CN111799844A - A virtual synchronous generator control method, device and terminal equipment - Google Patents
A virtual synchronous generator control method, device and terminal equipment Download PDFInfo
- Publication number
- CN111799844A CN111799844A CN202010787270.7A CN202010787270A CN111799844A CN 111799844 A CN111799844 A CN 111799844A CN 202010787270 A CN202010787270 A CN 202010787270A CN 111799844 A CN111799844 A CN 111799844A
- Authority
- CN
- China
- Prior art keywords
- synchronous generator
- virtual synchronous
- virtual
- generator unit
- performance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 166
- 238000000034 method Methods 0.000 title claims abstract description 76
- 238000011156 evaluation Methods 0.000 claims abstract description 32
- 238000004146 energy storage Methods 0.000 claims description 66
- 238000004364 calculation method Methods 0.000 claims description 27
- 238000004590 computer program Methods 0.000 claims description 21
- 238000007599 discharging Methods 0.000 claims description 8
- 238000010248 power generation Methods 0.000 claims description 7
- 230000008859 change Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/40—Synchronising a generator for connection to a network or to another generator
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
技术领域technical field
本发明属于微电网控制技术领域,尤其涉及一种虚拟同步发电机控制方法、装置及终端设备。The invention belongs to the technical field of microgrid control, and in particular relates to a virtual synchronous generator control method, device and terminal equipment.
背景技术Background technique
光伏发电系统在电网中的装机规模不断增加,但是光伏发电系统本身不具有惯性,因此在光伏发电系统通过电力电子换流器接入电网时,会导致整个系统总的惯性能力减小,为了缓解这一问题,在光伏与储能装置协同运行时采用虚拟同步发电机控制以实现友好型并网。The installed capacity of photovoltaic power generation systems in the power grid continues to increase, but the photovoltaic power generation system itself does not have inertia. Therefore, when the photovoltaic power generation system is connected to the power grid through the power electronic converter, the total inertial capacity of the entire system will be reduced. For this problem, virtual synchronous generator control is used to achieve friendly grid connection when photovoltaic and energy storage devices operate together.
虚拟同步发电机控制下的光储单元在运行过程中会受到系统相关性能参数的制约,储能荷电状态、储能自身的充放电功率控制以及并网换流器的额定容量等因素都会影响虚拟同步发电机控制下光储单元的稳定运行。在系统中存在多个虚拟同步发电机单元,且各个虚拟同步发电机单元的性能参数存在差异,惯性支撑能力也不相同时,会出现运行不稳定,系统频率质量低的问题。The PV-storage unit under the control of the virtual synchronous generator will be restricted by the relevant performance parameters of the system during operation. Factors such as the state of charge of the energy storage, the charge and discharge power control of the energy storage itself, and the rated capacity of the grid-connected converter will all affect Stable operation of PV-storage unit under virtual synchronous generator control. When there are multiple virtual synchronous generator units in the system, and the performance parameters of each virtual synchronous generator unit are different, and the inertial support capacity is also different, there will be problems of unstable operation and low system frequency quality.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明实施例提供了一种虚拟同步发电机控制方法、装置及终端设备,以解决现有技术中当各个虚拟同步发电机的性能参数存在差异时,微电网系统运行不稳定的问题。In view of this, embodiments of the present invention provide a virtual synchronous generator control method, device, and terminal device to solve the problem of unstable operation of the microgrid system in the prior art when the performance parameters of each virtual synchronous generator are different. question.
本发明实施例的第一方面提供了一种虚拟同步发电机控制方法,应用于具有至少一个虚拟同步发电机单元的微电网系统方法,包括:A first aspect of the embodiments of the present invention provides a virtual synchronous generator control method, which is applied to a microgrid system method having at least one virtual synchronous generator unit, including:
获取所述微电网系统各个虚拟同步发电机单元的至少一个性能指标对应的性能参数;Acquiring performance parameters corresponding to at least one performance index of each virtual synchronous generator unit of the microgrid system;
根据各个性能参数计算所述微电网系统的总虚拟惯量;Calculate the total virtual inertia of the microgrid system according to each performance parameter;
根据各个性能参数计算对应性能指标的权重;Calculate the weight of the corresponding performance index according to each performance parameter;
根据各个性能参数以及对应性能指标的权重计算正理想解和负理想解;Calculate the positive ideal solution and the negative ideal solution according to each performance parameter and the weight of the corresponding performance index;
根据所述正理想解、所述负理想解和各个虚拟同步发电机单元对应的性能参数计算各个虚拟同步发电机单元的综合评价指数;Calculate the comprehensive evaluation index of each virtual synchronous generator unit according to the positive ideal solution, the negative ideal solution and the performance parameters corresponding to each virtual synchronous generator unit;
根据各个虚拟同步发电机单元的综合评价指数和所述微电网系统的总虚拟惯量计算各个虚拟同步发电机单元的虚拟惯量。The virtual inertia of each virtual synchronous generator unit is calculated according to the comprehensive evaluation index of each virtual synchronous generator unit and the total virtual inertia of the microgrid system.
本发明实施例的第二方面提供了一种虚拟同步发电机控制装置,包括:A second aspect of the embodiments of the present invention provides a virtual synchronous generator control device, including:
性能参数获取模块,用于获取所述微电网系统各个虚拟同步发电机单元的至少一个性能指标对应的性能参数;a performance parameter obtaining module, configured to obtain a performance parameter corresponding to at least one performance index of each virtual synchronous generator unit of the microgrid system;
总虚拟惯量计算模块,用于根据各个性能参数计算所述微电网系统的总虚拟惯量;a total virtual inertia calculation module, configured to calculate the total virtual inertia of the microgrid system according to each performance parameter;
权重计算模块,用于根据各个性能参数虚拟同步发电机计算对应性能指标的权重;The weight calculation module is used to calculate the weight of the corresponding performance index according to the virtual synchronous generator of each performance parameter;
理想解计算模块,用于根据各个性能参数以及对应性能指标的权重计算正理想解和负理想解;The ideal solution calculation module is used to calculate the positive ideal solution and the negative ideal solution according to each performance parameter and the weight of the corresponding performance index;
综合评价指数计算模块,用于根据所述正理想解、所述负理想解和各个虚拟同步发电机单元对应的性能参数计算各个虚拟同步发电机单元的综合评价指数;a comprehensive evaluation index calculation module, configured to calculate the comprehensive evaluation index of each virtual synchronous generator unit according to the positive ideal solution, the negative ideal solution and the performance parameters corresponding to each virtual synchronous generator unit;
虚拟惯量计算模块,用于根据各个虚拟同步发电机单元的综合评价指数和所述微电网系统的总虚拟惯量计算各个虚拟同步发电机单元的虚拟惯量。The virtual inertia calculation module is configured to calculate the virtual inertia of each virtual synchronous generator unit according to the comprehensive evaluation index of each virtual synchronous generator unit and the total virtual inertia of the microgrid system.
本发明实施例的第三方面提供了一种终端设备,包括:存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上所述方法的步骤。A third aspect of the embodiments of the present invention provides a terminal device, including: a memory, a processor, and a computer program stored in the memory and executable on the processor, where the processor executes the computer program When implementing the steps of the method described above.
本发明实施例的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上所述方法的步骤。A fourth aspect of the embodiments of the present invention provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the steps of the above method.
本发明实施例与现有技术相比存在的有益效果是:本实施例首先获取微电网系统中各个虚拟同步发电机单元的至少一个性能指标对应的性能参数,根据性能参数计算微电网系统的总虚拟惯量和各个性能指标对应的权重;根据各个性能参数以及权重计算正理想解和负理想解,根据正理想解、负理想解以及性能参数计算各个虚拟同步发电机单元的综合评价指数;根据综合评价指数以及总虚拟惯量计算各个虚拟同步发电机单元的虚拟惯量,最终根据虚拟惯量调整各个虚拟同步发电机单元的虚拟惯量。本实施例提供的虚拟同步发电机控制方法可以在各个虚拟同步发电机的性能参数不同的情况下,为各个虚拟同步发电机合理的确定对应的虚拟惯量,提高微电网系统的运行稳定性。Compared with the prior art, the beneficial effect of the embodiment of the present invention is that: this embodiment first obtains a performance parameter corresponding to at least one performance index of each virtual synchronous generator unit in the microgrid system, and calculates the total value of the microgrid system according to the performance parameter. The virtual inertia and the weight corresponding to each performance index; calculate the positive ideal solution and negative ideal solution according to each performance parameter and weight, and calculate the comprehensive evaluation index of each virtual synchronous generator unit according to the positive ideal solution, negative ideal solution and performance parameters; The evaluation index and the total virtual inertia are used to calculate the virtual inertia of each virtual synchronous generator unit, and finally the virtual inertia of each virtual synchronous generator unit is adjusted according to the virtual inertia. The virtual synchronous generator control method provided by this embodiment can reasonably determine the corresponding virtual inertia for each virtual synchronous generator under the condition that the performance parameters of each virtual synchronous generator are different, thereby improving the operation stability of the microgrid system.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only for the present invention. In some embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1是本发明实施例提供的微电网系统的结构示意图;1 is a schematic structural diagram of a microgrid system provided by an embodiment of the present invention;
图2是本发明实施例提供的虚拟同步发电机控制方法的实现流程示意图;Fig. 2 is the realization flow schematic diagram of the virtual synchronous generator control method provided by the embodiment of the present invention;
图3是本发明实施例提供的虚拟同步发电机控制方法的应用效果图;3 is an application effect diagram of a virtual synchronous generator control method provided by an embodiment of the present invention;
图4是本发明另一实施例提供的虚拟同步发电机控制方法的应用效果图;4 is an application effect diagram of a virtual synchronous generator control method provided by another embodiment of the present invention;
图5是本发明另一实施例提供的虚拟同步发电机控制方法的应用效果图;5 is an application effect diagram of a virtual synchronous generator control method provided by another embodiment of the present invention;
图6是本发明另一实施例提供的虚拟同步发电机控制方法的应用效果图;6 is an application effect diagram of a virtual synchronous generator control method provided by another embodiment of the present invention;
图7是本发明实施例提供的虚拟同步发电机控制装置的结构示意图;7 is a schematic structural diagram of a virtual synchronous generator control device provided by an embodiment of the present invention;
图8是本发明实施例提供的终端设备的示意图。FIG. 8 is a schematic diagram of a terminal device provided by an embodiment of the present invention.
具体实施方式Detailed ways
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本发明实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。In the following description, for the purpose of illustration rather than limitation, specific details such as specific system structures and technologies are set forth in order to provide a thorough understanding of the embodiments of the present invention. However, it will be apparent to those skilled in the art that the present invention may be practiced in other embodiments without these specific details. In other instances, detailed descriptions of well-known systems, devices, circuits, and methods are omitted so as not to obscure the description of the present invention with unnecessary detail.
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。In order to illustrate the technical solutions of the present invention, the following specific embodiments are used for description.
本发明实施例提供了一种虚拟同步发电机控制方法,应用于具有至少一个虚拟同步发电机单元的微电网系统,图1示出了微电网系统的结构。An embodiment of the present invention provides a virtual synchronous generator control method, which is applied to a microgrid system having at least one virtual synchronous generator unit. FIG. 1 shows the structure of the microgrid system.
参见图1,在一个具体的实施例中,微电网系统为六端交流系统,包括三个虚拟同步发电机单元,记为VSG(virtual synchronous generator,虚拟同步发电机)单元:VSG1、VSG2以及VSG3;两个传统发电机组:G1和G2;交流母线以及交流负载单元。1, in a specific embodiment, the microgrid system is a six-terminal AC system, including three virtual synchronous generator units, denoted as VSG (virtual synchronous generator, virtual synchronous generator) units: VSG1, VSG2 and VSG3 ; Two conventional generator sets: G 1 and G 2 ; AC bus and AC load cells.
各个VSG单元、各个传统发电机组以及交流负载单元分别与交流母线连接。Each VSG unit, each conventional generator set, and each AC load unit are respectively connected to the AC bus.
在本实施例中,传统发电机组G1用于进行系统的二次调频,传统发电机组G2用于保持系统的恒功率运行,各个VSG单元均用于进行光储发电,交流负载单元用于投切微电网系统的功率扰动,在正常运行时保持负载的恒定。In this embodiment, the traditional generator set G 1 is used for secondary frequency regulation of the system, the traditional generator set G 2 is used to maintain the constant power operation of the system, each VSG unit is used for photovoltaic power generation, and the AC load unit is used for Switch the power disturbance of the microgrid system to keep the load constant during normal operation.
在本实施例中,各个VSG单元的结构和控制策略相同,但性能参数可以不同。In this embodiment, the structure and control strategy of each VSG unit are the same, but the performance parameters may be different.
在本实施例中,每个VSG单元均包括并网逆变器、直流母线、光伏发电子单元(PV)和对应的DC-DC换流器、以及储能子单元(BAT)和对应的DC-DC换流器。In this embodiment, each VSG unit includes a grid-connected inverter, a DC bus, a photovoltaic unit (PV) and a corresponding DC-DC converter, and an energy storage unit (BAT) and a corresponding DC -DC converter.
在本实施例中,各个VSG单元中,光伏发电子单元通过对应的DC-DC换流器与直流母线连接,储能子单元通过对应的DC-DC换流器与直流母线连接,直流母线通过并网逆变器与整个微电网系统的交流母线连接。In this embodiment, in each VSG unit, the photovoltaic power generation sub-unit is connected to the DC bus through the corresponding DC-DC converter, the energy storage sub-unit is connected to the DC bus through the corresponding DC-DC converter, and the DC bus is connected to the DC bus through the corresponding DC-DC converter. The grid-tied inverter is connected to the AC bus of the entire microgrid system.
在本实施例中,各个VSG单元中光伏发电子单元运行在最大功率追踪模式,储能子单元用于承担运行中负载投切带来的功率扰动,即系统发生功率扰动时所需的惯性支撑由各个储能子单元共同提供。可选的,各个储能子单元采用定直流电压控制。In this embodiment, the photovoltaic power generation sub-unit in each VSG unit operates in the maximum power tracking mode, and the energy storage sub-unit is used to bear the power disturbance caused by load switching during operation, that is, the inertial support required by the system when the power disturbance occurs. Provided jointly by each energy storage sub-unit. Optionally, each energy storage subunit is controlled by a constant DC voltage.
需要说明的是,以上仅为一个具体的示例,微电网系统中的VSG单元数量并不限定为3个。It should be noted that the above is only a specific example, and the number of VSG units in the microgrid system is not limited to three.
参见图2,本发明实施例提供的虚拟同步发电机控制方法包括:Referring to FIG. 2, the virtual synchronous generator control method provided by the embodiment of the present invention includes:
S101:获取所述微电网系统各个虚拟同步发电机单元的至少一个性能指标对应的性能参数;;S101: Obtain performance parameters corresponding to at least one performance index of each virtual synchronous generator unit of the microgrid system;
在本发明的一个实施例中,所述性能指标包括储能荷电状态指标、换流器可调容量指标、储能充放电可调功率指标以及系统单位时间功率可调量指标,相应的,每个VSG单元均对应性能参数:储能荷电状态、换流器可调容量、储能充放电可调功率以及系统单位时间功率可调量。In an embodiment of the present invention, the performance indicators include an energy storage state-of-charge indicator, an inverter adjustable capacity indicator, an energy storage charge-discharge adjustable power indicator, and a system unit time power adjustable amount indicator. Correspondingly, Each VSG unit corresponds to performance parameters: state of charge of energy storage, adjustable capacity of inverter, adjustable power of energy storage charging and discharging, and adjustable amount of system power per unit time.
S101包括:S101 includes:
通过公式ΔPNi=PNi-|P0i|,计算各个虚拟同步发电机单元的换流器可调容量;Through the formula ΔP Ni =P Ni -|P 0i |, the adjustable capacity of the converter of each virtual synchronous generator unit is calculated;
其中ΔPNi为第i个虚拟同步发电机单元的换流器可调容量,PNi为第i个虚拟同步发电机单元的换流器额定容量,P0i为第i个虚拟同步发电机单元的换流器输出功率;where ΔP Ni is the inverter adjustable capacity of the i-th virtual synchronous generator unit, P Ni is the inverter rated capacity of the i-th virtual synchronous generator unit, and P 0i is the ith virtual synchronous generator unit’s inverter capacity. Converter output power;
通过公式ΔPbati=PbatNi-|Pbati|计算各个虚拟同步发电机的储能充放电可调功率;Calculate the energy storage charging and discharging adjustable power of each virtual synchronous generator by the formula ΔP bati =P batNi -|P bati |;
其中ΔPbati为第i个虚拟同步发电机单元的储能充放电可调功率,PbatNi为第i个虚拟同步发电机单元的储能充放电功率上限,Pbati为第i个虚拟同步发电机单元的储能实际充放电功率。Among them, ΔP bati is the energy storage charge and discharge adjustable power of the i-th virtual synchronous generator unit, P batNi is the upper limit of the energy-storage charge and discharge power of the i-th virtual synchronous generator unit, and P bati is the i-th virtual synchronous generator unit. The actual charge and discharge power of the unit's energy storage.
在本实施例中,储能荷电状态可记为SOC(state of charge,荷电状态),其形式为一个百分数,用于表明VSG单元中储能子单元当前的储能状态。In this embodiment, the state of charge of the energy storage may be recorded as SOC (state of charge, state of charge), which is in the form of a percentage, and is used to indicate the current energy storage state of the energy storage subunit in the VSG unit.
在本实施例中,系统单位时间功率可调量记为ΔPtmax。In this embodiment, the adjustable amount of system power per unit time is denoted as ΔP tmax .
在本实施例中,通过各个性能指标对应的性能参数可以对各个VSG单元的惯性支撑能力进行评价,惯性支撑能力越大的VSG单元将被分配越大的虚拟惯量。In this embodiment, the inertial support capability of each VSG unit can be evaluated through performance parameters corresponding to each performance index, and a VSG unit with a larger inertial support capability will be assigned a larger virtual inertia.
VSG单元的控制表达式为:The control expression of the VSG unit is:
式(1)中,H为VSG单元的虚拟惯量,Pref为VSG单元的有功给定值,Po为VSG单元的实际输出值,为VSG单元的相位,Kd为系统阻尼系数,ω为VSG单元的输出角频率,ωg为微电网系统交流母线中的电网角频率。In formula (1), H is the virtual inertia of the VSG unit, P ref is the active power given value of the VSG unit, P o is the actual output value of the VSG unit, is the phase of the VSG unit, K d is the system damping coefficient, ω is the output angular frequency of the VSG unit, and ω g is the grid angular frequency in the AC bus of the microgrid system.
S102:根据各个性能参数计算所述微电网系统的总虚拟惯量;S102: Calculate the total virtual inertia of the microgrid system according to each performance parameter;
在本发明的一个实施例中,S102包括:In an embodiment of the present invention, S102 includes:
根据各个储能荷电状态计算所述微电网系统的总惯量调整系数;Calculate the total inertia adjustment coefficient of the microgrid system according to the state of charge of each energy storage;
通过公式计算所述微电网系统的总虚拟惯量;by formula calculating the total virtual inertia of the microgrid system;
其中HT为所述微电网系统的总虚拟惯量,α为总惯量调整系数,k1和k2为虚拟惯量调整系数,f为系统频率。Wherein H T is the total virtual inertia of the microgrid system, α is the total inertia adjustment coefficient, k 1 and k 2 are the virtual inertia adjustment coefficients, and f is the system frequency.
在本发明的一个实施例中,所述根据各个储能荷电状态计算所述微电网系统的总惯量调整系数包括:In an embodiment of the present invention, the calculating the total inertia adjustment coefficient of the microgrid system according to each energy storage state of charge includes:
根据所述系统频率判断所述微电网系统的工作状态;Judging the working state of the microgrid system according to the system frequency;
若所述微电网系统的工作状态为待充电,则通过公式计算所述总惯量调整系数;If the working state of the microgrid system is to be charged, then the formula calculating the total inertia adjustment coefficient;
若所述微电网系统的工作状态为待放电,则通过公式计算所述总惯量调整系数;If the working state of the microgrid system is to be discharged, then the formula calculating the total inertia adjustment coefficient;
其中α为总惯量调整系数,SNi为第i个虚拟同步发电机单元的额定储能容量,SOCd为储能上限,SOCa为储能下限,SOCi表示第i个虚拟同步发电机单元的储能荷电状态,SOCN为储能正常参考值。where α is the total inertia adjustment coefficient, S Ni is the rated energy storage capacity of the ith virtual synchronous generator unit, SOC d is the upper limit of energy storage, SOC a is the lower limit of energy storage, and SOC i represents the ith virtual synchronous generator unit The state of charge of the energy storage, SOC N is the normal reference value of the energy storage.
在本实施例中,微电网系统的负荷减小,则工作状态为待充电,即将多余的能量通过储能子单元进行储存;微电网系统的负荷增加,则工作状态为待放电,即将储能子单元存储的能量释放出来。In this embodiment, when the load of the microgrid system decreases, the working state is to be charged, that is, the excess energy is stored in the energy storage subunit; when the load of the microgrid system increases, the working state is to be discharged, that is, to store energy. The energy stored in the subunit is released.
在本实施例中,系统频率增大,代表微电网系统的负荷减小;系统频率减小,代表微电网系统的负荷增大。In this embodiment, the increase of the system frequency means that the load of the microgrid system decreases; the decrease of the system frequency means that the load of the microgrid system increases.
在本实施例中,在微电网系统的工作状态为待充电时,SOCi越小,代表对应VSG单元的储能剩余容量越小,可充电能力越强,充电时可提供的虚拟惯量越大。In this embodiment, when the working state of the microgrid system is to be charged, the smaller the SOC i , the smaller the remaining energy storage capacity of the corresponding VSG unit, the stronger the charging capability, and the greater the virtual inertia that can be provided during charging. .
在本实施例中,在微电网系统的工作状态为待放电时,SOCi越大,代表对应VSG单元的储能剩余容量越大,可放电能力越强,放电时可提供的虚拟惯量越大。In this embodiment, when the working state of the microgrid system is to be discharged, the larger the SOC i , the larger the remaining energy storage capacity of the corresponding VSG unit, the stronger the dischargeable capacity, and the larger the virtual inertia that can be provided during discharge. .
在本实施例中,微电网系统的工作状态取决于交流负载单元提供的扰动。In this embodiment, the working state of the microgrid system depends on the disturbance provided by the AC load unit.
可选的,SOCd=90%,SOCa=10%,SOCN=50%。Optionally, SOC d =90%, SOC a =10%, SOC N =50%.
S103:根据各个性能参数虚拟同步发电机计算对应性能指标的权重;S103: Calculate the weight of the corresponding performance index according to the virtual synchronous generator of each performance parameter;
在本发明的一个实施例中,S103包括:In an embodiment of the present invention, S103 includes:
基于公式计算各个性能指标的变异系数;formula based Calculate the coefficient of variation of each performance index;
其中,Vj为第j项性能指标的变异系数;σj为第j项性能指标对应的各个虚拟同步发电机单元的性能参数的标准差;为第j个性能指标对应的各个虚拟同步发电机单元的性能参数的平均数;Among them, V j is the coefficient of variation of the jth performance index; σ j is the standard deviation of the performance parameters of each virtual synchronous generator unit corresponding to the jth performance index; is the average number of performance parameters of each virtual synchronous generator unit corresponding to the jth performance index;
将各个性能指标对应的变异系数代入公式计算各个性能指标的权重;Substitute the coefficient of variation corresponding to each performance index into the formula Calculate the weight of each performance indicator;
其中,Wj为第j项性能指标对应的权重,Vj为第j项性能指标的变异系数。Among them, W j is the weight corresponding to the j-th performance index, and V j is the variation coefficient of the j-th performance index.
在本实施例中,通过计算变异系数进而计算权重的方法可以根据各性能参数的变化实时调整各项性能指标在虚拟惯量分配过程中的权重,进而及时对各VSG单元的虚拟惯量大小进行调整,维持各VSG单元的稳定运行。In this embodiment, the method of calculating the coefficient of variation and then calculating the weight can adjust the weight of each performance index in the virtual inertia allocation process in real time according to the change of each performance parameter, and then adjust the virtual inertia size of each VSG unit in time, Maintain stable operation of each VSG unit.
S104:根据各个性能参数以及对应性能指标的权重计算正理想解和负理想解;S104: Calculate the positive ideal solution and the negative ideal solution according to each performance parameter and the weight of the corresponding performance index;
在本实施例中,S104包括:In this embodiment, S104 includes:
将各个性能参数与对应性能指标的权重相乘,得到性能更新参数;Multiply each performance parameter by the weight of the corresponding performance index to obtain the performance update parameter;
筛选出每项性能指标对应的性能更新参数中的最优值和最劣值。The optimal value and the worst value in the performance update parameters corresponding to each performance index are screened out.
正理想解为每项性能指标对应的性能更新参数的最优值组合得到的虚拟方案,负理想解即为各个性能更新参数的最劣值组合得到的虚拟方案。The positive ideal solution is a virtual solution obtained by combining the optimal values of the performance update parameters corresponding to each performance index, and the negative ideal solution is a virtual solution obtained by combining the worst values of each performance update parameter.
在本实施例中,对于性能参数流器可调容量、储能充放电可调功率以及系统单位时间功率可调量,均为越大为越优,越小为越劣。In this embodiment, for the performance parameters, the adjustable capacity of the current flow device, the adjustable power of the energy storage charging and discharging, and the adjustable amount of the system power per unit time, the larger the better, the smaller the worse.
在本实施例中,微电网系统的工作状态为待放电时,性能参数SOC越大为越优,越小为越劣;In this embodiment, when the working state of the microgrid system is to be discharged, the larger the performance parameter SOC, the better, and the smaller the better, the worse;
微电网系统的工作状态为待充电时,性能参数SOC越小为越优,越大为越劣。When the working state of the microgrid system is to be charged, the smaller the performance parameter SOC is, the better it is, and the larger it is, the worse it is.
例如,VSGi对应的性能参数为[ΔPNi,ΔPbati,SOCi,ΔPtmax];For example, the performance parameters corresponding to VSG i are [ΔP Ni ,ΔP bati , SOC i ,ΔP tmax ];
将各个性能参数与对应性能指标的权重相乘后,得到VSGi对应的性能更新参数为[Ai,Bi,Ci,Di]=[W1ΔPNi,W2ΔPbati,W3SOCi,W3ΔPtmax];After multiplying each performance parameter with the weight of the corresponding performance index, the performance update parameter corresponding to VSG i is obtained as [A i ,B i ,C i ,D i ]=[W 1 ΔP Ni ,W 2 ΔP bati ,W 3 SOC i ,W 3 ΔP tmax ];
当微电网系统的工作状态为待放电时,得到:When the working state of the microgrid system is to be discharged, we get:
正理想解Z*=[Amax,Bmax,Cmax,Dmax],负理想解Z0=[Amin,Bmin,Cmin,Dmin]Positive ideal solution Z * = [A max , B max , C max , D max ], negative ideal solution Z 0 =[A min , B min , C min , D min ]
当微电网系统的工作状态为待充电时,得到:When the working state of the microgrid system is to be charged, we get:
正理想解Z*=[Amax,Bmax,Cmin,Dmax],负理想解Z0=[Amin,Bmin,Cmax,Dmin]Positive ideal solution Z * = [A max , B max , C min , D max ], negative ideal solution Z 0 =[A min , B min , C max , D min ]
S105:根据所述正理想解、所述负理想解和各个虚拟同步发电机单元对应的性能参数计算各个虚拟同步发电机单元的综合评价指数;S105: Calculate the comprehensive evaluation index of each virtual synchronous generator unit according to the positive ideal solution, the negative ideal solution and the performance parameters corresponding to each virtual synchronous generator unit;
在本发明的一个实施例中,S105包括:In an embodiment of the present invention, S105 includes:
基于公式计算各个虚拟同步发电机单元的综合评价指数;formula based Calculate the comprehensive evaluation index of each virtual synchronous generator unit;
其中Ci *为第i个虚拟同步发电机单元的综合评价指数,di *为第i个虚拟同步发电机单元的性能参数与正理想解的欧式距离,di o为第i个虚拟同步发电机单元的性能参数与负理想解的欧式距离。where C i * is the comprehensive evaluation index of the ith virtual synchronous generator unit, d i * is the Euclidean distance between the performance parameters of the ith virtual synchronous generator unit and the positive ideal solution, and d i o is the ith virtual synchronous generator unit The Euclidean distance between the performance parameters of the generator unit and the negative ideal solution.
在本实施例中,应用了基于逼近理想值的排序方法,对虚拟同步发电机单元进行排序,能够保证计算的准确性。In this embodiment, a sorting method based on approximation to an ideal value is applied to sort the virtual synchronous generator units, which can ensure the accuracy of the calculation.
S106:根据各个虚拟同步发电机单元的综合评价指数和所述微电网系统的总虚拟惯量计算各个虚拟同步发电机单元的虚拟惯量;S106: Calculate the virtual inertia of each virtual synchronous generator unit according to the comprehensive evaluation index of each virtual synchronous generator unit and the total virtual inertia of the microgrid system;
在本发明的一个实施例中,S106包括:In an embodiment of the present invention, S106 includes:
根据公式计算各个虚拟同步发电机单元的虚拟惯量;According to the formula Calculate the virtual inertia of each virtual synchronous generator unit;
其中Hi为第i个虚拟同步发电机单元的虚拟惯量,Ci *表示第i个虚拟同步发电机单元的综合评价指数,HT为所述微电网系统的总虚拟惯量,H0为常数。Wherein H i is the virtual inertia of the ith virtual synchronous generator unit, C i * represents the comprehensive evaluation index of the ith virtual synchronous generator unit, H T is the total virtual inertia of the microgrid system, and H 0 is a constant .
可选的,H0=0.2Optional, H 0 =0.2
通过本实施例提供的虚拟同步发电机控制方法,可以在各个虚拟同步发电机单元的性能参数不同的情况下,为各个虚拟同步发电机单元确定合理的虚拟惯量,充分利用了虚拟惯量灵活可控的特点,能够提高微电网系统的运行稳定性,提高微电网系统的频率质量。With the virtual synchronous generator control method provided in this embodiment, a reasonable virtual inertia can be determined for each virtual synchronous generator unit under the condition that the performance parameters of each virtual synchronous generator unit are different, and the virtual inertia can be fully utilized to be flexible and controllable It can improve the operation stability of the microgrid system and improve the frequency quality of the microgrid system.
在一个具体的实施例1中,初始时刻SOC1=80%、SOC2=50%、SOC3=20%,各个VSG单元的其他性能参数相同,在5s时刻交流负载单元增加负荷5kW,本实施例提供的虚拟同步发电机控制方法记为TOPSIS方法。In a
图3(a)示出了本实施例中各VSG单元惯量变化,参见图3(a),在本实施例中,H1最大,H3最小。Fig. 3(a) shows the change of inertia of each VSG unit in this embodiment. Referring to Fig. 3(a), in this embodiment, H 1 is the largest and H 3 is the smallest.
图3(b)示出了本实施例中各VSG单元有功输出变化,参见图3(b),在本实施例中,VSG1单元的有功输出最大,VSG3单元的有功输出最小。Figure 3(b) shows the variation of the active output of each VSG unit in this embodiment. Referring to Figure 3(b), in this embodiment, the active output of the VSG 1 unit is the largest, and the active output of the VSG 3 unit is the smallest.
图3(c)示出了本实施例提供的虚拟同步发电机控制方法与现有的FVSG控制方法中SOC1的对比。FIG. 3( c ) shows the comparison of SOC 1 in the virtual synchronous generator control method provided by this embodiment and the existing FVSG control method.
图3(d)示出了本实施例提供的虚拟同步发电机控制方法与现有的FVSG控制方法中SOC3的对比。FIG. 3(d) shows the comparison of SOC 3 in the virtual synchronous generator control method provided by this embodiment and the existing FVSG control method.
通过图3(c)以及图3(d)可知,本实施例提供的虚拟同步发电机控制方法与现有的FVSG方法相比,可以根据各个VSG单元的SOC值合理分配虚拟惯量,SOC值越大,对应的VSG单元中储能子单元放电越多,SOC值越小,对应的VSG单元的储能子单元放电越少,因此可以有效避免各个VSG单元中储能子单元的过充过放现象的出现。It can be seen from Fig. 3(c) and Fig. 3(d) that, compared with the existing FVSG method, the virtual synchronous generator control method provided in this embodiment can reasonably allocate the virtual inertia according to the SOC value of each VSG unit. The more the energy storage subunits in the corresponding VSG unit discharge, the smaller the SOC value, and the less the energy storage subunits discharge in the corresponding VSG unit, so it can effectively avoid overcharge and overdischarge of the energy storage subunits in each VSG unit. occurrence of the phenomenon.
在一个具体的实施例2中,初始时刻PN1=2kW,PN2=3kW,PN3=6kW,各VSG单元的其他性能参数相同,在5S时刻交流负载单元增加负荷5.5kW,本实施例提供的虚拟同步发电机控制方法记为TOPSIS方法。In a
图4(a)示出了本实施例中各VSG单元的惯量变化,参见图4(a),在本实施例中,换流器额定容量大的VSG单元虚拟惯量大,换流器额定容量小的VSG单元虚拟惯量小。Fig. 4(a) shows the change of inertia of each VSG unit in this embodiment, referring to Fig. 4(a), in this embodiment, the virtual inertia of the VSG unit with a large inverter rated capacity is large, and the rated capacity of the inverter is large. Small VSG elements have small virtual inertia.
图4(b)示出了本实施例中各VSG单元的有功输出变化,图4(c)示出了现有的FVSG控制方法中各VSG单元有功输出变化,对比图4(b)和图4(c),在本实施例中,初始时刻各个VSG单元的有功输出一致,在增加负荷后,各个VSG单元均能安全运行;在现有的FVSG控制方法中,在增加负荷后,各个VSG单元的有功输出开始保持一致,导致安全性能小的VSG1单元率先达到额定容量而退出运行,加另外两个VSG单元的有功输出压力,进而导致VSG2单元也达到额定容量退出运行。Fig. 4(b) shows the change of the active output of each VSG unit in this embodiment, and Fig. 4(c) shows the change of the active output of each VSG unit in the existing FVSG control method. 4(c), in this embodiment, the active output of each VSG unit is consistent at the initial moment, and after increasing the load, each VSG unit can run safely; in the existing FVSG control method, after increasing the load, each VSG unit The active power output of the units began to be consistent, which led to the VSG 1 unit with low safety performance reaching the rated capacity first and out of operation, plus the active power output pressure of the other two VSG units, which led to the VSG 2 unit also reaching the rated capacity and out of operation.
图4(d)示出了本实施例提供的虚拟同步发电机控制方法与现有的FVSG控制方法下系统频率变化的对比。参见图4(d)本实施例提供的方法中系统频率变化剧烈程度低,可以更好的为微电网系统提供惯性支撑,维持系统的频率质量。FIG. 4(d) shows the comparison of the system frequency variation under the virtual synchronous generator control method provided by this embodiment and the existing FVSG control method. Referring to FIG. 4(d), in the method provided in this embodiment, the system frequency changes less violently, which can better provide inertial support for the microgrid system and maintain the frequency quality of the system.
具体的实施例1和2展示了本方法针对一项性能指标的优化效果,其中实施例1展示了在性能参数SOC存在差异时的优化效果,实施例2展示了在性能参数换流器额定容量存在差异时的优化效果。本发明实施例提供的虚拟同步发电机控制方法可以根据各个VSG单元的性能参数差异实现合理的虚拟惯量分配,维持微电网系统的稳定运行。The specific examples 1 and 2 show the optimization effect of the method for one performance index, wherein the
在一个具体的实施例3中,初始时刻SOC1=20%,SOC2=50%,SOC3=50%,PN1=2.5KW,PN2=2.5KW,PN3=3kW,各VSG单元的其他性能参数相同,各VSG单元的输出功率为-1kW,5S时刻交流负载单元减小负荷3kW,各个VSG单元的储能子单元需要进行储能充电,性能指标SOC越小为越优,本实施例提供的虚拟同步发电机控制方法记为TOPSIS方法。In a
图5(a)示出了本实施例中各VSG单元惯量变化,参见图5(a),在本实施例中,由于SOC1值最小,VSG1单元的综合评价指标最接近最优解,因此H1最大。经过1S时间之后,VSG1单元的有功输出接近额定容量,由于输出功率发生变化,各个性能指标的权重发生变化,换流器可调容量成为评价惯性支撑能力的主要因素,此时VSG1单元接近额定容量运行,远离正理想解,提供的虚拟惯量占比减小即H1减小。Fig. 5(a) shows the inertia change of each VSG unit in this embodiment, referring to Fig. 5(a), in this embodiment, since the SOC 1 value is the smallest, the comprehensive evaluation index of the VSG 1 unit is closest to the optimal solution, Hence H1 is the largest. After 1S, the active output of the VSG 1 unit is close to the rated capacity. Due to the change of the output power, the weight of each performance index changes, and the adjustable capacity of the inverter becomes the main factor for evaluating the inertial support capacity. At this time, the VSG 1 unit is close to Running at rated capacity, away from the positive ideal solution, provides a reduction in the proportion of virtual inertia, that is, a reduction in H1.
图5(b)示出了本实施例中各VSG单元的有功输出变化,参见图5(b),在本实施例中,VSG1单元的有功输出开始时刻最大,在接近额定容量时开始减小,可见通过本实施例提供的虚拟同步发电机控制方法采用变异系数方法确定各个性能指标的权重时,可以根据性能参数的变化对各个VSG单元的虚拟惯量进行实时调整,从而维持系统的稳定运行。Fig. 5(b) shows the variation of the active output of each VSG unit in this embodiment, referring to Fig. 5(b), in this embodiment, the active output of the VSG 1 unit starts to be the largest at the start time, and starts to decrease when it is close to the rated capacity. It can be seen that the virtual synchronous generator control method provided in this embodiment adopts the coefficient of variation method to determine the weight of each performance index, and the virtual inertia of each VSG unit can be adjusted in real time according to the change of the performance parameter, so as to maintain the stable operation of the system. .
具体的实施例3展示了本方法中使用变异系数法计算权重的效果,本实施例提供的虚拟同步发电机控制方法可以综合考虑各个性能参数的变化情况,始终把差异较大的性能参数对应的性能指标作为主要的影响因素,从而合理分配虚拟惯量维持微电网系统的稳定运行。The
在一个具体的实施例4中,初始时刻SOC1=18%,SOC2=21%,SOC3=24%,各VSG单元的其他性能参数与实施例1中一致,由于具体实施例4与1中性能参数SOC的不同,两者的总惯量调整系数α不同,5S时刻交流负载单元增加负荷5kW,本实施例提供的虚拟同步发电机控制方法记为TOPSIS方法。In a
图6(a)示出了本实施例中各VSG单元惯量变化,图6(b)示出了本实施例中各VSG单元有功输出变化。参见图3(a)、图3(b)、图6(a)以及图6(b),当微电网系统中储能总容量较低时,通过总惯量调整系数的调整,微电网系统的总虚拟惯量减小,相应的各个VSG单元的虚拟惯量减小,有功输出减小。Fig. 6(a) shows the change of inertia of each VSG unit in this embodiment, and Fig. 6(b) shows the change of active output of each VSG unit in this embodiment. Referring to Figure 3(a), Figure 3(b), Figure 6(a) and Figure 6(b), when the total energy storage capacity in the microgrid system is low, through the adjustment of the total inertia adjustment coefficient, the The total virtual inertia decreases, the corresponding virtual inertia of each VSG unit decreases, and the active output decreases.
图6(c)、图6(d)以及图6(e)分别示出了VSG1单元、VSG2单元以及VSG3单元在本实施例提供的虚拟同步发电机控制方法与现有的FVSG控制方法中性能参数SOC的对比。参见图6(c)至图6(e),相比于现有的FVSG控制方法,应用本实施例提供的虚拟同步发电机控制方法时,性能参数SOC的变化速度更慢,表明本实施例提供的虚拟同步发电机控制方法可根据微电网系统中储能的总剩余量合理调节总虚拟惯量,更好的维持各个储能子单元在安全状态运行。Fig. 6(c), Fig. 6(d) and Fig. 6(e) respectively show the virtual synchronous generator control method and the existing FVSG control provided by the VSG 1 unit, the VSG 2 unit and the VSG 3 unit in this embodiment Comparison of performance parameters SOC in methods. Referring to Fig. 6(c) to Fig. 6(e), compared with the existing FVSG control method, when the virtual synchronous generator control method provided by this embodiment is applied, the change speed of the performance parameter SOC is slower, indicating that this embodiment The provided virtual synchronous generator control method can reasonably adjust the total virtual inertia according to the total residual amount of energy storage in the microgrid system, so as to better maintain the operation of each energy storage sub-unit in a safe state.
具体的实施例4展示了总惯量调整系数α对微电网系统稳定运行的作用。总惯量调整系数通过各个储能子单元的SOC确定,根据各个储能子单元的容量调整微电网系统的总虚拟惯量,避免各个储能子单元出现过充过放的情况。The
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。It should be understood that the size of the sequence numbers of the steps in the above embodiments does not mean the sequence of execution, and the execution sequence of each process should be determined by its function and internal logic, and should not constitute any limitation to the implementation process of the embodiments of the present invention.
参见图7,本发明实施例提供了一种虚拟同步发电机控制装置10,应用于具有至少一个虚拟同步发电机单元的微电网系统,包括:Referring to FIG. 7, an embodiment of the present invention provides a virtual synchronous
性能参数获取模块110,用于获取所述微电网系统各个虚拟同步发电机单元的至少一个性能指标对应的性能参数;A performance
总虚拟惯量计算模块120,用于根据各个性能参数计算所述微电网系统的总虚拟惯量;a total virtual
权重计算模块130,用于根据各个性能参数虚拟同步发电机计算对应性能指标的权重;A
理想解计算模块140,用于根据各个性能参数以及对应性能指标的权重计算正理想解和负理想解;The ideal
综合评价指数计算模块150,用于根据所述正理想解、所述负理想解和各个虚拟同步发电机单元对应的性能参数计算各个虚拟同步发电机单元的综合评价指数;The comprehensive evaluation
虚拟惯量计算模块160,用于根据各个虚拟同步发电机单元的综合评价指数和所述微电网系统的总虚拟惯量计算各个虚拟同步发电机单元的虚拟惯量;The virtual
在本实施例中,所述性能指标包括储能荷电状态、换流器可调容量、储能充放电可调功率以及系统单位时间功率可调量;性能参数获取模块110包括:In this embodiment, the performance indicators include the state of charge of the energy storage, the adjustable capacity of the inverter, the adjustable power of the energy storage charging and discharging, and the adjustable amount of power per unit time of the system; the performance
换流器可调容量计算单元,用于通过公式ΔPNi=PNi-|P0i|,计算各个虚拟同步发电机单元的换流器可调容量;其中ΔPNi为第i个虚拟同步发电机单元的换流器可调容量,PNi为第i个虚拟同步发电机单元的换流器额定容量,P0i为第i个虚拟同步发电机单元的换流器输出功率;The inverter adjustable capacity calculation unit is used to calculate the inverter adjustable capacity of each virtual synchronous generator unit through the formula ΔP Ni =P Ni -|P 0i |; where ΔP Ni is the ith virtual synchronous generator The inverter adjustable capacity of the unit, P Ni is the inverter rated capacity of the ith virtual synchronous generator unit, and P 0i is the inverter output power of the ith virtual synchronous generator unit;
储能充放电可调功率计算单元,用于通过公式ΔPbati=PbatNi-|Pbati|计算所述储能充放电可调功率;其中ΔPbati为第i个虚拟同步发电机单元的储能充放电可调功率,PbatNi为第i个虚拟同步发电机单元的储能充放电功率上限,Pbati为第i个虚拟同步发电机单元的储能实际充放电功率。The energy storage charge and discharge adjustable power calculation unit is used to calculate the energy storage charge and discharge adjustable power according to the formula ΔP bati =P batNi -|P bati |; wherein ΔP bati is the energy storage of the i-th virtual synchronous generator unit Adjustable charging and discharging power, P batNi is the upper limit of the energy storage charging and discharging power of the ith virtual synchronous generator unit, and P bati is the actual charging and discharging power of the energy storage of the ith virtual synchronous generator unit.
总虚拟惯量计算模块120包括:The total virtual
工作状态判断单元,用于根据系统频率判断微电网系统的工作状态;a working state judgment unit, used for judging the working state of the microgrid system according to the system frequency;
总惯量调整系数计算单元,用于若所述微电网系统的工作状态为待充电,则通过公式计算所述总惯量调整系数;若所述微电网系统的工作状态为待放电,则通过公式计算所述总惯量调整系数;其中α为总惯量调整系数,SNi为第i个虚拟同步发电机单元的额定储能容量,SOCd为储能上限,SOCa为储能下限,SOCi表示第i个虚拟同步发电机单元的实际荷电状态,SOCN为储能正常参考值总虚拟贯量计算单元,用于通过公式计算所述微电网系统的总虚拟惯量;其中HT为所述微电网系统的总虚拟惯量,α为总惯量调整系数,k1和k2为虚拟惯量调整系数,f为系统频率。The total inertia adjustment coefficient calculation unit is used to calculate the formula through the formula if the working state of the microgrid system is to be charged Calculate the adjustment coefficient of the total inertia; if the working state of the microgrid system is to be discharged, then use the formula Calculate the total inertia adjustment coefficient; where α is the total inertia adjustment coefficient, S Ni is the rated energy storage capacity of the ith virtual synchronous generator unit, SOC d is the upper limit of energy storage, SOC a is the lower limit of energy storage, and SOC i represents The actual state of charge of the i-th virtual synchronous generator unit, SOC N is the calculation unit of the total virtual flux of the normal reference value of the energy storage, which is used to pass the formula Calculate the total virtual inertia of the microgrid system; wherein H T is the total virtual inertia of the microgrid system, α is the total inertia adjustment coefficient, k 1 and k 2 are the virtual inertia adjustment coefficients, and f is the system frequency.
权重计算模块130包括:The
变异系数计算单元,用于基于公式计算各个性能指标的变异系数;其中,Vj为第j个性能指标的变异系数;σj为第j项性能指标对应的各个虚拟同步发电机单元的性能参数的标准差;为第j个性能指标对应的各个虚拟同步发电机单元的性能参数的平均数;Coefficient of variation calculation unit for formula-based Calculate the coefficient of variation of each performance index; wherein, V j is the coefficient of variation of the jth performance index; σ j is the standard deviation of the performance parameters of each virtual synchronous generator unit corresponding to the jth performance index; is the average number of performance parameters of each virtual synchronous generator unit corresponding to the jth performance index;
权重计算单元,用于将各个性能指标对应的变异系数代入公式计算各个性能指标的权重;其中,Wj为第j项性能参数对应的权重,Vj为第j项性能参数的变异系数。The weight calculation unit is used to substitute the coefficient of variation corresponding to each performance index into the formula Calculate the weight of each performance index; wherein, W j is the weight corresponding to the j-th performance parameter, and V j is the variation coefficient of the j-th performance parameter.
综合评价指数计算模块150用于根据公式计算各个虚拟同步发电机单元的综合评价指数;其中Ci *表示第i个虚拟同步发电机单元的综合评价指数,di *为第i个虚拟同步发电机单元的性能参数与正理想解的欧式距离,di o为第i个虚拟同步发电机单元的性能参数与负理想解的欧式距离。The comprehensive evaluation
虚拟惯量计算模块160用于根据公式计算各个虚拟同步发电机单元的虚拟惯量;其中Hi为第i个虚拟同步发电机单元的虚拟惯量,Ci *表示第i个虚拟同步发电机单元的综合评价指数,HT为所述微电网系统的总虚拟惯量,H0为常数。The virtual
通过本实施例提供的虚拟同步发电机控制装置,可以在各个虚拟同步发电机的性能参数不同的情况下,为各个虚拟同步发电机合理的确定对应的虚拟惯量,提高微电网系统的运行稳定性。The virtual synchronous generator control device provided in this embodiment can reasonably determine the corresponding virtual inertia for each virtual synchronous generator when the performance parameters of each virtual synchronous generator are different, thereby improving the operation stability of the microgrid system .
图8是本发明一实施例提供的终端设备的示意图。如图8所示,该实施例的终端设备8包括:处理器80、存储器81以及存储在所述存储器81中并可在所述处理器80上运行的计算机程序82。所述处理器80执行所述计算机程序82时实现上述各个实施例中的步骤,例如图1所示的步骤101至104。或者,所述处理器80执行所述计算机程序82时实现上述各装置实施例中各模块/单元的功能,例如图7所示模块110至160的功能。FIG. 8 is a schematic diagram of a terminal device provided by an embodiment of the present invention. As shown in FIG. 8 , the
示例性的,所述计算机程序82可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器81中,并由所述处理器80执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序82在所述终端设备8中的执行过程。Exemplarily, the
所述终端设备8可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述终端设备可包括,但不仅限于,处理器80、存储器81。本领域技术人员可以理解,图8仅仅是终端设备8的示例,并不构成对终端设备8的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述终端设备还可以包括输入输出设备、网络接入设备、总线等。The
所称处理器80可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。The so-called
所述存储器81可以是所述终端设备8的内部存储单元,例如终端设备8的硬盘或内存。所述存储器81也可以是所述终端设备8的外部存储设备,例如所述终端设备8上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器81还可以既包括所述终端设备8的内部存储单元也包括外部存储设备。所述存储器81用于存储所述计算机程序以及所述终端设备所需的其他程序和数据。所述存储器81还可以用于暂时地存储已经输出或者将要输出的数据。The
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and simplicity of description, only the division of the above-mentioned functional units and modules is used as an example. Module completion, that is, dividing the internal structure of the device into different functional units or modules to complete all or part of the functions described above. Each functional unit and module in the embodiment may be integrated in one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit, and the above-mentioned integrated units may adopt hardware. It can also be realized in the form of software functional units. In addition, the specific names of the functional units and modules are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application. For the specific working processes of the units and modules in the above-mentioned system, reference may be made to the corresponding processes in the foregoing method embodiments, which will not be repeated here.
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。In the foregoing embodiments, the description of each embodiment has its own emphasis. For parts that are not described or described in detail in a certain embodiment, reference may be made to the relevant descriptions of other embodiments.
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Those of ordinary skill in the art can realize that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each particular application, but such implementations should not be considered beyond the scope of the present invention.
在本发明所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。In the embodiments provided by the present invention, it should be understood that the disclosed apparatus/terminal device and method may be implemented in other manners. For example, the apparatus/terminal device embodiments described above are only illustrative. For example, the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units. Or components may be combined or may be integrated into another system, or some features may be omitted, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
在本发明各个实施例中的各功能单元可以集成在一个处理单元中,或是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。Each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。The integrated modules/units, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium. Based on this understanding, the present invention can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing relevant hardware through a computer program. The computer program can be stored in a computer-readable storage medium, and the computer When the program is executed by the processor, the steps of the foregoing method embodiments can be implemented. . Wherein, the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like. The computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a U disk, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electric carrier signal, telecommunication signal and software distribution medium, etc. It should be noted that the content contained in the computer-readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, the computer-readable media Electric carrier signals and telecommunication signals are not included.
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。The above-mentioned embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be used for the foregoing implementations. The technical solutions described in the examples are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention, and should be included in the within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010787270.7A CN111799844B (en) | 2020-08-07 | 2020-08-07 | Virtual synchronous generator control method and device and terminal equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010787270.7A CN111799844B (en) | 2020-08-07 | 2020-08-07 | Virtual synchronous generator control method and device and terminal equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111799844A true CN111799844A (en) | 2020-10-20 |
CN111799844B CN111799844B (en) | 2021-12-03 |
Family
ID=72829006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010787270.7A Active CN111799844B (en) | 2020-08-07 | 2020-08-07 | Virtual synchronous generator control method and device and terminal equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111799844B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113315166A (en) * | 2021-05-27 | 2021-08-27 | 国网河北省电力有限公司电力科学研究院 | Multi-virtual synchronous machine inertia configuration method and device and terminal equipment |
CN113872175A (en) * | 2021-09-30 | 2021-12-31 | 国网冀北电力有限公司张家口供电公司 | Virtual inertia distribution method and device for direct current micro-grid and electronic equipment |
CN114094600A (en) * | 2021-11-10 | 2022-02-25 | 国网天津市电力公司 | A collaborative operation control method and system for a multi-optical-storage VSG system |
CN114977269A (en) * | 2022-03-23 | 2022-08-30 | 国网河北省电力有限公司电力科学研究院 | Distribution method and device of virtual inertia of photovoltaic cluster |
CN116545105A (en) * | 2023-04-19 | 2023-08-04 | 广东大能环保集团有限公司 | Energy storage battery charge and discharge monitoring management system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109768582A (en) * | 2018-12-31 | 2019-05-17 | 华北电力大学(保定) | A virtual synchronous generator control method under multiple constraints |
-
2020
- 2020-08-07 CN CN202010787270.7A patent/CN111799844B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109768582A (en) * | 2018-12-31 | 2019-05-17 | 华北电力大学(保定) | A virtual synchronous generator control method under multiple constraints |
Non-Patent Citations (2)
Title |
---|
孟建辉等: "多约束下光储系统的灵活虚拟惯性控制方法", 《电工技术学报》 * |
李彦斌等: "采用灰色关联度与 TOPSIS 法的光伏发电项目风险评价研究", 《电网技术》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113315166A (en) * | 2021-05-27 | 2021-08-27 | 国网河北省电力有限公司电力科学研究院 | Multi-virtual synchronous machine inertia configuration method and device and terminal equipment |
CN113315166B (en) * | 2021-05-27 | 2023-02-24 | 国网河北省电力有限公司电力科学研究院 | Multi-virtual synchronous machine inertia configuration method and device and terminal equipment |
CN113872175A (en) * | 2021-09-30 | 2021-12-31 | 国网冀北电力有限公司张家口供电公司 | Virtual inertia distribution method and device for direct current micro-grid and electronic equipment |
CN113872175B (en) * | 2021-09-30 | 2024-07-02 | 国网冀北电力有限公司张家口供电公司 | Virtual inertia distribution method and device of direct-current micro-grid and electronic equipment |
CN114094600A (en) * | 2021-11-10 | 2022-02-25 | 国网天津市电力公司 | A collaborative operation control method and system for a multi-optical-storage VSG system |
CN114094600B (en) * | 2021-11-10 | 2024-02-27 | 国网天津市电力公司 | Collaborative operation control method and system for multi-optical storage VSG system |
CN114977269A (en) * | 2022-03-23 | 2022-08-30 | 国网河北省电力有限公司电力科学研究院 | Distribution method and device of virtual inertia of photovoltaic cluster |
WO2023178707A1 (en) * | 2022-03-23 | 2023-09-28 | 国网河北省电力有限公司电力科学研究院 | Distribution method and apparatus for virtual inertia in photovoltaic cluster |
US20240186794A1 (en) * | 2022-03-23 | 2024-06-06 | State Grid Hebei Electric Power Co., Ltd. Research Institute | Method and apparatus for allocating virtual inertia in photovoltaic cluster |
CN116545105A (en) * | 2023-04-19 | 2023-08-04 | 广东大能环保集团有限公司 | Energy storage battery charge and discharge monitoring management system |
CN116545105B (en) * | 2023-04-19 | 2023-11-10 | 广东大能环保集团有限公司 | Energy storage battery charge and discharge monitoring management system |
Also Published As
Publication number | Publication date |
---|---|
CN111799844B (en) | 2021-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111799844A (en) | A virtual synchronous generator control method, device and terminal equipment | |
CN108649593B (en) | Multi-energy-storage-unit coordination control method based on charge state in direct-current microgrid | |
WO2022198564A1 (en) | Energy storage system control method and energy storage system | |
CN111786376B (en) | Control method, device, terminal and storage medium of direct-current micro-grid | |
CN113472037A (en) | Battery pack balancing method, battery pack balancing device and battery management system | |
CN106849141A (en) | A kind of Large Copacity centralization virtual synchronous machine control method, apparatus and system | |
CN107147135A (en) | A method and system for smoothing microgrid power fluctuations | |
CN105322532B (en) | Direct-current grid energy storage optimization and control method for coordinating | |
CN112865067A (en) | Power distribution method and system of hybrid energy storage system and electronic equipment | |
CN116435980A (en) | Micro-grid hybrid energy storage system and control method | |
CN113612272B (en) | Charging control method and device for uninterruptible power supply of new energy power generation system | |
CN103208810A (en) | Hybrid energy storage smooth wind power control system with variable filter coefficients | |
CN114362288A (en) | Balance adjustment method, system and storage medium among battery clusters | |
CN118232454A (en) | Power control method, energy storage system, device, medium and product | |
CN116937642A (en) | CPS-based adaptive optimization control method and device for hybrid energy storage unit | |
WO2024187644A1 (en) | Method and apparatus for adjusting soc of hybrid battery, and device and medium | |
CN114865745A (en) | A hybrid energy storage system based on supercapacitor state of charge | |
CN115238992A (en) | Power system source load storage coordination optimization method and device and electronic equipment | |
CN115276045A (en) | Hybrid energy storage system control method based on low-pass filtering algorithm and fuzzy control method | |
CN115995860A (en) | Charging and discharging control method and device for energy storage converter | |
CN113097992B (en) | Droop control method and device for direct-current micro-grid and computer storage medium | |
CN118739240B (en) | Impact power stabilizing method and device based on self-adaptive time constant filter | |
CN112744084A (en) | Torque control method and device, vehicle, electronic device, and storage medium | |
CN104967352B (en) | A kind of energy accumulation current converter and its balance control method | |
CN114696348B (en) | A method for dynamically optimizing active power allocation for coordinating multiple types of energy storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20201020 Assignee: Hebei Bowei Electric Power Technology Co.,Ltd. Assignor: NORTH CHINA ELECTRIC POWER University (BAODING) Contract record no.: X2024990000158 Denomination of invention: A virtual synchronous generator control method, device, and terminal equipment Granted publication date: 20211203 License type: Common License Record date: 20240416 |