CN111786680A - A method and device for determining a generator matrix - Google Patents
A method and device for determining a generator matrix Download PDFInfo
- Publication number
- CN111786680A CN111786680A CN201910264733.9A CN201910264733A CN111786680A CN 111786680 A CN111786680 A CN 111786680A CN 201910264733 A CN201910264733 A CN 201910264733A CN 111786680 A CN111786680 A CN 111786680A
- Authority
- CN
- China
- Prior art keywords
- matrix
- code
- generator matrix
- target generation
- generation matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1105—Decoding
- H03M13/1111—Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms
- H03M13/1125—Soft-decision decoding, e.g. by means of message passing or belief propagation algorithms using different domains for check node and bit node processing, wherein the different domains include probabilities, likelihood ratios, likelihood differences, log-likelihood ratios or log-likelihood difference pairs
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1148—Structural properties of the code parity-check or generator matrix
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/004—Arrangements for detecting or preventing errors in the information received by using forward error control
- H04L1/0056—Systems characterized by the type of code used
- H04L1/0057—Block codes
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Probability & Statistics with Applications (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种生成矩阵的确定方法及装置,用以提升控制信道的短码性能。该方法包括:对生成矩阵执行迭代操作一次或多次,直到满足停止条件,获得目标生成矩阵,其中,所述目标生成矩阵的大小为K行N列,所述待编码信息比特的长度为所述K,码长为所述N;所述迭代操作包括:确定生成矩阵中任意两个行向量之间的码距中的最小码距,所述最小码距为第一行向量和第二行向量之间的码距;在所述第一行向量和所述第二行向量构成的码字中,将第(K+1)列至第N列中的其中一个全零元素列中的任意元素置为1。
A method and device for determining a generator matrix are used to improve the short code performance of a control channel. The method includes: performing an iterative operation on the generator matrix one or more times until a stopping condition is satisfied, and obtaining a target generator matrix, wherein the size of the target generator matrix is K rows and N columns, and the length of the information bits to be encoded is The K, the code length is the N; the iterative operation includes: determining the minimum code distance in the code distance between any two row vectors in the generator matrix, and the minimum code distance is the first row vector and the second row vector. The code distance between the vectors; in the code word formed by the first row vector and the second row vector, any one of the (K+1)th column to the Nth column with all zero elements element is set to 1.
Description
技术领域technical field
本申请实施例涉及通信技术领域,尤其涉及一种生成矩阵的确定方法及装置。The embodiments of the present application relate to the field of communication technologies, and in particular, to a method and apparatus for determining a generator matrix.
背景技术Background technique
信道编码作为最基本的无线接入技术,在保证数据的可靠性传输方面起到至关重要的作用。在不同的无线接入技术的通信系统中,通常采用不同的编码方式来适应各种应用场景。在长期演进(long term evolution,LTE)系统中,物理层混合自动重传请求指示信道(physical hybrid ARQ indicator channel,PHICH)、物理层控制格式指示信道(physical control format indication channel,PCFICH)、物理层上行控制信道(physical uplink control channel,PUCCH)、物理层上行共享信道(physical uplinkshared channel,PUSCH)等物理层信道将会涉及信息向量长度小于等于13的短码的应用。LTE控制信道场景采用里德-穆勒(reed-muler,RM)码进行编码。新无线(new radio,NR)通信系统中,控制信道短码的编码沿用LTE控制信道使用的RM码。As the most basic wireless access technology, channel coding plays a crucial role in ensuring the reliable transmission of data. In communication systems of different wireless access technologies, different coding modes are usually used to adapt to various application scenarios. In a long term evolution (LTE) system, the physical layer hybrid ARQ indicator channel (PHICH), the physical layer control format indicator channel (PCFICH), the physical layer Physical layer channels such as an uplink control channel (physical uplink control channel, PUCCH) and a physical layer uplink shared channel (physical uplink shared channel, PUSCH) will involve the application of short codes with an information vector length of 13 or less. The LTE control channel scenario is encoded using a Reed-muler (RM) code. In a new radio (NR) communication system, the coding of the control channel short code follows the RM code used for the LTE control channel.
但是,控制信道的短码性能还有待进一步提高。However, the short code performance of the control channel needs to be further improved.
发明内容SUMMARY OF THE INVENTION
本申请实施例提供一种生成矩阵的确定方法及装置,用以提升控制信道的短码性能。Embodiments of the present application provide a method and an apparatus for determining a generator matrix, so as to improve the short code performance of a control channel.
本申请实施例提供的具体技术方案如下:The specific technical solutions provided by the embodiments of the present application are as follows:
第一方面,提供一种生成矩阵的确定方法,该方法可以应用于终端或者网络设备。该方法包括:对生成矩阵执行迭代操作一次或多次,直到满足停止条件,获得目标生成矩阵,其中,所述目标生成矩阵的大小为K行N列,所述待编码信息比特的长度为所述K,码长为所述N;所述迭代操作包括:确定生成矩阵中任意两个行向量之间的码距中的最小码距,最小码距为第一行向量和第二行向量之间的码距;在所述第一行向量和所述第二行向量构成的码字中,将第(K+1)列至第N列中的其中一个全零元素列中的任意元素置为1。线性分组码的性能与最小码距直接相关,本申请通过不断进行迭代操作使得最小码距的码字不断被消除,从而逐渐增大最小码距的大小,该方法确定的生成矩阵,能够提升控制信道的短码性能。In a first aspect, a method for determining a generator matrix is provided, and the method can be applied to a terminal or a network device. The method includes: performing an iterative operation on the generator matrix one or more times until a stopping condition is satisfied, and obtaining a target generator matrix, wherein the size of the target generator matrix is K rows and N columns, and the length of the information bits to be encoded is The K, the code length is the N; the iterative operation includes: determining the minimum code distance in the code distance between any two row vectors in the generator matrix, where the minimum code distance is the sum of the first row vector and the second row vector In the code word formed by the first row vector and the second row vector, set any element in one of the (K+1)th columns to the Nth column with all zero elements. is 1. The performance of the linear block code is directly related to the minimum code distance. In the present application, the code words with the minimum code distance are continuously eliminated through continuous iterative operations, thereby gradually increasing the size of the minimum code distance. The generation matrix determined by this method can improve the control Short code performance of the channel.
在一个可能的设计中,所述停止条件包括所述最小码距达到上界,所述最小码距的上界由所述K和所述N确定。线性分组码的性能与最小码距直接相关,本申请通过不断进行迭代操作使得最小码距的码字不断被消除,从而使得线性分组码的最小码距变大,直到达到该码的最小码距上界,该方法确定的生成矩阵,能够提升控制信道的短码性能。In a possible design, the stopping condition includes that the minimum code distance reaches an upper bound, and the upper bound of the minimum code distance is determined by the K and the N. The performance of the linear block code is directly related to the minimum code distance. In the present application, the code words with the minimum code distance are continuously eliminated through continuous iterative operations, so that the minimum code distance of the linear block code is increased until the minimum code distance of the code is reached. The upper bound, the generator matrix determined by this method can improve the short code performance of the control channel.
在一个可能的设计中,所述停止条件包括码谱达到最优,所述码谱包括所述生成矩阵中最小码距的值和码重为最小码距的码字的数量。码谱与码的最大似然性能直接相关,码谱越好,码的性能越好。In a possible design, the stopping condition includes that the code spectrum reaches an optimum, and the code spectrum includes the value of the minimum code distance in the generator matrix and the number of code words whose code weight is the minimum code distance. The code spectrum is directly related to the maximum likelihood performance of the code, the better the code spectrum, the better the performance of the code.
在一个可能的设计中,所述停止条件包括:在所述最小码距达到上界的基础上,码谱达到最优;其中,所述最小码距的上界由所述K和所述N确定,所述码谱包括所述生成矩阵中最小码距的值和码重为最小码距的码字的数量。在不断进行迭代操作的过程中,最小码距在不断被消除,意味着最小码距在不断增大,直到增大到最小码距的上界。此时,码谱还可以被优化,也就是说继续进行迭代操作,还可以减少码重为最小码距的码字的数量,该数量越少,码谱越好。码谱与码的最大似然性能直接相关,码谱越好,码的性能越好。线性分组码的性能与最小码距直接相关,当最小码距达到上界时,性能与最小码距的码字的数量直接相关,本申请通过不断进行迭代操作使得最小码距的码字不断被消除,从而使得线性分组码的最小码距变大,当到达该码的最小码距上界时,继续不断迭代,使得最小码距码字的数量越来越少,该方法确定的生成矩阵,能够提升控制信道的短码性能。In a possible design, the stopping condition includes: on the basis that the minimum code distance reaches an upper bound, the code spectrum reaches an optimum; wherein, the upper bound of the minimum code distance is determined by the K and the N It is determined that the code spectrum includes the value of the minimum code distance in the generator matrix and the number of codewords whose code weight is the minimum code distance. In the process of continuous iterative operation, the minimum code distance is constantly being eliminated, which means that the minimum code distance is continuously increasing until it increases to the upper bound of the minimum code distance. At this time, the code spectrum can also be optimized, that is, the iterative operation can be continued, and the number of code words whose code weight is the smallest code distance can be reduced. The smaller the number, the better the code spectrum. The code spectrum is directly related to the maximum likelihood performance of the code, the better the code spectrum, the better the performance of the code. The performance of the linear block code is directly related to the minimum code distance. When the minimum code distance reaches the upper bound, the performance is directly related to the number of code words with the minimum code distance. The present application continuously performs iterative operations to make the code words with the minimum code distance continue to be used. Therefore, the minimum code distance of the linear block code becomes larger. When the upper bound of the minimum code distance of the code is reached, it continues to iterate continuously, so that the number of code words with the minimum code distance becomes less and less. The generator matrix determined by this method, The short code performance of the control channel can be improved.
在一个可能的设计中,根据不同的N、K,得到的目标生成矩阵如下所述。N=20,K=4,得到的生成矩阵如图4a所示。In a possible design, according to different N, K, the resulting target generator matrix is as follows. N=20, K=4, and the resulting generator matrix is shown in Figure 4a.
也可以保存或采用该生成矩阵除去前4行4列的单位矩阵之外的部分(即子矩阵),如图4b所示。以下图5~图37所示的生成矩阵,在存储或应用时也可以采用除去前K行K列的单位矩阵之外的子矩阵。It is also possible to save or use the generator matrix except for the first 4 rows and 4 columns of the identity matrix (ie, the sub-matrix), as shown in Fig. 4b. For the generator matrices shown in FIGS. 5 to 37 below, sub-matrices other than the unit matrix with the first K rows and K columns may be used for storage or application.
N=20,K=6,得到的生成矩阵如图5所示。N=20, K=6, and the resulting generator matrix is shown in Figure 5.
N=20,K=7,得到的生成矩阵如图6所示。N=20, K=7, and the resulting generator matrix is shown in Figure 6.
N=24,K=6,得到的生成矩阵如图7所示。N=24, K=6, and the resulting generator matrix is shown in Figure 7.
N=24,K=7,得到的生成矩阵如图8所示。N=24, K=7, and the resulting generator matrix is shown in Figure 8.
N=24,K=8,得到的生成矩阵如图9所示。N=24, K=8, and the resulting generator matrix is shown in Figure 9.
N=24,K=9,得到的生成矩阵如图10所示。N=24, K=9, and the resulting generator matrix is shown in Figure 10.
N=32,K=5,得到的生成矩阵如图11所示。N=32, K=5, and the resulting generator matrix is shown in Figure 11.
N=32,K=7,得到的生成矩阵如图12所示。N=32, K=7, and the resulting generator matrix is shown in Figure 12.
N=32,K=8,得到的生成矩阵如图13所示。N=32, K=8, and the resulting generator matrix is shown in Figure 13.
N=32,K=9,得到的生成矩阵如图14所示。N=32, K=9, and the resulting generator matrix is shown in Figure 14.
N=32,K=10,得到的生成矩阵如表15所示。N=32, K=10, and the resulting generator matrix is shown in Table 15.
N=32,K=12,得到的生成矩阵如表16所示。N=32, K=12, and the resulting generator matrix is shown in Table 16.
N=48,K=7,得到的生成矩阵如表17所示。N=48, K=7, and the resulting generator matrix is shown in Table 17.
N=48,K=11,得到的生成矩阵如表18所示。N=48, K=11, and the resulting generator matrix is shown in Table 18.
N=48,K=13,得到的生成矩阵如表19所示。N=48, K=13, and the resulting generator matrix is shown in Table 19.
N=48,K=19,得到的生成矩阵如表20所示。N=48, K=19, and the resulting generator matrix is shown in Table 20.
相比现有技术中golay扩展码、LTE RM码和Brouwer表格中的码相比,图4-a~图20所示的生成矩阵均能达到更好的性能。Compared with the golay spreading codes, LTE RM codes and codes in the Brouwer table in the prior art, the generator matrices shown in Fig. 4-a to Fig. 20 can all achieve better performance.
N=20,K=3,得到的生成矩阵如图21所示。N=20, K=3, and the resulting generator matrix is shown in Figure 21.
N=20,K=5,得到的生成矩阵如图22所示。N=20, K=5, and the resulting generator matrix is shown in Figure 22.
相比现有技术中golay扩展码和LTE RM码相比,图21~图22所示的生成矩阵均能达到更好的性能。Compared with the golay spreading code and the LTE RM code in the prior art, the generator matrices shown in FIGS. 21 to 22 can achieve better performance.
N=20,K=8,得到的生成矩阵如图23所示。N=20, K=8, and the resulting generator matrix is shown in Figure 23.
N=20,K=9,得到的生成矩阵如图24所示。N=20, K=9, and the resulting generator matrix is shown in Figure 24.
相比现有技术中LTE RM码相比,图23~图24所示的生成矩阵均能达到更好的性能。Compared with the LTE RM codes in the prior art, the generator matrices shown in FIGS. 23 to 24 can achieve better performance.
N=20,K=10,得到的生成矩阵如图25所示。N=20, K=10, and the resulting generator matrix is shown in Figure 25.
N=20,K=11,得到的生成矩阵如图26所示。N=20, K=11, and the resulting generator matrix is shown in Figure 26.
N=20,K=12,得到的生成矩阵如图27所示。N=20, K=12, and the resulting generator matrix is shown in Figure 27.
相比现有技术中LTE RM码和Brouwer表格中的码相比,图25~图27所示的生成矩阵均能达到更好的性能。Compared with the LTE RM codes in the prior art and the codes in the Brouwer table, the generator matrices shown in FIGS. 25 to 27 can achieve better performance.
N=24,K=3,得到的生成矩阵如图28所示。N=24, K=3, and the resulting generator matrix is shown in Figure 28.
相比现有技术中golay扩展码和LTE RM码相比,图28所示的生成矩阵能达到更好的性能。Compared with the golay spreading code and the LTE RM code in the prior art, the generator matrix shown in FIG. 28 can achieve better performance.
N=24,K=4,得到的生成矩阵如图29所示。N=24, K=4, and the resulting generator matrix is shown in Figure 29.
相比现有技术中Brouwer表格中的码和LTE RM码相比,图29所示的生成矩阵能达到更好的性能。Compared with the codes in the Brouwer table and the LTE RM codes in the prior art, the generator matrix shown in FIG. 29 can achieve better performance.
N=24,K=5,得到的生成矩阵如图30所示。N=24, K=5, and the resulting generator matrix is shown in Figure 30.
相比现有技术中golay扩展码和LTE RM码相比,图30所示的生成矩阵能达到更好的性能。Compared with the golay spreading code and the LTE RM code in the prior art, the generator matrix shown in FIG. 30 can achieve better performance.
N=24,K=10,得到的生成矩阵如图31所示。N=24, K=10, and the resulting generator matrix is shown in Figure 31.
N=24,K=11,得到的生成矩阵如图32所示。N=24, K=11, and the resulting generator matrix is shown in Figure 32.
相比现有技术中Brouwer表格中的码和LTE RM码相比,图31~图32所示的生成矩阵均能达到更好的性能。Compared with the codes in the Brouwer table and the LTE RM codes in the prior art, the generator matrices shown in FIGS. 31 to 32 can achieve better performance.
N=24,K=12,得到的生成矩阵如图33所示。N=24, K=12, and the resulting generator matrix is shown in Figure 33.
相比现有技术中LTE RM码相比,图33所示的生成矩阵均能达到更好的性能。Compared with the LTE RM code in the prior art, the generator matrix shown in FIG. 33 can achieve better performance.
N=32,K=3,得到的生成矩阵如图34所示。N=32, K=3, and the resulting generator matrix is shown in Figure 34.
相比现有技术中高通golay扩展码和LTE RM码相比,图34所示的生成矩阵能达到更好的性能。Compared with the Qualcomm golay spreading code and the LTE RM code in the prior art, the generator matrix shown in FIG. 34 can achieve better performance.
N=32,K=4,得到的生成矩阵如图35所示。N=32, K=4, and the resulting generator matrix is shown in Figure 35.
相比现有技术中Brouwer表格中的码和LTE RM码相比,图35所示的生成矩阵均能达到更好的性能。Compared with the codes in the Brouwer table and the LTE RM codes in the prior art, the generator matrix shown in FIG. 35 can achieve better performance.
N=32,K=6,得到的生成矩阵如图36所示。N=32, K=6, and the resulting generator matrix is shown in Figure 36.
相比现有技术中golay扩展码相比,图36所示的生成矩阵能达到更好的性能。Compared with the golay spreading code in the prior art, the generator matrix shown in FIG. 36 can achieve better performance.
N=48,K=6,得到的生成矩阵如图37所示。N=48, K=6, and the resulting generator matrix is shown in Figure 37.
相比现有技术中golay扩展码和LTE RM码相比,图37所示的生成矩阵均能达到更好的性能。Compared with the golay spreading code and the LTE RM code in the prior art, the generator matrix shown in FIG. 37 can achieve better performance.
第二方面,提供一种生成矩阵的确定装置,该装置具有实现上述第一方面和第一方面的任一种可能的设计中所述的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。A second aspect provides an apparatus for determining a generator matrix, the apparatus having the function of implementing the method described in the first aspect and any possible design of the first aspect. The functions can be implemented by hardware, or can be implemented by hardware executing corresponding software. The hardware or software includes one or more modules corresponding to the above functions.
在一个可能的设计中,当所述功能的部分或全部通过硬件实现时,所述生成矩阵的确定装置包括:逻辑电路,用于执行上述第一方面和第一方面的任一种可能的设计中所述的行为。In a possible design, when part or all of the functions are implemented by hardware, the device for determining the generator matrix includes: a logic circuit, configured to execute the first aspect and any one of the possible designs of the first aspect. behavior described in.
在一个可能的设计中,该装置可以是芯片或者集成电路。In one possible design, the device may be a chip or an integrated circuit.
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,该装置包括处理器和存储器,处理器用于与存储器进行耦合,执行存储器存储的程序,当程序被执行时,所述装置可以执行上述第一方面和第一方面的任一种可能的设计中所述的方法,该存储器用于存储处理器执行的程序。In a possible design, when some or all of the functions are implemented in software, the apparatus includes a processor and a memory, the processor is coupled to the memory, and executes a program stored in the memory, and when the program is executed, the The apparatus may execute the method described in the first aspect and any possible design of the first aspect, and the memory is used for storing the program executed by the processor.
可选的,上述存储器可以是物理上独立的单元,也可以与处理器集成在一起。Optionally, the above-mentioned memory may be a physically independent unit, or may be integrated with the processor.
在一个可能的设计中,当所述功能的部分或全部通过软件实现时,所述译码装置包括处理器。用于存储程序的存储器位于所述生成矩阵的确定装置之外,处理器通过电路/电线与存储器连接,用于读取并执行所述存储器中存储的程序。In a possible design, when part or all of the functions are implemented in software, the decoding means includes a processor. The memory for storing the program is located outside the determining means of the generation matrix, and the processor is connected to the memory through a circuit/wire for reading and executing the program stored in the memory.
在一个可能的设计中,该装置为终端或网络设备。In one possible design, the device is a terminal or network device.
第三方面,提供一种芯片,该芯片与存储器相连或者该芯片包括存储器,用于读取并执行所述存储器中存储的软件程序,以实现如上述第一方面和第一方面的任一种可能的设计中所述的方法。In a third aspect, a chip is provided, the chip is connected to a memory or the chip includes a memory for reading and executing a software program stored in the memory, so as to realize any one of the first aspect and the first aspect above methods described in possible designs.
第四方面,提供一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述各方面和各方面的任一可能的设计中方法的指令。In a fourth aspect, there is provided a computer storage medium storing a computer program, the computer program comprising instructions for performing the above aspects and any possible method in design of the aspects.
第五方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面和各方面的任一可能的设计中所述的方法。In a fifth aspect, there is provided a computer program product containing instructions that, when run on a computer, cause the computer to perform the method described in the above aspects and any possible designs of the aspects.
附图说明Description of drawings
图1a为本申请实施例中通信系统架构示意图;FIG. 1a is a schematic diagram of a communication system architecture in an embodiment of the application;
图1b为本申请实施例中确定最小码距的方法示意图;FIG. 1b is a schematic diagram of a method for determining a minimum code distance in an embodiment of the present application;
图2为本申请实施例中生成矩阵的确定方法流程示意图之一;2 is one of the schematic flow charts of the method for determining the generation matrix in the embodiment of the present application;
图3为本申请实施例中生成矩阵的确定方法流程示意图之二;3 is the second schematic flow chart of the method for determining the generation matrix in the embodiment of the application;
图4a为本申请实施例中N=20和K=4的生成矩阵示意图之一;Fig. 4a is one of the schematic diagrams of generating matrices of N=20 and K=4 in the embodiment of the present application;
图4b为本申请实施例中N=20和K=4的生成矩阵示意图之二;Fig. 4b is the second schematic diagram of the generator matrix of N=20 and K=4 in the embodiment of the present application;
图5为本申请实施例中N=20和K=6的生成矩阵示意图;5 is a schematic diagram of the generator matrix of N=20 and K=6 in the embodiment of the present application;
图6为本申请实施例中N=20和K=7的生成矩阵示意图;6 is a schematic diagram of the generator matrix of N=20 and K=7 in the embodiment of the present application;
图7为本申请实施例中N=24和K=6的生成矩阵示意图;7 is a schematic diagram of the generator matrix of N=24 and K=6 in the embodiment of the present application;
图8为本申请实施例中N=24和K=7的生成矩阵示意图;8 is a schematic diagram of the generator matrix of N=24 and K=7 in the embodiment of the present application;
图9为本申请实施例中N=24和K=8的生成矩阵示意图;9 is a schematic diagram of a generator matrix of N=24 and K=8 in the embodiment of the present application;
图10为本申请实施例中N=24和K=9的生成矩阵示意图;10 is a schematic diagram of the generator matrix of N=24 and K=9 in the embodiment of the application;
图11为本申请实施例中N=32和K=5的生成矩阵示意图;11 is a schematic diagram of a generator matrix of N=32 and K=5 in the embodiment of the application;
图12为本申请实施例中N=32和K=7的生成矩阵示意图;12 is a schematic diagram of the generator matrix of N=32 and K=7 in the embodiment of the application;
图13为本申请实施例中N=32和K=8的生成矩阵示意图;13 is a schematic diagram of the generator matrix of N=32 and K=8 in the embodiment of the application;
图14为本申请实施例中N=32和K=9的生成矩阵示意图;14 is a schematic diagram of a generator matrix of N=32 and K=9 in the embodiment of the application;
图15为本申请实施例中N=32和K=10的生成矩阵示意图;15 is a schematic diagram of a generator matrix of N=32 and K=10 in the embodiment of the application;
图16为本申请实施例中N=32和K=12的生成矩阵示意图;16 is a schematic diagram of the generator matrix of N=32 and K=12 in the embodiment of the present application;
图17为本申请实施例中N=48和K=7的生成矩阵示意图;17 is a schematic diagram of the generator matrix of N=48 and K=7 in the embodiment of the application;
图18为本申请实施例中N=48和K=11的生成矩阵示意图;18 is a schematic diagram of the generator matrix of N=48 and K=11 in the embodiment of the application;
图19为本申请实施例中N=48和K=13的生成矩阵示意图;19 is a schematic diagram of the generator matrix of N=48 and K=13 in the embodiment of the application;
图20为本申请实施例中N=48和K=19的生成矩阵示意图;20 is a schematic diagram of the generator matrix of N=48 and K=19 in the embodiment of the application;
图21为本申请实施例中N=20和K=3的生成矩阵示意图;21 is a schematic diagram of the generator matrix of N=20 and K=3 in the embodiment of the application;
图22为本申请实施例中N=20和K=5的生成矩阵示意图;22 is a schematic diagram of the generator matrix of N=20 and K=5 in the embodiment of the application;
图23为本申请实施例中N=20和K=8的生成矩阵示意图;23 is a schematic diagram of a generator matrix of N=20 and K=8 in the embodiment of the application;
图24为本申请实施例中N=20和K=9的生成矩阵示意图;24 is a schematic diagram of the generator matrix of N=20 and K=9 in the embodiment of the present application;
图25为本申请实施例中N=20和K=10的生成矩阵示意图;25 is a schematic diagram of the generator matrix of N=20 and K=10 in the embodiment of the present application;
图26为本申请实施例中N=20和K=11的生成矩阵示意图;26 is a schematic diagram of the generator matrix of N=20 and K=11 in the embodiment of the present application;
图27为本申请实施例中N=20和K=12的生成矩阵示意图;27 is a schematic diagram of the generator matrix of N=20 and K=12 in the embodiment of the application;
图28为本申请实施例中N=24和K=3的生成矩阵示意图;FIG. 28 is a schematic diagram of the generator matrix of N=24 and K=3 in the embodiment of the present application;
图29为本申请实施例中N=24和K=4的生成矩阵示意图;29 is a schematic diagram of the generator matrix of N=24 and K=4 in the embodiment of the application;
图30为本申请实施例中N=24和K=5的生成矩阵示意图;30 is a schematic diagram of the generator matrix of N=24 and K=5 in the embodiment of the application;
图31为本申请实施例中N=24和K=10的生成矩阵示意图;31 is a schematic diagram of the generator matrix of N=24 and K=10 in the embodiment of the present application;
图32为本申请实施例中N=24和K=11的生成矩阵示意图;32 is a schematic diagram of the generator matrix of N=24 and K=11 in the embodiment of the application;
图33为本申请实施例中N=24和K=12的生成矩阵示意图;33 is a schematic diagram of the generator matrix of N=24 and K=12 in the embodiment of the present application;
图34为本申请实施例中N=32和K=3的生成矩阵示意图;34 is a schematic diagram of the generator matrix of N=32 and K=3 in the embodiment of the present application;
图35为本申请实施例中N=32和K=4的生成矩阵示意图;35 is a schematic diagram of the generator matrix of N=32 and K=4 in the embodiment of the application;
图36为本申请实施例中N=32和K=6的生成矩阵示意图;36 is a schematic diagram of a generator matrix of N=32 and K=6 in the embodiment of the present application;
图37为本申请实施例中N=48和K=6的生成矩阵示意图;37 is a schematic diagram of the generator matrix of N=48 and K=6 in the embodiment of the application;
图38为本申请实施例中性能对比示意图;FIG. 38 is a schematic diagram of performance comparison in the embodiment of the present application;
图39为本申请实施例中生成矩阵的确定装置结构示意图之一;39 is one of the schematic structural diagrams of the device for determining the generation matrix in the embodiment of the present application;
图40为本申请实施例中生成矩阵的确定装置结构示意图之二。FIG. 40 is the second schematic structural diagram of the apparatus for determining the generation matrix in the embodiment of the present application.
具体实施方式Detailed ways
本申请提供一种生成矩阵的确定方法及装置,用以提升控制信道的短码性能。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。The present application provides a method and apparatus for determining a generator matrix, which are used to improve the short code performance of a control channel. Among them, the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
在本申请的描述中,字符“/”一般表示前后关联对象是一种“或”的关系。“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。In the description of this application, the character "/" generally indicates that the contextual object is an "or" relationship. Words such as "first" and "second" are only used for the purpose of distinguishing and describing, and cannot be understood as indicating or implying relative importance, nor can they be understood as indicating or implying order. "And/or", which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, which can mean that A exists alone, A and B exist at the same time, and B exists alone. In this application, at least one refers to one or more; multiple refers to two or more.
下面将结合附图,对本申请实施例进行详细描述。The embodiments of the present application will be described in detail below with reference to the accompanying drawings.
本申请实施例提供的方法和装置可以适用于各种无线通信场景,例如:长期演进(long term evolution,LTE)系统,全球互联微波接入(worldwide interoperability formicrowave access,WiMAX)通信系统,未来的第五代(5th Generation,5G)系统,如新一代无线接入技术(new radio access technology,NR),及未来的通信系统,如6G系统等。本申请实施例提供的方法和装置可以但不限于适用于增强型移动宽带(enhance mobilebroadband,eMBB)、海量机器连接通信(massive machine type communication,mMTC)和高可靠低延迟通信(ultra reliable low latency communication,URLLC)的场景。The methods and apparatuses provided in the embodiments of the present application may be applicable to various wireless communication scenarios, such as: long term evolution (long term evolution, LTE) systems, worldwide interoperability for microwave access (worldwide interoperability for microwave access, WiMAX) communication systems, future Fifth generation (5th Generation, 5G) systems, such as a new generation of radio access technology (new radio access technology, NR), and future communication systems, such as 6G systems. The method and apparatus provided by the embodiments of the present application may be, but are not limited to, applicable to enhanced mobile broadband (eMBB), massive machine type communication (mMTC), and ultra reliable low latency communication (ultra reliable low latency communication). , URLLC) scenarios.
首先介绍一下本申请实施例适用的通信系统架构。First, the architecture of the communication system to which the embodiments of the present application are applicable is introduced.
图1a示出了本申请实施例提供的生成矩阵的确定方法适用的一种可能的通信系统的架构,参阅图1a所示,通信系统100中包括:网络设备101和一个或多个终端102。当通信系统100包括核心网时,网络设备101还可以与核心网相连。网络设备101可以与IP网络103进行通信,例如,IP网络103可以是:因特网(internet),私有的IP网,或其它数据网等。网络设备101为覆盖范围内的终端102提供服务。例如,参见图1a所示,网络设备101为网络设备101覆盖范围内的一个或多个终端102提供无线接入。除此之外,网络设备之间的覆盖范围可以存在重叠的区域,例如网络设备101和网络设备101’的覆盖范围可以存在重叠的区域。网络设备之间还可以互相通信,例如,网络设备101可以与网络设备101’进行通信。FIG. 1a shows the architecture of a possible communication system to which the method for determining the generator matrix provided by the embodiment of the present application is applicable. Referring to FIG. 1a, the
网络设备101是本申请应用的通信系统中将终端102接入到无线网络的设备。网络设备101为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点(或设备)。目前,一些网络设备101的举例为:通用型基站(general node B,gNB)、新空口基站(new radio node B,NR-NB)、传输接收点(transmission receptionpoint,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio networkcontroller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,HeNB;或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),或5G通信系统或者未来可能的通信系统中的网络侧设备等。The
终端102,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备。例如,终端102包括具有无线连接功能的手持式设备、车载设备等。目前,终端102可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internetdevice,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。The network architecture and service scenarios described in the embodiments of the present application are for the purpose of illustrating the technical solutions of the embodiments of the present application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present application. The evolution of the architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
本申请实施例的基本思想是,基于消除最小码距的方法,寻找性能较好的生成矩阵,以提高控制信道短码的性能。当然本申请实施例提供的生成矩阵,不仅可以应用于控制信道短码。其中,短码是指信息向量长度或信息比特的长度不超过设定长度值。本申请实施例可以适用于5G NR或其他系统中控制信道的编码,可以但不限于应用于待编码的信息比特长度从3比特到12比特,或者说编码后码字长度为20、24、32或48的码字。The basic idea of the embodiments of the present application is to search for a generator matrix with better performance based on the method of eliminating the minimum code distance, so as to improve the performance of the control channel short code. Of course, the generator matrix provided in the embodiment of the present application can not only be applied to the control channel short code. The short code means that the length of the information vector or the length of the information bits does not exceed the set length value. The embodiments of this application can be applied to the coding of control channels in 5G NR or other systems, and can be applied to, but not limited to, the length of the information bits to be coded from 3 bits to 12 bits, or the length of the code word after coding is 20, 24, 32 bits. or a codeword of 48.
为方便说明,首先介绍几个参数的定义。K表示待编码的信息比特长度,N表示编码码字长度或者母码长度。For the convenience of description, the definitions of several parameters are introduced first. K represents the length of the information bits to be encoded, and N represents the length of the encoded codeword or the length of the mother code.
码距的概念:生成矩阵中任意一行或多行可以看成一个码字,或者说,任意一个行向量或任意多个行向量看成一个码字。任意两个码字之间的距离为码距。生成矩阵中有多个码距,在一个生成矩阵中存在该多个码距中的最小码距对应的两个码字,可以认为最小码距对应的这两个码字可以构成一个新的码字,新的码字也是生成矩阵的子矩阵。新的码字的码重为该最小码距。码重即码字中1的数量。The concept of code distance: any row or rows in the generator matrix can be regarded as a codeword, or in other words, any row vector or any number of row vectors can be regarded as a codeword. The distance between any two code words is the code distance. There are multiple code distances in the generator matrix, and there are two code words corresponding to the minimum code distance among the multiple code distances in a generator matrix. It can be considered that the two code words corresponding to the minimum code distance can form a new code. word, the new codeword is also a sub-matrix of the generator matrix. The code weight of the new code word is the minimum code distance. The code weight is the number of 1s in the codeword.
下面详细介绍一下本申请实施例生成矩阵的确定方法的过程。The process of the method for determining the generation matrix in the embodiment of the present application will be described in detail below.
首先随机生成一个初始的生成矩阵,迭代执行消除生成矩阵中最小码距的操作,直到满足设定的停止条件。First, an initial generator matrix is randomly generated, and the operation of eliminating the minimum code distance in the generator matrix is performed iteratively until the set stopping condition is met.
初始的生成矩阵作为首次输入,最后满足停止条件时输出获得的生成矩阵,输出的生成矩阵也可以称为目标生成矩阵。The initial generator matrix is used as the first input, and the generated generator matrix is output when the stopping condition is finally satisfied. The output generator matrix can also be called the target generator matrix.
输入到输出之间迭代执行的消除生成矩阵中最小码距的操作可以包括步骤1和步骤2。The operation of eliminating the minimum code distance in the generator matrix performed iteratively between the input and the output may include
步骤1:对生成矩阵进行变换,确定变换后的生成矩阵中任意两个行向量之间的码距中的最小码距,假设该最小码距为第一行向量和第二行向量之间的码距。Step 1: Transform the generator matrix, and determine the minimum code distance among the code distances between any two row vectors in the transformed generator matrix, assuming that the minimum code distance is between the first row vector and the second row vector. Yard distance.
步骤2:将第一行向量和第二行向量构成的码字中,第(K+1)列至第N列中的其中一个全零元素列中的任意元素置为1。Step 2: Set any element in one of the all-zero element columns in the (K+1)th column to the Nth column in the codeword formed by the first row vector and the second row vector to 1.
实际应用中,并不一定确定行向量,只要确定行号即可。步骤2后,返回执行步骤1,即迭代执行或迭代循环执行。为方便理解,假设上述步骤1和步骤2为迭代中的一次过程,以下介绍迭代中的下一次的过程。将步骤2得到的生成矩阵继续进行变换,确定变换后的生成矩阵中任意两个行向量之间的码距中的最小码距,该最小码距对应的两个行向量仍然记为第一行向量和第二行向量,即该最小码距为第一行向量和第二行向量之间的码距。将第一行向量和第二行向量构成的码字中,第(K+1)列至第N列中的其中一个全零元素列中的任意元素置为1。该迭代执行的操作实际与第一次操作相同,只是输入的生成矩阵变成步骤2后得到的生成矩阵。其中,生成矩阵为K行N列的矩阵,第1~第K列构成的子矩阵为单位矩阵。In practical applications, it is not necessary to determine the row vector, as long as the row number is determined. After
在迭代执行的多次操作中,生成矩阵是在不断变的,第一次输入的生成矩阵为随机生成的初始生成矩阵,该初始生成矩阵经过变换,以及上述步骤1和步骤2的其它操作,输出一个生成矩阵,将该输出的生成矩阵作为输入,重复进行步骤1和步骤2的操作,输出下一个生成矩阵,如此迭代,直到满足停止条件或人为停止。In the multiple operations performed iteratively, the generator matrix is constantly changing. The generator matrix input for the first time is an initial generator matrix that is randomly generated. The initial generator matrix is transformed, and other operations in
在步骤1中,输入的生成矩阵会经过等效变换,该等效变换包括行交换、列交换或行运算等,变换后的生成矩阵为变换之前的生成矩阵的等效矩阵,变换后的矩阵与变换之前的矩阵可以看成是同一类码。经过的等效变换可能为一次或多次,在某次等效变换后,找到变换后的生成矩阵中的最小码距。其中,在变换后的生成矩阵中,码重为最小码距的码字可能不只一个。那么也就是说第一行向量和第二行向量可能不止一个。若码重为最小码距的码字有多个,那么在步骤2中,将任意一个码字进行消除最小码距处理。消除最小码距即将第(K+1)列至第N列中的其中一个全零元素列中的任意元素置为1。由于生成矩阵的前K行前K列构成的子矩阵为单位矩阵,单位矩阵是不能被置换的,在消除最小码距时,将第(K+1)列至第N列中的其中一个全零元素列中的任意元素置为1。例如,第(K+2)列的两个元素均为0,将两个元素中的任意一个元素置为1即可,比如第一行向量中的第(K+2)个元素0置为1,或者将第二行向量中的第(K+2)个元素0置为1均可。通过将0置为1的操作,该第一行向量和第二行向量之间的码距就会大于该最小码距,从而实现消除最小码距。In
若码重为最小码距的码字有多个,通过多次迭代操作,能够逐步消除该最小码距。If there are multiple codewords whose code weight is the minimum code distance, the minimum code distance can be gradually eliminated through multiple iterative operations.
通过不断的迭代操作,找到的最小码距会越来越大,本申请中,根据N和K能够确定(N,K)对应的生成矩阵的最小码距的上界。例如,N=20,K=5时,(N,K)对应的生成矩阵的最小码距的上界为9。按照上述迭代操作的步骤,执行迭代循环操作,直到最小码距达到上界。Through continuous iterative operations, the found minimum code distance will become larger and larger. In this application, the upper bound of the minimum code distance of the generator matrix corresponding to (N, K) can be determined according to N and K in this application. For example, when N=20 and K=5, the upper bound of the minimum code distance of the generator matrix corresponding to (N, K) is 9. According to the steps of the above iterative operation, the iterative loop operation is performed until the minimum code distance reaches the upper bound.
当最小码距达到上界时,可以停止迭代操作,即输出目标生成矩阵。也可以继续进行迭代操作,进一步优化生成矩阵。When the minimum code distance reaches the upper bound, the iterative operation can be stopped, that is, the target generator matrix is output. Iterative operations can also be continued to further optimize the generator matrix.
如果继续进行迭代操作,停止条件可以为码谱达到最优。其中,码谱包括生成矩阵中最小码距的值和码重为最小码距的码字的数量。码重为最小码距的码字是指该码字的码重等于该最小码距,这种码字可能有多个,数量越少码谱越好。在不断进行迭代操作的过程中,最小码距在不断被消除,意味着最小码距在不断增大,直到增大到最小码距的上界。此时,码谱还可以被优化,也就是说继续进行迭代操作,还可以减少码重为最小码距的码字的数量,该数量越少,码谱越好。码谱与码的最大似然性能直接相关,码谱越好,码的性能越好。If the iterative operation is continued, the stopping condition can be optimized for the code spectrum. The code spectrum includes the value of the minimum code distance in the generator matrix and the number of codewords whose code weight is the minimum code distance. A codeword whose code weight is the minimum code distance means that the code weight of the code word is equal to the minimum code distance. There may be multiple such code words, and the smaller the number, the better the code spectrum. In the process of continuous iterative operation, the minimum code distance is constantly being eliminated, which means that the minimum code distance is continuously increasing until it increases to the upper bound of the minimum code distance. At this time, the code spectrum can also be optimized, that is, the iterative operation can be continued, and the number of code words whose code weight is the smallest code distance can be reduced. The smaller the number, the better the code spectrum. The code spectrum is directly related to the maximum likelihood performance of the code, the better the code spectrum, the better the performance of the code.
如上所述,迭代操作的停止条件可以为最小码距达到上界;或者,也可以在最小码距达到上界的基础上,继续进行迭代,码谱达到最优。当然,迭代操作的停止条件也可以为码谱达到最优,即以码谱为参考量来停止迭代操作。As mentioned above, the stopping condition of the iterative operation can be that the minimum code distance reaches the upper bound; or, it can also continue to iterate on the basis that the minimum code distance reaches the upper bound, and the code spectrum can reach the optimum. Of course, the stop condition of the iterative operation can also be that the code spectrum reaches the optimum, that is, the iterative operation is stopped by taking the code spectrum as a reference.
本专利中的码谱也可以是所有可能码重及对应码重的码字的数量。The code spectrum in this patent can also be all possible code weights and the number of codewords corresponding to the code weights.
实际应用中,码谱达到最优可能未必有一个具体的标准,在实现时,当继续迭代n次码谱也不再变好,就可以认为码谱达到最优。n的值可以规定,n为正整数。也或者,在最小码距达到上界的基础上继续进行迭代,人为确定停止时机。In practical applications, there may not be a specific standard for the code spectrum to reach the optimum. In the implementation, when the code spectrum is no longer improved by continuing to iterate n times, it can be considered that the code spectrum reaches the optimum. The value of n can be specified, and n is a positive integer. Alternatively, the iteration is continued on the basis that the minimum code distance reaches the upper bound, and the stopping timing is determined artificially.
上述步骤1中确定最小码距的方法可以借鉴现有技术中的一些方法,本申请不作限定。例如参考下述方法,能够确定最小码距以及最小码距对应的行。The method for determining the minimum code distance in the
如图1b所示,为方便理解,可将生成矩阵G按图1b分割。随机的选择信息比特集合,并利用高斯消元得到系统生成矩阵(Idk,Z)I,执行下述迭代直到找到码字重量为w的码字:As shown in Fig. 1b, for the convenience of understanding, the generator matrix G can be divided according to Fig. 1b. Randomly select a set of information bits, and use Gaussian elimination to obtain a system generator matrix (Id k , Z) I , and perform the following iterations until a codeword with codeword weight w is found:
随机的将信息比特结合I分成两部分I1和I2,其中I1=向下取整(k/2),I2=向上取整(k/2),相应的,Z也被分成了两部分Z1和Z2。随机选择含有x个元素的J的子集L,L中对应Z1的p行相加,得到集合M1,并放入哈希表中。L中对应Z2的p行相加,得到集合M2,并放入哈希表中。通过哈希表找到M1和M2中的相同元素对应的行,此时相应行对应的码字的码重为w。随机更新信息比特集合。Randomly divide the information bit combination I into two parts I 1 and I 2 , where I 1 = round down (k/2), I 2 = round up (k/2), correspondingly, Z is also divided into Two parts Z 1 and Z 2 . A subset L of J containing x elements is randomly selected, and the p rows corresponding to Z 1 in L are added to obtain a set M 1 , which is put into the hash table. The p rows corresponding to Z 2 in L are added to obtain a set M 2 , which is put into the hash table. Find the row corresponding to the same element in M 1 and M 2 through the hash table, and the code weight of the code word corresponding to the corresponding row at this time is w. Randomly update the set of information bits.
当然,还可以应用其它方法确定最小码距。Of course, other methods can also be applied to determine the minimum code distance.
基于上文的描述,下面根据图2和图3所示的实现过程来对生成矩阵的确定方法做更进一步详细说明。Based on the above description, the method for determining the generator matrix will be described in further detail below according to the implementation process shown in FIG. 2 and FIG. 3 .
如图2所示,一种可能的实施方式中,上述生成矩阵的确定方法可以按照下述流程实现。As shown in FIG. 2 , in a possible implementation manner, the method for determining the generator matrix may be implemented according to the following process.
S201、随机生成一个初始的生成矩阵。S201, randomly generating an initial generator matrix.
S202、确定最小码距对应的码字。S202. Determine the codeword corresponding to the minimum code distance.
按照上文步骤1的方法执行该步骤。Perform this step as in
S203、更新生成矩阵。S203, update the generator matrix.
按照上述步骤2的方法进行更新。Update as in
S204、判断是否重置生成矩阵。若是则返回执行S201,否则执行S205。S204. Determine whether to reset the generator matrix. If so, return to S201, otherwise, execute S205.
S205、判断更新后的生成矩阵的最小码距是否达到上界。若是则返回执行S206,否则执行S202。S205. Determine whether the minimum code distance of the updated generator matrix reaches an upper bound. If so, return to S206, otherwise, execute S202.
S206、获得第一目标生成矩阵。S206. Obtain a first target generation matrix.
可以输出该第一目标生成矩阵,也可以继续执行S207等后续步骤。The first target generation matrix may be output, or subsequent steps such as S207 may be continued.
S207、确定最小码距对应的码字。同S202。S207. Determine the code word corresponding to the minimum code distance. Same as S202.
S208、更新生成矩阵。同S203。S208, update the generator matrix. Same as S203.
S209、判断迭代操作是否满足停止条件,若是则停止并输出第二目标生成矩阵,否则返回执行S207。S209 , judging whether the iterative operation satisfies the stop condition, if so, stop and output the second target generation matrix, otherwise return to S207 .
鉴于图2中的部分步骤是相同的操作,因此将实现过程件简化为图3所示流程。Since some steps in FIG. 2 are the same operation, the implementation process is simplified as the flow shown in FIG. 3 .
S301、随机生成一个初始的生成矩阵。S301, randomly generating an initial generator matrix.
S302、确定最小码距对应的码字。S302. Determine the codeword corresponding to the minimum code distance.
按照上文步骤1的方法执行该步骤。Perform this step as in
S303、更新生成矩阵。S303. Update the generator matrix.
按照上述步骤2的方法进行更新。Update as in
S304、判断是否重置生成矩阵。若是则返回执行S301,否则执行S305。S304. Determine whether to reset the generator matrix. If so, return to execute S301, otherwise execute S305.
S305、判断迭代操作是否满足停止条件,若是则停止并输出目标生成矩阵,否则返回执行S302。S305: Determine whether the iterative operation satisfies the stopping condition, and if so, stop and output the target generation matrix, otherwise return to S302.
其中,停止条件可以包括最小码距达到上界、码谱达到最优或在最小码距达到上界的基础上码谱达到最优。The stopping condition may include that the minimum code distance reaches the upper bound, the code spectrum reaches the optimum, or the code spectrum reaches the optimum on the basis that the minimum code distance reaches the upper bound.
基于本申请提供的生成矩阵的确定方法,能够获得目标生成矩阵,以下给出一些不同(N,K)的目标生成矩阵(简称生成矩阵)的例子。可以将不同(N,K)的生成矩阵存储并在编码时应用。在存储时,可以保存整个生成矩阵,也可以只保存生成矩阵中除前K行K列的单位阵之外的部分。Based on the method for determining the generator matrix provided in this application, the target generator matrix can be obtained, and some examples of different (N, K) target generator matrices (referred to as generator matrices) are given below. Different (N, K) generator matrices can be stored and applied at encoding time. When storing, the entire generator matrix may be saved, or only the part of the generator matrix other than the identity matrix of the first K rows and K columns may be saved.
N=20,K=4,得到的生成矩阵如图4a所示。N=20, K=4, and the resulting generator matrix is shown in Figure 4a.
也可以保存或采用该生成矩阵除去前4行4列的单位矩阵之外的部分(即子矩阵),如图4b所示。以下图5~图37所示的生成矩阵,在存储或应用时也可以采用除去前K行K列的单位矩阵之外的子矩阵。It is also possible to save or use the generator matrix except for the first 4 rows and 4 columns of the identity matrix (ie, the sub-matrix), as shown in Fig. 4b. For the generator matrices shown in FIGS. 5 to 37 below, sub-matrices other than the unit matrix with the first K rows and K columns may be used for storage or application.
N=20,K=6,得到的生成矩阵如图5所示。N=20, K=6, and the resulting generator matrix is shown in Figure 5.
N=20,K=7,得到的生成矩阵如图6所示。N=20, K=7, and the resulting generator matrix is shown in Figure 6.
N=24,K=6,得到的生成矩阵如图7所示。N=24, K=6, and the resulting generator matrix is shown in Figure 7.
N=24,K=7,得到的生成矩阵如图8所示。N=24, K=7, and the resulting generator matrix is shown in Figure 8.
N=24,K=8,得到的生成矩阵如图9所示。N=24, K=8, and the resulting generator matrix is shown in Figure 9.
N=24,K=9,得到的生成矩阵如图10所示。N=24, K=9, and the resulting generator matrix is shown in Figure 10.
N=32,K=5,得到的生成矩阵如图11所示。N=32, K=5, and the resulting generator matrix is shown in Figure 11.
N=32,K=7,得到的生成矩阵如图12所示。N=32, K=7, and the resulting generator matrix is shown in Figure 12.
N=32,K=8,得到的生成矩阵如图13所示。N=32, K=8, and the resulting generator matrix is shown in Figure 13.
N=32,K=9,得到的生成矩阵如图14所示。N=32, K=9, and the resulting generator matrix is shown in Figure 14.
N=32,K=10,得到的生成矩阵如表15所示。N=32, K=10, and the resulting generator matrix is shown in Table 15.
N=32,K=12,得到的生成矩阵如表16所示。N=32, K=12, and the resulting generator matrix is shown in Table 16.
N=48,K=7,得到的生成矩阵如表17所示。N=48, K=7, and the resulting generator matrix is shown in Table 17.
N=48,K=11,得到的生成矩阵如表18所示。N=48, K=11, and the resulting generator matrix is shown in Table 18.
N=48,K=13,得到的生成矩阵如表19所示。N=48, K=13, and the resulting generator matrix is shown in Table 19.
N=48,K=19,得到的生成矩阵如表20所示。N=48, K=19, and the resulting generator matrix is shown in Table 20.
相比现有技术中golay扩展码、LTE RM码和Brouwer表格中的码相比,图4a~图20所示的生成矩阵均能达到更好的性能。Compared with the golay spreading codes, the LTE RM codes and the codes in the Brouwer table in the prior art, the generator matrices shown in FIGS. 4a to 20 can all achieve better performance.
N=20,K=3,得到的生成矩阵如图21所示。N=20, K=3, and the resulting generator matrix is shown in Figure 21.
N=20,K=5,得到的生成矩阵如图22所示。N=20, K=5, and the resulting generator matrix is shown in Figure 22.
相比现有技术中golay扩展码和LTE RM码相比,图21~图22所示的生成矩阵均能达到更好的性能。Compared with the golay spreading code and the LTE RM code in the prior art, the generator matrices shown in FIGS. 21 to 22 can achieve better performance.
N=20,K=8,得到的生成矩阵如图23所示。N=20, K=8, and the resulting generator matrix is shown in Figure 23.
N=20,K=9,得到的生成矩阵如图24所示。N=20, K=9, and the resulting generator matrix is shown in Figure 24.
相比现有技术中LTE RM码相比,图23~图24所示的生成矩阵均能达到更好的性能。Compared with the LTE RM codes in the prior art, the generator matrices shown in FIGS. 23 to 24 can achieve better performance.
N=20,K=10,得到的生成矩阵如图25所示。N=20, K=10, and the resulting generator matrix is shown in Figure 25.
N=20,K=11,得到的生成矩阵如图26所示。N=20, K=11, and the resulting generator matrix is shown in Figure 26.
N=20,K=12,得到的生成矩阵如图27所示。N=20, K=12, and the resulting generator matrix is shown in Figure 27.
相比现有技术中LTE RM码和Brouwer表格中的码相比,图25~图27所示的生成矩阵均能达到更好的性能。Compared with the LTE RM codes in the prior art and the codes in the Brouwer table, the generator matrices shown in FIGS. 25 to 27 can achieve better performance.
N=24,K=3,得到的生成矩阵如图28所示。N=24, K=3, and the resulting generator matrix is shown in Figure 28.
相比现有技术中golay扩展码和LTE RM码相比,图28所示的生成矩阵能达到更好的性能。Compared with the golay spreading code and the LTE RM code in the prior art, the generator matrix shown in FIG. 28 can achieve better performance.
N=24,K=4,得到的生成矩阵如图29所示。N=24, K=4, and the resulting generator matrix is shown in Figure 29.
相比现有技术中Brouwer表格中的码和LTE RM码相比,图29所示的生成矩阵能达到更好的性能。Compared with the codes in the Brouwer table and the LTE RM codes in the prior art, the generator matrix shown in FIG. 29 can achieve better performance.
N=24,K=5,得到的生成矩阵如图30所示。N=24, K=5, and the resulting generator matrix is shown in Figure 30.
相比现有技术中golay扩展码和LTE RM码相比,图30所示的生成矩阵能达到更好的性能。Compared with the golay spreading code and the LTE RM code in the prior art, the generator matrix shown in FIG. 30 can achieve better performance.
N=24,K=10,得到的生成矩阵如图31所示。N=24, K=10, and the resulting generator matrix is shown in Figure 31.
N=24,K=11,得到的生成矩阵如图32所示。N=24, K=11, and the resulting generator matrix is shown in Figure 32.
相比现有技术中Brouwer表格中的码和LTE RM码相比,图31~图32所示的生成矩阵均能达到更好的性能。Compared with the codes in the Brouwer table and the LTE RM codes in the prior art, the generator matrices shown in FIGS. 31 to 32 can achieve better performance.
N=24,K=12,得到的生成矩阵如图33所示。N=24, K=12, and the resulting generator matrix is shown in Figure 33.
相比现有技术中LTE RM码相比,图33所示的生成矩阵均能达到更好的性能。Compared with the LTE RM code in the prior art, the generator matrix shown in FIG. 33 can achieve better performance.
N=32,K=3,得到的生成矩阵如图34所示。N=32, K=3, and the resulting generator matrix is shown in Figure 34.
相比现有技术中高通golay扩展码和LTE RM码相比,图34所示的生成矩阵能达到更好的性能。Compared with the Qualcomm golay spreading code and the LTE RM code in the prior art, the generator matrix shown in FIG. 34 can achieve better performance.
N=32,K=4,得到的生成矩阵如图35所示。N=32, K=4, and the resulting generator matrix is shown in Figure 35.
相比现有技术中Brouwer表格中的码和LTE RM码相比,图35所示的生成矩阵均能达到更好的性能。Compared with the codes in the Brouwer table and the LTE RM codes in the prior art, the generator matrix shown in FIG. 35 can achieve better performance.
N=32,K=6,得到的生成矩阵如图36所示。N=32, K=6, and the resulting generator matrix is shown in Figure 36.
相比现有技术中golay扩展码相比,图36所示的生成矩阵能达到更好的性能。Compared with the golay spreading code in the prior art, the generator matrix shown in FIG. 36 can achieve better performance.
N=48,K=6,得到的生成矩阵如图37所示。N=48, K=6, and the resulting generator matrix is shown in Figure 37.
相比现有技术中golay扩展码和LTE RM码相比,图37所示的生成矩阵均能达到更好的性能。Compared with the golay spreading code and the LTE RM code in the prior art, the generator matrix shown in FIG. 37 can achieve better performance.
本专利中的生成矩阵行变换或者列交换可以认为是等效码,上述码的等效码也在本专利的保护范围之内。The row transformation or column exchange of the generator matrix in this patent can be considered as equivalent codes, and the equivalent codes of the above codes are also within the protection scope of this patent.
为了进一步说明按照本申请实施例的方法得到的生成矩阵具有更好的性能,如图38所示,为性能对比图。性能通过误块率(block error rate,BLER)来表征。可以看到在相同的译码器和译码复杂度下,按照本申请实施例提供的方法中搜到的码的性能优于Brouwer表格中的码、LTE RM和高通Golay扩展码谱的码。In order to further illustrate that the generator matrix obtained according to the method of the embodiment of the present application has better performance, as shown in FIG. 38 , it is a performance comparison diagram. The performance is characterized by block error rate (BLER). It can be seen that under the same decoder and decoding complexity, the performance of the code found in the method provided by the embodiment of the present application is better than the code in the Brouwer table, the code in the LTE RM and the Qualcomm Golay spread code spectrum.
基于上述实施例提供的生成矩阵的确定方法,如图39所示,本申请实施例还提供一种生成矩阵的确定装置3900,生成矩阵的确定装置3900用于执行上述方法实施例提供的方法,该生成矩阵的确定装置3900包括处理单元3901和存储单元3902。该处理单元3901用于对生成矩阵执行迭代操作一次或多次,直到满足停止条件,获得目标生成矩阵,其中,所述目标生成矩阵的大小为K行N列,所述待编码信息比特的长度为所述K,码长为所述N;Based on the method for determining a generator matrix provided by the foregoing embodiment, as shown in FIG. 39 , an embodiment of the present application further provides an
所述处理单元3901在执行所述迭代操作时具体用于:确定生成矩阵中任意两个行向量之间的码距中的最小码距,所述最小码距为第一行向量和第二行向量之间的码距;在所述第一行向量和所述第二行向量构成的码字中,将第(K+1)列至第N列中的其中一个全零元素列中的任意元素置为1。存储单元3902用于存储初始生成矩阵、目标生成矩阵以及中间迭代过程中的生成矩阵。可选的,存储单元3902用于存储目标生成矩阵除前K行K列的单位矩阵之外的部分子矩阵。When performing the iterative operation, the
可选的,所述停止条件包括所述最小码距达到上界,所述最小码距的上界由所述K和所述N确定。Optionally, the stopping condition includes that the minimum code distance reaches an upper bound, and the upper bound of the minimum code distance is determined by the K and the N.
可选的,所述停止条件包括码谱达到最优,所述码谱包括所述生成矩阵中最小码距的值和码重为最小码距的码字的数量。Optionally, the stopping condition includes that the code spectrum reaches an optimum, and the code spectrum includes the value of the minimum code distance in the generator matrix and the number of code words whose code weight is the minimum code distance.
可选的,所述停止条件包括:在所述最小码距达到上界的基础上,码谱达到最优;其中,所述最小码距的上界由所述K和所述N确定,所述码谱包括所述生成矩阵中最小码距的值和码重为最小码距的码字的数量。Optionally, the stopping condition includes: on the basis that the minimum code distance reaches an upper bound, the code spectrum reaches an optimum; wherein, the upper bound of the minimum code distance is determined by the K and the N, and the The code spectrum includes the value of the minimum code distance in the generator matrix and the number of codewords whose code weight is the minimum code distance.
所述目标生成矩阵为如图4a~图37所示的生成矩阵。The target generator matrix is the generator matrix shown in FIG. 4a to FIG. 37 .
基于上述实施例提供的生成矩阵的确定方法,如图40所示,本申请实施例还提供一种生成矩阵的确定装置4000,生成矩阵的确定装置4000用于执行上述方法实施例提供的方法,该生成矩阵的确定装置4000包括处理器4001和存储器4002。该处理器4001用于对生成矩阵执行迭代操作一次或多次,直到满足停止条件,获得目标生成矩阵,其中,所述目标生成矩阵的大小为K行N列,所述待编码信息比特的长度为所述K,码长为所述N;Based on the method for determining a generator matrix provided by the foregoing embodiment, as shown in FIG. 40 , an embodiment of the present application further provides an
所述处理器4001在执行所述迭代操作时具体用于:确定生成矩阵中任意两个行向量之间的码距中的最小码距,所述最小码距为第一行向量和第二行向量之间的码距;在所述第一行向量和所述第二行向量构成的码字中,将第(K+1)列至第N列中的其中一个全零元素列中的任意元素置为1。存储器4002用于存储初始生成矩阵、目标生成矩阵以及中间迭代过程中的生成矩阵。可选的,存储器4002用于存储目标生成矩阵除前K行K列的单位矩阵之外的部分子矩阵。When executing the iterative operation, the
可选的,所述停止条件包括所述最小码距达到上界,所述最小码距的上界由所述K和所述N确定。Optionally, the stopping condition includes that the minimum code distance reaches an upper bound, and the upper bound of the minimum code distance is determined by the K and the N.
可选的,所述停止条件包括码谱达到最优,所述码谱包括所述生成矩阵中最小码距的值和码重为最小码距的码字的数量。Optionally, the stopping condition includes that the code spectrum reaches an optimum, and the code spectrum includes the value of the minimum code distance in the generator matrix and the number of code words whose code weight is the minimum code distance.
可选的,所述停止条件包括:在所述最小码距达到上界的基础上,码谱达到最优;其中,所述最小码距的上界由所述K和所述N确定,所述码谱包括所述生成矩阵中最小码距的值和码重为最小码距的码字的数量。Optionally, the stopping condition includes: on the basis that the minimum code distance reaches an upper bound, the code spectrum reaches an optimum; wherein, the upper bound of the minimum code distance is determined by the K and the N, and the The code spectrum includes the value of the minimum code distance in the generator matrix and the number of codewords whose code weight is the minimum code distance.
所述目标生成矩阵为如图4a~图37所示的生成矩阵。The target generator matrix is the generator matrix shown in FIG. 4a to FIG. 37 .
处理器4001可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。The
处理器4001还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmablelogic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complexprogrammable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gatearray,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。The
存储器4002可以包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);存储器4002也可以包括非易失性存储器(non-volatilememory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);存储器4002还可以包括上述种类的存储器的组合。The
本申请上述方法实施例的部分或全部,可以用芯片或集成电路来完成。Part or all of the above method embodiments of the present application may be implemented by a chip or an integrated circuit.
为了实现上述图39或图40所述的生成矩阵的确定装置的功能,本申请实施例还提供一种芯片,包括处理器,用于支持生成矩阵的确定装置3900或生成矩阵的确定装置4000实现上述方法实施例的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该生成矩阵的确定装置必要的程序指令和数据。In order to realize the function of the generator matrix determining apparatus described in FIG. 39 or FIG. 40 , an embodiment of the present application further provides a chip, including a processor, for supporting the implementation of the generator
本申请实施例提供了一种计算机存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。An embodiment of the present application provides a computer storage medium storing a computer program, where the computer program includes instructions for executing the foregoing method embodiments.
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法实施例。The embodiments of the present application provide a computer program product containing instructions, which, when executed on a computer, cause the computer to execute the above method embodiments.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flows of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。Although the preferred embodiments of the present application have been described, additional changes and modifications to these embodiments may occur to those skilled in the art once the basic inventive concepts are known. Therefore, the appended claims are intended to be construed to include the preferred embodiment and all changes and modifications that fall within the scope of this application.
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the embodiments of the present application without departing from the spirit and scope of the embodiments of the present application. Thus, if these modifications and variations of the embodiments of the present application fall within the scope of the claims of the present application and their equivalents, the present application is also intended to include these modifications and variations.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910264733.9A CN111786680B (en) | 2019-04-03 | 2019-04-03 | Method and device for determining generator matrix |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910264733.9A CN111786680B (en) | 2019-04-03 | 2019-04-03 | Method and device for determining generator matrix |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111786680A true CN111786680A (en) | 2020-10-16 |
CN111786680B CN111786680B (en) | 2023-01-13 |
Family
ID=72754754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910264733.9A Active CN111786680B (en) | 2019-04-03 | 2019-04-03 | Method and device for determining generator matrix |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111786680B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1398467A (en) * | 2000-08-03 | 2003-02-19 | 皇家菲利浦电子有限公司 | Linear transformation for symmetric-key ciphers |
EP1379001A2 (en) * | 2002-07-03 | 2004-01-07 | Hughes Electronics Corporation | Method and system for decoding low density parity check (LDPC) codes |
CN1889367A (en) * | 2005-06-28 | 2007-01-03 | 松下电器产业株式会社 | Method for consitituting sparse generative matrix and method for coding low-density block check code |
CN102916763A (en) * | 2011-08-02 | 2013-02-06 | 华为技术有限公司 | Coding method, decoding method, coder and decoder |
CN107018110A (en) * | 2017-02-28 | 2017-08-04 | 西安电子科技大学 | A kind of space-frequency coding blind-identification method based on chief composition series |
EP3291449A1 (en) * | 2016-09-02 | 2018-03-07 | Universite De Bretagne Sud | Methods and devices for generating optimized coded modulations |
-
2019
- 2019-04-03 CN CN201910264733.9A patent/CN111786680B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1398467A (en) * | 2000-08-03 | 2003-02-19 | 皇家菲利浦电子有限公司 | Linear transformation for symmetric-key ciphers |
EP1379001A2 (en) * | 2002-07-03 | 2004-01-07 | Hughes Electronics Corporation | Method and system for decoding low density parity check (LDPC) codes |
CN1889367A (en) * | 2005-06-28 | 2007-01-03 | 松下电器产业株式会社 | Method for consitituting sparse generative matrix and method for coding low-density block check code |
CN102916763A (en) * | 2011-08-02 | 2013-02-06 | 华为技术有限公司 | Coding method, decoding method, coder and decoder |
EP3291449A1 (en) * | 2016-09-02 | 2018-03-07 | Universite De Bretagne Sud | Methods and devices for generating optimized coded modulations |
CN107018110A (en) * | 2017-02-28 | 2017-08-04 | 西安电子科技大学 | A kind of space-frequency coding blind-identification method based on chief composition series |
Also Published As
Publication number | Publication date |
---|---|
CN111786680B (en) | 2023-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10972130B2 (en) | Encoding method, decoding method, encoding apparatus, and decoding apparatus | |
US11870457B2 (en) | Polar code encoding method and apparatus | |
US11133828B2 (en) | Coding method and apparatus | |
EP3474474A1 (en) | Encoding method and device | |
US11171673B2 (en) | Decoding method and apparatus | |
EP3566349B1 (en) | Methods and apparatuses for spreading error detection bits in a polar code | |
EP4572155A2 (en) | Coding method and apparatus | |
CN111490798B (en) | Decoding method and decoding device | |
US10594439B2 (en) | Channel encoding method and apparatus in wireless communications to output a polar encoded bit sequence | |
CN111786680B (en) | Method and device for determining generator matrix | |
CN111699643B (en) | Polar code decoding method and device | |
CN112438023B (en) | Polarization encoding and decoding | |
EP3734873B1 (en) | Channel encoding method and encoding device | |
EP3474473B1 (en) | Coding method and device | |
WO2019144787A1 (en) | Interleaving method and interleaving device | |
US20250167919A1 (en) | Data processing method, apparatus, and device | |
US20250183919A1 (en) | Data processing method, apparatus, and device | |
US20240007222A1 (en) | Coding method and apparatus | |
US10425190B2 (en) | Channel encoding method and apparatus in wireless communications | |
KR20200015768A (en) | Channel Encoding Method and Device | |
KR20250057574A (en) | Method and apparatus for encoding/decoding for staircae codes including overlapping part in wireless communication system | |
CN119094080A (en) | Coding or decoding method and communication device | |
WO2023072077A1 (en) | Communication method and related apparatus | |
CN117394950A (en) | Encoding method, apparatus and storage medium | |
CN115733579A (en) | Data transmission method, data receiving method and communication device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |