CN111822711A - High-density titanium or titanium alloy parts and powder metallurgy filling method - Google Patents
High-density titanium or titanium alloy parts and powder metallurgy filling method Download PDFInfo
- Publication number
- CN111822711A CN111822711A CN202010685805.XA CN202010685805A CN111822711A CN 111822711 A CN111822711 A CN 111822711A CN 202010685805 A CN202010685805 A CN 202010685805A CN 111822711 A CN111822711 A CN 111822711A
- Authority
- CN
- China
- Prior art keywords
- titanium
- powder
- titanium alloy
- density
- mold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001069 Ti alloy Chemical group 0.000 title claims abstract description 148
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 118
- 239000010936 titanium Substances 0.000 title claims abstract description 84
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 70
- 238000011049 filling Methods 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000004663 powder metallurgy Methods 0.000 title claims abstract description 33
- 239000000843 powder Substances 0.000 claims abstract description 109
- 238000004519 manufacturing process Methods 0.000 claims abstract description 32
- 239000002184 metal Substances 0.000 claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims abstract description 26
- 230000008569 process Effects 0.000 claims abstract description 23
- 238000005245 sintering Methods 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 239000011261 inert gas Substances 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims description 35
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 32
- 229910000883 Ti6Al4V Inorganic materials 0.000 claims description 32
- 239000011812 mixed powder Substances 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 19
- 229910052786 argon Inorganic materials 0.000 claims description 16
- 238000001125 extrusion Methods 0.000 claims description 16
- 239000007789 gas Substances 0.000 claims description 11
- 238000003754 machining Methods 0.000 claims description 10
- -1 titanium hydride Chemical compound 0.000 claims description 9
- 229910000048 titanium hydride Inorganic materials 0.000 claims description 9
- 239000002994 raw material Substances 0.000 claims description 8
- 238000005429 filling process Methods 0.000 claims description 7
- 238000003825 pressing Methods 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 238000009694 cold isostatic pressing Methods 0.000 claims description 4
- 238000004321 preservation Methods 0.000 claims description 4
- 238000006356 dehydrogenation reaction Methods 0.000 claims description 3
- 238000001192 hot extrusion Methods 0.000 claims description 3
- 230000006698 induction Effects 0.000 claims description 3
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 2
- 229910052987 metal hydride Inorganic materials 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 238000002360 preparation method Methods 0.000 abstract description 2
- 238000000137 annealing Methods 0.000 description 14
- 239000000956 alloy Substances 0.000 description 13
- 238000002441 X-ray diffraction Methods 0.000 description 11
- 229910045601 alloy Inorganic materials 0.000 description 11
- 238000000465 moulding Methods 0.000 description 10
- 238000005242 forging Methods 0.000 description 9
- 238000005266 casting Methods 0.000 description 7
- 238000000280 densification Methods 0.000 description 5
- 238000009740 moulding (composite fabrication) Methods 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 238000005056 compaction Methods 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000000498 ball milling Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 238000012805 post-processing Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 238000007596 consolidation process Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000009870 titanium metallurgy Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/03—Press-moulding apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/02—Compacting only
- B22F3/04—Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/1003—Use of special medium during sintering, e.g. sintering aid
- B22F3/1007—Atmosphere
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
- B22F2003/208—Warm or hot extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/247—Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/248—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/043—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Powder Metallurgy (AREA)
Abstract
一种高致密度钛或钛合金零部件及其粉末冶金充型制造方法,属于金属零部件的粉末冶金制造领域。该方法根据高致密度钛或钛合金零部件的成分配比,称量金属粉末;混合后进行压坯,得到相对密度为80%以上的规则形状粉末压坯;加热至1000‑1400℃,保温2‑30min,得到烧结程度为20‑90%的粉末压坯;在真空或惰性气体保护下,进行快速充型,得到钛或钛合金零部件毛坯;将钛或钛合金零部件毛坯随模具降温至900℃以下,取出,进行精加工,得到高致密度和高冶金结合程度的钛或钛合金零部件。该方法可以实现近净成形致密钛或钛合金零部件的制备,具有低能耗、短流程的优点。
A high-density titanium or titanium alloy component and a powder metallurgy filling manufacturing method thereof belong to the field of powder metallurgy manufacturing of metal components. According to the method, metal powder is weighed according to the composition ratio of high-density titanium or titanium alloy parts; compacted after mixing to obtain a regular-shaped powder compact with a relative density of more than 80%; heated to 1000-1400° C. 2-30min to obtain a powder compact with a sintering degree of 20-90%; under the protection of vacuum or inert gas, perform rapid filling to obtain titanium or titanium alloy parts blanks; cool the titanium or titanium alloy parts blanks with the mold To below 900 ℃, take it out and perform finishing to obtain titanium or titanium alloy parts with high density and high metallurgical bonding degree. The method can realize the preparation of near-net-shaped dense titanium or titanium alloy parts, and has the advantages of low energy consumption and short process flow.
Description
技术领域technical field
本发明属于金属零部件的粉末冶金制造领域,本发明提供一种高致密度钛或钛合金零部件及其粉末冶金充型制造方法,该方法不同于传统的粉末模压成型制成接近零部件形状和尺寸的粉末坯,然后烧结粉末坯的金属零部件粉末冶金制造方法,其是一种具有规则形状的粉末坯在高温和真空或保护气氛下充型、在充型过程中实现致密化和进一步固结的钛合金零部件制造方法。The invention belongs to the field of powder metallurgy manufacturing of metal parts, and provides a high-density titanium or titanium alloy part and a powder metallurgy filling manufacturing method thereof. A powder metallurgy manufacturing method for powder blanks of different sizes and sizes, and then sintering the powder blanks, which is a powder blank with a regular shape that is filled under high temperature and vacuum or protective atmosphere, and densified and further formed during the filling process. Method of manufacture of consolidated titanium alloy parts.
背景技术Background technique
钛及钛合金具有密度小、比强度高、耐腐蚀等特点,在航空航天、机械制造、国防军事和生物医疗等领域有广泛的应用。在传统的金属零部件制造业,钛合金零部件主要通过铸造、锻造或粉末冶金工艺制造。对于铸造工艺,因为钛合金液体活性非常大,钛合金熔化和铸造用的模具材料的成本都很高,所以钛合金的铸件成本很高。同时,因为铸造缺陷和铸造凝固组织粗大,铸造钛合金零部件的力学性能达不到铸锭冶金钛合金材质的力学性能水平。而对于锻造工艺,在锻造工艺条件合适的前提下,锻造工艺制造的钛合金零部件材质的综合力学性能都很好,能达到铸锭冶金钛合金的力学性能水平,但是由于金属固态流动范围的限制以及去除表面氧含量超标的脆性α层的需要,钛合金锻造工艺制造出的零部件毛坯与最终零部件的尺寸和形状相差很多,导致通常超过50%的材料要通过机加工去除,材料利用率很低。钛合金属于不易机加工金属,机加工成本很高,这导致通过锻造-机加工工艺过程制造的零部件成本很高。Titanium and titanium alloys have the characteristics of low density, high specific strength and corrosion resistance, and are widely used in aerospace, machinery manufacturing, national defense, military and biomedical fields. In traditional metal parts manufacturing, titanium alloy parts are mainly manufactured by casting, forging or powder metallurgy processes. For the casting process, because the titanium alloy liquid is very active, the cost of the titanium alloy melting and the mold material for casting is very high, so the cost of the titanium alloy casting is very high. At the same time, due to casting defects and coarse solidification structure of casting, the mechanical properties of cast titanium alloy parts cannot reach the level of mechanical properties of ingot metallurgical titanium alloy materials. As for the forging process, under the premise of suitable forging process conditions, the comprehensive mechanical properties of the titanium alloy parts manufactured by the forging process are very good, and can reach the mechanical properties level of ingot metallurgical titanium alloys. Due to the limitation and the need to remove the brittle α layer with excessive surface oxygen content, the size and shape of the part blank produced by the titanium alloy forging process is very different from the final part, resulting in usually more than 50% of the material to be removed by machining. rate is very low. Titanium alloys are not easily machineable metals and are expensive to machine, which results in high costs for components made through the forging-machining process.
粉末冶金工艺具有近净成形的优点,通过把钛合金预合金粉末,或按照合金成分要求将钛粉和其它金属粉混合得到的混合粉,通过模压制造出与零部件(如齿轮)形状和尺寸接近的粉末坯,一般粉末坯的相对密度达到90%以上,然后将粉末坯放到真空炉里进行烧结和致密化,获得相对密度在95%以上的钛合金烧结零部件。由于很难完全消除零部件内的残余孔洞,同时高温烧结造成钛合金微观组织粗大,传统粉末冶金工艺做出的零部件的材质的力学性能均达不到铸锭冶金钛合金的力学性能水平。通过锻造或热等静压可以提高钛合金粉末烧结件的材质和力学性能,但要附加成本。由于粉末的流动性有限,传统粉末模压烧结工艺制造出的零部件形状都比较简单或对称度比较高。通过金属粉末注射成形(英文:Metal Injection Molding(MIM))工艺可以制造出形状复杂的钛合金预合金或混合粉粉末坯,然后烧结粉末坯可以制造形状复杂的零部件,但这个工艺只适于制造单件质量在500克以下的零部件。The powder metallurgy process has the advantages of near-net shaping. The shape and size of the parts (such as gears) are produced by molding the titanium alloy pre-alloyed powder, or the mixed powder obtained by mixing the titanium powder and other metal powders according to the requirements of the alloy composition. The relative density of the powder blank generally reaches more than 90%, and then the powder blank is placed in a vacuum furnace for sintering and densification to obtain titanium alloy sintered parts with a relative density of more than 95%. Because it is difficult to completely eliminate the residual pores in the parts, and at the same time, the microstructure of the titanium alloy is coarse due to high temperature sintering, the mechanical properties of the parts made by the traditional powder metallurgy process cannot reach the mechanical properties of the ingot metallurgical titanium alloy. The material and mechanical properties of titanium alloy powder sintered parts can be improved by forging or hot isostatic pressing, but at an additional cost. Due to the limited fluidity of the powder, the shape of the parts produced by the traditional powder molding and sintering process is relatively simple or relatively symmetrical. Through the metal powder injection molding (English: Metal Injection Molding (MIM)) process, complex-shaped titanium alloy pre-alloys or mixed powder powder blanks can be manufactured, and then sintered powder blanks can be used to manufacture complex-shaped parts, but this process is only suitable for Manufacture of parts with a single mass of less than 500 grams.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明提供了一种高致密度钛或钛合金零部件及其粉末冶金充型制造方法,该方法是一种新型的短流程、近净成形、低成本、钛或钛合金零部件粉末冶金制造方法。其是基于在高温下,通过粉末固结和合金化获得的细晶钛或钛合金材料具有良好的流动性,在压力的驱动下,能够填充封闭型腔,从而获得由模具型腔定义的近净成形钛或钛合金零部件毛坯。通过该方法可以达到热塑塑料注射成型技术的效果,能够快速将加热的粉末坯变成致密并具有钛合金力学和其他物理性能的零部件毛坯。该方法可以实现近净成形致密钛或钛合金零部件的制备,具有低能耗、短流程的优点。In view of the problems existing in the prior art, the present invention provides a high-density titanium or titanium alloy parts and a powder metallurgy filling manufacturing method thereof. The method is a novel short-flow, near-net-shape, low-cost, titanium Or powder metallurgy manufacturing method of titanium alloy parts. It is based on the fine-grained titanium or titanium alloy material obtained by powder consolidation and alloying at high temperature, which has good fluidity, and can fill the closed cavity under the drive of pressure, so as to obtain a close-fitting cavity defined by the mold cavity. Net shape titanium or titanium alloy component blanks. Through this method, the effect of thermoplastic injection molding technology can be achieved, and the heated powder blank can be quickly turned into a dense part blank with mechanical and other physical properties of titanium alloy. The method can realize the preparation of near-net-shaped dense titanium or titanium alloy parts, and has the advantages of low energy consumption and short process flow.
本发明的一种高致密度钛或钛合金零部件的粉末冶金充型制造方法,包括以下步骤:A powder metallurgy filling manufacturing method for high-density titanium or titanium alloy parts of the present invention comprises the following steps:
(1)混合(1) Mixed
根据高致密度钛或钛合金零部件的成分组成和各个成分的质量百分占比,称量金属粉末;Weigh the metal powder according to the composition of high-density titanium or titanium alloy parts and the mass percentage of each component;
将金属粉末混合均匀,得到混合粉末;Mix the metal powder evenly to obtain a mixed powder;
(2)压坯(2) compaction
将混合粉末进行压坯,得到相对密度为80%以上的规则形状粉末压坯;compacting the mixed powder to obtain a regular-shaped powder compact with a relative density of more than 80%;
(3)加热保温(3) Heating and heat preservation
在真空或惰性气体保护下,将规则形状粉末压坯加热至1000-1400℃,保温2-30min,得到烧结程度为20-90%的粉末压坯;Under the protection of vacuum or inert gas, the regular shape powder compact is heated to 1000-1400 ℃, and the temperature is kept for 2-30 minutes to obtain a powder compact with a sintering degree of 20-90%;
(4)充型(4) Filling
在真空或惰性气体保护下,将温度控制在1000-1400℃的加热后的粉末压坯,置于钛或钛合金零部件充型模具中;Under the protection of vacuum or inert gas, the heated powder compact whose temperature is controlled at 1000-1400 ℃ is placed in the filling mold of titanium or titanium alloy parts;
对加热后的粉末压坯进行加压,驱动加热后的粉末压坯材料在高温下流动进行快速充型,直至加热后的粉末压坯完全填充钛或钛合金零部件充型模具型腔,得到钛或钛合金零部件毛坯;The heated powder compact is pressurized, and the heated powder compact material is driven to flow at a high temperature for rapid filling, until the heated powder compact is completely filled with titanium or titanium alloy parts and the filling mold cavity is obtained. Titanium or titanium alloy parts blanks;
其中,加热后的粉末压坯在充型过程中实现热挤压,挤压比为5:1-100:1,加压的压强为10-1000MPa,更优选为100-500MPa,加压时间大于或等于充型时间,优选为0.1-5min。Wherein, the heated powder compact is subjected to hot extrusion during the filling process, the extrusion ratio is 5:1-100:1, the pressing pressure is 10-1000MPa, more preferably 100-500MPa, and the pressing time is longer than or equal to the filling time, preferably 0.1-5min.
(5)后处理(5) Post-processing
将钛或钛合金零部件毛坯随模具降温至900℃以下,取出,进行精加工,得到高致密度钛或钛合金零部件。The titanium or titanium alloy parts blanks are cooled to below 900 ℃ with the mold, taken out, and subjected to finishing to obtain high-density titanium or titanium alloy parts.
所述的步骤(1)中,金属粉末中,钛粉末的原料为钛金属和/或氢化钛粉末,钛合金中其他金属粉末的原料为金属粉末或金属合金粉末,各个粉末的配比,根据制备的高致密度钛合金零部件的成分确定。In the step (1), in the metal powder, the raw materials of the titanium powder are titanium metal and/or titanium hydride powder, and the raw materials of other metal powders in the titanium alloy are metal powder or metal alloy powder. The composition of the prepared high-density titanium alloy parts is determined.
所述的步骤(1)中,金属粉末的粒度为200目以下。In the step (1), the particle size of the metal powder is below 200 meshes.
所述的步骤(1)中,混合均匀选用机械球磨的方式进行混合。In the step (1), the mixing is uniformly carried out by means of mechanical ball milling.
所述的步骤(2)中,压坯采用模压或冷等静压中的一种。In the step (2), one of molding or cold isostatic pressing is used for the green compact.
所述的步骤(2)中,模压或冷等静压的压强为100-1000MPa,保压时间为1-10min。In the step (2), the pressure of molding or cold isostatic pressing is 100-1000MPa, and the pressure holding time is 1-10min.
所述的步骤(2)中,所述的压坯可以是单向模压成型或双向模压成型中的一种;压坯模具可以预热,预热温度为室温-500℃,并且当压坯模具温度为100-500℃时,压坯过程需要在氩气保护环境下进行。In the step (2), the green compact can be one of unidirectional compression molding or bidirectional compression molding; When the temperature is 100-500 °C, the compaction process needs to be carried out in an argon protected environment.
所述的步骤(2)中,规则形状可以为圆柱形、长方形、正方形中的一种。In the step (2), the regular shape can be one of cylindrical, rectangular and square.
所述的步骤(3)中,加热的升温速率为5-200℃/min,优选为35-100℃/min。In the step (3), the heating rate is 5-200°C/min, preferably 35-100°C/min.
所述的步骤(3)中,加热采用的设备为感应炉、微波炉、电炉、等离子体热处理炉中的一种;加热时间优选为5-20min,该步骤实现了粉末压坯的部分烧结,部分烧结的烧结率为20-90%。In the step (3), the equipment used for heating is one of an induction furnace, a microwave oven, an electric furnace, and a plasma heat treatment furnace; the heating time is preferably 5-20 min, and this step realizes partial sintering of the powder compact, and partial sintering of the powder compact. The sintering rate of sintering is 20-90%.
所述的步骤(3)中,真空为绝对气压≤200Pa的真空条件;惰性气体保护优选为氧含量≤200ppm的氩气气体保护。In the step (3), the vacuum is a vacuum condition of absolute air pressure≤200Pa; the protection of inert gas is preferably argon gas protection with oxygen content≤200ppm.
所述的步骤(3)中,当钛粉末的原料含有氢化钛时,在加热过程中,氢化钛粉末颗粒原位脱氢变为钛粉末颗粒。In the step (3), when the raw material of the titanium powder contains titanium hydride, during the heating process, the titanium hydride powder particles are in-situ dehydrogenated into titanium powder particles.
所述的步骤(4)中,热挤压的挤压速度为10-30mm/s。In the step (4), the extrusion speed of the hot extrusion is 10-30 mm/s.
所述的步骤(4)中,钛或钛合金零部件充型模具可进行预热,预热温度为室温-550℃。In the step (4), the titanium or titanium alloy parts filling mold can be preheated, and the preheating temperature is room temperature -550°C.
所述的步骤(4)中,加热后的粉末压坯的加压和充型在真空或压坯选用惰性气体保护下进行。In the step (4), the pressing and filling of the heated powder compact are carried out under vacuum or under the protection of an inert gas selected for the compact.
所述的步骤(4)中,真空为绝对气压≤200Pa的真空条件;惰性气体保护优选为氧含量≤200ppm的氩气气体保护。In the step (4), the vacuum is a vacuum condition of absolute air pressure≤200Pa; the protection of inert gas is preferably argon gas protection with oxygen content≤200ppm.
所述的步骤(4)中,钛或钛合金零部件毛坯的相对密度≥98.5%和粉末颗粒之间的冶金结合程度≥98%。In the step (4), the relative density of the titanium or titanium alloy parts blank is ≥98.5% and the degree of metallurgical bonding between the powder particles is ≥98%.
所述的步骤(5)中,当钛粉末的原料中含有氢化钛时,在精加工之前,需要进行彻底脱氢处理,彻底脱氢处理的工艺参数为:在真空条件下在650-850℃保温1-10h。In the step (5), when titanium hydride is contained in the raw material of the titanium powder, a thorough dehydrogenation treatment is required before finishing. Incubate for 1-10h.
所述的步骤(5)中,精加工为切割、热处理和机加工,其中,热处理和机加工根据钛或钛合金制品制造行业通常使用的热处理和机加工方法进行;In the described step (5), the finishing is cutting, heat treatment and machining, wherein the heat treatment and machining are performed according to the heat treatment and machining methods commonly used in the titanium or titanium alloy product manufacturing industry;
所述的高致密度钛或钛合金零部件的粉末冶金充型制造方法,切割和机加工去除材料占整个钛或钛合金零部件总重量≤15%。In the powder metallurgy filling method for high-density titanium or titanium alloy parts, cutting and machining to remove materials account for ≤15% of the total weight of the entire titanium or titanium alloy parts.
所述的步骤(5)中,热处理和机加工根据钛或钛合金零部件的微观组织、力学性能和形状尺寸的需求进行处理。In the step (5), the heat treatment and machining are performed according to the requirements of the microstructure, mechanical properties and shape and size of the titanium or titanium alloy parts.
所述的高致密度钛或钛合金零部件的粉末冶金充型制造方法,步骤(2)压坯至步骤(4)成形,时间为30-40min。In the powder metallurgy filling method for high-density titanium or titanium alloy parts, the time from step (2) compacting to step (4) forming is 30-40 minutes.
所述的步骤(4)中,所述的钛或钛合金零部件充型模具,为模具框架以及模具框架形成的模具型腔。In the step (4), the titanium or titanium alloy parts filling mold is a mold frame and a mold cavity formed by the mold frame.
所述的高致密度钛或钛合金零部件的粉末冶金充型制造方法中,钛零部件为工业纯钛零部件、钛合金零部件可以为Ti-6Al-4V钛合金零部件(数字为合金元素质量百分比,国内合金牌号为TC4钛合金)。In the powder metallurgy filling method for high-density titanium or titanium alloy parts, the titanium parts are industrial pure titanium parts, and the titanium alloy parts can be Ti-6Al-4V titanium alloy parts (the numbers are alloys). Element mass percentage, domestic alloy grade is TC4 titanium alloy).
本发明的一种工业纯钛零部件,采用以上方法制得,其相对密度≥98.5%,抗拉强度为600-800MPa,延伸率为15-25%。The industrial pure titanium parts of the present invention are prepared by the above method, the relative density is ≥98.5%, the tensile strength is 600-800MPa, and the elongation is 15-25%.
本发明的一种Ti-6Al-4V钛合金零部件,采用以上方法制得,其相对密度≥98.5%,抗拉强度为900-1200MPa,延伸率为10-20%。A Ti-6Al-4V titanium alloy part of the present invention is prepared by the above method, the relative density is ≥98.5%, the tensile strength is 900-1200MPa, and the elongation is 10-20%.
本发明涉及一种高致密度钛或钛合金零部件及其粉末冶金充型制造方法,主要的金属材料加工原理为:(1)通过粉末坯内粉末颗粒高温塑性变形实现粉末坯的快速致密化,而不是像传统粉末坯无压烧结过程那样依靠较慢的物质迁移机制来实现粉末坯的致密化;(2)粉末颗粒在粉末坯高温充型过程中发生塑性变形变成横截面宽度小于20μm的细条或薄片,同时在粉末坯充型过程中把不同成分的细条和薄片压到一起使原子扩散在不同成分的细条和薄片之间快速进行,实现合金化;(3)在充型过程中被压到一起的细条和薄片发生快速扩散焊接,实现粉末颗粒的固结;(4)金属材料在熔点以下,但接近熔点的温度范围内,流变应力非常低,可以像流体一样在静压力的作用下充型,实现材料的快速成形;(5)金属材料在充型过程中快速塑性变形,引发动态再结晶,导致细小晶粒的生成,同时由于材料在高温的时间比较短,限制晶粒长大,从而材料的晶粒等轴细小,有利于获得优异的力学性能。The invention relates to a high-density titanium or titanium alloy part and a powder metallurgy filling manufacturing method thereof. The main metal material processing principles are: (1) The rapid densification of the powder blank is realized by the high-temperature plastic deformation of the powder particles in the powder blank , instead of relying on a slower material migration mechanism to achieve the densification of the powder blank as in the traditional pressureless sintering process; (2) the powder particles undergo plastic deformation during the high-temperature filling process of the powder blank into a cross-sectional width of less than 20μm At the same time, during the filling process of the powder blank, the thin strips and flakes of different components are pressed together to make the atoms diffuse between the thin strips and flakes of different components rapidly to achieve alloying; (3) During the filling process The thin strips and sheets that are pressed together undergo rapid diffusion welding to achieve the consolidation of powder particles; (4) The metal material is below the melting point, but in the temperature range close to the melting point, the flow stress is very low, and it can be like a fluid under static pressure. (5) The metal material is rapidly plastically deformed during the filling process, causing dynamic recrystallization, resulting in the formation of fine grains. At the same time, due to the relatively short time of the material at high temperature, the crystal is limited. The grains grow up, so that the grains of the material are equiaxed and small, which is beneficial to obtain excellent mechanical properties.
本发明的一种高致密度钛或钛合金零部件及其粉末冶金充型制造方法,具有以下优势:A high-density titanium or titanium alloy part and its powder metallurgy filling manufacturing method of the present invention have the following advantages:
(1)短流程:工艺流程包括粉末经过混合、压坯、加热和保温、成形和后处理。从压坯到成形在40min内可以完成,有助于实现自动化。(1) Short process: The process includes powder mixing, compaction, heating and heat preservation, forming and post-processing. It can be completed within 40 minutes from pressing to forming, which is helpful for automation.
(2)近净成型:对于形状比较复杂的零部件,本方法制备出的零部件毛坯的形状和尺寸非常接近零部件最终形状和尺寸。要获得最终零部件,所需通过切割和机加工去除的材料不超过整个零部件毛坯质量的15%,材料利用率远高于常规锻件。(2) Near-net shape: For parts with complex shapes, the shape and size of the part blank prepared by this method are very close to the final shape and size of the part. To obtain the final part, the material required to be removed by cutting and machining does not exceed 15% of the mass of the entire part blank, and the material utilization rate is much higher than that of conventional forgings.
(3)低能耗,低环境影响:本方法不需要熔化金属,同时材料利用率高,所以每公斤零部件制造所需能耗将明显低于铸造和锻造工艺。同时粉末坯加热和成形均在真空或惰性气体保护下进行,没有有害气体排放,对环境没有冲击。(3) Low energy consumption and low environmental impact: This method does not require melting metal, and at the same time, the material utilization rate is high, so the energy consumption per kilogram of parts and components will be significantly lower than that of casting and forging processes. At the same time, the heating and forming of the powder blank are carried out under the protection of vacuum or inert gas, and there is no harmful gas emission and no impact on the environment.
(4)材质力学性能好:本工艺方法制造的钛合金零部件致密度高(相对密度超过98.5%),微观组织细小,材料的强度高,塑性好,优于铸造钛合金零部件,与锻造钛合金零部件的力学性能向媲美或更优。(4) Good mechanical properties of the material: The titanium alloy parts manufactured by this process have high density (relative density exceeding 98.5%), small microstructure, high strength and good plasticity of the material, which are superior to cast titanium alloy parts and are comparable to forging. The mechanical properties of titanium alloy parts are comparable or better.
(5)本发明的制造方法是将纯钛粉末压坯或者钛与其它金属粉末混合体压坯进行加热使之部分烧结和软化,形成连续但含有空隙的高温固态材料坯,然后通过驱动该材料坯填充模具型腔造成粉末颗粒的塑性变形,使它们变成厚度或直径小于20μm的薄片或细条,并同时压到一起,在高温和压力作用小,长条状颗粒之间密切接触,粉末坯快速致密化,同时粉末颗粒内原子快速扩散,实现快速焊接,获得钛或钛合金固体材料。同时如果粉末压坯含有不同成分粉末颗粒,不同元素原子互相扩散,实现快速合金化,生成钛合金。通过填充模具型腔也获得了所需的零部件形状。比传统粉末冶金方法单纯依靠在烧结过程中粉末物质原子迁移实现致密化过程,速度快,并且制得的零部件更致密。在成型方面,对比金属粉末注射成形加烧结工艺工艺,本发明的方法能够制造的单件零部件质量可以更大,不受限制。(5) The manufacturing method of the present invention is to heat the pure titanium powder compact or the titanium and other metal powder mixed compact to partially sinter and soften it to form a continuous high-temperature solid material blank containing voids, and then drive the material by driving the compact. Filling the mold cavity with the blank causes the plastic deformation of the powder particles, turning them into flakes or thin strips with a thickness or diameter of less than 20 μm, and pressing them together at the same time. Rapid densification and rapid diffusion of atoms in powder particles to achieve rapid welding and obtain titanium or titanium alloy solid materials. At the same time, if the powder compact contains powder particles of different components, the atoms of different elements diffuse into each other to achieve rapid alloying and generate titanium alloys. The desired part shape is also obtained by filling the mold cavity. Compared with the traditional powder metallurgy method, the densification process is realized by simply relying on the atomic migration of powder substances during the sintering process, and the speed is faster, and the parts produced are denser. In terms of molding, compared with the metal powder injection molding and sintering process, the quality of a single component that can be manufactured by the method of the present invention can be larger and is not limited.
附图说明Description of drawings
图1:本发明实施例采用的钛或钛合金零部件充型模具的纵向截面示意图;其中,1为挤压筒,2为挤压嘴部分,3为钛或钛合金零部件型腔部分。Figure 1: A schematic longitudinal cross-sectional view of the titanium or titanium alloy parts filling mold used in the embodiment of the present invention; wherein, 1 is the extrusion cylinder, 2 is the extrusion nozzle part, and 3 is the titanium or titanium alloy parts cavity part.
图2:本发明实施例1制备的Ti-6Al-4V钛合金零部件毛坯图:(a)正面,(b)背面。Fig. 2: The rough drawing of Ti-6Al-4V titanium alloy parts prepared in Example 1 of the present invention: (a) front side, (b) back side.
图3:本发明实施例1制备的Ti-6Al-4V钛合金零部件的横截面。Figure 3: The cross section of the Ti-6Al-4V titanium alloy part prepared in Example 1 of the present invention.
图4:本发明实施例1中,制备的高致密度Ti-6Al-4V钛合金零部件表面形貌图。Figure 4: The surface topography of the high-density Ti-6Al-4V titanium alloy parts prepared in Example 1 of the present invention.
图5:本发明实施例1中,制备的高致密度Ti-6Al-4V钛合金零部件的不同位置取样的XRD图谱;其中,TC4-AF-1为TC4未热处理样品的顶部中心,TC4-AF-2为辐射部分径向取样,TC4-AF-3为边缘部分周线方向取样。Figure 5: In Example 1 of the present invention, the XRD patterns of the prepared high-density Ti-6Al-4V titanium alloy parts sampled at different positions; wherein, TC4-AF-1 is the top center of the TC4 unheated sample, TC4- AF-2 is the radial sampling of the radiation part, and TC4-AF-3 is the circumferential sampling of the edge part.
图6:本发明实施例1中,制备的高致密度Ti-6Al-4V钛合金零部件的金相照片。Figure 6: The metallographic photograph of the high-density Ti-6Al-4V titanium alloy parts prepared in Example 1 of the present invention.
图7:本发明实施例1中,制备的高致密度Ti-6Al-4V钛合金零部件经过700℃,6小时真空退火后的金相照片(a)和XRD图谱(b)。Figure 7: Metallographic photograph (a) and XRD pattern (b) of the prepared high-density Ti-6Al-4V titanium alloy parts after vacuum annealing at 700°C for 6 hours in Example 1 of the present invention.
图8:本发明实施例1中,制备的高致密度Ti-6Al-4V钛合金零部件经过700℃,6小时真空退火后的拉伸工程应力-应变曲线。Figure 8: In Example 1 of the present invention, the tensile engineering stress-strain curve of the prepared high-density Ti-6Al-4V titanium alloy parts after vacuum annealing at 700°C for 6 hours.
图9:本发明实施例2中,制备的高致密度工业纯钛零部件不同位置取样和热处理前后的XRD图谱;其中,WHT-上为热处理前的零部件上部,WHT-下为热处理前的零部件下部,HT-上为退火处理后的零部件上部,HT-下为退火处理后的零部件下部。Figure 9: In Example 2 of the present invention, the prepared high-density industrial pure titanium parts are sampled at different positions and XRD patterns before and after heat treatment; wherein, WHT-up is the upper part of the part before heat treatment, and WHT-down is before heat treatment The lower part of the part, HT-up is the upper part of the part after annealing, and HT-lower is the lower part of the part after annealing.
图10:本发明实施例2中,制备的高致密度工业纯钛零部件热处理前的金相照片。Figure 10: The metallographic photograph of the high-density industrial pure titanium parts prepared in Example 2 of the present invention before heat treatment.
图11:本发明实施例2中,制备的高致密度工业纯钛零部件经过700℃,6小时退火处理以后的金相照片。Figure 11: The metallographic photograph of the prepared high-density industrial pure titanium parts after annealing at 700°C for 6 hours in Example 2 of the present invention.
图12:本发明实施例2中,制备的高致密度工业纯钛零部件经过700℃,6小时退火处理以后的拉伸工程应力-工程应变曲线;其中,HT-下1为HT-下为退火处理后的零部件下部的中心,HT-下2为退火处理后的零部件下部的径向,HT-下3为退火处理后的零部件下部的周向。Figure 12: In Example 2 of the present invention, the tensile engineering stress-engineering strain curve of the prepared high-density industrial pure titanium parts after annealing at 700°C for 6 hours; wherein, HT-under 1 is HT-under The center of the lower part of the annealed part, HT-lower 2 is the radial direction of the lower part of the annealed part, and HT-lower 3 is the circumferential direction of the lower part of the annealed part.
具体实施方式Detailed ways
以下结合附图及具体实施例对本发明的具体实施方式做进一步详细说明,本发明并不限于此实例。The specific embodiments of the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments, but the present invention is not limited to this example.
以下实施例中,氩气保护为氧含量≤200ppm的氩气气体保护。真空环境为绝对气压低于200Pa的环境。In the following embodiments, the argon gas protection is argon gas protection with an oxygen content of less than or equal to 200 ppm. The vacuum environment is an environment where the absolute pressure is lower than 200Pa.
精选实施例1:Featured Example 1:
本实施例提供的一种高致密度Ti-6Al-4V钛合金零部件的粉末冶金充型制造方法,该方法具体步骤如下:The present embodiment provides a powder metallurgy filling manufacturing method for high-density Ti-6Al-4V titanium alloy parts. The specific steps of the method are as follows:
步骤1:混合Step 1: Mix
称量粒径为-200目,纯度为99.8%的氢化脱氢钛粉4.5kg,粒径为-200目Al60V40中间合金粉末0.5kg,放置于机械球磨罐中在室温下混合24小时,获得成分配比为Ti-6Al-4V(质量百分比)的Ti/Al60V40混合粉末。Weigh 4.5kg of hydrogenated titanium powder with a particle size of -200 mesh and a purity of 99.8%, and 0.5 kg of Al60V40 master alloy powder with a particle size of -200 mesh, placed in a mechanical ball mill and mixed at room temperature for 24 hours to obtain a The distribution ratio is Ti/Al60V40 mixed powder of Ti-6Al-4V (mass percentage).
步骤2:将4kg混合粉末置于内腔直径为115mm,高度为450mm的圆柱形模具中,进行模压,获得直径为115mm,高度为100mm的圆柱形Ti/Al60V40混合粉末压坯,Ti/Al60V40混合粉末压坯密度为:3.85g/cm3相对密度为:85.56%。Step 2: Place 4kg of mixed powder in a cylindrical mold with an inner cavity diameter of 115mm and a height of 450mm for molding to obtain a cylindrical Ti/Al60V40 mixed powder compact with a diameter of 115mm and a height of 100mm. Ti/Al60V40 is mixed Powder compact density: 3.85 g/cm 3 Relative density: 85.56%.
步骤3:加热保温Step 3: Heat and keep warm
在绝对气压为176Pa的真空环境下,对制备的Ti/Al60V40混合粉末压坯进行感应加热,Ti/Al60V40混合粉末压坯升温至1250℃,保温5分钟,得到加热后的Ti/Al60V40混合粉末压坯;加热后的Ti/Al60V40混合粉末压坯部分烧结,烧结程度为80%。In a vacuum environment with an absolute pressure of 176Pa, the prepared Ti/Al60V40 mixed powder compact was subjected to induction heating, and the Ti/Al60V40 mixed powder compact was heated to 1250°C and kept for 5 minutes to obtain the heated Ti/Al60V40 mixed powder compact. Preform; the heated Ti/Al60V40 mixed powder compact is partially sintered, and the sintering degree is 80%.
步骤4:充型Step 4: Filling
然后将加热后的Ti/Al60V40混合粉末压坯用机器手移到如图1所示的预热后的钛或钛合金零部件充型模具中的挤压筒里。用液压机通过上压头对Ti/Al60V40混合粉末压坯加压,压强为200-800MPa,下压速度为15mm/s。在压力的作用下,Ti/Al60V40混合粉末压坯材料流动,填充钛或钛合金零部件型腔部分,获得近净成形Ti-6Al-4V钛合金零部件毛坯。钛或钛合金零部件充型模具如图1所示,主要包括挤压嘴部分2和钛或钛合金零部件型腔部分3,并且,在本实施例中,钛或钛合金零部件型腔部分3包括挤压嘴部分2,并在靠近挤压嘴部分2设置有挤压筒1;挤压筒1用来接收粉末压坯;挤压嘴部分2用来实现粉末压坯的挤压固结;钛或钛合金零部件型腔部分3,用来定义零部件毛坯形状。钛或钛合金零部件充型模具模具预热温度200-500℃。Then the heated Ti/Al60V40 mixed powder compact is moved by robot into the extrusion barrel in the preheated titanium or titanium alloy part filling die as shown in Figure 1. Pressurize the Ti/Al60V40 mixed powder compact with a hydraulic press through the upper indenter, the pressure is 200-800MPa, and the lowering speed is 15mm/s. Under the action of pressure, the Ti/Al60V40 mixed powder compact material flows, fills the cavity of titanium or titanium alloy parts, and obtains near-net-shaped Ti-6Al-4V titanium alloy parts blanks. The filling die for titanium or titanium alloy parts is shown in Figure 1, which mainly includes an
在步骤3的加热保温和步骤4的粉末压坯充型时,Ti和Al60V40粉末颗粒发生扩散反应,大部分Al60V40粉末颗粒溶解到钛的基体中,实现合金化,生成Ti-6Al-4V(质量百分比)合金(通常称为TC4钛合金)。During the heating and heat preservation in
步骤5:后处理Step 5: Post-processing
将制备出的Ti-6Al-4V钛合金零部件毛坯冷却到600℃,在空气中取出,得到高致密度Ti-6Al-4V钛合金零部件;Cool the prepared Ti-6Al-4V titanium alloy parts blank to 600°C and take it out in the air to obtain high-density Ti-6Al-4V titanium alloy parts;
然后将高致密度Ti-6Al-4V钛合金零部件在700℃下,真空环境下退火6小时,得到退火后的Ti-6Al-4V钛合金零部件。Then, the high-density Ti-6Al-4V titanium alloy parts were annealed at 700 °C in a vacuum environment for 6 hours to obtain the annealed Ti-6Al-4V titanium alloy parts.
对制备的Ti-6Al-4V钛合金零部件毛坯进行观察(见图2),几乎近净成形。对Ti-6Al-4V钛合金零部件毛坯件的材料横截面进行观察(见图3),证实Ti-6Al-4V钛合金零部件具有较高的致密度,其相对密度为99%和粉末颗粒之间的冶金程度为98%。Observation of the prepared Ti-6Al-4V titanium alloy parts blank (see Figure 2) shows almost net shape. Observation of the material cross-section of the Ti-6Al-4V titanium alloy parts blank (see Figure 3) confirms that the Ti-6Al-4V titanium alloy parts have high density, with a relative density of 99% and powder particles. The degree of metallurgy in between is 98%.
制备的高致密度Ti-6Al-4V钛合金零部件表面形貌图见图4,可以看到经过退火处理后,制备的高致密度Ti-6Al-4V钛合金零部件表面光滑,并且无缺陷,并且和图2相比,其仅仅在图2的近净成形Ti-6Al-4V钛合金零部件毛坯基础上,去除材料占整个钛或钛合金零部件总重量的5%,说明直接能够通过充型,得到高致密度Ti-6Al-4V钛合金零部件。The surface morphology of the prepared high-density Ti-6Al-4V titanium alloy parts is shown in Figure 4. It can be seen that after annealing, the prepared high-density Ti-6Al-4V titanium alloy parts have smooth surfaces and no defects. , and compared with Figure 2, only on the basis of the near-net-shaped Ti-6Al-4V titanium alloy parts blank in Figure 2, the material removed accounts for 5% of the total weight of the entire titanium or titanium alloy parts, indicating that the direct Fill the mold to obtain high-density Ti-6Al-4V titanium alloy parts.
对制备的高致密度Ti-6Al-4V钛合金零部件进行X射线分析,金相扫描电镜观察,以及拉伸测试,获得高致密度Ti-6Al-4V钛合金零部件材料的微观组织和力学性能数据。The prepared high-density Ti-6Al-4V titanium alloy parts were subjected to X-ray analysis, metallographic scanning electron microscope observation, and tensile testing to obtain the microstructure and mechanics of the high-density Ti-6Al-4V titanium alloy parts and components. performance data.
如图5为制备的高致密度Ti-6Al-4V钛合金零部件的不同位置取样的XRD图谱,通过图5可知,各个位置取样的XRD图谱基本一致,说明高致密度Ti-6Al-4V钛合金零部件成分均匀,图6为高致密度Ti-6Al-4V钛合金零部件的金相照片,通过图6可以看出制备的钛合金零部件具有典型的全致密片层组织,图7为所制备的Ti-6Al-4V钛合金零部件材料退火后的金相照片和XRD图谱;通过图7可知退火后,钛合金零部件的微观组织基本没有变化;图8为所制备的Ti-6Al-4V钛合金零部件材料退火后的拉伸工程应力-应变曲线,通过该曲线可知钛合金零部件的拉伸强度达到1080MPa,断裂延伸率达到10%。Figure 5 shows the XRD patterns of the prepared high-density Ti-6Al-4V titanium alloy parts at different positions. It can be seen from Figure 5 that the XRD patterns of the samples at each position are basically the same, indicating that the high-density Ti-6Al-4V titanium The composition of the alloy parts is uniform. Figure 6 is the metallographic photo of the high-density Ti-6Al-4V titanium alloy parts. It can be seen from Figure 6 that the prepared titanium alloy parts have a typical fully dense lamellar structure. Figure 7 shows The metallographic photos and XRD patterns of the prepared Ti-6Al-4V titanium alloy parts after annealing; Figure 7 shows that the microstructure of the titanium alloy parts is basically unchanged after annealing; Figure 8 shows the prepared Ti-6Al The tensile engineering stress-strain curve of -4V titanium alloy parts material after annealing, it can be seen from this curve that the tensile strength of titanium alloy parts reaches 1080MPa, and the elongation at break reaches 10%.
精选实施例2:Featured Example 2:
本实施例提供的一种高致密度工业纯钛零部件的粉末冶金充型制造方法,该方法的具体步骤如下:The present embodiment provides a powder metallurgy filling manufacturing method for high-density industrial pure titanium parts, and the specific steps of the method are as follows:
步骤1:将4.3kg氢化脱氢钛粉末置于内腔直径为115mm,高度为450mm的圆柱形模具中,进行模压,获得直径为115mm,高度为112mm的圆柱形工业钛粉粉末压坯,工业钛粉粉末压坯密度为:3.70g/cm3,相对密度为:82.2%。Step 1: Place 4.3 kg of hydrogenated titanium powder in a cylindrical mold with an inner cavity diameter of 115 mm and a height of 450 mm, and carry out molding to obtain a cylindrical industrial titanium powder compact with a diameter of 115 mm and a height of 112 mm, industrial The density of the titanium powder powder compact is: 3.70 g/cm 3 , and the relative density is: 82.2%.
步骤2:在绝对气压低于175Pa的真空环境下对制备的工业钛粉粉末压坯进行感应加热,平均加热速度为:50℃/min,工业钛粉粉末压坯升温至1250℃,保温5分钟,得到加热后的工业钛粉粉末压坯;此时,加热后的工业钛粉粉末压坯中,部分工业钛粉已经烧结,烧结程度为60%;Step 2: Inductively heat the prepared industrial titanium powder compacts in a vacuum environment with an absolute pressure lower than 175Pa. The average heating rate is: 50°C/min. The industrial titanium powder compacts are heated to 1250°C and kept for 5 minutes. , to obtain the heated industrial titanium powder compact; at this time, in the heated industrial titanium powder compact, part of the industrial titanium powder has been sintered, and the sintering degree is 60%;
步骤3:然后将加热后的工业钛粉粉末压坯用机器手移到图1所示的预热后的钛或钛合金零部件充型模具中的挤压筒里。用液压机通过上压头对工业钛粉粉末压坯加压,压强为500MPa,下压速度为30mm/s。在压力的作用下,工业钛粉粉末坯材料流动,填充钛或钛合金零部件型腔,获得近净成形的工业纯钛零部件毛坯。Step 3: Then, the heated industrial titanium powder compact is moved by a robot into the extrusion barrel in the preheated titanium or titanium alloy parts filling mold shown in FIG. 1 . Use a hydraulic press to pressurize the industrial titanium powder compacts through the upper indenter, the pressure is 500MPa, and the lowering speed is 30mm/s. Under the action of pressure, the industrial titanium powder powder material flows, fills the cavity of titanium or titanium alloy parts, and obtains near-net-shaped industrial pure titanium parts blanks.
将工业纯钛零部件毛坯冷却到600℃或以下,在空气中从模具中取出,得到高致密度工业纯钛零部件。Cool the industrial pure titanium parts blank to 600 ℃ or below, and take it out from the mold in the air to obtain high-density industrial pure titanium parts.
对高致密度工业纯钛零部件在700℃下,真空环境下退火6小时,得到退火后的高致密度工业纯钛零部件。High-density industrial pure titanium parts are annealed at 700°C in a vacuum environment for 6 hours to obtain annealed high-density industrial pure titanium parts.
对制备的零部件毛坯件的材料进行X射线分析,金相和扫描电镜观察,以及拉伸测试,获得材料的微观组织和力学性能测试。X-ray analysis, metallographic and scanning electron microscope observations, and tensile tests are performed on the materials of the prepared parts blanks to obtain the microstructure and mechanical properties of the materials.
将制备的高致密度工业纯钛零部件在不同位置和热处理前后进行XRD分析,其XRD图谱如图9所示,从图9可以看出工业纯钛零部件以α-Ti为主,无明显杂质峰,各位置取样XRD图谱基本一致,合金成分均匀性较好。The prepared high-density industrial pure titanium parts were subjected to XRD analysis at different positions and before and after heat treatment. The XRD pattern is shown in Figure 9. It can be seen from Figure 9 that the industrial pure titanium parts are mainly α-Ti, and there is no obvious The impurity peaks, the XRD patterns of the samples at each position are basically the same, and the alloy composition uniformity is good.
高致密度工业纯钛零部件热处理前的金相照片如图10所示,从图中可知,高致密度工业纯钛零部件热处理前的金相组织为魏氏组织,组织均匀,存在部分晶团。The metallographic photo of the high-density industrial pure titanium parts before heat treatment is shown in Figure 10. It can be seen from the figure that the metallographic structure of the high-density industrial pure titanium parts before heat treatment is Widmanderstein, the structure is uniform, and there are some crystallites. group.
高致密度工业纯钛零部件经过700℃,6小时退火处理以后的金相照片如图11所示,说明,退火后纯钛工件金相组织为等轴组织。高致密度工业纯钛零部件经过700℃,6小时退火处理以后的拉伸工程应力-工程应变曲线如图12所示,说明高致密度工业纯钛零部件经过700℃,6小时退火后抗拉强度能够达到600MPa,延伸率为16%-20%。Figure 11 shows the metallographic photos of high-density industrial pure titanium parts after annealing at 700°C for 6 hours, indicating that the metallographic structure of pure titanium parts after annealing is equiaxed. The tensile engineering stress-engineering strain curve of high-density industrial pure titanium parts after annealing at 700°C for 6 hours is shown in Figure 12, indicating that the high-density industrial pure titanium parts are resistant to resistance after annealing at 700°C for 6 hours. The tensile strength can reach 600MPa, and the elongation is 16%-20%.
精选实施例3:Featured Example 3:
一种高致密度钛合金零部件的粉末冶金充型制造方法,包括以下步骤:A powder metallurgy filling manufacturing method for high-density titanium alloy parts, comprising the following steps:
(1)将200目以下的钛粉和配置合金所需要的200目以下的Al60V40中间合金粉末,采用机械球磨的方式均匀混合,得到配比为Ti-3Al-2.5V(质量百分比)混合粉末;(1) The titanium powder below 200 mesh and the Al60V40 intermediate alloy powder below 200 mesh required for the configuration of the alloy are uniformly mixed by mechanical ball milling to obtain a mixed powder with a ratio of Ti-3Al-2.5V (mass percentage);
(2)在氩气保护环境下,将混合粉末置于预热至200℃的压坯模具中,采用冷等静压方式,在800MPa下,保压5min,压坯成长方体规则形状,得到相对密度83%的粉末压坯;(2) Under the argon protection environment, the mixed powder was placed in a compaction mold preheated to 200 °C, and cold isostatic pressing was used. Powder compact with a density of 83%;
(3)在氩气保护下,利用微波加热将粉末压坯以50℃/min升温速度加热到1300℃,保温5分钟,得到加热后的粉末压坯,加热后的粉末压坯的烧结程度为60%;(3) Under the protection of argon, the powder compact was heated to 1300°C at a heating rate of 50°C/min by microwave heating, and the temperature was maintained for 5 minutes to obtain the heated powder compact. The sintering degree of the heated powder compact is: 60%;
(4)在氩气保护下,将加热的粉末压坯快速转移到预热至400℃的钛或钛合金零部件充型模具里;(4) Under the protection of argon gas, the heated powder compact is quickly transferred to the titanium or titanium alloy parts filling mold preheated to 400 °C;
(5)在氩气保护下,对加热后的粉末压坯加压,先驱动加热后的粉末压坯填充模具的型腔,形成Ti-3Al-2.5V钛合金零部件毛坯;(5) Under the protection of argon, pressurize the heated powder compact, first drive the heated powder compact to fill the cavity of the mold, and form a Ti-3Al-2.5V titanium alloy parts blank;
(6)在氩气保护下,当Ti-3Al-2.5V钛合金零部件毛坯的温度降到900℃以后,打开模具,取出Ti-3Al-2.5V钛合金零部件毛坯。(6) Under the protection of argon gas, when the temperature of the Ti-3Al-2.5V titanium alloy parts blank drops to 900 ℃, open the mold and take out the Ti-3Al-2.5V titanium alloy parts blank.
(7)去除多余部分;(7) Remove the redundant part;
(8)对钛合金零部件毛坯进行机加工,得到Ti-3Al-2.5V钛合金零部件。(8) Machining the titanium alloy parts blank to obtain Ti-3Al-2.5V titanium alloy parts.
精选实施例4:Featured Example 4:
一种高致密度钛合金零部件的粉末冶金充型制造方法,包括以下步骤:A powder metallurgy filling manufacturing method for high-density titanium alloy parts, comprising the following steps:
(1)将200目以下的氢化钛粉和配置合金所需要的200目以下的Mo和Ni金属粉末,采用机械球磨的方式均匀混合,得到配比为Ti-1.5Mo-2Ni(质量百分比)的混合粉末;(1) The titanium hydride powder below 200 mesh and the Mo and Ni metal powder below 200 mesh required for the configuration of the alloy are uniformly mixed by mechanical ball milling to obtain a mixture of Ti-1.5Mo-2Ni (mass percentage) mixed powder;
(2)在氩气保护环境下,将混合粉末置于预热至500℃的压坯模具中,采用模压方式,在500MPa下,保压1min,压坯成长方体规则形状,得到相对密度81%的粉末压坯;(2) Under the argon protection environment, the mixed powder was placed in a compacting mold preheated to 500 ° C, and the molding method was adopted. powder compact;
(3)在氩气保护下,利用等离子体加热将粉末压坯以100℃/min升温速度加热到1350℃,保温10分钟,得到加热后的粉末压坯;此时,加热后的粉末压坯中氢化钛粉已经脱氢得到钛粉;加热后的粉末压坯的烧结程度为50%;(3) Under the protection of argon, the powder compact is heated to 1350°C at a heating rate of 100°C/min by plasma heating, and the temperature is maintained for 10 minutes to obtain the heated powder compact; at this time, the heated powder compact is obtained. The titanium hydride powder has been dehydrogenated to obtain titanium powder; the sintering degree of the heated powder compact is 50%;
(4)在氩气保护下,将加热的粉末压坯快速转移到预热至400℃的钛或钛合金零部件充型模具里;(4) Under the protection of argon gas, the heated powder compact is quickly transferred to the titanium or titanium alloy parts filling mold preheated to 400 °C;
(5)在氩气保护下,对加热后的粉末压坯加压,先驱动加热后的粉末压坯在压强为500MPa的压力下,填充模具的型腔,形成Ti-1.5Mo-2Ni钛合金零部件毛坯;(5) Under the protection of argon gas, pressurize the heated powder compact, first drive the heated powder compact under the pressure of 500MPa, fill the cavity of the mold, and form a Ti-1.5Mo-2Ni titanium alloy parts blank;
(6)在氩气保护下,当Ti-1.5Mo-2Ni钛合金零部件毛坯的温度降到900℃以后,打开模具,取出Ti-1.5Mo-2Ni钛合金零部件毛坯。(6) Under the protection of argon gas, when the temperature of the Ti-1.5Mo-2Ni titanium alloy parts blank drops to 900 ℃, open the mold and take out the Ti-1.5Mo-2Ni titanium alloy parts blank.
(7)去除多余部分;(7) Remove the redundant part;
(8)对钛合金零部件毛坯在750℃保温2h,进行彻底脱氢,然后进行机加工,得到Ti-1.5Mo-2Ni钛合金零部件。(8) The titanium alloy parts blanks are kept at 750°C for 2 hours, thoroughly dehydrogenated, and then machined to obtain Ti-1.5Mo-2Ni titanium alloy parts.
精选实施例5:Featured Example 5:
一种高致密度钛合金零部件的粉末冶金充型制造方法,其步骤包括:A powder metallurgy filling manufacturing method for high-density titanium alloy parts, the steps of which include:
(1)将颗粒度在200目以下的氢化钛和钛粉以1:1的质量比混合,作为钛合金中钛源;以Ti-0.2Pd(质量百分比)钛合金配比,称量颗粒度在200目以下的Pd金属,将Pd金属和钛源原料机械球磨混匀,得到混合粉末;(1) Mix titanium hydride and titanium powder with a particle size below 200 mesh in a mass ratio of 1:1 as the titanium source in the titanium alloy; measure the particle size with the Ti-0.2Pd (mass percent) titanium alloy ratio For the Pd metal below 200 mesh, the Pd metal and the titanium source raw material are mechanically ball milled and mixed to obtain a mixed powder;
(2)通过室温压模模具进行双向模压成型,将混合粉末压制成圆柱形,得到粉末压坯;其中,模压过程中,压强为1000MPa,保压时间为1min;所获得的粉末压坯相对密度在85%;(2) Bidirectional molding is performed by a room temperature compression mold, and the mixed powder is pressed into a cylindrical shape to obtain a powder compact; wherein, in the molding process, the pressure is 1000MPa, and the pressure holding time is 1min; the obtained powder compact has a relative density at 85%;
(3)在真空环境下,用电炉加热,加热时间为30min,将粉末压坯加热到加热至1000℃,并保温30min;得到加热后的粉末压坯,其烧结程度为50%;(3) heating with an electric furnace in a vacuum environment for 30 minutes, heating the powder compact to 1000°C, and keeping the temperature for 30 minutes; obtaining the heated powder compact with a sintering degree of 50%;
(4)在真空环境下,将加热后的粉末压坯放入预热温度为100℃的钛或钛合金零部件充型模具;(4) In a vacuum environment, put the heated powder compact into a titanium or titanium alloy parts filling mold with a preheating temperature of 100°C;
在真空环境下,对加热后的粉末压坯加压,先驱动加热后的粉末压坯进行挤压,挤压比为5:1,加压压强为100MPa,挤压速度为25mm/s,然后再填充至钛或钛合金零部件充型模具的型腔,实现成型;In a vacuum environment, pressurize the heated powder compact, first drive the heated powder compact to extrude, the extrusion ratio is 5:1, the pressing pressure is 100MPa, the extrusion speed is 25mm/s, and then Refill into the cavity of the filling mold for titanium or titanium alloy parts to achieve forming;
(5)成型后的钛合金在模具中冷却到800℃后,打开模具,取出钛合金零部件毛坯;(5) After the formed titanium alloy is cooled to 800 ℃ in the mold, the mold is opened, and the titanium alloy parts blank is taken out;
(6)将钛合金零部件毛坯去除多余部分,在置于650℃保温10h进行热处理,从而彻底脱氢,并对整体零部件进行热处理,然后局部机加工,获得Ti-0.2Pd钛合金零部件。(6) Remove the excess part of the titanium alloy parts blank, heat treatment at 650 ° C for 10h, so as to completely dehydrogenate, heat treatment of the whole parts, and then partially machined to obtain Ti-0.2Pd titanium alloy parts .
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010685805.XA CN111822711B (en) | 2020-07-16 | 2020-07-16 | High-density titanium or titanium alloy part and powder metallurgy mold filling manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010685805.XA CN111822711B (en) | 2020-07-16 | 2020-07-16 | High-density titanium or titanium alloy part and powder metallurgy mold filling manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111822711A true CN111822711A (en) | 2020-10-27 |
CN111822711B CN111822711B (en) | 2022-04-19 |
Family
ID=72923043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010685805.XA Active CN111822711B (en) | 2020-07-16 | 2020-07-16 | High-density titanium or titanium alloy part and powder metallurgy mold filling manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111822711B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113102752A (en) * | 2021-03-11 | 2021-07-13 | 华南理工大学 | High-performance powder metallurgy titanium metal and preparation method thereof |
CN113333745A (en) * | 2021-05-18 | 2021-09-03 | 中国工程物理研究院材料研究所 | Powder compacting die with atmosphere protection function and method |
CN114309603A (en) * | 2022-01-05 | 2022-04-12 | 东北大学 | Method for preparing pure titanium by directly hot extruding sponge titanium particles |
CN114672682A (en) * | 2022-02-23 | 2022-06-28 | 北京科技大学 | High-performance powder metallurgy titanium alloy parts and preparation method thereof |
CN115229129A (en) * | 2022-06-25 | 2022-10-25 | 扬州维尔斯金属科技有限公司 | Preparation method of wear-resistant accessory of automobile part |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61124549A (en) * | 1984-11-21 | 1986-06-12 | Hitachi Ltd | Composite material of metal and ceramics |
CN1605414A (en) * | 2004-10-22 | 2005-04-13 | 哈尔滨工业大学 | Method for preparing vacuum hotpressing autogeny titanium-base composite material |
CN102121078A (en) * | 2011-01-20 | 2011-07-13 | 西北工业大学 | Composite preparation method for fine crystal titanium alloy |
CN104162555A (en) * | 2014-05-28 | 2014-11-26 | 哈尔滨工业大学(威海) | Semi-solid thixotropic-plastic compound forming method |
CN104451239A (en) * | 2014-12-04 | 2015-03-25 | 兰州理工大学 | Preparation Method of Powder Thixomorphing of Al3Tip/Al-Based Self-Growing Composite |
CN105081314A (en) * | 2015-09-25 | 2015-11-25 | 上海交通大学 | Method for preparing titanium product through titanium hydride powder |
CN105734316A (en) * | 2016-03-07 | 2016-07-06 | 上海交通大学 | Method for directly preparing molding titanium matrix composite through titanium hydride powder |
CN106077656A (en) * | 2016-07-30 | 2016-11-09 | 上海交通大学 | A kind of prepare the Novel powder metallurgy method with nanometer or hyperfine structure titanium article |
CN108555052A (en) * | 2018-03-19 | 2018-09-21 | 北京科技大学 | A kind of strong flow pressing method of rib-web part bilateral variable conduit and shaping dies |
CN110202109A (en) * | 2019-06-21 | 2019-09-06 | 重庆大学 | A kind of compound multistage forming technology of Semi-Solid Thixoforming-plasticity |
CN110343887A (en) * | 2019-07-11 | 2019-10-18 | 中国航发北京航空材料研究院 | A kind of method that powder extruding prepares high-compactness Fine Grain Ti Alloy |
-
2020
- 2020-07-16 CN CN202010685805.XA patent/CN111822711B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61124549A (en) * | 1984-11-21 | 1986-06-12 | Hitachi Ltd | Composite material of metal and ceramics |
CN1605414A (en) * | 2004-10-22 | 2005-04-13 | 哈尔滨工业大学 | Method for preparing vacuum hotpressing autogeny titanium-base composite material |
CN102121078A (en) * | 2011-01-20 | 2011-07-13 | 西北工业大学 | Composite preparation method for fine crystal titanium alloy |
CN104162555A (en) * | 2014-05-28 | 2014-11-26 | 哈尔滨工业大学(威海) | Semi-solid thixotropic-plastic compound forming method |
CN104451239A (en) * | 2014-12-04 | 2015-03-25 | 兰州理工大学 | Preparation Method of Powder Thixomorphing of Al3Tip/Al-Based Self-Growing Composite |
CN105081314A (en) * | 2015-09-25 | 2015-11-25 | 上海交通大学 | Method for preparing titanium product through titanium hydride powder |
CN105734316A (en) * | 2016-03-07 | 2016-07-06 | 上海交通大学 | Method for directly preparing molding titanium matrix composite through titanium hydride powder |
CN106077656A (en) * | 2016-07-30 | 2016-11-09 | 上海交通大学 | A kind of prepare the Novel powder metallurgy method with nanometer or hyperfine structure titanium article |
CN108555052A (en) * | 2018-03-19 | 2018-09-21 | 北京科技大学 | A kind of strong flow pressing method of rib-web part bilateral variable conduit and shaping dies |
CN110202109A (en) * | 2019-06-21 | 2019-09-06 | 重庆大学 | A kind of compound multistage forming technology of Semi-Solid Thixoforming-plasticity |
CN110343887A (en) * | 2019-07-11 | 2019-10-18 | 中国航发北京航空材料研究院 | A kind of method that powder extruding prepares high-compactness Fine Grain Ti Alloy |
Non-Patent Citations (1)
Title |
---|
莫畏等: "《钛冶金》", 30 June 1979, 冶金工业出版社 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113102752A (en) * | 2021-03-11 | 2021-07-13 | 华南理工大学 | High-performance powder metallurgy titanium metal and preparation method thereof |
CN113333745A (en) * | 2021-05-18 | 2021-09-03 | 中国工程物理研究院材料研究所 | Powder compacting die with atmosphere protection function and method |
CN114309603A (en) * | 2022-01-05 | 2022-04-12 | 东北大学 | Method for preparing pure titanium by directly hot extruding sponge titanium particles |
CN114672682A (en) * | 2022-02-23 | 2022-06-28 | 北京科技大学 | High-performance powder metallurgy titanium alloy parts and preparation method thereof |
CN115229129A (en) * | 2022-06-25 | 2022-10-25 | 扬州维尔斯金属科技有限公司 | Preparation method of wear-resistant accessory of automobile part |
Also Published As
Publication number | Publication date |
---|---|
CN111822711B (en) | 2022-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111822711B (en) | High-density titanium or titanium alloy part and powder metallurgy mold filling manufacturing method thereof | |
CN108060322B (en) | Preparation method of hard high-entropy alloy composite material | |
US20040096350A1 (en) | Method for manufacturing fully dense metal sheets and layered composites from reactive alloy powders | |
JP3103359B2 (en) | Method of manufacturing tungsten-titanium sputtering target | |
CN107760897A (en) | To hydrogenate method of the titanium sponge as raw material manufacture titanium and titanium alloy and its parts | |
Ke et al. | Densification and microstructure evolution during SPS consolidation process in W-Ni-Fe system | |
CN104588653A (en) | Preparation method of TiAl alloy profile | |
CN112322933B (en) | High-performance near-alpha high-temperature titanium alloy and powder metallurgy preparation method thereof | |
CN107130125A (en) | A kind of preparation method of high-entropy alloy | |
JPH0347903A (en) | Density increase of powder aluminum and aluminum alloy | |
CN114058901B (en) | Submicron yttrium oxide particle toughened high-performance near-alpha powder metallurgy titanium alloy and preparation method thereof | |
CN112792308A (en) | Roller for continuous induction type quick quenching furnace and manufacturing method thereof | |
Suwanpreecha et al. | fatigue properties of Ti-6Al-4V alloys fabricated by metal injection moulding | |
CN110983152A (en) | A Fe-Mn-Si-Cr-Ni-based shape memory alloy and preparation method thereof | |
JP4397425B1 (en) | Method for producing Ti particle-dispersed magnesium-based composite material | |
US6402802B1 (en) | Exoflash consolidation technology to produce fully dense nanostructured materials | |
CN111822708B (en) | Preparation method of powder metallurgy Ti-W metal-metal heterostructure composite material | |
US3472709A (en) | Method of producing refractory composites containing tantalum carbide,hafnium carbide,and hafnium boride | |
CN114672682B (en) | High-performance powder metallurgy titanium alloy part and preparation method thereof | |
CN105925865A (en) | Boron-containing alloy target material and preparation method thereof | |
Gülsoy et al. | Injection molding of mechanical alloyed Ti–Fe–Zr powder | |
CN115255367A (en) | Nickel-aluminum alloy sputtering target material and hot-pressing preparation method thereof | |
CN113652569A (en) | Preparation method of gradient-enhanced titanium-based composite material | |
CN103170631B (en) | Method of manufacturing small-sized and thin-wall Nb-W-Mo-Zr alloy parts | |
CN113798488A (en) | Aluminum-based powder metallurgy material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |