a schematic cross-sectional view of a full-color triode light-emitting tube display device according to an embodiment of the present invention.
图2为本发明实施例的全彩化三极发光管显示器件立体示意图。FIG. 2 is a schematic three-dimensional view of a full-color triode light-emitting tube display device according to an embodiment of the present invention.
图3为本发明实施例的全彩化三极发光管显示器件的制备流程图。Figure 3 is a flow chart of the preparation of a full-color triode light-emitting tube display device according to an embodiment of the present invention.
图4为本发明实施例的全彩化三极发光管显示器件制备过程示意图。Figure 4 is a schematic diagram of the preparation process of a full-color triode light-emitting tube display device according to an embodiment of the present invention.
图5为本发明实施例的全彩化三极发光管显示器件的驱动方法示意图。FIG. 5 is a schematic diagram of a driving method of a full-color triode LED display device according to an embodiment of the present invention.
图6为本发明实施例的全彩化三极发光管显示器件的驱动等效电路。FIG. 6 is a driving equivalent circuit of a full-color triode light-emitting tube display device according to an embodiment of the present invention.
图中,1为蓝宝石衬底,2为缓冲层,6为R单元,7为G单元,8为B单元,301为第一半导体层,302为第二半导体层,303为第三半导体层,304为发光层,305为第四半导体层,401为第一接触电极,501、502和503分别为第二接触电极SCE1、SCE2和SCE3,601、602和603分别为第三接触电极TCE1、TCE2和TCE3,701为红光转换层,702为绿光转换层,801、802和803分别为DBR1、DBR2和DBR3。In the figure, 1 is a sapphire substrate, 2 is a buffer layer, 6 is an R unit, 7 is a G unit, 8 is a B unit, 301 is the first semiconductor layer, 302 is the second semiconductor layer, and 303 is the third semiconductor layer. 304 is the light-emitting layer, 305 is the fourth semiconductor layer, 401 is the first contact electrode, 501, 502 and 503 are the second contact electrodes SCE1, SCE2 and SCE3 respectively, 601, 602 and 603 are the third contact electrodes TCE1 and TCE2 respectively. and TCE3, 701 is the red light conversion layer, 702 is the green light conversion layer, 801, 802 and 803 are DBR1, DBR2 and DBR3 respectively.
具体实施方式Detailed ways
下面结合附图及实施例对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and examples.
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and is intended to provide further explanation of the present application. Unless otherwise defined, all technical and scientific terms used herein have the same meanings commonly understood by one of ordinary skill in the art to which this application belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terms used herein are only for describing specific embodiments and are not intended to limit the exemplary embodiments according to the present application. As used herein, the singular forms are also intended to include the plural forms unless the context clearly indicates otherwise. Furthermore, it will be understood that when the terms "comprises" and/or "includes" are used in this specification, they indicate There are features, steps, operations, means, components and/or combinations thereof.
如图1以及图2所示,本实施例提供了一种全彩化三极发光管显示器件,包括缓冲层2、设置于缓冲层上的第一半导体层301、以及设置于第一半导体层上的第一接触电极401、用以显示红光的R单元6、用以显示绿光的G单元7和用于显示蓝光的B单元8;As shown in Figures 1 and 2, this embodiment provides a full-color triode light-emitting tube display device, including a buffer layer 2, a first semiconductor layer 301 provided on the buffer layer, and a first semiconductor layer 301 provided on the buffer layer. The first contact electrode 401, the R unit 6 for displaying red light, the G unit 7 for displaying green light, and the B unit 8 for displaying blue light;
所述R单元、G单元与B单元均自下至上依次包括第二半导体层302、第三半导体层303、蓝光发光层304、第四半导体层305与第三接触电极601;其中R单元、G单元与B单元均还包括一个设置于第二半导体层上的第二接触电极501/502/503;其中R单元还包括依次设置于本单元中第三接触电极上的红光色彩转换层701与分布式布拉格反射层DBR1(801),G单元还包括依次设置于本单元中第三接触电极上的绿光色彩转换层802与分布式布拉格反射层DBR2(802),B单元还包括设置于本单元中第三接触电极上的分布式布拉格反射层DBR3(803);The R unit, G unit and B unit all include a second semiconductor layer 302, a third semiconductor layer 303, a blue light emitting layer 304, a fourth semiconductor layer 305 and a third contact electrode 601 from bottom to top; wherein the R unit, G unit Both the unit and the B unit also include a second contact electrode 501/502/503 disposed on the second semiconductor layer; the R unit also includes a red color conversion layer 701 and a red color conversion layer 701 disposed on the third contact electrode in this unit. Distributed Bragg reflective layer DBR1 (801). Unit G also includes a green color conversion layer 802 and distributed Bragg reflective layer DBR2 (802) arranged on the third contact electrode in this unit. Unit B also includes a green light color conversion layer 802 and a distributed Bragg reflective layer DBR2 (802) arranged on the third contact electrode in this unit. Distributed Bragg reflective layer DBR3 (803) on the third contact electrode in the unit;
其中,在所述第一接触电极和R单元、G单元、B单元中的第二接触电极之间分别施加一个可变输入信号,在所述第一接触电极和R单元、G单元、B单元中的第三接触电极之间分别施加一个正向偏置电压,使得R单元、G单元和B单元发光。Wherein, a variable input signal is applied between the first contact electrode and the second contact electrode in the R unit, G unit and B unit respectively, and between the first contact electrode and the R unit, G unit and B unit A forward bias voltage is applied between the third contact electrodes, causing the R unit, G unit and B unit to emit light.
其中,第一半导体层、第二半导体层、第三半导体层,第一接触电极、R单元内的第二接触电极(SCE1)、G单元内的第二接触电极(SCE2)及B单元内的第二接触电极(SCE3)构成三极管结构;第三半导体层、蓝光发光层、第四半导体层以及第三接触电极构成发光芯片结构;R单元内的红光色彩转换层与分布式布拉格反射层(DBR1)、G单元内的绿光色彩转换层与分布式布拉格反射层(DBR2)以及B单元内的分布式布拉格反射层(DBR3)构成色彩转换结构。Among them, the first semiconductor layer, the second semiconductor layer, the third semiconductor layer, the first contact electrode, the second contact electrode (SCE1) in the R unit, the second contact electrode (SCE2) in the G unit, and the second contact electrode (SCE2) in the B unit. The second contact electrode (SCE3) constitutes a triode structure; the third semiconductor layer, the blue light emitting layer, the fourth semiconductor layer and the third contact electrode constitute the light emitting chip structure; the red light color conversion layer and the distributed Bragg reflection layer in the R unit ( DBR1), the green color conversion layer and the distributed Bragg reflection layer (DBR2) in the G unit, and the distributed Bragg reflection layer (DBR3) in the B unit constitute the color conversion structure.
所述三极管结构对输入信号进行功率放大,实现用小功率输入信号驱动所述发光芯片发光,从而激发光转换层,实现全彩化显示;同时,所述三极管还可以有效降低发光器件的驱动电路设计复杂度,提高显示装置的集成度。其中,第三半导体层是所述三极管结构的集电极,也是发光芯片的阴极或阳极。The triode structure amplifies the power of the input signal, enabling the low-power input signal to drive the light-emitting chip to emit light, thereby stimulating the light conversion layer and achieving full-color display; at the same time, the triode can also effectively reduce the driving circuit of the light-emitting device. Design complexity and improve the integration of display devices. Wherein, the third semiconductor layer is the collector of the triode structure and also the cathode or anode of the light-emitting chip.
在本实施例中,所述第一半导体层为N型半导体层、第二半导体层为P型半导体层、第三半导体层为N型半导体层、第四半导体层为P型半导体层;或者所述第一半导体层为P型半导体层、第二半导体层为N型半导体层、第三半导体层为P型半导体层、第四半导体层为N型半导体层。In this embodiment, the first semiconductor layer is an N-type semiconductor layer, the second semiconductor layer is a P-type semiconductor layer, the third semiconductor layer is an N-type semiconductor layer, and the fourth semiconductor layer is a P-type semiconductor layer; or The first semiconductor layer is a P-type semiconductor layer, the second semiconductor layer is an N-type semiconductor layer, the third semiconductor layer is a P-type semiconductor layer, and the fourth semiconductor layer is an N-type semiconductor layer.
在本实施例中,当第一半导体层为N型半导体层、第二半导体层为P型半导体层、第三半导体层为N型半导体层、第四半导体层为P型半导体层时,施加在第一接触电极和R单元、G单元和B单元中的第二接触电极之间的电压信号为正极性,即R单元内的第二接触电极SCE1、G单元内的第二接触电极SCE2和B单元内的第二接触电极SCE3的电位高于第一接触电极的电位,施加在第一接触电极和R单元、G单元和B单元中的第三接触电极之间的电压信号为正极性,即R单元内的第三接触电极TCE1、G单元内的第三接触电极TCE2和B单元内的第三接触电极TCE3的电位高于第一接触电极的电位。In this embodiment, when the first semiconductor layer is an N-type semiconductor layer, the second semiconductor layer is a P-type semiconductor layer, the third semiconductor layer is an N-type semiconductor layer, and the fourth semiconductor layer is a P-type semiconductor layer, The voltage signal between the first contact electrode and the second contact electrode in the R unit, G unit and B unit is positive polarity, that is, the second contact electrode SCE1 in the R unit, the second contact electrode SCE2 and B in the G unit The potential of the second contact electrode SCE3 in the unit is higher than the potential of the first contact electrode, and the voltage signal applied between the first contact electrode and the third contact electrode in the R unit, G unit and B unit is of positive polarity, that is, The potential of the third contact electrode TCE1 in the R unit, the third contact electrode TCE2 in the G unit, and the third contact electrode TCE3 in the B unit is higher than the potential of the first contact electrode.
在本实施例中,当第一半导体层为P型半导体层、第二半导体层为N型半导体层、第三半导体层为P型半导体层、第四半导体层为N型半导体层时,施加在第一接触电极和R单元、G单元和B单元中的第二接触电极之间的电压信号为负极性,即R单元内的第二接触电极SCE1、G单元内的第二接触电极SCE2和B单元内的第二接触电极SCE3的电位低于第一接触电极的电位,施加在第一接触电极和R单元、G单元和B单元中的第三接触电极之间的电压型号为负极性,即R单元内的第三接触电极TCE1、G单元内的第三接触电极TCE2和B单元内的第三接触电极TCE3的电位低于第一接触电极的电位。In this embodiment, when the first semiconductor layer is a P-type semiconductor layer, the second semiconductor layer is an N-type semiconductor layer, the third semiconductor layer is a P-type semiconductor layer, and the fourth semiconductor layer is an N-type semiconductor layer, The voltage signal between the first contact electrode and the second contact electrode in the R unit, G unit and B unit is negative polarity, that is, the second contact electrode SCE1 in the R unit, the second contact electrode SCE2 and B in the G unit The potential of the second contact electrode SCE3 in the unit is lower than the potential of the first contact electrode, and the voltage model applied between the first contact electrode and the third contact electrode in the R unit, G unit and B unit is negative polarity, that is, The potential of the third contact electrode TCE1 in the R cell, the third contact electrode TCE2 in the G cell, and the third contact electrode TCE3 in the B cell is lower than the potential of the first contact electrode.
在本实施例中,所述第一半导体层为重掺杂浓度的半导体层,比所述第二半导体层的掺杂浓度高1至5个数量级。In this embodiment, the first semiconductor layer is a semiconductor layer with a heavily doped concentration, which is 1 to 5 orders of magnitude higher than the doping concentration of the second semiconductor layer.
在本实施例中,施加在第一接触电极和R单元、G单元、B单元中的第二接触电极之间电压幅值小于施加在第一接触电极和R单元、G单元、B单元中的第三接触电极之间的电压幅值。In this embodiment, the voltage amplitude applied between the first contact electrode and the second contact electrode in the R unit, G unit, and B unit is smaller than the voltage amplitude applied between the first contact electrode and the R unit, the G unit, and the B unit. The voltage amplitude between the third contact electrodes.
在本实施例中,设置在R单元、G单元以及B单元中的分布式布拉格反射层均由具有高折射率和低折射率的两种薄膜堆叠而成,各层薄膜厚度由确定,其中n为薄膜折射率,d为薄膜厚度,θ为光入射角,λ为中心波长,q为常数,q≥0,且当q为正奇数时,反射率有极值;设三个分布式布拉格反射层的薄膜堆叠层数分别为x、y、z,则三者均为N或N+0.5,N为正整数。In this embodiment, the distributed Bragg reflection layers provided in the R unit, the G unit and the B unit are stacked by two types of films with high refractive index and low refractive index. The thickness of each layer of film is: Determine, where n is the refractive index of the film, d is the film thickness, θ is the light incident angle, λ is the central wavelength, q is a constant, q≥0, and when q is a positive odd number, the reflectivity has an extreme value; set three The number of film stack layers of the distributed Bragg reflective layer are x, y, and z respectively, then all three are N or N+0.5, and N is a positive integer.
在本实施例中,所述R单元中的分布式布拉格反射层DBR1用于全反射蓝光、高透射红光,所述G单元中的分布式布拉格反射层DBR2用于全反射蓝光、高透射绿光,所述B单元中的分布式布拉格反射层DBR3用于反射部分蓝光、调节出光强度,从而调控RGB三色光的出光比例,更好的实现全彩显示。In this embodiment, the distributed Bragg reflection layer DBR1 in the R unit is used for total reflection of blue light and high transmission red light, and the distributed Bragg reflection layer DBR2 in the G unit is used for total reflection of blue light and high transmission of green light. Light, the distributed Bragg reflective layer DBR3 in the B unit is used to reflect part of the blue light and adjust the light intensity, thereby regulating the light output ratio of the RGB three-color light to better achieve full-color display.
在本实施例中,所述缓冲层、第一半导体层、第二半导体层、第三半导体层、蓝光发光层、第四半导体层为具有相同掺杂浓度的单层半导体结构,或为具有渐变或缓变掺杂浓度的多层半导体结构。In this embodiment, the buffer layer, the first semiconductor layer, the second semiconductor layer, the third semiconductor layer, the blue light emitting layer, and the fourth semiconductor layer are single-layer semiconductor structures with the same doping concentration, or have gradient Or a multilayer semiconductor structure with gradually varying doping concentration.
如图3所示,本实施例还提供了一种全彩化三极发光管显示器件的制造方法,包括以下步骤:As shown in Figure 3, this embodiment also provides a method for manufacturing a full-color triode light-emitting tube display device, which includes the following steps:
在衬底上依次生长缓冲层、第一半导体层、第二半导体层、第三半导体层、蓝光发光层和第四半导体层;sequentially growing a buffer layer, a first semiconductor layer, a second semiconductor layer, a third semiconductor layer, a blue light emitting layer and a fourth semiconductor layer on the substrate;
在上述层刻蚀至露出部分第二半导体层,形成阵列化模块,并将其划分为R单元、G单元与B单元;Etch the above layer to expose part of the second semiconductor layer to form an array module, and divide it into R units, G units and B units;
在露出的第二半导体层上继续刻蚀至露出第一半导体层;Continue etching on the exposed second semiconductor layer until the first semiconductor layer is exposed;
在露出的第一半导体层(最右侧)上生长第一接触电极;并在R单元、G单元、B单元中露出的第二半导体层上分别生长一个第二接触电极;Grow a first contact electrode on the exposed first semiconductor layer (far right); and grow a second contact electrode on the exposed second semiconductor layer in the R unit, G unit, and B unit respectively;
在R单元、G单元、B单元内的第四半导体层表面分别生长一个第三接触电极;A third contact electrode is grown on the surface of the fourth semiconductor layer in the R unit, G unit, and B unit respectively;
在R单元和G单元的第三接触电极表面(通过沉积方式)分别制备红光色彩转换层和绿光色彩转换层,两者的长度分别小于第三接触电极TCE1和TCE2;A red light color conversion layer and a green light color conversion layer are respectively prepared on the third contact electrode surfaces of the R unit and the G unit (by deposition), and the lengths of the two are respectively shorter than the third contact electrodes TCE1 and TCE2;
在R单元和G单元的红光色彩转换层、绿光色彩转换层以及B单元的第三接触电极表面分别沉积一个分布式布拉格反射层。B单元中的分布式布拉格反射层DBR3的长度小于第三接触电极TCE3,通过调节分布式布拉格反射层的高低折射率薄膜的厚度和交替堆叠的薄膜层数来控制出射光的波长、反射光的波长及透射和反射的比例。DBR1用于全反射蓝光、高透射红光,DBR2用于全反射蓝光、高透射绿光,DBR3用于反射部分蓝光、调节出光强度,从而调控RGB三色光的出光比例,更好的实现全彩显示。A distributed Bragg reflection layer is deposited on the red light color conversion layer, the green light color conversion layer of the R unit and the G unit, and the third contact electrode surface of the B unit respectively. The length of the distributed Bragg reflective layer DBR3 in unit B is shorter than the third contact electrode TCE3. By adjusting the thickness of the high and low refractive index films of the distributed Bragg reflective layer and the number of alternately stacked film layers, the wavelength of the emitted light and the intensity of the reflected light are controlled. Wavelength and the ratio of transmission and reflection. DBR1 is used for total reflection blue light and high transmission red light, DBR2 is used for total reflection blue light and high transmission green light, and DBR3 is used to reflect part of the blue light and adjust the light intensity, thereby regulating the light output ratio of RGB three-color light to better achieve full color. show.
较佳的,所述第二半导体层的厚度为0.5nm至2μm。所述第二半导体层的主体材料可以但不限于为GaAs、GaP、GaN、ZnSe、SiC、Si、ZnSe、石墨烯、黑磷、MoS2、CNT,也可以但不限于为CuPc、Alq3等有机半导体材料。Preferably, the thickness of the second semiconductor layer is 0.5 nm to 2 μm. The host material of the second semiconductor layer may be, but is not limited to, GaAs, GaP, GaN, ZnSe, SiC, Si, ZnSe, graphene, black phosphorus, MoS 2 , CNT, or may be, but is not limited to, CuPc, Alq3 and other organic materials. Semiconductor material.
较佳的,所述第一半导体层的厚度为0.5μm至5μm,所述第三半导体层的厚度为0.5μm至5μm,所述第四半导体层的厚度为10nm至2μm。所述第一半导体层、第三半导体层、第四半导体层的主体材料可以但不限于为GaAs、GaP、GaN、ZnSe、SiC、Si、ZnSe等无机半导体材料,也可以但不限于为CuPc、Alq3等有机半导体材料。Preferably, the thickness of the first semiconductor layer is 0.5 μm to 5 μm, the thickness of the third semiconductor layer is 0.5 μm to 5 μm, and the thickness of the fourth semiconductor layer is 10 nm to 2 μm. The host materials of the first semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer may be, but are not limited to, inorganic semiconductor materials such as GaAs, GaP, GaN, ZnSe, SiC, Si, ZnSe, etc., and may also be, but are not limited to, CuPc, Alq3 and other organic semiconductor materials.
其中,所述第一接触电极与所述第一半导体层形成欧姆接触;所述第二接触电极(R单元内的SCE1、G单元内的SCE2和B单元内的SCE3)和所述第二半导体层形成欧姆接触;所述第三接触电极(R单元内的TCE1、G单元内的TCE2和B单元内的TCE3)分别与所述第四半导体层形成欧姆接触,且所述第三接触电极为透明电极。Wherein, the first contact electrode forms an ohmic contact with the first semiconductor layer; the second contact electrode (SCE1 in the R unit, SCE2 in the G unit and SCE3 in the B unit) and the second semiconductor layer The third contact electrode (TCE1 in the R unit, TCE2 in the G unit, and TCE3 in the B unit) respectively forms an ohmic contact with the fourth semiconductor layer, and the third contact electrode is Transparent electrode.
较佳的,所述的蓝光发光层包括多量子阱有源层及用以提高载流子复合效率的空穴阻挡层或者电子阻挡层;也可以但不限于为具有发光功能的有机薄膜及用于提高载流子复合效率的功能层;也可以但不限于为具有发光功能的纳米材料薄膜及用于提高载流子复合效率的功能层。Preferably, the blue light-emitting layer includes a multi-quantum well active layer and a hole blocking layer or electron blocking layer to improve carrier recombination efficiency; it can also be, but is not limited to, an organic film with a light-emitting function and a A functional layer for improving carrier recombination efficiency; it may also be, but is not limited to, a nanomaterial film with a light-emitting function and a functional layer for improving carrier recombination efficiency.
较佳的,所述R单元内的红光是由所述蓝光发光层激发红色光转换层而得;所述红色光转换层可以是红色量子点材料或荧光粉或两者与其他聚合物的结合体。所述G单元内的绿光是由所述蓝光发光层激发绿色光转换层而得;所述绿色光转换层可以是绿色量子点材料或荧光粉或两者与其他聚合物的结合体。Preferably, the red light in the R unit is obtained by exciting the red light conversion layer from the blue light emitting layer; the red light conversion layer can be a red quantum dot material or phosphor or a combination of both and other polymers. hybrid. The green light in the G unit is obtained by exciting the green light conversion layer from the blue light emitting layer; the green light conversion layer may be a green quantum dot material or a phosphor or a combination of the two and other polymers.
较佳的,所述缓冲层、第一半导体层、第二半导体层、第三半导体层、发光层和第四半导体层可以但不限于用外延、沉积、镀膜、组装、转移、贴合方式形成。Preferably, the buffer layer, the first semiconductor layer, the second semiconductor layer, the third semiconductor layer, the light-emitting layer and the fourth semiconductor layer can be formed by, but are not limited to, epitaxy, deposition, coating, assembly, transfer, and lamination. .
较佳的,所述衬底可以但不限于蓝宝石、GaAs、GaP、GaN、ZnSe、SiC、Si、ZnSe;所述衬底可以保留在器件上,也可以在波长转换的三极管发光器件制作过程中去除。Preferably, the substrate can be, but is not limited to, sapphire, GaAs, GaP, GaN, ZnSe, SiC, Si, ZnSe; the substrate can remain on the device, or can be used during the manufacturing process of the wavelength-converted triode light-emitting device. Remove.
接下来,本实施例结合附图1至附图5进行更加具体的说明。Next, this embodiment will be described in more detail with reference to FIGS. 1 to 5 .
参见图1,一种全彩化三极发光管显示器件,包括衬底1(可以去除)、设置于衬底表面的缓冲层2,设置于缓冲层上的三极管结构、发光芯片结构和色彩转换结构;所述三极管结构、发光芯片结构和所述色彩转换结构沿所述缓冲层自下而上设置,且沿所述衬底1横向方向依次构成用于显示红光的R单元6、用于显示绿光的G单元7以及用于显示蓝光的B单元8。其中,所述三极管结构从下至上包括第一半导体层301、第二半导体层302、第三半导体层303,以及从第一半导体层引出的第一接触电极401、从第二半导体层R单元6内引出的第二接触电极(SCE1)501、G单元7内引出的第二接触电极(SCE2)502及B单元8内引出的第二接触电极(SCE3)503;所述发光芯片结构从下至上包括第三半导体层303、蓝色发光层304、第四半导体层304,以及从第四半导体层R单元6内引出的第三接触电极(TCE1)601、G单元7内引出的第三接触电极(TCE2)602和B单元8内引出的第三接触电极(TCE3)603,所述色彩转换结构包括R单元6内用于显示红光的转换层701和分布式布拉格反射层(DBR1)801,G单元7内用于显示绿光的转换层702和分布式布拉格反射层(DBR2)802,B单元8内用于部分反射蓝光的分布式布拉格反射层(DBR3)803。Referring to Figure 1, a full-color triode light-emitting tube display device includes a substrate 1 (removable), a buffer layer 2 arranged on the surface of the substrate, a triode structure arranged on the buffer layer, a light-emitting chip structure and a color conversion Structure; the transistor structure, the light-emitting chip structure and the color conversion structure are arranged from bottom to top along the buffer layer, and the R unit 6 for displaying red light, and the R unit for displaying red light are sequentially formed along the lateral direction of the substrate 1. G unit 7 for displaying green light and B unit 8 for displaying blue light. Wherein, the triode structure includes a first semiconductor layer 301, a second semiconductor layer 302, a third semiconductor layer 303 from bottom to top, as well as a first contact electrode 401 drawn from the first semiconductor layer, a first contact electrode 401 drawn from the second semiconductor layer R unit 6 The second contact electrode (SCE1) 501 drawn from the inside, the second contact electrode (SCE2) 502 drawn from the G unit 7 and the second contact electrode (SCE3) 503 drawn from the B unit 8; the light-emitting chip structure is from bottom to top. It includes a third semiconductor layer 303, a blue light-emitting layer 304, a fourth semiconductor layer 304, and a third contact electrode (TCE1) 601 drawn from the fourth semiconductor layer R unit 6 and a third contact electrode drawn from the G unit 7. (TCE2) 602 and the third contact electrode (TCE3) 603 derived from the B unit 8. The color conversion structure includes the conversion layer 701 for displaying red light and the distributed Bragg reflection layer (DBR1) 801 in the R unit 6, The conversion layer 702 and the distributed Bragg reflection layer (DBR2) 802 in the G unit 7 are used to display green light, and the distributed Bragg reflection layer (DBR3) 803 in the B unit 8 is used to partially reflect blue light.
其中,本实施例的衬底1采用蓝宝石衬底,且为a面,缓冲层2采用的材料为AlN,第一半导体层301为N-GaN层,第二半导体层302为P-GaN层,第三半导体层303为N-GaN层,所述发光层304为3个周期的InaGa1-aN量子阱有源层和AlbGa1-bN组成的空穴阻挡层或者电子阻挡层构成,第四半导体层305为P-GaN。第一接触电极401采用的是金铜电极,第二接触电极SCE1501、SCE2502和SCE3503均为金铜电极,透明第三接触电极TCE1601、TCE2602和TCE3603均为氧化铟锡(ITO)。红光转换层701采用的是红色量子点薄膜,绿光转换层702采用的是绿色量子点薄膜。分布式布拉格反射层DBR1、DBR2和DBR3均由TiO2和Al2O3两种薄膜交替堆叠而得。Among them, the substrate 1 of this embodiment adopts a sapphire substrate and is an a-plane, the material used for the buffer layer 2 is AlN, the first semiconductor layer 301 is an N-GaN layer, and the second semiconductor layer 302 is a P-GaN layer. The third semiconductor layer 303 is an N-GaN layer, and the light-emitting layer 304 is a hole blocking layer or electron blocking layer composed of three periods of In a Ga 1-a N quantum well active layer and Al b Ga 1-b N The fourth semiconductor layer 305 is P-GaN. The first contact electrode 401 is a gold copper electrode, the second contact electrodes SCE1501, SCE2502 and SCE3503 are all gold copper electrodes, and the transparent third contact electrodes TCE1601, TCE2602 and TCE3603 are all indium tin oxide (ITO). The red light conversion layer 701 uses a red quantum dot film, and the green light conversion layer 702 uses a green quantum dot film. Distributed Bragg reflector layers DBR1, DBR2 and DBR3 are all made of TiO 2 and Al 2 O 3 films alternately stacked.
具体的,在本实施例中,第一半导体层,第三半导体层为Mg掺杂N-GaN,第二,第四半导体层为Si掺杂P-GaN。进一步的,在本实施例中,第一半导体层Mg掺杂浓度为1×1021cm-3,第二半导体层Si掺杂浓度为5×1018cm-3,第三半导体层Mg掺杂浓度为1×1019cm-3,第四半导体层Si掺杂浓度为5×1018cm-3。Specifically, in this embodiment, the first semiconductor layer and the third semiconductor layer are Mg-doped N-GaN, and the second and fourth semiconductor layers are Si-doped P-GaN. Further, in this embodiment, the Mg doping concentration of the first semiconductor layer is 1×10 21 cm -3 , the Si doping concentration of the second semiconductor layer is 5×10 18 cm -3 , and the Mg doping concentration of the third semiconductor layer The concentration is 1×10 19 cm -3 , and the Si doping concentration of the fourth semiconductor layer is 5×10 18 cm -3 .
本实施例器件的制备方法具体按照以下步骤实现:The preparation method of the device in this embodiment is specifically implemented according to the following steps:
S11:提供一蓝宝石1衬底,将蓝宝石衬底1放置在MOCVD反应室中,温度设定为800℃~1200℃,通入三甲基铝、氨气,利用氢气为载体在蓝宝石衬底1上生长缓冲层2、第一半导体层N-GaN层301、第二半导体层P-GaN层302、第三半导体层N-GaN层303、多量子阱发光层304和第四半导体层P-GaN层305,它们的厚度分别为1000nm、2μm、0.5μm、3μm、200nm和1μm;S11: Provide a sapphire substrate 1, place the sapphire substrate 1 in the MOCVD reaction chamber, set the temperature to 800°C to 1200°C, introduce trimethylaluminum and ammonia gas, and use hydrogen as a carrier to place the sapphire substrate 1 On the upper growth buffer layer 2, the first semiconductor layer N-GaN layer 301, the second semiconductor layer P-GaN layer 302, the third semiconductor layer N-GaN layer 303, the multi-quantum well light-emitting layer 304 and the fourth semiconductor layer P-GaN Layer 305, their thicknesses are respectively 1000nm, 2μm, 0.5μm, 3μm, 200nm and 1μm;
S12:采用ICP将上述层刻蚀至露出部分第二半导体层302,形成阵列化模块;S12: Use ICP to etch the above layer to expose part of the second semiconductor layer 302 to form an array module;
S13:在第二半导体层302上继续刻蚀至露出第一半导体层301;S13: Continue etching on the second semiconductor layer 302 until the first semiconductor layer 301 is exposed;
S14:在第一半导体层301上的最右侧生长第一接触电极401,并在R、G、B单元中露出的第二半导体层302上分别生长第二接触电极SCE1501、SCE2502和SCE3503;S14: Grow the first contact electrode 401 on the rightmost side of the first semiconductor layer 301, and grow the second contact electrodes SCE1501, SCE2502 and SCE3503 on the exposed second semiconductor layer 302 in the R, G, and B units respectively;
S15:在R、G、B单元内的第四半导体层305表面分别生长第三接触电极TCE1601、TCE2602和TCE3603;S15: Grow third contact electrodes TCE1601, TCE2602 and TCE3603 respectively on the surface of the fourth semiconductor layer 305 in the R, G and B units;
S16:在R和G单元的第三接触电极TCE1601和TCE2602表面通过沉积方式分别制备红色转换层701和绿色转换层702,两者的长度分别小于TCE1和TCE2;S16: Prepare the red conversion layer 701 and the green conversion layer 702 by deposition on the surfaces of the third contact electrodes TCE1601 and TCE2602 of the R and G units respectively, and the lengths of the two are smaller than TCE1 and TCE2 respectively;
S17:在R、G、B单元的红色转换层701、绿色转换层702和第三接触电极TCE3603表面上沉积DBR1、DBR2和DBR3,DBR3的长度小于TCE3,通过调节分布式布拉格反射层的高低折射率薄膜的厚度和交替堆叠的薄膜层数来控制出射光的波长、反射光的波长及透射和反射的比例。所述DBR1能反射所有蓝光,透射尽可能多的红光;所述DBR2能反射所有蓝光,透射尽可能多的绿光;所述DBR3能反射部分蓝光,调节出射光强度,从而调控R、G、B三色光的出光比例,更好的实现全彩显示。其中,TiO2厚度为45nm,Al2O3的厚度为67nm,DBR1包含13层堆叠薄膜,DBR2包含11层堆叠薄膜,DBR3包含5层堆叠薄膜,且所有堆叠薄膜的最顶端和最底端均为TiO2。S17: Deposit DBR1, DBR2 and DBR3 on the surfaces of the red conversion layer 701, the green conversion layer 702 and the third contact electrode TCE3603 of the R, G and B units. The length of DBR3 is smaller than TCE3. By adjusting the high and low refraction of the distributed Bragg reflection layer The thickness of the rate film and the number of alternately stacked film layers are used to control the wavelength of the emitted light, the wavelength of the reflected light and the ratio of transmission and reflection. The DBR1 can reflect all blue light and transmit as much red light as possible; the DBR2 can reflect all blue light and transmit as much green light as possible; the DBR3 can reflect part of the blue light and adjust the intensity of the outgoing light, thereby regulating R and G , B three-color light emission ratio to better achieve full-color display. Among them, the thickness of TiO 2 is 45nm, the thickness of Al 2 O 3 is 67nm, DBR1 contains 13 layers of stacked films, DBR2 contains 11 layers of stacked films, and DBR3 contains 5 layers of stacked films, and the top and bottom ends of all stacked films are is TiO 2 .
图5为全彩化三极管调控型发光器件的R、G、B单元的驱动方法示意图,三个单元共用第一接触电极,驱动方式方法一样,只是R和G单元多加了色彩转换层模块,将蓝光分别转换成了所需的红光和绿光,从而实现全彩显示。因此,此处仅以B单元为例做详细的驱动方法说明,其他两个单位不再赘述。如图5所示,在第一接触电极和第二接触电极SCE3之间施加一个小功率可变输入信号V1,同时在所述第一接触电极和透明第三接触电极TCE3之间施加一个正向偏置电压V2,可以使得所述蓝光发光三极管芯片发光,实现对所述输入信号的功率放大作用,实现用小功率输入信号驱动LED。其等效电路参见图6,NPN三极管与LED共发射极连接,基极和发射极构成输入回路,即第一接触电极和第二接触电极SCE3之间施加一个小功率可变输入信号V1,集电极和发射极构成输出回路,即第一接触电极和第三接触电极TCE3之间施加一个正向偏置电压V2,可实现三极管驱动LED发光。Figure 5 is a schematic diagram of the driving method of the R, G, and B units of the full-color triode control type light-emitting device. The three units share the first contact electrode and the driving method is the same, except that the R and G units have additional color conversion layer modules. The blue light is converted into the required red light and green light respectively, thereby achieving full-color display. Therefore, here we only take unit B as an example to explain the driving method in detail, and the other two units will not be described again. As shown in Figure 5, a small-power variable input signal V 1 is applied between the first contact electrode and the second contact electrode SCE3, and at the same time, a positive voltage is applied between the first contact electrode and the transparent third contact electrode TCE3. The bias voltage V 2 can cause the blue light-emitting transistor chip to emit light, achieve power amplification of the input signal, and drive the LED with a low-power input signal. See Figure 6 for its equivalent circuit. The NPN transistor is connected to the common emitter of the LED. The base and emitter form an input loop, that is, a small power variable input signal V 1 is applied between the first contact electrode and the second contact electrode SCE3. The collector and the emitter form an output loop, that is, a forward bias voltage V 2 is applied between the first contact electrode and the third contact electrode TCE3, so that the triode can drive the LED to emit light.
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。The above are only preferred embodiments of the present invention, and are not intended to limit the present invention in other forms. Any skilled person familiar with the art may make changes or modifications to equivalent changes using the technical contents disclosed above. Example. However, any simple modifications, equivalent changes, and modifications made to the above embodiments based on the technical essence of the present invention without departing from the content of the technical solution of the present invention still fall within the protection scope of the technical solution of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010535701.0A CN111834390B (en) | 2020-06-12 | 2020-06-12 | Full-color triode luminescent tube display device and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010535701.0A CN111834390B (en) | 2020-06-12 | 2020-06-12 | Full-color triode luminescent tube display device and manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111834390A CN111834390A (en) | 2020-10-27 |
CN111834390B true CN111834390B (en) | 2023-09-22 |
Family
ID=72897930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010535701.0A Active CN111834390B (en) | 2020-06-12 | 2020-06-12 | Full-color triode luminescent tube display device and manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111834390B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114899286B (en) * | 2022-07-12 | 2022-10-25 | 诺视科技(苏州)有限公司 | A pixel-level discrete device and method of making the same |
CN114899291B (en) * | 2022-07-12 | 2022-10-25 | 诺视科技(苏州)有限公司 | Pixel unit for semiconductor device and method of making the same, and microdisplay |
CN119907388A (en) * | 2023-10-24 | 2025-04-29 | 京东方科技集团股份有限公司 | Light emitting chip, display device and manufacturing method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5696389A (en) * | 1994-03-15 | 1997-12-09 | Kabushiki Kaisha Toshiba | Light-emitting semiconductor device |
CN101582418A (en) * | 2008-05-16 | 2009-11-18 | 北京大学 | Tricolor single-chip white light-emitting diode regulated through electric injection |
CN103545414A (en) * | 2012-07-13 | 2014-01-29 | 晶元光电股份有限公司 | Light-emitting element with Bragg reflector layer between window layers |
CN104112766A (en) * | 2014-07-22 | 2014-10-22 | 深圳市华星光电技术有限公司 | Color display device structure |
CN108807624A (en) * | 2018-06-15 | 2018-11-13 | 佛山市国星半导体技术有限公司 | A kind of packed LED chip and preparation method thereof |
CN110416249A (en) * | 2019-08-21 | 2019-11-05 | 扬州中科半导体照明有限公司 | A semiconductor light-emitting device and its manufacturing method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112011102506B4 (en) * | 2010-07-28 | 2021-03-25 | Seoul Viosys Co., Ltd. | Light emitting diode and light emitting diode unit |
-
2020
- 2020-06-12 CN CN202010535701.0A patent/CN111834390B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5696389A (en) * | 1994-03-15 | 1997-12-09 | Kabushiki Kaisha Toshiba | Light-emitting semiconductor device |
CN101582418A (en) * | 2008-05-16 | 2009-11-18 | 北京大学 | Tricolor single-chip white light-emitting diode regulated through electric injection |
CN103545414A (en) * | 2012-07-13 | 2014-01-29 | 晶元光电股份有限公司 | Light-emitting element with Bragg reflector layer between window layers |
CN104112766A (en) * | 2014-07-22 | 2014-10-22 | 深圳市华星光电技术有限公司 | Color display device structure |
CN108807624A (en) * | 2018-06-15 | 2018-11-13 | 佛山市国星半导体技术有限公司 | A kind of packed LED chip and preparation method thereof |
CN110416249A (en) * | 2019-08-21 | 2019-11-05 | 扬州中科半导体照明有限公司 | A semiconductor light-emitting device and its manufacturing method |
Non-Patent Citations (1)
Title |
---|
《宽频高光提取效率LED 芯片的研究》;方海闻等;《照明工程学报》;第27卷(第2期);72-76 * |
Also Published As
Publication number | Publication date |
---|---|
CN111834390A (en) | 2020-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111834421B (en) | A triode-regulated hybrid structure full-color display device and manufacturing method thereof | |
JP5517882B2 (en) | Nitride semiconductor light emitting device | |
CN111834390B (en) | Full-color triode luminescent tube display device and manufacturing method | |
CN111834420B (en) | Semiconductor mixed full-color triode light-emitting tube display device and manufacturing method | |
CN110676250B (en) | A full-color μLED display device without electrical contact and mass transfer | |
CN110880522B (en) | Micro LED integrated full-color display chip based on polar surface and non-polar surface growth and preparation method thereof | |
JP2005268601A (en) | Compound semiconductor light emitting device | |
JP2010141331A (en) | Semiconductor light-emitting element and manufacturing method therefor | |
CN1822404A (en) | Single-chip white light-emitting diode with tunnel junction structure on the surface | |
CN108196396A (en) | Backlight module and liquid crystal display device | |
US20230261031A1 (en) | Semiconductor light-emitting device and preparation method thereof | |
CN116895681A (en) | Micro-LED full-color display module and preparation method | |
TWI781743B (en) | Display device and manufacturing method thereof | |
CN111834505B (en) | Three-pole luminous tube based on wavelength down-conversion and manufacturing method thereof | |
Kovác et al. | Advanced light emitting devices for optoelectronic applications | |
CN219738982U (en) | Micro-LED display device | |
TWI842560B (en) | Light emitting element and display device | |
CN115440858B (en) | A method for preparing an RGB hybrid integrated Micro-LED chip array for full-color display | |
CN115440862B (en) | A method for preparing vertically stacked full-color Micro-LED chips | |
CN218731018U (en) | Micro LED chip structure and display module | |
CN220041889U (en) | Semiconductor light emitting device | |
JP7564576B2 (en) | Fully nitrided epitaxial chip structures and light-emitting devices | |
CN102856452B (en) | Multi-wave length illuminating diode and preparation method thereof | |
CN108008574A (en) | Backlight module and liquid crystal display device | |
CN104617122A (en) | Single-chip multi-electrode regulating multi-wavelength light emitting diode structure and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |