CN111815694A - A kind of fatigue crack growth life prediction method, device, equipment and storage medium - Google Patents
A kind of fatigue crack growth life prediction method, device, equipment and storage medium Download PDFInfo
- Publication number
- CN111815694A CN111815694A CN202010961203.2A CN202010961203A CN111815694A CN 111815694 A CN111815694 A CN 111815694A CN 202010961203 A CN202010961203 A CN 202010961203A CN 111815694 A CN111815694 A CN 111815694A
- Authority
- CN
- China
- Prior art keywords
- fatigue crack
- crack growth
- fatigue
- image
- life prediction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 74
- 238000012545 processing Methods 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims abstract description 11
- 238000004422 calculation algorithm Methods 0.000 claims description 10
- 238000004590 computer program Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 8
- 125000004122 cyclic group Chemical group 0.000 claims description 7
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 abstract description 16
- 238000005516 engineering process Methods 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 206010035148 Plague Diseases 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/80—Geometric correction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Operations Research (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Economics (AREA)
- Quality & Reliability (AREA)
- General Engineering & Computer Science (AREA)
- Development Economics (AREA)
- Software Systems (AREA)
- Game Theory and Decision Science (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- Entrepreneurship & Innovation (AREA)
- Marketing (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本申请公开了一种疲劳裂纹扩展寿命预测方法、装置、设备及存储介质,该方法包括:采集构件疲劳裂纹扩展图像;根据采集的图像,获取裂纹图像视差信息;对获取的裂纹图像视差信息进行处理,得到疲劳裂纹深度数据;根据得到的疲劳裂纹深度数据,对疲劳裂纹扩展寿命进行预测。本申请将图像处理技术与疲劳裂纹扩展寿命的预测相结合,适用于预测各种材料结构的疲劳裂纹扩展寿命,可实现非接触检测,操作简单且不会对结构造成任何损伤,成本低,效率高,精度高,能够解决现有各种测量疲劳裂纹的方法精度不高、设备繁琐、操作复杂、实时性差、环境要求苛刻等问题。
The application discloses a fatigue crack growth life prediction method, device, equipment and storage medium. The method includes: collecting a fatigue crack growth image of a component; obtaining crack image parallax information according to the collected image; After processing, the fatigue crack depth data is obtained; according to the obtained fatigue crack depth data, the fatigue crack propagation life is predicted. This application combines image processing technology with the prediction of fatigue crack growth life, and is suitable for predicting the fatigue crack growth life of various material structures. It can realize non-contact detection, simple operation and will not cause any damage to the structure, low cost and high efficiency. It has high precision and high precision, and can solve the problems of low precision, cumbersome equipment, complicated operation, poor real-time performance and harsh environment requirements of various existing methods for measuring fatigue cracks.
Description
技术领域technical field
本发明涉及建筑工程技术领域,特别是涉及一种疲劳裂纹扩展寿命预测方法、装置、设备及存储介质。The invention relates to the technical field of construction engineering, in particular to a fatigue crack growth life prediction method, device, equipment and storage medium.
背景技术Background technique
在各种工程结构和构件的断裂失效事故中,有80%左右是由于疲劳失效引起的。疲劳断裂是困扰着很多行业的问题,尤其在土木工程领域,由疲劳引起的失效在工程失效中所占的比重越来越突出,一旦发生断裂失效,就会造成巨大的经济损失和人员伤亡,后果不堪设想。About 80% of the fracture failure accidents of various engineering structures and components are caused by fatigue failure. Fatigue fracture is a problem that plagues many industries, especially in the field of civil engineering. The proportion of failure caused by fatigue in engineering failure is becoming more and more prominent. Once fracture failure occurs, it will cause huge economic losses and casualties. The consequences could be disastrous.
疲劳裂纹萌生与扩展的检测及分析是结构疲劳设计与寿命预测的主要任务之一。如今,国内外开展疲劳裂纹扩展试验,对疲劳裂纹进行检测的方法主要有两种:静态检测和动态检测。其中,采用静态检测方法进行检测时,需要被测物处于相对静止状态,静态检测的方法有:表面复型法、电磁涡流法、磁感应法、磁粉法、渗透法等;而动态检测法针对的是正在发生相对运动的物体,动态检测的方法有:超声波检测法、射线检测法、声发射法、模态声发射法等。但目前各种测量疲劳裂纹的方法,要么精度不高,要么设备繁琐、操作复杂、实时性差、环境要求苛刻。The detection and analysis of fatigue crack initiation and propagation is one of the main tasks of structural fatigue design and life prediction. Nowadays, fatigue crack propagation tests are carried out at home and abroad, and there are two main methods for detecting fatigue cracks: static testing and dynamic testing. Among them, when the static detection method is used for detection, the measured object needs to be in a relatively static state. The static detection methods include: surface replica method, electromagnetic eddy current method, magnetic induction method, magnetic powder method, penetration method, etc.; while the dynamic detection method is aimed at It is an object that is undergoing relative motion. The methods of dynamic detection include: ultrasonic detection method, ray detection method, acoustic emission method, modal acoustic emission method, etc. However, the various methods for measuring fatigue cracks at present either have low accuracy, or have cumbersome equipment, complicated operations, poor real-time performance and harsh environmental requirements.
因此,如何解决现有测量疲劳裂纹检测方法存在的精度不高、设备繁琐、操作复杂、实时性差、环境要求苛刻等问题,是本领域技术人员亟待解决的技术问题。Therefore, how to solve the problems of low precision, cumbersome equipment, complicated operation, poor real-time performance, and harsh environmental requirements existing in the existing measurement fatigue crack detection method is a technical problem to be solved urgently by those skilled in the art.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的在于提供一种疲劳裂纹扩展寿命预测方法、装置、设备及存储介质,可以自动测量动态监测疲劳裂纹并进行疲劳寿命预测,实现实时无接触检测,且成本低、精度高、易操作。其具体方案如下:In view of this, the purpose of the present invention is to provide a fatigue crack growth life prediction method, device, equipment and storage medium, which can automatically measure and dynamically monitor fatigue cracks and perform fatigue life prediction, realize real-time non-contact detection, and have low cost and high precision. High and easy to operate. Its specific plan is as follows:
一种疲劳裂纹扩展寿命预测方法,包括:A fatigue crack growth life prediction method, comprising:
采集构件疲劳裂纹扩展图像;Collect fatigue crack growth images of components;
根据采集的所述图像,获取裂纹图像视差信息;According to the collected image, obtain the disparity information of the crack image;
对获取的所述裂纹图像视差信息进行处理,得到疲劳裂纹深度数据;processing the obtained crack image parallax information to obtain fatigue crack depth data;
根据得到的所述疲劳裂纹深度数据,对疲劳裂纹扩展寿命进行预测。According to the obtained fatigue crack depth data, the fatigue crack growth life is predicted.
优选地,在本发明实施例提供的上述疲劳裂纹扩展寿命预测方法中,采集构件疲劳裂纹扩展图像,具体包括:Preferably, in the above-mentioned fatigue crack growth life prediction method provided by the embodiment of the present invention, collecting a fatigue crack growth image of a component specifically includes:
通过双目相机、TOF相机或结构光相机采集构件疲劳裂纹扩展图像。Fatigue crack propagation images of components are collected by binocular camera, TOF camera or structured light camera.
优选地,在本发明实施例提供的上述疲劳裂纹扩展寿命预测方法中,获取裂纹图像视差信息,具体包括:Preferably, in the above-mentioned fatigue crack propagation life prediction method provided by the embodiment of the present invention, the acquisition of crack image parallax information specifically includes:
通过使用OpenCV中的BM算法或SGBM算法计算视差。Disparity is calculated by using the BM algorithm in OpenCV or the SGBM algorithm.
优选地,在本发明实施例提供的上述疲劳裂纹扩展寿命预测方法中,当通过双目相机采集构件疲劳裂纹扩展图像时,所述双目相机中两台相机的像平面位于同一平面上,光轴相互平行;采用下列公式得到疲劳裂纹深度数据:Preferably, in the above-mentioned fatigue crack growth life prediction method provided in the embodiment of the present invention, when a component fatigue crack growth image is collected by a binocular camera, the image planes of the two cameras in the binocular camera are located on the same plane, and the light The axes are parallel to each other; the fatigue crack depth data is obtained using the following formula:
其中,为裂纹深度;为所述双目相机的焦距;为所述双目相机中两台相机之间的距离;为视差。in, is the crack depth; is the focal length of the binocular camera; is the distance between two cameras in the binocular camera; for parallax.
优选地,在本发明实施例提供的上述疲劳裂纹扩展寿命预测方法中,采用下列公式预测疲劳裂纹扩展寿命:Preferably, in the above-mentioned fatigue crack growth life prediction method provided by the embodiment of the present invention, the following formula is used to predict the fatigue crack growth life:
其中,为疲劳裂纹扩展寿命;为裂纹深度;为临界裂纹尺寸;为几何修正系数;为循环应力幅;为裂纹扩展参数;为描述材料疲劳裂纹扩展性能的基本参数。in, is the fatigue crack growth life; is the crack depth; is the critical crack size; is the geometric correction coefficient; is the cyclic stress amplitude; is the crack propagation parameter; It is a basic parameter to describe the fatigue crack growth performance of materials.
优选地,在本发明实施例提供的上述疲劳裂纹扩展寿命预测方法中,采用下列公式确定临界裂纹尺寸:Preferably, in the above-mentioned fatigue crack growth life prediction method provided by the embodiment of the present invention, the following formula is used to determine the critical crack size:
其中,为临界裂纹尺寸;为最大循环应力;为材料的断裂韧度;为几何修正系数。in, is the critical crack size; is the maximum cyclic stress; is the fracture toughness of the material; is the geometric correction factor.
本发明实施例还提供了一种疲劳裂纹扩展寿命预测装置,包括:The embodiment of the present invention also provides a fatigue crack growth life prediction device, including:
图像采集模块,用于采集构件疲劳裂纹扩展图像;The image acquisition module is used to acquire the fatigue crack growth image of the component;
图像处理模块,用于根据采集的所述图像,获取裂纹图像视差信息;an image processing module, configured to obtain the disparity information of the crack image according to the collected image;
裂纹数据计算模块,用于对获取的所述裂纹图像视差信息进行处理,得到疲劳裂纹深度数据;a crack data calculation module, configured to process the acquired parallax information of the crack image to obtain fatigue crack depth data;
疲劳寿命预测模块,用于根据得到的所述疲劳裂纹深度数据,对疲劳裂纹扩展寿命进行预测。The fatigue life prediction module is used for predicting the fatigue crack growth life according to the obtained fatigue crack depth data.
本发明实施例还提供了一种疲劳裂纹扩展寿命预测设备,包括处理器和存储器,其中,所述处理器执行所述存储器中保存的计算机程序时实现如本发明实施例提供的上述疲劳裂纹扩展寿命预测方法。An embodiment of the present invention further provides a fatigue crack growth life prediction device, including a processor and a memory, wherein, when the processor executes a computer program stored in the memory, the above-mentioned fatigue crack propagation provided by the embodiment of the present invention is realized life prediction methods.
优选地,在本发明实施例提供的上述疲劳裂纹扩展寿命预测设备中,还包括:用于采集构件疲劳裂纹扩展图像的摄像装置,用于显示图像及相关数据的显示装置,以及用于将所述摄像装置和所述显示装置耦合至所述处理器和所述存储器的外设接口。Preferably, in the above-mentioned fatigue crack growth life prediction device provided in the embodiment of the present invention, it further includes: a camera device for collecting fatigue crack growth images of components, a display device for displaying images and related data, and a The camera device and the display device are coupled to a peripheral interface of the processor and the memory.
本发明实施例还提供了一种计算机可读存储介质,用于存储计算机程序,其中,所述计算机程序被处理器执行时实现如本发明实施例提供的上述疲劳裂纹扩展寿命预测方法。Embodiments of the present invention further provide a computer-readable storage medium for storing a computer program, wherein when the computer program is executed by a processor, the above-mentioned fatigue crack growth life prediction method provided by the embodiments of the present invention is implemented.
从上述技术方案可以看出,本发明所提供的一种疲劳裂纹扩展寿命预测方法、装置、设备及存储介质,包括:采集构件疲劳裂纹扩展图像;根据采集的图像,获取裂纹图像视差信息;对获取的裂纹图像视差信息进行处理,得到疲劳裂纹深度数据;根据得到的疲劳裂纹深度数据,对疲劳裂纹扩展寿命进行预测。It can be seen from the above technical solutions that the method, device, equipment and storage medium for fatigue crack growth life prediction provided by the present invention include: collecting images of fatigue crack growth of components; obtaining parallax information of crack images according to the collected images; The obtained crack image parallax information is processed to obtain fatigue crack depth data; according to the obtained fatigue crack depth data, the fatigue crack growth life is predicted.
本发明是一种将图像处理技术与疲劳裂纹扩展寿命的预测相结合,自动测量动态监测疲劳裂纹并进行疲劳寿命预测的技术,适用于预测各种材料结构的疲劳裂纹扩展寿命,可实现非接触检测,操作简单且不会对结构造成任何损伤,成本低,效率高,精度高,能够解决现有各种测量疲劳裂纹的方法精度不高、设备繁琐、操作复杂、实时性差、环境要求苛刻等问题。The invention is a technology that combines image processing technology with the prediction of fatigue crack growth life, automatically measures and dynamically monitors fatigue cracks and predicts fatigue life, is suitable for predicting the fatigue crack growth life of various material structures, and can realize non-contact Detection, operation is simple and will not cause any damage to the structure, low cost, high efficiency, high precision, can solve various existing methods for measuring fatigue cracks question.
附图说明Description of drawings
为了更清楚地说明本发明实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or related technologies, the following briefly introduces the accompanying drawings required for the description of the embodiments or related technologies. Obviously, the accompanying drawings in the following description are only the For the embodiments of the invention, for those of ordinary skill in the art, other drawings can also be obtained according to the provided drawings without any creative effort.
图1为本发明实施例提供的疲劳裂纹扩展寿命预测方法的流程图;1 is a flowchart of a fatigue crack growth life prediction method provided by an embodiment of the present invention;
图2为本发明实施例提供的双目相机深度成像二维示意图;FIG. 2 is a two-dimensional schematic diagram of depth imaging of a binocular camera provided by an embodiment of the present invention;
图3为本发明实施例提供的双目相机深度成像三维示意图;3 is a three-dimensional schematic diagram of depth imaging of a binocular camera provided by an embodiment of the present invention;
图4为本发明实施例提供的疲劳裂纹扩展寿命预测装置的结构示意图;4 is a schematic structural diagram of a fatigue crack growth life prediction device provided by an embodiment of the present invention;
图5为本发明实施例提供的疲劳裂纹扩展寿命预测装置的结构示意图。FIG. 5 is a schematic structural diagram of a fatigue crack growth life prediction device provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明提供一种疲劳裂纹扩展寿命预测方法,如图1所示,包括以下步骤:The present invention provides a fatigue crack growth life prediction method, as shown in FIG. 1 , comprising the following steps:
S101、采集构件疲劳裂纹扩展图像;S101. Collect a fatigue crack growth image of a component;
S102、根据采集的图像,获取裂纹图像视差信息;S102, according to the collected image, obtain the disparity information of the crack image;
S103、对获取的裂纹图像视差信息进行处理,得到疲劳裂纹深度数据;S103, processing the obtained crack image parallax information to obtain fatigue crack depth data;
S104、根据得到的疲劳裂纹深度数据,对疲劳裂纹扩展寿命进行预测。S104 , predicting the fatigue crack growth life according to the obtained fatigue crack depth data.
在本发明实施例提供的上述疲劳裂纹扩展寿命预测方法中,通过采集构件疲劳裂纹扩展图像,对获取的裂纹图像视差信息进行处理,计算得出疲劳裂纹深度数据,并进行疲劳裂纹扩展寿命预测,是一种将图像处理技术与疲劳裂纹扩展寿命的预测相结合,自动测量动态监测疲劳裂纹并进行疲劳寿命预测的技术,适用于预测各种材料结构的疲劳裂纹扩展寿命,可实现非接触检测,操作简单且不会对结构造成任何损伤,成本低,效率高,精度高,可有效避免如今目测法、磁粉法、渗透法、超声法、漏磁法、涡流法、红外线法、声发射法等裂纹检测方法精度不高或操作复杂、环境要求苛刻等缺点。In the above-mentioned fatigue crack growth life prediction method provided by the embodiment of the present invention, by collecting the fatigue crack growth image of the component, processing the obtained crack image parallax information, calculating the fatigue crack depth data, and predicting the fatigue crack growth life, It is a technology that combines image processing technology with the prediction of fatigue crack growth life to automatically measure and dynamically monitor fatigue cracks and predict fatigue life. It is suitable for predicting the fatigue crack growth life of various material structures, and can realize non-contact detection. The operation is simple and will not cause any damage to the structure, with low cost, high efficiency and high precision, which can effectively avoid the current visual inspection method, magnetic particle method, penetration method, ultrasonic method, magnetic flux leakage method, eddy current method, infrared method, acoustic emission method, etc. The crack detection method has the disadvantages of low precision, complicated operation, and harsh environmental requirements.
在具体实施时,在本发明实施例提供的上述疲劳裂纹扩展寿命预测方法中,步骤S101采集构件疲劳裂纹扩展图像,具体包括:通过双目相机、TOF相机或结构光相机采集构件疲劳裂纹扩展图像。在实际应用中,采集构件疲劳裂纹扩展图像的方式,可以是,但不限于,双目相机、TOF相机、结构光相机等进行采集。During specific implementation, in the above-mentioned fatigue crack growth life prediction method provided by the embodiment of the present invention, step S101 collects a fatigue crack growth image of a component, which specifically includes: collecting a component fatigue crack growth image through a binocular camera, a TOF camera or a structured light camera . In practical applications, the way to collect fatigue crack growth images of components may be, but not limited to, binocular cameras, TOF cameras, structured light cameras, and the like.
进一步地,在具体实施时,在执行步骤S102获取裂纹图像视差信息时,可使用OpenCV中的BM算法或者SGBM算法计算视差d。Further, in a specific implementation, when step S102 is performed to obtain the disparity information of the crack image, the disparity d may be calculated by using the BM algorithm or the SGBM algorithm in OpenCV.
进一步地,在具体实施时,在执行步骤S103时,可基于视差原理得到疲劳裂纹深度数据;如图2和图3所示,当通过双目相机采集构件疲劳裂纹扩展图像时,双目相机中两台相机的像平面精确位于同一平面上,光轴要求严格相互平行(光轴是从投影中心O朝像主点c方向引出的一条射线,也称为主光线);相距T一定,焦距相同(f l =f r =f 0 ),并且主点和已经校准,在左右图像上具有相同的像素坐标,x l 和x r 分别表示点在左右成像仪上的水平位置,这使得深度与视差成反比关系,即裂纹深度与双目相机的视差成反比关系,视差d=x l -x r ,利用相似三角形,可通过下列公式获取裂纹深度Z:Further, in the specific implementation, when step S103 is performed, the fatigue crack depth data can be obtained based on the parallax principle; as shown in FIG. 2 and FIG. 3 , when the component fatigue crack propagation image is collected by the binocular camera, the binocular camera The image planes of the two cameras are exactly on the same plane, and the optical axes are required to be strictly parallel to each other (the optical axis is a ray drawn from the projection center O toward the principal point c of the image, also known as the principal ray); the distance T is constant and the focal length is the same ( f l =f r =f 0 ), and the principal point and It has been calibrated to have the same pixel coordinates on the left and right images, xl and xr represent the horizontal position of the point on the left and right imagers respectively, which makes the depth inversely proportional to the parallax, i.e. the crack depth is inversely proportional to the parallax of the binocular camera relationship, disparity d = x l - x r , and using similar triangles, the crack depth Z can be obtained by the following formula:
其中,为裂纹深度;为双目相机的焦距;为双目相机中两台相机之间的距离;为视差。in, is the crack depth; is the focal length of the binocular camera; is the distance between the two cameras in the binocular camera; for parallax.
在具体实施时,在本发明实施例提供的上述疲劳裂纹扩展寿命预测方法中,在执行步骤S104时,首先,确定在荷载作用下,构件发生断裂时的临界裂纹尺寸;然后,根据临界裂纹尺寸得到疲劳裂纹扩展公式,并对公式进行积分;最后,对于恒幅载荷,积分得到疲劳裂纹扩展寿命。In specific implementation, in the above-mentioned fatigue crack growth life prediction method provided by the embodiment of the present invention, when step S104 is performed, first, the critical crack size when the component breaks under the action of the load is determined; then, according to the critical crack size The fatigue crack growth formula is obtained, and the formula is integrated; finally, for the constant amplitude load, the fatigue crack growth life is obtained by integrating.
具体地,依据线弹性断裂力学基于应力强度因子的断裂判据,有:Specifically, according to the fracture criterion based on the stress intensity factor of linear elastic fracture mechanics, there are:
其中,是最大循环应力;是材料的断裂韧度;对于无限大中心裂纹板,若板宽,则几何修正系数f=1;对于无限大单边裂纹板,若板宽,f=1.1215。因此,采用下列公式确定临界裂纹尺寸:in, is the maximum cyclic stress; is the fracture toughness of the material; for an infinite center crack plate, if the plate width , then the geometric correction factor f = 1; for an infinite unilateral cracked plate, if the plate width , f = 1.1215. Therefore, the critical crack size is determined using the following formula:
其中,为最大循环应力;为材料的断裂韧度;为临界裂纹尺寸;为几何修正系数。in, is the maximum cyclic stress; is the fracture toughness of the material; is the critical crack size; is the geometric correction factor.
进一步地,在具体实施时,疲劳裂纹扩展公式可一般地写为:Further, in specific implementation, the fatigue crack propagation formula can be generally written as:
其中,为疲劳裂纹扩展速率,∆K为应力强度因子,R为应力比。in, is the fatigue crack growth rate, ΔK is the stress intensity factor, and R is the stress ratio.
对上式进行整理,然后两端积分,有:Arrange the above formula, and then integrate both ends, there are:
对于含裂纹的无限大板,几何修正系数为常数,若疲劳裂纹扩展速率满足Paris公式,则有:For infinite slabs with cracks, geometric correction factor is a constant, if the fatigue crack growth rate satisfies the Paris formula, there are:
对于恒幅载荷,可以积分采用下列公式确定疲劳裂纹扩展寿命:For constant amplitude loads, the fatigue crack growth life can be determined integrally using the following formula:
其中,为疲劳裂纹扩展寿命;为裂纹深度(即初始裂纹尺寸);为临界裂纹尺寸;为几何修正系数;为循环应力幅;为裂纹扩展参数;为描述材料疲劳裂纹扩展性能的基本参数。in, is the fatigue crack growth life; is the crack depth (i.e. the initial crack size ); is the critical crack size; is the geometric correction coefficient; is the cyclic stress amplitude; is the crack propagation parameter; It is a basic parameter to describe the fatigue crack growth performance of materials.
基于同一发明构思,本发明实施例还提供了一种疲劳裂纹扩展寿命预测装置,由于该装置解决问题的原理与前述一种疲劳裂纹扩展寿命预测方法相似,因此该装置的实施可以参见疲劳裂纹扩展寿命预测方法的实施,重复之处不再赘述。Based on the same inventive concept, an embodiment of the present invention also provides a fatigue crack growth life prediction device. Since the principle of the device to solve the problem is similar to the aforementioned fatigue crack growth life prediction method, the implementation of the device can refer to fatigue crack growth The implementation of the life prediction method will not be repeated here.
在具体实施时,本发明实施例提供的疲劳裂纹扩展寿命预测装置,如图4所示,具体包括:During specific implementation, the fatigue crack growth life prediction device provided by the embodiment of the present invention, as shown in FIG. 4 , specifically includes:
图像采集模块11,用于采集构件疲劳裂纹扩展图像;The
图像处理模块12,用于根据采集的图像,获取裂纹图像视差信息;The
裂纹数据计算模块13,用于对获取的裂纹图像视差信息进行处理,得到疲劳裂纹深度数据;The crack
疲劳寿命预测模块14,用于根据得到的疲劳裂纹深度数据,对疲劳裂纹扩展寿命进行预测。The fatigue
在本发明实施例提供的上述疲劳裂纹扩展寿命预测装置中,可以通过上述四个模块的相互作用,将图像处理技术应用于表面疲劳裂纹的测量并进行疲劳寿命预测,可实现实时无接触检测,且成本低、精度高、易操作,为实现疲劳寿命预测的自动化、智能化奠定基础。In the above-mentioned fatigue crack growth life prediction device provided by the embodiment of the present invention, the image processing technology can be applied to the measurement of surface fatigue cracks and the fatigue life prediction can be performed through the interaction of the above four modules, so that real-time non-contact detection can be realized. Moreover, it has low cost, high precision and easy operation, laying the foundation for the automation and intelligence of fatigue life prediction.
在具体实施时,在本发明实施例提供的上述疲劳裂纹扩展寿命预测装置中,图像采集模块11可以为双目相机、TOF相机或结构光相机;图像处理模块12具体可以用于根据采集的图像,通过使用OpenCV中的BM算法或SGBM算法计算视差。In specific implementation, in the above-mentioned fatigue crack growth life prediction device provided by the embodiment of the present invention, the
关于上述各个模块更加具体的工作过程可以参考前述实施例公开的相应内容,在此不再进行赘述。For more specific working processes of the above-mentioned modules, reference may be made to the corresponding contents disclosed in the foregoing embodiments, which will not be repeated here.
相应的,本发明实施例还公开了一种疲劳裂纹扩展寿命预测设备,如图5所示,包括处理器21和存储器22;其中,处理器21执行存储器22中保存的计算机程序时实现前述实施例公开的疲劳裂纹扩展寿命预测方法。Correspondingly, an embodiment of the present invention also discloses a fatigue crack growth life prediction device, as shown in FIG. 5 , comprising a
进一步地,在具体实施时,在本发明实施例提供的上述疲劳裂纹扩展寿命预测设备中,如图5所示,还可以包括:用于采集构件疲劳裂纹扩展图像的摄像装置23,用于显示图像及相关数据的显示装置24,以及用于将摄像装置23和显示装置24耦合至处理器21和存储器22的外设接口25。Further, during specific implementation, in the above-mentioned fatigue crack growth life prediction device provided in the embodiment of the present invention, as shown in FIG. 5 , it may further include: a
其中,存储器22可以是,但不限于,随机存取存储器(RAM),只读存储器(ROM),可编程只读存储器(PROM),可擦除只读存储器(EPROM),电可擦除只读存储器(EEPROM)等,存储器22用于储存程序,处理器21在接收到执行指令后,执行所述程序,本发明任一实施例解释的流程定义的服务器所执行的方法可以应用于处理器21中,或者由处理器21实现。处理器21可以是一种集成芯片,具有信号处理能力,也可以是通用处理器。外设接口25用于将各种输入/输出装置耦合至处理器21以及存储器22。摄像装置23可以是,但不限于,双目相机。显示装置24具体用于实现用户与设备之间的交互,可以是,但不限于显示装置24可以将结构图像、深度图像等信息进行显示。Wherein, the
关于上述方法更加具体的过程可以参考前述实施例中公开的相应内容,在此不再进行赘述。For a more specific process of the above method, reference may be made to the corresponding content disclosed in the foregoing embodiments, which will not be repeated here.
相应的,本发明还公开了一种计算机可读存储介质,用于存储计算机程序;计算机程序被处理器执行时实现前述公开的疲劳裂纹扩展寿命预测方法。Correspondingly, the present invention also discloses a computer-readable storage medium for storing a computer program; when the computer program is executed by a processor, the aforementioned method for predicting fatigue crack growth life is implemented.
关于上述方法更加具体的过程可以参考前述实施例中公开的相应内容,在此不再进行赘述。For a more specific process of the above method, reference may be made to the corresponding content disclosed in the foregoing embodiments, which will not be repeated here.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置、设备、存储介质而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same or similar parts of the various embodiments may be referred to each other. For the apparatuses, devices, and storage media disclosed in the embodiments, since they correspond to the methods disclosed in the embodiments, the descriptions are relatively simple, and reference may be made to the descriptions of the methods for related parts.
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。Professionals may further realize that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, computer software, or a combination of the two, in order to clearly illustrate the possibilities of hardware and software. Interchangeability, the above description has generally described the components and steps of each example in terms of function. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of this application.
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。The steps of a method or algorithm described in conjunction with the embodiments disclosed herein may be directly implemented in hardware, a software module executed by a processor, or a combination of the two. Software modules can be placed in random access memory (RAM), internal memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other in the technical field. in any other known form of storage medium.
本发明实施例提供的一种疲劳裂纹扩展寿命预测方法、装置、设备及存储介质,包括:采集构件疲劳裂纹扩展图像;根据采集的图像,获取裂纹图像视差信息;对获取的裂纹图像视差信息进行处理,得到疲劳裂纹深度数据;根据得到的疲劳裂纹深度数据,对疲劳裂纹扩展寿命进行预测。这是一种将图像处理技术与疲劳裂纹扩展寿命的预测相结合,自动测量动态监测疲劳裂纹并进行疲劳寿命预测的技术,适用于预测各种材料结构的疲劳裂纹扩展寿命,可实现非接触检测,操作简单且不会对结构造成任何损伤,成本低,效率高,精度高,能够解决现有各种测量疲劳裂纹的方法精度不高、设备繁琐、操作复杂、实时性差、环境要求苛刻等问题。A fatigue crack growth life prediction method, device, equipment and storage medium provided by the embodiments of the present invention include: collecting a fatigue crack growth image of a component; obtaining crack image parallax information according to the collected image; After processing, the fatigue crack depth data is obtained; according to the obtained fatigue crack depth data, the fatigue crack propagation life is predicted. This is a technology that combines image processing technology with the prediction of fatigue crack growth life, automatically measures and dynamically monitors fatigue cracks and predicts fatigue life. It is suitable for predicting the fatigue crack growth life of various material structures and can realize non-contact detection. , the operation is simple and will not cause any damage to the structure, the cost is low, the efficiency is high, and the precision is high. .
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。Finally, it should also be noted that in this document, relational terms such as first and second are used only to distinguish one entity or operation from another, and do not necessarily require or imply these entities or that there is any such actual relationship or sequence between operations. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
以上对本发明所提供的疲劳裂纹扩展寿命预测方法、装置、设备及存储介质进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The fatigue crack growth life prediction method, device, equipment and storage medium provided by the present invention have been described in detail above. Specific examples are used in this paper to illustrate the principles and implementations of the present invention. The descriptions of the above embodiments are only used for Help to understand the method of the present invention and its core idea; at the same time, for those skilled in the art, according to the idea of the present invention, there will be changes in the specific implementation and application scope. In summary, the content of this specification It should not be construed as a limitation of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010961203.2A CN111815694A (en) | 2020-09-14 | 2020-09-14 | A kind of fatigue crack growth life prediction method, device, equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010961203.2A CN111815694A (en) | 2020-09-14 | 2020-09-14 | A kind of fatigue crack growth life prediction method, device, equipment and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111815694A true CN111815694A (en) | 2020-10-23 |
Family
ID=72859261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010961203.2A Pending CN111815694A (en) | 2020-09-14 | 2020-09-14 | A kind of fatigue crack growth life prediction method, device, equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111815694A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113239478A (en) * | 2021-04-01 | 2021-08-10 | 四川大学 | Component fatigue life prediction method based on maximum cyclic stress |
CN113515849A (en) * | 2021-05-14 | 2021-10-19 | 中车青岛四方机车车辆股份有限公司 | Life prediction method, system, equipment and storage medium of train key structure |
CN114004783A (en) * | 2021-08-27 | 2022-02-01 | 武汉思恒达科技有限公司 | Image recognition-based method for judging remaining life of hand strap of escalator |
CN114169109A (en) * | 2022-01-14 | 2022-03-11 | 华北电力科学研究院有限责任公司 | Method and device for predicting fatigue life of dissimilar steel joints |
CN119229217A (en) * | 2024-11-29 | 2024-12-31 | 山东大学 | Coal and rock fracture image recognition method and system based on deep learning and post-processing |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130152697A1 (en) * | 2011-02-21 | 2013-06-20 | Fracturelab, Llc | Fatigue and/or Crack Growth Test Sample |
US20130335657A1 (en) * | 2012-06-19 | 2013-12-19 | Mitsubushi Electric Corporation | Liquid crystal display and production method thereof |
CN103870662A (en) * | 2014-04-01 | 2014-06-18 | 青岛科技大学 | Method for predicting residual life of storage tank |
CN104034733A (en) * | 2014-07-02 | 2014-09-10 | 中国人民解放军国防科学技术大学 | Life Prediction Method Based on Binocular Vision Monitoring and Surface Crack Image Recognition |
CN104317391A (en) * | 2014-09-24 | 2015-01-28 | 华中科技大学 | Stereoscopic vision-based three-dimensional palm posture recognition interactive method and system |
CN105956315A (en) * | 2016-05-17 | 2016-09-21 | 北京航空航天大学 | Method capable of carrying out fatigue crack propagation rate estimation and life prediction |
CN106019264A (en) * | 2016-05-22 | 2016-10-12 | 江志奇 | Binocular vision based UAV (Unmanned Aerial Vehicle) danger vehicle distance identifying system and method |
CN106568662A (en) * | 2016-11-08 | 2017-04-19 | 北京航空航天大学 | Bidirectional fatigue crack expansion rate testing method and testing system |
CN109089111A (en) * | 2018-10-22 | 2018-12-25 | Oppo广东移动通信有限公司 | A kind of three-dimensional video-frequency Comfort Evaluation method, system and terminal device |
CN109165407A (en) * | 2018-07-18 | 2019-01-08 | 上海工程技术大学 | A kind of predictor method for the mechanical component fatigue crack service life |
CN109490080A (en) * | 2019-01-14 | 2019-03-19 | 中国科学院金属研究所 | A method of prediction high-strength steel fatigue crack growth can |
CN109740295A (en) * | 2019-02-27 | 2019-05-10 | 南京市特种设备安全监督检验研究院 | A kind of vibrative mechanism residual Life Calculation method with crack defect |
CN110009610A (en) * | 2019-03-27 | 2019-07-12 | 仲恺农业工程学院 | Visual detection method for surface damage of reservoir dam protection slope and bionic device |
-
2020
- 2020-09-14 CN CN202010961203.2A patent/CN111815694A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130152697A1 (en) * | 2011-02-21 | 2013-06-20 | Fracturelab, Llc | Fatigue and/or Crack Growth Test Sample |
US20130335657A1 (en) * | 2012-06-19 | 2013-12-19 | Mitsubushi Electric Corporation | Liquid crystal display and production method thereof |
CN103870662A (en) * | 2014-04-01 | 2014-06-18 | 青岛科技大学 | Method for predicting residual life of storage tank |
CN104034733A (en) * | 2014-07-02 | 2014-09-10 | 中国人民解放军国防科学技术大学 | Life Prediction Method Based on Binocular Vision Monitoring and Surface Crack Image Recognition |
CN104317391A (en) * | 2014-09-24 | 2015-01-28 | 华中科技大学 | Stereoscopic vision-based three-dimensional palm posture recognition interactive method and system |
CN105956315A (en) * | 2016-05-17 | 2016-09-21 | 北京航空航天大学 | Method capable of carrying out fatigue crack propagation rate estimation and life prediction |
CN106019264A (en) * | 2016-05-22 | 2016-10-12 | 江志奇 | Binocular vision based UAV (Unmanned Aerial Vehicle) danger vehicle distance identifying system and method |
CN106568662A (en) * | 2016-11-08 | 2017-04-19 | 北京航空航天大学 | Bidirectional fatigue crack expansion rate testing method and testing system |
CN109165407A (en) * | 2018-07-18 | 2019-01-08 | 上海工程技术大学 | A kind of predictor method for the mechanical component fatigue crack service life |
CN109089111A (en) * | 2018-10-22 | 2018-12-25 | Oppo广东移动通信有限公司 | A kind of three-dimensional video-frequency Comfort Evaluation method, system and terminal device |
CN109490080A (en) * | 2019-01-14 | 2019-03-19 | 中国科学院金属研究所 | A method of prediction high-strength steel fatigue crack growth can |
CN109740295A (en) * | 2019-02-27 | 2019-05-10 | 南京市特种设备安全监督检验研究院 | A kind of vibrative mechanism residual Life Calculation method with crack defect |
CN110009610A (en) * | 2019-03-27 | 2019-07-12 | 仲恺农业工程学院 | Visual detection method for surface damage of reservoir dam protection slope and bionic device |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113239478A (en) * | 2021-04-01 | 2021-08-10 | 四川大学 | Component fatigue life prediction method based on maximum cyclic stress |
CN113239478B (en) * | 2021-04-01 | 2023-02-03 | 四川大学 | Component fatigue life prediction method based on maximum cyclic stress |
CN113515849A (en) * | 2021-05-14 | 2021-10-19 | 中车青岛四方机车车辆股份有限公司 | Life prediction method, system, equipment and storage medium of train key structure |
CN114004783A (en) * | 2021-08-27 | 2022-02-01 | 武汉思恒达科技有限公司 | Image recognition-based method for judging remaining life of hand strap of escalator |
CN114169109A (en) * | 2022-01-14 | 2022-03-11 | 华北电力科学研究院有限责任公司 | Method and device for predicting fatigue life of dissimilar steel joints |
CN114169109B (en) * | 2022-01-14 | 2024-06-04 | 华北电力科学研究院有限责任公司 | Method and device for predicting fatigue life of dissimilar steel joint |
CN119229217A (en) * | 2024-11-29 | 2024-12-31 | 山东大学 | Coal and rock fracture image recognition method and system based on deep learning and post-processing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111815694A (en) | A kind of fatigue crack growth life prediction method, device, equipment and storage medium | |
Tatone et al. | A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials | |
Laefer et al. | Crack detection limits in unit based masonry with terrestrial laser scanning | |
CN110108348A (en) | Thin-wall part micro breadth oscillation measurement method and system based on motion amplification optical flow tracking | |
Lee et al. | Optimum accuracy of two-dimensional strain measurements using digital image correlation | |
WO2024120333A1 (en) | Steel plate inspection system, steel plate inspection method, electronic device, and storage medium | |
Sun et al. | Non-contact optical sensing of asphalt mixture deformation using 3D stereo vision | |
WO2022143281A1 (en) | Method for inspecting state of steel bar in concrete structure | |
Clemens et al. | Uncertainties associated with laser profiling of concrete sewer pipes for the quantification of the interior geometry | |
Yang et al. | An automatic finite element modelling for deformation analysis of composite structures | |
CN113295688A (en) | Detection system and detection method for fatigue strength of welding part | |
Iliopoulos et al. | Direct strain tensor approximation for full‐field strain measurement methods | |
Kim et al. | Three-dimensional visualization and presentation of bridge deck condition based on multiple NDE data | |
Oats et al. | Digital image correlation advances in structural evaluation applications: A review | |
Higgins et al. | Imaging tools for evaluation of gusset plate connections in steel truss bridges | |
US11846498B2 (en) | Displacement amount measuring device, displacement amount measuring method, and recording medium | |
Koshti | X-ray ray tracing simulation and flaw parameters for crack detection | |
CN103438803B (en) | Computer vision technique accurately measures the method for Rectangular Parts size across visual field | |
Mamand et al. | Extended digital image correlation method for mapping multiscale damage in concrete | |
Koshti | Simulating the x-ray image contrast to setup techniques with desired flaw detectability | |
CN205300519U (en) | Iron tower warp measuring device | |
Yang et al. | Laser-based finite element model reconstruction for structural mechanics | |
Kong et al. | Fatigue crack monitoring using large-area, flexible capacitive strain sensors | |
Goncalves et al. | Experimental investigation of the large amplitude vibrations of a thin-walled column under self-weight | |
KR102328956B1 (en) | System and method to visualize Press forming structure thickness distribution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201023 |
|
RJ01 | Rejection of invention patent application after publication |