CN111822720A - Manufacturing method of blank for plastic working for manufacture of composite material, and blank manufactured by the aforementioned manufacturing method - Google Patents
Manufacturing method of blank for plastic working for manufacture of composite material, and blank manufactured by the aforementioned manufacturing method Download PDFInfo
- Publication number
- CN111822720A CN111822720A CN201910846070.1A CN201910846070A CN111822720A CN 111822720 A CN111822720 A CN 111822720A CN 201910846070 A CN201910846070 A CN 201910846070A CN 111822720 A CN111822720 A CN 111822720A
- Authority
- CN
- China
- Prior art keywords
- manufacturing
- billet
- blank
- composite material
- plastic working
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 121
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 71
- 239000004033 plastic Substances 0.000 title claims abstract description 41
- 229920003023 plastic Polymers 0.000 title claims abstract description 41
- 239000000843 powder Substances 0.000 claims abstract description 81
- 239000010410 layer Substances 0.000 claims abstract description 59
- 239000012792 core layer Substances 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 239000002184 metal Substances 0.000 claims abstract description 26
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 11
- 239000000956 alloy Substances 0.000 claims abstract description 11
- 238000000498 ball milling Methods 0.000 claims abstract description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 58
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 57
- 239000002041 carbon nanotube Substances 0.000 claims description 53
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 22
- 229910052799 carbon Inorganic materials 0.000 claims description 13
- 229920005989 resin Polymers 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 12
- 239000000919 ceramic Substances 0.000 claims description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 9
- 229920000642 polymer Polymers 0.000 claims description 8
- 150000002739 metals Chemical class 0.000 claims description 7
- 239000002086 nanomaterial Substances 0.000 claims description 7
- 238000002490 spark plasma sintering Methods 0.000 claims description 7
- 229910052718 tin Inorganic materials 0.000 claims description 7
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 6
- 229910052793 cadmium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000004925 Acrylic resin Substances 0.000 claims description 3
- 229920000178 Acrylic resin Polymers 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- 229910052693 Europium Inorganic materials 0.000 claims description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052772 Samarium Inorganic materials 0.000 claims description 3
- 229910052771 Terbium Inorganic materials 0.000 claims description 3
- 229910052788 barium Inorganic materials 0.000 claims description 3
- 229910052792 caesium Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000002134 carbon nanofiber Substances 0.000 claims description 3
- 239000011852 carbon nanoparticle Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 claims description 3
- -1 fluororesins Substances 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 229910052575 non-oxide ceramic Inorganic materials 0.000 claims description 3
- 239000011225 non-oxide ceramic Substances 0.000 claims description 3
- 239000011224 oxide ceramic Substances 0.000 claims description 3
- 229910052574 oxide ceramic Inorganic materials 0.000 claims description 3
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229920001568 phenolic resin Polymers 0.000 claims description 3
- 239000005011 phenolic resin Substances 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 229920005672 polyolefin resin Polymers 0.000 claims description 3
- 229910052700 potassium Inorganic materials 0.000 claims description 3
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 229910052706 scandium Inorganic materials 0.000 claims description 3
- 229910021332 silicide Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- 229920005992 thermoplastic resin Polymers 0.000 claims description 3
- 229920001187 thermosetting polymer Polymers 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 3
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000012461 cellulose resin Substances 0.000 claims description 2
- 150000001247 metal acetylides Chemical class 0.000 claims description 2
- 239000002135 nanosheet Substances 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 239000009719 polyimide resin Substances 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 239000002127 nanobelt Substances 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 61
- 238000001125 extrusion Methods 0.000 description 24
- 229910000838 Al alloy Inorganic materials 0.000 description 19
- 239000006185 dispersion Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- RQMIWLMVTCKXAQ-UHFFFAOYSA-N [AlH3].[C] Chemical compound [AlH3].[C] RQMIWLMVTCKXAQ-UHFFFAOYSA-N 0.000 description 8
- 239000000411 inducer Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- 239000010949 copper Substances 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000011135 tin Substances 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005242 forging Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002074 nanoribbon Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000002109 single walled nanotube Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000005543 nano-size silicon particle Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000009704 powder extrusion Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C26/00—Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/1208—Containers or coating used therefor
- B22F3/1216—Container composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/008—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/062—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/08—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1084—Alloys containing non-metals by mechanical alloying (blending, milling)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
- B22F2003/1051—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/043—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/05—Light metals
- B22F2301/052—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/40—Carbon, graphite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2302/00—Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
- B22F2302/40—Carbon, graphite
- B22F2302/403—Carbon nanotube
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C26/00—Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
- C22C2026/002—Carbon nanotubes
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Extrusion Of Metal (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种用于制造复合材料的塑性加工用坯料的制造方法,其特征在于,包括:(A)通过对2种以上的不同种类材料粉末进行球磨(ball mill)而制造出复合粉末的复合粉末制造步骤;以及,(B)制造出包含上述复合粉末的多层坯料(billet)的坯料制造步骤;其中,上述多层坯料由核心层以及围绕上述核心层的2层以上的外壳层构成,除上述核心层以及最外侧外壳层之外的外壳层由上述复合粉末构成,上述最外侧外壳层由纯金属或合金构成,分别包含于上述核心层以及外壳层中的复合粉末的组成互不相同,通过本发明能够制造出可以克服现有的单一材料坯料的限制并根据不同复合材料的特性实现定制型复合材料制造的塑性加工用坯料。
The present invention relates to a method for producing a billet for plastic working of composite materials, which is characterized by comprising: (A) producing composite powders by ball-milling two or more different types of material powders. A composite powder production step; and (B) a billet production step for producing a multi-layer billet containing the composite powder; wherein the multi-layer billet is composed of a core layer and two or more outer shell layers surrounding the core layer , the outer shell layers other than the above-mentioned core layer and the outermost outer shell layer are composed of the above-mentioned composite powder, the above-mentioned outermost outer shell layer is composed of pure metal or alloy, and the composition of the composite powder contained in the above-mentioned core layer and the outermost shell layer respectively is different from each other Similarly, the present invention can manufacture blanks for plastic processing that can overcome the limitation of the existing single-material blanks and realize the manufacture of customized composite materials according to the characteristics of different composite materials.
Description
技术领域technical field
本发明涉及一种塑性加工用坯料的制造方法以及利用上述制造方法制造的坯料。The present invention relates to a method for producing a billet for plastic working, and a billet produced by the above-mentioned production method.
背景技术Background technique
塑性加工是一种能够在不执行如机械加工等切割作业的情况下批量生产出工业用材料的工艺。尤其是,能够利用具有所需形状的模具或框架以无熔融的固体状态简单地制造出接近于最终产品的形状。Plastic working is a process that enables mass production of industrial materials without performing cutting operations such as machining. In particular, a shape close to the final product can be easily produced in a solid state without melting using a mold or frame having a desired shape.
但是,目前构成在塑性加工过程中使用的坯料(billet)的材料仅限于单一材料,因此需要开发出一种适合于通过塑性加工的复合材料制造的坯料制造技术。However, currently, the material constituting the billet used in the plastic working process is limited to a single material, and it is therefore necessary to develop a billet manufacturing technique suitable for the manufacture of a composite material by plastic working.
[现有技术文献][Prior Art Literature]
[专利文献][Patent Literature]
(专利文献1)韩国注册专利第10-1590181号(注册日期:2016.01.25.)(Patent Document 1) Korean Registered Patent No. 10-1590181 (Registration Date: 2016.01.25.)
(专利文献2)韩国公开专利第10-2010-0066089号(公开日期:2010.06.17.)(Patent Document 2) Korean Laid-Open Patent No. 10-2010-0066089 (Published Date: 2010.06.17.)
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种能够在通过如挤出等塑性加工工程制造复合材料时使用的塑性加工用坯料的制造方法以及利用上述制造方法制造的坯料。An object of the present invention is to provide a method for producing a billet for plastic working that can be used when a composite material is produced by a plastic working process such as extrusion, and a billet produced by the above-mentioned production method.
本发明提供一种用于制造复合材料的塑性加工用坯料的制造方法,其特征在于,包括:(A)通过对2种以上的不同种类材料粉末进行球磨(ball mill)而制造出复合粉末的复合粉末制造步骤;以及,(B)制造出包含上述复合粉末的多层坯料(billet)的坯料制造步骤;其中,上述多层坯料由核心层以及围绕上述核心层的2层以上的外壳层构成,除上述核心层以及最外侧外壳层之外的外壳层由上述复合粉末构成,上述最外侧外壳层由纯金属或合金构成,分别包含于上述核心层以及外壳层中的复合粉末的组成互不相同。The present invention provides a method for producing a billet for plastic working of composite materials, which is characterized by comprising: (A) producing composite powders by ball milling two or more different types of material powders. A composite powder production step; and (B) a billet production step for producing a multi-layer billet containing the composite powder; wherein the multi-layer billet is composed of a core layer and two or more outer shell layers surrounding the core layer , the outer shell layers other than the above-mentioned core layer and the outermost outer shell layer are composed of the above-mentioned composite powder, the above-mentioned outermost outer shell layer is composed of pure metal or alloy, and the composition of the composite powder contained in the above-mentioned core layer and the outermost shell layer respectively is different from each other same.
此外,提供一种用于制造复合材料的塑性加工用坯料的制造方法,其特征在于:上述不同种类材料,是从由金属、聚合物、陶瓷以及含碳纳米材料构成的组中选择的2种以上。In addition, there is provided a method for producing a blank for plastic working for producing a composite material, wherein the above-mentioned different kinds of materials are two kinds selected from the group consisting of metals, polymers, ceramics, and carbon-containing nanomaterials above.
此外,提供一种用于制造复合材料的塑性加工用坯料的制造方法,其特征在于:上述金属,是从由Al、Cu、Ti、Mg、K、Ca、Sc、V、Cr、Mn、Fe、Co、Ni、Zn、Ga、Rb、Sr、Y、Zr、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Cs、Ba、La、Ce、Nd、Sm、Eu、Gd、Tb、W、Cd、Sn、Hf、Ir、Pt以及Pb构成的组中选择的1种金属或2种以上金属之合金。In addition, there is provided a method for producing a billet for plastic working for producing a composite material, wherein the metal is made of Al, Cu, Ti, Mg, K, Ca, Sc, V, Cr, Mn, Fe , Co, Ni, Zn, Ga, Rb, Sr, Y, Zr, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb , W, Cd, Sn, Hf, Ir, Pt, and Pb. One metal or an alloy of two or more metals selected from the group.
此外,提供一种用于制造复合材料的塑性加工用坯料的制造方法,其特征在于:上述聚合物,是(i)从丙烯酸树脂、烯烃树脂、乙烯树脂、苯乙烯树脂、氟树脂以及纤维素树脂中选择的热可塑性树脂,或(ii)从酚醛树脂、环氧树脂以及聚酰亚胺树脂中选择的热硬化性树脂。In addition, there is provided a method for producing a blank for plastic working for producing a composite material, wherein the polymer is (i) selected from acrylic resin, olefin resin, vinyl resin, styrene resin, fluororesin and cellulose A thermoplastic resin selected from resins, or (ii) a thermosetting resin selected from phenolic resins, epoxy resins, and polyimide resins.
此外,提供一种用于制造复合材料的塑性加工用坯料的制造方法,其特征在于:上述陶瓷,是(i)氧化物陶瓷,或(ii)从氮化物、碳化物、硼化物以及硅化物选择的非氧化物陶瓷。In addition, there is provided a method for producing a blank for plastic working for producing a composite material, wherein the ceramic is (i) an oxide ceramic, or (ii) a nitride, a carbide, a boride, and a silicide. Selected non-oxide ceramics.
此外,提供一种用于制造复合材料的塑性加工用坯料的制造方法,其特征在于:上述碳纳米材料,是从由碳纳米管、碳纳米纤维、碳纳米粒子、介孔性碳、碳纳米片、碳纳米棒以及碳纳米带构成的组中选择的1种以上。In addition, there is provided a method for producing a blank for plastic working for producing a composite material, wherein the carbon nanomaterial is made of carbon nanotubes, carbon nanofibers, carbon nanoparticles, mesoporous carbon, carbon nanomaterials One or more selected from the group consisting of sheets, carbon nanorods, and carbon nanoribbons.
此外,提供一种用于制造复合材料的塑性加工用坯料的制造方法,其特征在于:上述多层坯料,由核心层、围绕上述核心层的第1外壳层以及围绕上述第1外壳层的第2外壳层构成。In addition, there is provided a method for producing a blank for plastic working of a composite material, wherein the multilayer blank comprises a core layer, a first shell layer surrounding the core layer, and a first shell layer surrounding the first shell layer. 2 outer shell layers.
此外,提供一种用于制造复合材料的塑性加工用坯料的制造方法,其特征在于,上述多层坯料,包括:第1坯料,构成上述第2外壳层,采用罐状形状;第2坯料,构成上述第1外壳层,配置在上述第1坯料内部;以及,第3坯料,构成上述核心层,配置在上述第2坯料内部。In addition, there is provided a method of manufacturing a blank for plastic working for manufacturing a composite material, wherein the multilayer blank comprises: a first blank that constitutes the second outer shell layer and has a can-like shape; and a second blank, The said 1st shell layer is arrange|positioned inside the said 1st blank; and the 3rd blank, which comprises the said core layer, is arrange|positioned inside the said 2nd blank.
此外,提供一种用于制造复合材料的塑性加工用坯料的制造方法,其特征在于:上述步骤(B)的坯料制造步骤,包括将上述复合粉末以10MPa至100MPa的高压进行挤压的工程。In addition, there is provided a method for producing a billet for plastic working of a composite material, characterized in that the billet manufacturing step of the above step (B) includes a process of extruding the composite powder at a high pressure of 10 MPa to 100 MPa.
此外,提供一种用于制造复合材料的塑性加工用坯料的制造方法,其特征在于:上述步骤(B)的坯料制造步骤,包括将上述复合粉末在30Mpa至100Mpa的压力下以280℃至600℃的温度进行1秒至30分钟的放电等离子体烧结(spark plasma sintering)的工程。In addition, there is provided a method for manufacturing a blank for plastic working of composite materials, characterized in that: the blank manufacturing step of the above step (B) comprises the step of heating the composite powder at 280°C to 600°C under a pressure of 30Mpa to 100Mpa. ℃ temperature for 1 second to 30 minutes spark plasma sintering (spark plasma sintering) engineering.
本发明通过发明的另一方面提供一种利用上述制造方法制造的用于制造复合材料的塑性加工用坯料。According to another aspect of the invention, the present invention provides a blank for plastic working for producing a composite material produced by the above-mentioned production method.
通过适用本发明的塑性加工用坯料的制造方法,能够制造出可以克服现有的单一材料坯料的限制并根据不同复合材料的特性实现定制型复合材料制造的塑性加工用坯料。By applying the method for producing a billet for plastic working of the present invention, a billet for plastic working that can overcome the limitation of the existing single-material billet and realize the production of a customized composite material according to the characteristics of different composite materials can be produced.
附图说明Description of drawings
图1是适用本发明的用于制造复合材料的塑性加工用坯料的制造方法的工程顺序图。FIG. 1 is a process sequence diagram of a method for producing a billet for plastic working for producing a composite material to which the present invention is applied.
图2是对坯料制造过程进行模式化图示的示意图。Figure 2 is a schematic diagram schematically illustrating the blank manufacturing process.
图3是对按照本发明制造的多层坯料的一实例进行模式化图示的斜视图。Figure 3 is an oblique view schematically illustrating an example of a multi-layer blank made in accordance with the present invention.
图4是在实施例4中通过对含铝坯料进行挤出而制造的复合材料的照片[(a)]以及在比较例2中通过对含铝坯料进行挤出而制造的复合材料的照片[(b)]。4 is a photograph [(a)] of a composite material produced by extruding an aluminum-containing billet in Example 4 and a photograph of a composite material produced by extruding an aluminum-containing billet in Comparative Example 2 [ (b)].
【符号说明】【Symbol Description】
10:复合粉末10: Compound powder
11:第1坯料11: 1st billet
12:第2坯料12: Second billet
13:第3坯料13: 3rd billet
20:金属罐20: Metal Cans
G:导向器G: Director
C:盖子C: cover
具体实施方式Detailed ways
在对本发明进行说明的过程中,当判定对相关的公知功能或构成的具体说明可能会导致本发明的要旨变得不清晰时,将对其详细说明进行省略。During the description of the present invention, when it is determined that the specific description of related well-known functions or configurations may make the gist of the present invention unclear, the detailed description will be omitted.
适用本发明之概念的实施例能够进行多种变更并具有多种形态,接下来将在附图中对特定的实施例进行图示并在本说明书或申请中进行详细的说明。但是,这并不是为了将适用本发明之概念的实施例限定于特定的公开形态,而是应该理解为包含本发明的思想以及技术范围中所包含的所有变更、均等物乃至替代物。Embodiments to which the concept of the present invention is applied are capable of various modifications and forms, and specific embodiments will be illustrated in the accompanying drawings and described in detail in this specification or application. However, this is not intended to limit the embodiment to which the concept of the present invention is applied to a specific disclosed form, but should be understood to include all changes, equivalents, and substitutes included in the idea and technical scope of the present invention.
在本说明书中所使用的术语只是为了对特定的实施例进行说明,并不是为了对本发明做出限定。除非上下文中有明确的相反含义,否则单数型语句还包含复数型含义。在本说明书中,“包括”或“具有”等术语只是为了说明所记载的特征、数字、步骤、动作、构成要素、部件或上述之组合存在,并不应该理解为事先排除一个或多个其他特征、数字、步骤、动作、构成要素、部件或上述之组合存在或被附加的可能性。The terms used in this specification are only used to describe a specific embodiment, and not to limit the present invention. Unless the context clearly indicates the contrary, a singular statement also includes a plural meaning. In this specification, terms such as "comprising" or "having" are only used to describe the existence of the described features, numbers, steps, actions, constituent elements, components or combinations thereof, and should not be understood as excluding one or more other Features, numbers, steps, actions, constituent elements, components, or combinations of the foregoing may exist or be added.
接下来,将对本发明进行详细的说明。Next, the present invention will be described in detail.
图1是适用本发明之一实施例的用于制造复合材料的塑性加工用坯料的制造方法的工程顺序图。FIG. 1 is a process sequence diagram of a method for producing a billet for plastic working for producing a composite material to which an embodiment of the present invention is applied.
接下来,将结合上述图1对上述用于制造复合材料的塑性加工用坯料的制造方法进行说明。Next, the manufacturing method of the above-mentioned blank for plastic working for manufacturing the composite material will be described with reference to the above-mentioned FIG. 1 .
参阅上述图1,上述用于制造复合材料的塑性加工用坯料的制造方法,包括:步骤S10,通过对2种以上的不同种类材料粉末进行球磨(ball mill)而制造出复合粉末的复合粉末制造步骤;以及,步骤S20,制造出包含上述复合粉末的多层坯料(billet)的坯料制造步骤。Referring to the above-mentioned FIG. 1 , the above-mentioned manufacturing method of a blank for plastic working for manufacturing a composite material includes: step S10 , manufacturing a composite powder by ball milling two or more different types of material powders to produce a composite powder step; and, step S20, a billet manufacturing step of manufacturing a multi-layer billet containing the composite powder.
首先,在步骤S10,通过对2种以上的不同种类材料粉末进行球磨(ball mill)而制造出复合粉末。First, in step S10, a composite powder is produced by ball-milling two or more different kinds of material powders.
此时,上述2种以上的不同种类材料能够从由金属、聚合物、陶瓷以及含碳纳米材料构成的组中选择。In this case, the above-mentioned two or more different kinds of materials can be selected from the group consisting of metals, polymers, ceramics, and carbon-containing nanomaterials.
上述金属能够是从由Al、Cu、Ti、Mg、K、Ca、Sc、V、Cr、Mn、Fe、Co、Ni、Zn、Ga、Rb、Sr、Y、Zr、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Cs、Ba、La、Ce、Nd、Sm、Eu、Gd、Tb、W、Cd、Sn、Hf、Ir、Pt以及Pb构成的组中选择的1种金属或上述金属之合金,但是并不限定于此。The above metals can be selected from Al, Cu, Ti, Mg, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, Rb, Sr, Y, Zr, Mo, Ru, Rh, 1 metal selected from the group consisting of Pd, Ag, Cd, In, Sn, Cs, Ba, La, Ce, Nd, Sm, Eu, Gd, Tb, W, Cd, Sn, Hf, Ir, Pt and Pb or an alloy of the above metals, but not limited to this.
此外,上述聚合物能够以(i)从丙烯酸树脂、烯烃树脂、乙烯树脂、苯乙烯树脂、氟树脂以及纤维素树脂中选择的热可塑性树脂,或(ii)从酚醛树脂、环氧树脂以及聚酰亚胺树脂中选择的热硬化性树脂为例,但是聚合物的类型也并不限定于如上所述的聚合物。In addition, the above-mentioned polymers can be made of (i) thermoplastic resins selected from acrylic resins, olefin resins, vinyl resins, styrene resins, fluorine resins, and cellulose resins, or (ii) selected from phenolic resins, epoxy resins, and polymer resins. The thermosetting resin selected from the imide resin is exemplified, but the type of polymer is not limited to the above-mentioned polymer.
上述陶瓷能够以(i)氧化物陶瓷,或(ii)从氮化物、碳化物、硼化物以及硅化物选择的非氧化物陶瓷为例,但是并不限定于此。The above-mentioned ceramics can be exemplified by (i) oxide ceramics, or (ii) non-oxide ceramics selected from nitrides, carbides, borides, and silicides, but are not limited thereto.
上述碳纳米材料能够是从由碳纳米管、碳纳米纤维、碳纳米粒子、介孔性碳、碳纳米片、碳纳米棒以及碳纳米带构成的组中选择的1种以上,但是并不限定于此。The carbon nanomaterial can be one or more selected from the group consisting of carbon nanotubes, carbon nanofibers, carbon nanoparticles, mesoporous carbon, carbon nanosheets, carbon nanorods and carbon nanoribbons, but is not limited to here.
此外,作为上述2种以上的不同种类材料粉末,能够使用再生粉末(recycledpowder)。In addition, as the above-mentioned two or more different types of material powders, recycled powders can be used.
作为一实例,在本步骤中能够通过对铝或铝合金粉末以及碳纳米管(CNT)进行球磨(ball mill)而制造出复合粉末。As an example, the composite powder can be produced in this step by ball milling of aluminum or aluminum alloy powder and carbon nanotube (CNT).
上述铝合金粉末能够是从由1000号系列、2000号系列、3000号系列、4000号系列、5000号系列、6000号系列、7000号系列以及8000号系列构成的组中选择的某一种。The above-mentioned aluminum alloy powder can be any one selected from the group consisting of 1000 series, 2000 series, 3000 series, 4000 series, 5000 series, 6000 series, 7000 series and 8000 series.
通过使上述复合粉末包含上述碳纳米管,当通过对利用上述复合粉末制造出的坯料进行挤出、轧制、锻造等塑性加工而制造复合材料时,因为相应的复合材料具有高导热性、高强度以及轻量化的特性,因此能够有效地作为各种电子部件以及照明器具等的散热用材料等进行使用。By making the above-mentioned composite powder contain the above-mentioned carbon nanotubes, when a composite material is produced by plastic working such as extrusion, rolling, forging, etc. of a billet produced using the above-mentioned composite powder, since the corresponding composite material has high thermal conductivity, high Due to its strength and lightweight properties, it can be effectively used as a material for heat dissipation of various electronic components, lighting fixtures, and the like.
此外,因为微尺寸的上述铝或铝合金粒子与微尺寸的上述碳纳米管之间的较大的大小差异会造成分散困难的问题,而且上述碳纳米管会因为强力的范德瓦尔斯力的影响而容易发生凝聚,因此为了实现上述碳纳米管与上述铝或铝合金粉末的均匀分散而能够添加分散诱导剂。In addition, dispersion is difficult because of the large size difference between the micro-sized particles of the above-mentioned aluminum or aluminum alloys and the above-mentioned carbon nanotubes of micro-sized, and the above-mentioned carbon nanotubes may be affected by strong van der Waals forces. A dispersion inducer can be added in order to achieve uniform dispersion of the above-mentioned carbon nanotubes and the above-mentioned aluminum or aluminum alloy powders because aggregation tends to occur.
作为上述分散诱导剂,能够使用从由纳米SiC、纳米SiO2、纳米Al2O3、纳米TiO2、纳米Fe3O4、纳米MgO、纳米ZrO2以及上述之混合物构成的组中选择的某一种纳米大小的陶瓷。As the above-mentioned dispersion inducer, one selected from the group consisting of nano-SiC, nano-SiO 2 , nano-Al 2 O 3 , nano-TiO 2 , nano-Fe 3 O 4 , nano-MgO, nano-ZrO 2 and mixtures thereof can be used. A nanometer-sized ceramic.
上述纳米大小的陶瓷起到将上述碳纳米管均匀地分散到上述铝或铝合金粒子之间的作用,尤其是上述纳米SiC(纳米碳化硅,nano Silicon carbide)具有如抗张强度高、锋利、导电性以及导热性稳定、硬度高、耐火性强、热冲击耐性强、高温性质以及化学稳定性优秀等优点,因此作为研磨材料以及耐火材料使用。此外,存在于上述铝或铝合金粒子表面的上述纳米SiC粒子还起到通过抑制上述碳纳米管与上述铝或铝合金粒子的直接接触,从而对可能会因为众所周知的上述碳纳米管与上述铝或铝合金之间的反应而形成的缺陷所导致的碳化铝的生成进行抑制的作用。The above-mentioned nano-sized ceramics play the role of uniformly dispersing the above-mentioned carbon nanotubes among the above-mentioned aluminum or aluminum alloy particles, and especially the above-mentioned nano-SiC (nano Silicon carbide) has properties such as high tensile strength, sharpness, It has the advantages of stable electrical and thermal conductivity, high hardness, strong fire resistance, strong thermal shock resistance, high temperature properties and excellent chemical stability, so it is used as an abrasive and refractory material. In addition, the nano-SiC particles existing on the surface of the aluminum or aluminum alloy particles also play a role in suppressing the direct contact between the carbon nanotubes and the aluminum or aluminum alloy particles, thereby preventing the well-known carbon nanotubes and the aluminum. It has the effect of suppressing the formation of aluminum carbide caused by the defects formed by the reaction between aluminum alloys.
此外,上述复合粉末,能够包含:上述铝或铝合金粉末100体积份;以及,上述碳纳米管0.01体积份至10体积份。In addition, the above-mentioned composite powder can contain: 100 parts by volume of the above-mentioned aluminum or aluminum alloy powder; and 0.01 parts by volume to 10 parts by volume of the above-mentioned carbon nanotubes.
当相对于上述铝或铝合金粉末100体积份的上述碳纳米管的含量小于0.01体积份时,因为上述含铝复合材料的强度与纯铝或铝合金类似,因此可能会无法充分起到作为强化材料的作用,与此相反,当上述碳纳米管的含量大于10体积份时,虽然强度与纯铝或铝合金相比有所增加,但是可能会导致延伸率的下降。此外,当上述碳纳米管的含量过度增加时,可能会造成分散的困难以及因为形成缺陷而导致的机械物理特性的下降。When the content of the carbon nanotubes relative to 100 parts by volume of the aluminum or aluminum alloy powder is less than 0.01 parts by volume, since the strength of the aluminum-containing composite material is similar to that of pure aluminum or aluminum alloy, it may not be able to sufficiently serve as a reinforcement. The effect of the material, on the contrary, when the content of the above-mentioned carbon nanotubes is more than 10 parts by volume, although the strength is increased compared with pure aluminum or aluminum alloy, it may lead to a decrease in elongation. In addition, when the content of the above-mentioned carbon nanotubes is excessively increased, difficulty in dispersion and degradation of mechanical and physical properties due to formation of defects may be caused.
此外,当上述复合粉末还包含上述分散诱导剂时,上述复合粉末相对于上述铝粉末100体积份还能够包含上述分散诱导剂0.1体积份至10体积份。In addition, when the above-mentioned composite powder further contains the above-mentioned dispersion inducer, the above-mentioned composite powder may further contain 0.1 to 10 parts by volume of the above-mentioned dispersion inducer with respect to 100 parts by volume of the above-mentioned aluminum powder.
当相对于上述铝粉末100体积份的上述分散诱导剂的含量小于0.1体积份时,可能会导致分散诱导效果微乎其微的问题,而当大于10体积份时,可能会因为碳纳米管的凝聚而造成分散的困难并进一步导致缺陷的形成。When the content of the above-mentioned dispersion inducer relative to 100 parts by volume of the above-mentioned aluminum powder is less than 0.1 part by volume, it may cause a problem that the effect of dispersion induction is very small, and when it is more than 10 parts by volume, it may be caused by the aggregation of carbon nanotubes. Difficulties in dispersion and further lead to the formation of defects.
此外,上述球磨具体来讲能够利用如水平型或行星球磨机等球磨机在如氮气或氩气等惰性环境下以150r/min至300r/min的低速或300r/min以上的高速进行12小时至48小时。In addition, the above-mentioned ball milling can be specifically carried out at a low speed of 150 r/min to 300 r/min or a high speed of 300 r/min or more for 12 to 48 hours using a ball mill such as a horizontal type or planetary ball mill in an inert atmosphere such as nitrogen or argon. .
此时,上述球磨能够在不锈钢容器中相对于上述复合粉末100体积份装入不锈钢球(将直径球以及直径球1:1混合)100体积份至1500体积份之后进行。At this time, in the above-mentioned ball mill, stainless steel balls (with the diameter of ball and diameter 1:1 mixing of balls) after 100 parts by volume to 1500 parts by volume.
此外,为了减少摩擦系数,能过作为工程控制剂以相对于上述复合粉末100体积份包含10体积份至50体积份的含量使用从由庚烷、己烷以及乙醇构成的组中选择的某一种有机溶剂。上述有机溶剂在球磨之后打开容器并对上述混合粉末进行回收时将通过外罩全部蒸发,因此所回收的混合粉末中将只有上述铝粉末以及上述碳纳米管残留。In addition, in order to reduce the friction coefficient, one selected from the group consisting of heptane, hexane and ethanol can be used as an engineering control agent in a content of 10 to 50 parts by volume relative to 100 parts by volume of the composite powder. an organic solvent. The organic solvent is completely evaporated through the outer cover when the container is opened and the mixed powder is recovered after ball milling, so only the aluminum powder and the carbon nanotubes remain in the recovered mixed powder.
此时,上述纳米大小的陶瓷即分散诱导剂将借助于在上述球磨工程中产生的旋转力起到与上述纳米大小的研磨球相同的作用,能够对物理凝聚的上述碳纳米管进行分离并通过促进其流动性而将上述碳纳米管更加均匀地分散到上述铝粒子的表面。At this time, the above-mentioned nano-sized ceramics, that is, the dispersion inducer, will perform the same function as the above-mentioned nano-sized grinding balls by the rotational force generated in the above-mentioned ball milling process, and can separate the physically aggregated carbon nanotubes and pass through them. The above-mentioned carbon nanotubes are more uniformly dispersed on the surface of the above-mentioned aluminum particles by promoting the fluidity thereof.
接下来,在步骤S20,制造出包含上述所获得的复合粉末的多层坯料(billet)。Next, in step S20, a multilayer billet containing the composite powder obtained above is produced.
在本步骤中制造出的上述多层坯料的特征在于:由核心层以及围绕上述核心层的2层以上的外壳层构成,除上述核心层以及最外侧外壳层之外的外壳层由上述复合粉末构成,上述最外侧外壳层由纯金属或合金构成,分别包含于上述核心层以及外壳层的复合粉末的组成(包含于复合粉末中的不同种类材料的类型和/或各个不同种类材料的含量)互不相同。The above-mentioned multilayered blank produced in this step is characterized in that: it is composed of a core layer and two or more outer shell layers surrounding the above-mentioned core layer, and the outer shell layers other than the above-mentioned core layer and the outermost outer shell layer are composed of the above-mentioned composite powder. Composition, the outermost outer shell layer is composed of pure metal or alloy, and the composition of the composite powder contained in the core layer and the outer shell layer respectively (the types of different kinds of materials contained in the composite powder and/or the content of each different kind of material) different from each other.
以包含于上述复合粉末中的不同种类材料为铝(或铝合金)粉末以及碳纳米管(CNT)的情况为例,在本步骤中制造出的多层坯料的特征在于:由核心层以及围绕上述核心层的2层以上的外壳层构成,除上述核心层以及最外侧外壳层之外的外壳层由上述复合粉末构成,上述最外侧外壳层由(i)铝或铝合金粉末或(ii)上述复合粉末构成,在分别包含于上述核心层以及外壳层的复合粉末中,相对于铝或铝合金粉末的碳纳米管的体积份率互不相同。Taking the case where the different kinds of materials contained in the above-mentioned composite powder are aluminum (or aluminum alloy) powder and carbon nanotube (CNT) as an example, the multi-layer billet produced in this step is characterized in that: a core layer and surrounding The core layer is composed of two or more shell layers, the shell layers other than the core layer and the outermost shell layer are composed of the composite powder, and the outermost shell layer is composed of (i) aluminum or aluminum alloy powder or (ii) In the composite powder structure described above, in the composite powders contained in the core layer and the outer shell layer, respectively, the volume fractions of carbon nanotubes with respect to the aluminum or aluminum alloy powder are different from each other.
包含于上述多层坯料中的外壳层的数量不受到特殊限定,但在考虑到其经济性等的情况下由5层以下构成为宜。The number of the outer shell layers included in the above-mentioned multilayer blank is not particularly limited, but it is preferable to constitute five or less layers in consideration of the economical efficiency and the like.
图2是对如上所述的多层坯料制造过程的一实例进行模式化图示的示意图。参阅上述图2,上述坯料能够通过下述方式进行制造。即,在步骤S20-1,通过导向器G将上述复合粉末10装入到金属罐20中,在步骤S20-4,通过利用盖子(C)进行密封或挤压而防止粉末发生流动。Figure 2 is a schematic diagram illustrating an example of a multi-layer blank manufacturing process as described above. Referring to FIG. 2 above, the blanks described above can be manufactured in the following manner. That is, in step S20-1, the above-mentioned
作为上述金属罐20,所有利用具有导电性以及导热性的金属制成的都可以使用,较佳地能够使用铝或铝合金罐、铜罐以及镁罐。上述金属罐20在假定坯料大小为6英寸的情况下能够采用0.5mm至150mm的厚度,即,能够根据坯料的大小采用不同的厚度比例。As the above-mentioned metal can 20, any metal having electrical conductivity and thermal conductivity can be used, and aluminum or aluminum alloy cans, copper cans, and magnesium cans can be preferably used. The above-mentioned metal can 20 can adopt a thickness of 0.5 mm to 150 mm on the assumption that the size of the blank is 6 inches, that is, different thickness ratios can be adopted according to the size of the blank.
图3是能够在本步骤中制造出的多层坯料的一实例,是对包括核心层以及2层外壳层的多层坯料,即,由核心层、围绕上述核心层的第1外壳层以及围绕上述第1外壳层的第2外壳层构成的多层坯料进行模式化图示的斜视图。FIG. 3 is an example of a multi-layer blank that can be produced in this step, which is a multi-layer blank including a core layer and two outer skin layers, that is, a core layer, a first outer skin layer surrounding the core layer, and a surrounding layer. A perspective view schematically illustrating a multilayer blank composed of a second outer shell layer of the first outer shell layer.
参阅上述图3,能够通过首先在作为第2外壳层的内部为空的圆筒形状的第1坯料11内部配置作为第1外壳层的与上述第1坯料11不同成分的第2坯料12之后再在上述第2坯料12内部配置作为核心层的与上述第2坯料12不同成分的第3坯料13而制造出多层坯料。Referring to FIG. 3 , it is possible to first arrange a second blank 12 having a different composition from the first blank 11 as the first outer skin layer inside the first blank 11 having a hollow cylindrical shape as the second outer skin layer, and then Inside the second blank 12, a third blank 13 having a different composition from that of the second blank 12 as a core layer is arranged to produce a multilayer blank.
此时,上述第1坯料11是内部为空的圆筒形状,既能够是一侧入口被封闭的罐(can)形状,也能够是两侧入口开放的中空圆筒形状,上述第1坯料11能够利用如铝、铜以及镁等制成。上述第1坯料11能够通过在对上述金属母材进行熔融之后注入到模具中的方式制造成内部为空的圆筒形状,或通过机械加工进行制造。At this time, the first blank 11 has a cylindrical shape with a hollow inside, and may be a can shape with one side entrance closed, or a hollow cylindrical shape with both sides open. The first blank 11 It can be made of, for example, aluminum, copper, and magnesium. The said 1st blank 11 can be manufactured into the cylindrical shape with which the inside is hollow by melting the said metal base material, and inject|pouring into a die, or it can manufacture by machining.
上述第2坯料12能够包含上述所制造出的复合粉末,且上述第2坯料12能够是块(bulk)或粉末。The
当上述第2坯料12为块时,上述第2坯料12具体来讲能够是圆柱形状,上述多层坯料能够通过将上述圆柱形状的第2坯料12配置在上述第1坯料11内部的方式进行制造。此时,作为将上述第2坯料12配置在上述第1坯料11内部的方法,能够通过在对上述第2坯料12的复合粉末进行熔融并注入到模具中而制造成圆柱形状之后再将其嵌入到上述第1坯料11内部的方式进行制造,或者也能够通过将上述复合粉末直接装入到上述第1坯料11内部的方式进行制造。When the second blank 12 is a block, the second blank 12 can be specifically cylindrical, and the multilayer blank can be produced by arranging the cylindrical second blank 12 inside the first blank 11 . At this time, as a method of arranging the
上述第3坯料13能够是金属块(bulk)或粉末。The third blank 13 can be a metal bulk or powder.
此外,当上述第1坯料12或上述第3坯料13等是包含上述复合粉末的块时,能够将上述复合粉末通过高压挤压或烧结的方式制造成块状形状。Moreover, when the said 1st blank 12 or the said 3rd blank 13 etc. is a lump containing the said composite powder, the said composite powder can be manufactured into a lump shape by the system of high pressure extrusion or sintering.
此时,在上述第2坯料12以及第3坯料13所包含的复合粉末的组成互不相同。以包含于上述复合粉末中的不同种类材料为铝(或铝合金)粉末以及碳纳米管(CNT)的情况为例,上述第2坯料12,能够相对于上述铝或铝合金100体积份包含上述碳纳米管0.09体积份至10体积份,上述第3坯料13,能够相对于上述铝或铝合金粉末100体积份包含上述碳纳米管大于0体积份且小于等于0.08体积份。At this time, the compositions of the composite powders contained in the
或者,上述第2坯料12能够包含上述复合粉末,而上述第3坯料13能够是与上述第1坯料11相同的从由铝、铜、镁、钛、不锈钢、钨、钴、镍、锡以及上述之合金构成的组中选择的某一种金属块或金属粉末。Alternatively, the
上述多层坯料,能够相对于上述多层坯料的整体体积包含上述第2坯料120.01体积%至10体积%以及上述第3坯料13 0.01体积%至10体积%,并包含上述第1坯料11剩余体积。The above-mentioned multilayer billet may include the second billet 120.01 to 10 vol% and the
此外,因为上述多层坯料中包括包含上述复合粉末的上述第2坯料12或上述第3坯料13,因此上述多层坯料在执行上述密封之前,还能够包括:步骤S20-2,以10MPa至100MPa的高压进行挤压的工程。In addition, because the above-mentioned multi-layer blank includes the above-mentioned second blank 12 or the above-mentioned third blank 13 containing the above-mentioned composite powder, before the above-mentioned sealing is performed, the above-mentioned multi-layer blank can further include: step S20-2, at 10MPa to 100MPa The high pressure for extrusion works.
通过对上述多层坯料进行挤压,接下来能够利用挤出模具对上述多层坯料进行如挤出等塑性加工。当对上述复合粉末进行挤压的条件小于10MPa时,可能会导致在所制造出的塑性加工复合材料中出现气孔且可能会导致上述复合粉末的流动,而当大于100MPa时,可能会因为压力过大而导致上述第2坯料(是指第二次以上的坯料)发生膨胀。By extruding the above-mentioned multilayered billet, the above-mentioned multilayered billet can then be subjected to plastic working such as extrusion using an extrusion die. When the extrusion condition of the above composite powder is less than 10MPa, it may cause pores in the manufactured plastic working composite material and may cause the flow of the above composite powder, and when it is greater than 100MPa, it may cause excessive pressure due to excessive pressure. It is so large that the above-mentioned second billet (meaning the billet after the second time) expands.
此外,因为上述多层坯料中包括包含上述复合粉末的上述第2坯料和/或上述第3坯料,因此为了接下来将上述多层坯料提供到如挤出等塑性加工工程,还能够包括:步骤S20-3,对上述多层坯料进行烧结的工程。In addition, since the above-mentioned multilayer billet includes the above-mentioned second billet and/or the above-mentioned third billet containing the above-mentioned composite powder, in order to subsequently provide the above-mentioned multilayer billet to a plastic working process such as extrusion, the step of: S20-3, the process of sintering the above-mentioned multilayer blank.
在上述烧结工程中能够使用如放电等离子体烧结(spark plasma sintering)或热锻加压烧结装置,也能够使用能够达成相同目的的任何烧结装置。但是,当需要在短时间内进行精密烧结时采用放电等离子体烧结为宜,此时能够在30MPa至100Mpa的压力下以280℃至600℃的温度进行1秒至30分钟的放电等离子体烧结。In the above-mentioned sintering process, a sintering apparatus such as spark plasma sintering or hot forging and pressure sintering can be used, and any sintering apparatus that can achieve the same purpose can also be used. However, when precise sintering is required in a short period of time, spark plasma sintering is suitable. In this case, spark plasma sintering can be performed at a temperature of 280° C. to 600° C. under a pressure of 30 MPa to 100 Mpa for 1 second to 30 minutes.
接下来,将结合实施例对本发明进行详细的说明。Next, the present invention will be described in detail with reference to the embodiments.
适用本发明的实施例能够以多种不同的形态进行变形,因此不应解释为本说明书的范围受到在下述内容中详细说明的实施例的限定。本说明书中的实施例只是为了向具有相关行业一般知识的人员更加完整地公开本说明书。Embodiments to which the present invention is applied can be modified in many different forms, and therefore, it should not be construed that the scope of this specification is limited by the embodiments described in detail in the following content. The embodiments in this specification are only for the purpose of more complete disclosure of this specification to those having general knowledge in the relevant industry.
【实施例以及比较例:包含铝以及碳纳米管的多层坯料及其挤出材料】[Examples and Comparative Examples: Multilayer Blanks Containing Aluminum and Carbon Nanotubes and Extruded Materials thereof]
<实施例1><Example 1>
作为碳纳米管,使用了纯度为99.5%、直径和程度分别为10nm以下以及30μm以下的产品(卢森堡,(株)OCSiAl公司产品),而作为铝粉末,使用了平均粒径为45μm、纯度为99.8%的产品(韩国,MetalPlayer产品)。As carbon nanotubes, those with a purity of 99.5% and diameters and degrees of 10 nm or less and 30 μm or less (products of OCSiAl Co., Ltd., Luxembourg) were used, and as aluminum powders, those with an average particle size of 45 μm and a purity of 99.8% of products (Korea, MetalPlayer products).
此外,以圆柱形状的第3坯料位于作为上述第1坯料的金属罐的中央且第2坯料(复合粉末)位于上述第1坯料与第3坯料之间的方式制造出了多层坯料。In addition, a multi-layered billet was produced so that the cylindrical third billet was located in the center of the metal can serving as the first billet and the second billet (composite powder) was located between the first billet and the third billet.
上述第2坯料中包含相对于上述铝粉末100体积比包含碳纳米管0.1体积比的铝-碳纳米管(CNT)复合粉末,上述第1坯料利用铝6063制成,而上述第3坯料利用铝3003合金制成。The second ingot contains an aluminum-carbon nanotube (CNT) composite powder containing carbon nanotubes in a volume ratio of 0.1 to 100 of the aluminum powder, the first ingot is made of aluminum 6063, and the third ingot is made of aluminum Made of 3003 alloy.
具体来讲,上述第2坯料利用如下所述的方法制造。按照铝粉末100体积比、上述碳纳米管0.1体积比的比例向不锈钢容器添加至30体积%,接下来向上述容器内部添加不锈钢球(对直径球以及直径球进行混合)至30体积%并添加庚烷50ml,然后利用水平型球磨机在250rpm条件下进行24小时的低速球磨处理。接下来,在打开上述容器并通过外罩使上述庚烷全部蒸发之后对铝-碳纳米管(CNT)复合粉末进行回收。Specifically, the above-mentioned second billet is produced by the method described below. In the stainless steel container, the ratio of 100 volume ratio of aluminum powder and 0.1 volume ratio of carbon nanotubes was added to the stainless steel container, and then stainless steel balls (for diameter) were added to the inside of the container. ball and diameter The balls were mixed) to 30% by volume, and 50 ml of heptane was added, followed by a low-speed ball milling process at 250 rpm for 24 hours using a horizontal ball mill. Next, the aluminum-carbon nanotube (CNT) composite powder was recovered after the container was opened and the heptane was completely evaporated through the outer cover.
在将上述所制造出的铝-碳纳米管(CNT)复合粉末装入到上述第1坯料与上述第3坯料之间的缝隙2.5t之后利用100MPa的压力进行挤压,从而制造出上述多层坯料。After the aluminum-carbon nanotube (CNT) composite powder produced above was charged into a gap of 2.5 t between the first billet and the third billet, it was extruded with a pressure of 100 MPa to produce the multilayered blank.
<实施例2><Example 2>
按照与上述实施例1相同的方法,制造出上述碳纳米管的含量为1体积比的铝-碳纳米管(CNT)复合粉末并制造出多层坯料。In the same manner as in Example 1 above, an aluminum-carbon nanotube (CNT) composite powder having a carbon nanotube content of 1 volume ratio was produced, and a multilayer billet was produced.
<实施例3><Example 3>
按照与上述实施例1相同的方法,制造出上述碳纳米管的含量为3体积比的铝-碳纳米管(CNT)复合粉末并制造出多层坯料。According to the same method as the above-mentioned Example 1, an aluminum-carbon nanotube (CNT) composite powder having a carbon nanotube content of 3 volume ratio was produced, and a multilayer billet was produced.
<实施例4><Example 4>
利用直接挤出机将在实施例1中制造出的多层坯料以挤出比为100、挤出速度为5mm/s、挤出压力为200kg/cm2、坯料温度为460℃的条件直接进行挤出,从而制造出含铝复合材料(图4(a))。The multilayer billet produced in Example 1 was directly extruded using a direct extruder under the conditions of an extrusion ratio of 100, an extrusion speed of 5 mm/s, an extrusion pressure of 200 kg/cm 2 and a billet temperature of 460°C. Extrusion, thereby producing an aluminum-containing composite (FIG. 4(a)).
<实施例5><Example 5>
利用直接挤出机将在实施例2中制造出的多层坯料以挤出比为100、挤出速度为5mm/s、挤出压力为200kg/cm2、坯料温度为460℃的条件直接进行挤出,从而制造出含铝复合材料(图4(a))。The multilayer billet produced in Example 2 was directly extruded using a direct extruder under the conditions of an extrusion ratio of 100, an extrusion speed of 5 mm/s, an extrusion pressure of 200 kg/cm 2 and a billet temperature of 460°C. Extrusion, thereby producing an aluminum-containing composite (FIG. 4(a)).
<实施例6><Example 6>
利用直接挤出机将在实施例2中制造出的多层坯料以挤出比为100、挤出速度为5mm/s、挤出压力为200kg/cm2、坯料温度为460℃的条件直接进行挤出,从而制造出含铝复合材料(图4(a))。The multilayer billet produced in Example 2 was directly extruded using a direct extruder under the conditions of an extrusion ratio of 100, an extrusion speed of 5 mm/s, an extrusion pressure of 200 kg/cm 2 and a billet temperature of 460°C. Extrusion, thereby producing an aluminum-containing composite (FIG. 4(a)).
<比较例1><Comparative Example 1>
在将按照碳纳米管(CNT)10重量%以及铝粉末80重量%的比例混合的铝-碳纳米管(CNT)混合物与分散诱导剂(将溶剂以及天然橡胶液按照1:1进行混合的溶液)1:1混合并照射12分钟的超声波而制造出分散混合物之后,通过利用管状炉在惰性环境下以500℃的条件对分散混合物进行1.5小时的热处理而彻底去除分散诱导剂成分,从而制造出铝-碳纳米管(CNT)混合物。通过将上述所制造出的铝-碳纳米管(CNT)复合粉末投入到直径为12mm、厚度为1.5mm的铝罐中进行密封,从而制造出坯料。A solution obtained by mixing an aluminum-carbon nanotube (CNT) mixture and a dispersion inducer (a solvent and a natural rubber liquid at a ratio of 1:1), which were mixed at a ratio of 10% by weight of carbon nanotubes (CNT) and 80% by weight of aluminum powder ) 1:1 mixing and irradiating ultrasonic waves for 12 minutes to produce a dispersion mixture, and then heat-treating the dispersion mixture at 500°C for 1.5 hours using a tubular furnace in an inert environment to completely remove the dispersion inducer component to produce a Aluminum-carbon nanotube (CNT) mixture. A billet was produced by putting the aluminum-carbon nanotube (CNT) composite powder produced above into an aluminum can having a diameter of 12 mm and a thickness of 1.5 mm and sealing it.
<比较例2><Comparative Example 2>
利用热锻挤出机(日本,岛津公司产品,型号UH-500kN)以挤出温度为450℃、挤出比为20的条件对在比较例1中制造出的坯料进行热锻粉末挤出,从而制造出铝复合材料(图4(b))。The billet produced in Comparative Example 1 was subjected to hot forging powder extrusion using a hot forging extruder (product of Shimadzu Corporation, Japan, model UH-500kN) at an extrusion temperature of 450° C. and an extrusion ratio of 20. , thereby fabricating an aluminum composite (Fig. 4(b)).
【试验例1:含铝复合材料的机械物性测定】[Test example 1: Measurement of mechanical properties of aluminum-containing composite materials]
对在上述实施例以及比较例中制造出的含铝复合材料的抗张强度、延伸率以及维氏硬度进行了测定,其结果如下述表1所示。The tensile strength, elongation, and Vickers hardness of the aluminum-containing composite materials produced in the above Examples and Comparative Examples were measured, and the results are shown in Table 1 below.
上述抗张强度以及延伸率是以抗张速度为2mm/s的抗张测试条件以及抗张测试片Ks标准4号中的方法进行了测定,上述维氏硬度是以300g、15秒的条件以及方法进行了测定。The above-mentioned tensile strength and elongation were measured under the tensile test conditions with a tensile speed of 2 mm/s and the method in the tensile test piece Ks standard No. 4, and the above-mentioned Vickers hardness was measured under the conditions of 300 g, 15 seconds, and method was determined.
<表1><Table 1>
1)Al6063:铝60631) Al6063: Aluminum 6063
2)Al3003:铝30032) Al3003: Aluminum 3003
参阅上述表1可以得知,因为在上述实施例4至实施例6中制造出的含铝复合材料使用了强材质(Al6063)以及软材质(Al3003)的材料,因此与对含铝复合材料进行挤出的情况相比,同时具有强度以及柔性。Referring to the above Table 1, it can be known that because the aluminum-containing composite materials produced in the above-mentioned Examples 4 to 6 use the materials of strong material (Al6063) and soft material (Al3003), it is different from the aluminum-containing composite materials. Compared with extrusion, it has both strength and flexibility.
此外还可以得知,虽然在上述比较例2中制造出的含铝复合材料的维氏硬度较高,但是其延伸率非常低。In addition, it was found that although the Vickers hardness of the aluminum-containing composite material produced in the above-mentioned Comparative Example 2 was high, the elongation was very low.
【试验例2:含铝复合材料的耐腐蚀性测定】[Test Example 2: Measurement of Corrosion Resistance of Aluminum-Containing Composite Materials]
对在上述实施例以及比较例中制造出的含铝复合材料的耐腐蚀特性进行了测定,其结果如下述表2所示。The corrosion resistance properties of the aluminum-containing composite materials produced in the above Examples and Comparative Examples were measured, and the results are shown in Table 2 below.
上述特性是以海水喷雾试验法利用大小为10*10且厚度为2mm的样本按照铜盐加速醋酸盐雾试验(CASS)标准进行了测定。The above characteristics were measured by the seawater spray test method using a sample of
<表2><Table 2>
1)Al6063:铝60631) Al6063: Aluminum 6063
2)Al3003:铝30032) Al3003: Aluminum 3003
参阅上述表2可以得知,因为在上述实施例5中制造出的含铝复合材料使用了强材质(Al6063)以及耐蚀性优秀的材质(Al3003)的材料,因此即使是在添加少量碳纳米管(CNT)的情况下,与对含铝复合材料进行挤出的情况相比,其耐蚀性得到了大幅提升。此外还可以得知,虽然在上述比较例2中制造出的含铝复合材料呈现出了比纯合金更高的值,但是却比在上述实施例5中制造出的含铝复合材料低。Referring to the above Table 2, it can be seen that because the aluminum-containing composite material produced in the above Example 5 uses a material with a strong material (Al6063) and a material with excellent corrosion resistance (Al3003), even if a small amount of carbon nanometers is added In the case of the tube (CNT), the corrosion resistance is greatly improved compared to the case of extruding the aluminum-containing composite material. In addition, it can be seen that although the aluminum-containing composite material produced in the above-mentioned Comparative Example 2 exhibits a higher value than the pure alloy, it is lower than that of the aluminum-containing composite material produced in the above-mentioned Example 5.
【试验例3:含铝复合材料的导热度测定】[Test Example 3: Measurement of Thermal Conductivity of Aluminum-Containing Composite Materials]
对在上述实施例以及比较例中制造出的含铝复合材料的密度(density)、热容量(heat capacity)、热扩散性(diffusivity)、导热度(thermal conductivity)进行了测定,其结果如下述表3所示。The density (density), heat capacity (heat capacity), thermal diffusivity (diffusivity), and thermal conductivity (thermal conductivity) of the aluminum-containing composite materials produced in the above examples and comparative examples were measured, and the results are shown in the following table 3 shown.
上述密度是利用阿基米德原理按照ISO标准对上述含铝复合材料的密度进行了测定,上述热容量以及热扩散性是利用激光闪光法对大小为10*10且厚度为2mm的样本进行了测定,上述导热度是通过所测定到的密度*热容量*热扩散度的乘积计算得出。The above-mentioned density was measured using Archimedes' principle in accordance with ISO standards for the above-mentioned aluminum-containing composite material. The above-mentioned heat capacity and thermal diffusivity were measured using a laser flash method on a sample with a size of 10*10 and a thickness of 2mm. , the above thermal conductivity is calculated by the product of the measured density * heat capacity * thermal diffusivity.
<表3><Table 3>
1)Al6063:铝60631) Al6063: Aluminum 6063
2)Al1005:铝10052) Al1005: Aluminum 1005
3)SWCNT:单壁碳纳米管3) SWCNTs: single-walled carbon nanotubes
参阅上述表3可以得知,因为在上述实施例6中制造出的含铝复合材料使用了强材质(Al6063)以及软质且导热性优秀的纯Al系列(Al1005)的材料,因此即使是在添加少量碳纳米管(CNT)的情况下,与对含铝复合材料进行挤出的情况相比,其导热度得到了大幅提升。Referring to the above Table 3, it can be seen that because the aluminum-containing composite material produced in the above Example 6 uses a strong material (Al6063) and a soft and excellent thermal conductivity pure Al series (Al1005) material, so even in the With the addition of a small amount of carbon nanotubes (CNTs), the thermal conductivity was greatly improved compared to the extrusion of aluminum-containing composites.
此外还可以得知,虽然在上述比较例2中制造出的含铝复合材料呈现出了比纯合金更高的值,但是却比在上述实施例6中制造出的含铝复合材料低。In addition, it can be seen that although the aluminum-containing composite material produced in the above-mentioned Comparative Example 2 exhibits a higher value than that of the pure alloy, it is lower than that of the aluminum-containing composite material produced in the above-mentioned Example 6.
在上述内容中对适用本发明的较佳实施例进行了详细的说明,但是上述实施例只是作为本发明的特定一实例进行介绍,本发明并不因此而受到限定,相关从业人员利用后续说明的权利要求书中所定义的本发明的基本概念做出的各种变形以及改良形态也应属于本发明的权利要求范围之内。The preferred embodiment applicable to the present invention has been described in detail in the above content, but the above embodiment is only introduced as a specific example of the present invention, and the present invention is not limited thereby. Various modifications and improvements made to the basic concept of the present invention defined in the claims should also fall within the scope of the claims of the present invention.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0043557 | 2019-04-15 | ||
KR1020190043557A KR102266847B1 (en) | 2019-04-15 | 2019-04-15 | Method for manufacturing billet for plastic working used for preparing composite material and billet manufactured thereby |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111822720A true CN111822720A (en) | 2020-10-27 |
Family
ID=72747651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910846070.1A Pending CN111822720A (en) | 2019-04-15 | 2019-09-09 | Manufacturing method of blank for plastic working for manufacture of composite material, and blank manufactured by the aforementioned manufacturing method |
Country Status (6)
Country | Link |
---|---|
US (1) | US11633783B2 (en) |
EP (1) | EP3957418A4 (en) |
JP (1) | JP6901791B2 (en) |
KR (1) | KR102266847B1 (en) |
CN (1) | CN111822720A (en) |
WO (1) | WO2020213754A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113528987A (en) * | 2021-06-18 | 2021-10-22 | 河钢承德钒钛新材料有限公司 | Tungsten alloy composite material and 3D printing method thereof |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3285786A (en) * | 1961-01-05 | 1966-11-15 | Westinghouse Electric Corp | Coextruded thermoelectric members |
JPS61190006A (en) * | 1985-02-19 | 1986-08-23 | Sanyo Tokushu Seiko Kk | Production of hot extruded clad metallic pipe by powder metallurgical method |
JPS63195201A (en) * | 1987-02-06 | 1988-08-12 | Kobe Steel Ltd | Al-base composite billet for extrusion working and its production |
CN1048892A (en) * | 1989-05-24 | 1991-01-30 | 奥本大学 | Blend fiber composite structure and method for making thereof and purposes |
CN1472354A (en) * | 2002-07-31 | 2004-02-04 | ������ɫ�����о���Ժ | Near Net Shape Process of Particle Reinforced Aluminum Matrix Composites and Its Components and Components |
US20110068299A1 (en) * | 2009-09-24 | 2011-03-24 | Hyundai Motor Company | Method of fabricating nano composite powder consisting of carbon nanotube and metal |
US20120267141A1 (en) * | 2010-01-20 | 2012-10-25 | Furukawa Electric Co., Ltd. | Composite electric cable and process for producing same |
US20120273229A1 (en) * | 2011-04-28 | 2012-11-01 | Zhiyue Xu | Method of making and using a functionally gradient composite tool |
CN102807863A (en) * | 2011-06-03 | 2012-12-05 | 三星电子株式会社 | Silicate phosphor, method of manufacturing silicate phosphor, and light-generating device having silicate phosphor |
CN103192082A (en) * | 2013-03-19 | 2013-07-10 | 北京驰宇空天技术发展有限公司 | Preparation method for light metal matrix composite material product and slurry of light metal matrix composite material product |
CN104975201A (en) * | 2014-04-14 | 2015-10-14 | 现代自动车株式会社 | Nanocarbon-reinforced aluminium composite materials and method for manufacturing the same |
CN105734332A (en) * | 2016-04-29 | 2016-07-06 | 合肥工业大学 | Preparation method for porous tungsten bulk material with uniform and controllable pores |
KR101822073B1 (en) * | 2017-09-06 | 2018-01-26 | (주)차세대소재연구소 | Method for manufacturing a composite profile, and the composite profile manufactured by using the same |
CN109155294A (en) * | 2016-06-07 | 2019-01-04 | 昭和电工株式会社 | radiator and cooler |
CN109338167A (en) * | 2018-10-22 | 2019-02-15 | 昆明理工大学 | A kind of preparation method of carbon nanotube composite material |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4154893A (en) * | 1972-09-15 | 1979-05-15 | Conrad Goldman | Production of thermoplastic billets and preforms |
KR100364043B1 (en) * | 2000-06-10 | 2002-12-11 | 진인태 | A manufacturing device and method of the curved metal tube and rod with a arbitrary section |
WO2005040066A1 (en) * | 2003-10-29 | 2005-05-06 | Sumitomo Precision Products Co., Ltd. | Carbon nanotube-dispersed composite material, method for producing same and article same is applied to |
KR100841754B1 (en) * | 2005-05-17 | 2008-06-27 | 연세대학교 산학협력단 | Method for uniformly dispersing nanofibers in metal or polymer matrix and metal or polymer composite prepared using the same |
KR20090056242A (en) * | 2007-11-30 | 2009-06-03 | 창원대학교 산학협력단 | Sintered body powder manufacturing method by carbon nanotube mixed grinding |
KR20090132799A (en) * | 2008-06-23 | 2009-12-31 | 한국생산기술연구원 | Manufacturing method of magnesium alloy using composite powder metallurgy process |
KR101102139B1 (en) | 2008-12-09 | 2012-01-02 | 경상대학교산학협력단 | Grain Growth Inhibition Method of A-Aluminum-Mg Aluminum Alloy Billet for Semi-Melt Extrusion |
KR20120117998A (en) * | 2009-12-01 | 2012-10-25 | 어플라이드 나노스트럭처드 솔루션스, 엘엘씨. | Metal matrix composite material comprising carbon nanotube implanted fiber material and method for manufacturing same |
WO2012083036A2 (en) * | 2010-12-17 | 2012-06-21 | Cleveland State University | Nano-engineered ultra-conductive nanocomposite copper wire |
KR101418983B1 (en) * | 2011-09-09 | 2014-07-11 | 부경대학교 산학협력단 | Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles |
KR20140076448A (en) * | 2012-12-12 | 2014-06-20 | 현대자동차주식회사 | Method for producing aluminum alloy |
CN103602843B (en) * | 2013-12-09 | 2015-11-04 | 国家电网公司 | Carbon Nanotube Reinforced Aluminum Matrix Composite |
KR101686973B1 (en) * | 2014-04-14 | 2016-12-15 | 부경대학교 산학협력단 | Method for processing homogeneously well dispersed carbon nanotube-aluminum composite powder by nano particles |
KR20160019711A (en) * | 2014-08-12 | 2016-02-22 | 부경대학교 산학협력단 | Functionally graded dual-nanoparticlate-reinforced aluminum matrix bulk materials and preparation method thereof |
KR101590181B1 (en) | 2015-08-04 | 2016-01-29 | 에스 티(주) | A billet of an aluminum metal produced by the extrusion method phone case and a method of manufacturing the same |
JP6559541B2 (en) * | 2015-11-04 | 2019-08-14 | 昭和電工株式会社 | Method for producing composite of aluminum and carbon particles |
CN105734322B (en) * | 2016-03-02 | 2017-05-31 | 昆明理工大学 | A kind of preparation method of carbon nanotube enhanced aluminium-based composite material |
KR101859168B1 (en) * | 2016-05-23 | 2018-05-16 | 부경대학교 산학협력단 | Functionally graded aluminum matrix bulk materials reinforced with carbon nanotube and nano-siliconcarbide and preparation method thereof |
KR101842355B1 (en) * | 2016-07-07 | 2018-03-26 | 부경대학교 산학협력단 | Method for processing Transmission cable made of composite material |
US10553370B2 (en) * | 2017-06-28 | 2020-02-04 | Siemens Industry, Inc. | Methods of making light-weight, low-resistivity transfer materials |
JP6782678B2 (en) * | 2017-10-20 | 2020-11-11 | 矢崎総業株式会社 | Aluminum-based composite material, electric wire using it, and manufacturing method of aluminum-based composite material |
-
2019
- 2019-04-15 KR KR1020190043557A patent/KR102266847B1/en active Active
- 2019-04-17 EP EP19925123.2A patent/EP3957418A4/en active Pending
- 2019-04-17 WO PCT/KR2019/004630 patent/WO2020213754A1/en unknown
- 2019-05-31 JP JP2019102894A patent/JP6901791B2/en active Active
- 2019-05-31 US US16/427,909 patent/US11633783B2/en active Active
- 2019-09-09 CN CN201910846070.1A patent/CN111822720A/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3285786A (en) * | 1961-01-05 | 1966-11-15 | Westinghouse Electric Corp | Coextruded thermoelectric members |
JPS61190006A (en) * | 1985-02-19 | 1986-08-23 | Sanyo Tokushu Seiko Kk | Production of hot extruded clad metallic pipe by powder metallurgical method |
JPS63195201A (en) * | 1987-02-06 | 1988-08-12 | Kobe Steel Ltd | Al-base composite billet for extrusion working and its production |
CN1048892A (en) * | 1989-05-24 | 1991-01-30 | 奥本大学 | Blend fiber composite structure and method for making thereof and purposes |
CN1472354A (en) * | 2002-07-31 | 2004-02-04 | ������ɫ�����о���Ժ | Near Net Shape Process of Particle Reinforced Aluminum Matrix Composites and Its Components and Components |
US20110068299A1 (en) * | 2009-09-24 | 2011-03-24 | Hyundai Motor Company | Method of fabricating nano composite powder consisting of carbon nanotube and metal |
US20120267141A1 (en) * | 2010-01-20 | 2012-10-25 | Furukawa Electric Co., Ltd. | Composite electric cable and process for producing same |
US20120273229A1 (en) * | 2011-04-28 | 2012-11-01 | Zhiyue Xu | Method of making and using a functionally gradient composite tool |
CN102807863A (en) * | 2011-06-03 | 2012-12-05 | 三星电子株式会社 | Silicate phosphor, method of manufacturing silicate phosphor, and light-generating device having silicate phosphor |
CN103192082A (en) * | 2013-03-19 | 2013-07-10 | 北京驰宇空天技术发展有限公司 | Preparation method for light metal matrix composite material product and slurry of light metal matrix composite material product |
CN104975201A (en) * | 2014-04-14 | 2015-10-14 | 现代自动车株式会社 | Nanocarbon-reinforced aluminium composite materials and method for manufacturing the same |
CN105734332A (en) * | 2016-04-29 | 2016-07-06 | 合肥工业大学 | Preparation method for porous tungsten bulk material with uniform and controllable pores |
CN109155294A (en) * | 2016-06-07 | 2019-01-04 | 昭和电工株式会社 | radiator and cooler |
KR101822073B1 (en) * | 2017-09-06 | 2018-01-26 | (주)차세대소재연구소 | Method for manufacturing a composite profile, and the composite profile manufactured by using the same |
CN109338167A (en) * | 2018-10-22 | 2019-02-15 | 昆明理工大学 | A kind of preparation method of carbon nanotube composite material |
Non-Patent Citations (2)
Title |
---|
张东兴: "《聚合物基复合材料科学与工程》", 31 July 2017, 哈尔滨:哈尔滨工业大学出版社 * |
贺毅强: "金属及金属基复合材料粉末成形技术的研究进展", 《热加工工艺》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113528987A (en) * | 2021-06-18 | 2021-10-22 | 河钢承德钒钛新材料有限公司 | Tungsten alloy composite material and 3D printing method thereof |
Also Published As
Publication number | Publication date |
---|---|
US20200324343A1 (en) | 2020-10-15 |
KR102266847B1 (en) | 2021-06-21 |
US11633783B2 (en) | 2023-04-25 |
JP6901791B2 (en) | 2021-07-14 |
WO2020213754A1 (en) | 2020-10-22 |
KR20200121051A (en) | 2020-10-23 |
JP2020175439A (en) | 2020-10-29 |
EP3957418A4 (en) | 2022-06-29 |
EP3957418A1 (en) | 2022-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6864923B2 (en) | Manufacturing method of aluminum-based clad heat sink | |
JP5539923B2 (en) | Graphene / metal nanocomposite powder and method for producing the same | |
WO2010091790A1 (en) | A compound material comprising a metal and nanoparticles and a method for producing the same | |
CN102628115A (en) | Preparation method of carbon nano tube enhanced copper-based composite material | |
AU2010294797A1 (en) | A compound material comprising a metal and nanoparticles | |
JP5709239B2 (en) | Method for producing titanium matrix composite material and titanium matrix composite material produced by the method | |
JP6864922B2 (en) | Manufacturing method of aluminum-based clad mold material | |
EP2478124A1 (en) | A compound material comprising a metal and nanoparticles | |
CN111822720A (en) | Manufacturing method of blank for plastic working for manufacture of composite material, and blank manufactured by the aforementioned manufacturing method | |
KR102298678B1 (en) | Method for manufacturing cooling pipe for electric vehicle powertrain and cooling pipe manufactured thereby | |
US20230019810A1 (en) | Method for manufacturing extruded material of aluminum-carbon nanotube composite with improved corrosion resistance and extruded material of aluminum-carbon nanotube composite manufactured thereby | |
KR102191865B1 (en) | Boron-nitride nanoplatelets/metal nanocomposite powder and method of manufacturing thereof | |
KR102447559B1 (en) | Method for manufacturing heterogeneous composite material thin plate through sequential plastic processing and heterogeneous composite material thin plate manufactured thereby | |
KR102447558B1 (en) | Manufacturing method of heterogeneous composite material thin plate and heterogeneous composite thin plate manufactured thereby | |
KR101082388B1 (en) | Method for manufacturing chassis and chassis manufactured by the method | |
US11904390B2 (en) | Method for manufacturing electrostatic chuck having electrode layer including clad member and electrostatic chuck manufactured thereby | |
US20240208127A1 (en) | Method of manufacturing ptc heating element, and ptc heating element manufactured thereby | |
KR20240064362A (en) | Method for manufacturing piping material for air-conditioning device of electric vehicle, piping material manufactured thereby, and air-conditioning device of electric vehicle comprising the same | |
EP2396443A1 (en) | A compound material comprising a metal and nanoparticles and a method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201027 |
|
RJ01 | Rejection of invention patent application after publication |