CN111785717A - SCR electrostatic protection structure and method of forming the same - Google Patents
SCR electrostatic protection structure and method of forming the same Download PDFInfo
- Publication number
- CN111785717A CN111785717A CN201910272299.9A CN201910272299A CN111785717A CN 111785717 A CN111785717 A CN 111785717A CN 201910272299 A CN201910272299 A CN 201910272299A CN 111785717 A CN111785717 A CN 111785717A
- Authority
- CN
- China
- Prior art keywords
- type
- doped region
- well
- type doped
- type well
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/60—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
- H10D89/601—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
- H10D89/711—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using bipolar transistors as protective elements
- H10D89/713—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs using bipolar transistors as protective elements including a PNP transistor and a NPN transistor, wherein each of said transistors has its base region coupled to the collector region of the other transistor, e.g. silicon controlled rectifier [SCR] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/60—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
- H10D89/601—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
- H10D89/931—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs characterised by the dispositions of the protective arrangements
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
一种SCR静电保护结构及其形成方法,结构包括:第一单元和第二单元;第一单元包括:位于第一N型阱中顶部的第一P型掺杂区;位于第一P型阱中顶部的第一N型掺杂区;第二单元包括:位于第二N型阱中顶部的第二P型掺杂区和第三N型掺杂区;位于第二P型阱中顶部的第二N型掺杂区和第三P型掺杂区;跨接掺杂组;跨接掺杂组包括:沿第二方向排列的若干第四P型掺杂区,各第四P型掺杂区位于部分第二N型阱中的顶部且延伸至部分第二P型阱中的顶部,第二方向与第一方向垂直;相邻第四P型掺杂区之间的第四N型掺杂区;电学连接第四N型掺杂区和第四P型掺杂区的导电结构。所述SCR静电保护结构的性能提高。
An SCR electrostatic protection structure and a method for forming the same, the structure includes: a first unit and a second unit; the first unit includes: a first P-type doped region located at the top of a first N-type well; located in the first P-type well The first N-type doped region at the top of the middle; the second unit includes: a second P-type doped region and a third N-type doped region located at the top of the second N-type well; the top of the second P-type well The second N-type doping region and the third P-type doping region; the bridge doping group; the bridge doping group includes: a plurality of fourth P-type doping regions arranged along the second direction, each fourth P-type doping region The impurity region is located at the top of part of the second N-type well and extends to the top of part of the second P-type well, and the second direction is perpendicular to the first direction; the fourth N-type between adjacent fourth P-type doped regions Doping region; a conductive structure electrically connecting the fourth N-type doping region and the fourth P-type doping region. The performance of the SCR electrostatic protection structure is improved.
Description
技术领域technical field
本发明涉及静电保护领域,尤其涉及一种SCR静电保护结构及其形成方法。The invention relates to the field of electrostatic protection, in particular to an SCR electrostatic protection structure and a method for forming the same.
背景技术Background technique
在集成电路芯片的制作和应用中,随着超大规模集成电路工艺技术的不断提高,目前的CMOS集成电路制作技术已经进入深亚微米阶段,MOS器件的尺寸不断减小,栅氧化层的厚度越来越薄,MOS器件耐压能力显著降低,静电放电(Electrostatic Discharge,ESD)对集成电路的危害变得越来越显著。因此,对集成电路进行ESD保护变得尤为重要。In the production and application of integrated circuit chips, with the continuous improvement of VLSI process technology, the current CMOS integrated circuit manufacturing technology has entered the deep sub-micron stage, the size of MOS devices is continuously reduced, and the thickness of the gate oxide layer increases. Thinner and thinner, the withstand voltage capability of MOS devices is significantly reduced, and the harm of electrostatic discharge (Electrostatic Discharge, ESD) to integrated circuits becomes more and more significant. Therefore, ESD protection of integrated circuits becomes particularly important.
为了加强对静电的防护能力,通常在芯片的输入输出接口端(I/O pad)连接静电保护电路,静电保护电路是芯片中的内部电路提供静电电流的放电路径,以避免静电将芯片的内部电路击穿。In order to strengthen the protection against static electricity, an electrostatic protection circuit is usually connected to the input and output interface (I/O pad) of the chip. The electrostatic protection circuit is a discharge path for the internal circuit in the chip to provide electrostatic current, so as to prevent static electricity from damaging the inside of the chip. circuit breakdown.
然而,现有的静电保护结构的性能较差。However, the performance of the existing electrostatic protection structures is poor.
发明内容SUMMARY OF THE INVENTION
本发明解决的问题是提供一种SCR静电保护结构及其形成方法,以提高SCR静电保护结构的性能。The problem solved by the present invention is to provide an SCR electrostatic protection structure and a method for forming the same, so as to improve the performance of the SCR electrostatic protection structure.
为解决上述问题,本发明提供一种SCR静电保护结构,包括:半导体衬底;位于半导体衬底中分立的第一单元和第二单元;第一单元包括:位于半导体衬底中的第一N型阱和第一P型阱,第一P型阱沿第一方向位于第一N型阱侧部且与第一N型阱邻接;位于第一N型阱中顶部的第一P型掺杂区;位于第一P型阱中顶部的第一N型掺杂区;第二单元包括:位于半导体衬底中的第二N型阱和第二P型阱,第二P型阱沿第一方向位于第二N型阱侧部且与第二N型阱邻接;位于第二N型阱中顶部且相互分立的第二P型掺杂区和第三N型掺杂区;位于第二P型阱中顶部且相互分立的第二N型掺杂区和第三P型掺杂区;跨接掺杂组;对于相邻的第一单元和第二单元,第一N型掺杂区、第二P型掺杂区和第三N型掺杂区电学连接;所述跨接掺杂组包括:沿第二方向排列的若干分立的第四P型掺杂区,各第四P型掺杂区位于部分第二N型阱中的顶部且延伸至部分第二P型阱中的顶部,第二方向与第一方向垂直;位于相邻第四P型掺杂区之间且与第四P型掺杂区邻接的第四N型掺杂区,第四N型掺杂区位于部分第二N型阱中的顶部且延伸至部分第二P型阱中的顶部;位于半导体衬底上的导电结构,导电结构电学连接第四N型掺杂区和第四P型掺杂区。In order to solve the above problems, the present invention provides an SCR electrostatic protection structure, comprising: a semiconductor substrate; a first unit and a second unit separated in the semiconductor substrate; the first unit includes: a first N unit in the semiconductor substrate type well and first P-type well, the first P-type well is located at the side of the first N-type well along the first direction and is adjacent to the first N-type well; the first P-type well located at the top of the first N-type well is doped region; a first N-type doped region located at the top of the first P-type well; the second unit includes: a second N-type well and a second P-type well located in the semiconductor substrate, and the second P-type well is located along the first The direction is located at the side of the second N-type well and is adjacent to the second N-type well; the second P-type doped region and the third N-type doped region are located at the top of the second N-type well and are separated from each other; located in the second P-type well A second N-type doped region and a third P-type doped region that are separated from each other at the top of the well; bridge the doping group; for the adjacent first and second cells, the first N-type doped region, The second P-type doped region and the third N-type doped region are electrically connected; the bridge doping group includes: a plurality of discrete fourth P-type doped regions arranged along the second direction, each fourth P-type doped region The impurity region is located at the top of part of the second N-type well and extends to the top of part of the second P-type well, and the second direction is perpendicular to the first direction; it is located between adjacent fourth P-type doped regions and is connected to the fourth A fourth N-type doped region adjacent to the P-type doped region, the fourth N-type doped region is located at the top of a part of the second N-type well and extends to the top of a part of the second P-type well; located on the semiconductor substrate The conductive structure is electrically connected to the fourth N-type doped region and the fourth P-type doped region.
可选的,所述第二单元的数量为一个;所述第二N型掺杂区和第三P型掺杂区均接阴极电位。Optionally, the number of the second unit is one; both the second N-type doped region and the third P-type doped region are connected to the cathode potential.
可选的,所述第二单元的数量为多个;多个第二单元分别为第一级第二单元至第Q级第二单元,Q为大于等于2的整数;第i级第二单元中的第二N型掺杂区和第三P型掺杂区与第i+1级第二单元中的第二P型掺杂区和第三N型掺杂区电学连接,i为大于等于1且小于等于Q-1的整数,第Q级第二单元中的第二N型掺杂区和第三P型掺杂区接阴极电位,第一N型掺杂区与第一级第二单元中的第二P型掺杂区和第三N型掺杂区电学连接。Optionally, the number of the second units is multiple; the multiple second units are respectively the first-level second unit to the Q-th level second unit, where Q is an integer greater than or equal to 2; the i-th level second unit The second N-type doped region and the third P-type doped region are electrically connected to the second P-type doped region and the third N-type doped region in the i+1th level second unit, i is greater than or equal to 1 and an integer less than or equal to Q-1, the second N-type doped region and the third P-type doped region in the second unit of the Q-th stage are connected to the cathode potential, and the first N-type doped region and the first-level second The second P-type doped region and the third N-type doped region in the cell are electrically connected.
可选的,所述第一P型掺杂区接阳极电位。Optionally, the first P-type doped region is connected to an anode potential.
可选的,所述第一单元还包括:位于第一N型阱中顶部的第五N型掺杂区,第五N型掺杂区与第一P型掺杂区相互分立,且第五N型掺杂区与第一P型掺杂区电学连接。Optionally, the first unit further includes: a fifth N-type doped region located at the top of the first N-type well, the fifth N-type doped region and the first P-type doped region are separated from each other, and the fifth N-type doped region is separated from the first P-type doped region. The N-type doped region is electrically connected to the first P-type doped region.
可选的,所述第一单元还包括:位于第一P型阱中顶部的第五P型掺杂区,第五P型掺杂区与第一N型掺杂区相互分立,且第五P型掺杂区与第一N型掺杂区电学连接。Optionally, the first unit further includes: a fifth P-type doping region located at the top of the first P-type well, the fifth P-type doping region and the first N-type doping region are separated from each other, and the fifth P-type doping region is separated from the first N-type doping region. The P-type doped region is electrically connected to the first N-type doped region.
可选的,所述第一单元还包括:位于第一P型掺杂区和第一N型掺杂区之间半导体衬底中的第一隔离组层,第一隔离组层位于部分第一N型阱中的顶部且延伸至部分第一P型阱中的顶部。Optionally, the first unit further includes: a first isolation group layer located in the semiconductor substrate between the first P-type doped region and the first N-type doped region, and the first isolation group layer is located in part of the first The top in the N-type well and extending to part of the top in the first P-type well.
可选的,所述第一隔离组层包括第六P型掺杂区和沿第一方向分别位于第六P型掺杂区两侧的第一隔离绝缘层,第六P型掺杂区位于部分第一N型阱中的顶部且延伸至部分第一P型阱中的顶部,第六P型掺杂区一侧的第一隔离绝缘层位于第一N型阱中,第六P型掺杂区另一侧的第一隔离绝缘层位于第一P型阱中。Optionally, the first isolation group layer includes a sixth P-type doped region and a first isolation insulating layer respectively located on both sides of the sixth P-type doped region along the first direction, and the sixth P-type doped region is located in the A portion of the top portion of the first N-type well extends to a portion of the top portion of the first P-type well, the first isolation insulating layer on one side of the sixth P-type doped region is located in the first N-type well, and the sixth P-type doped region The first isolation insulating layer on the other side of the impurity region is located in the first P-type well.
可选的,第一隔离组层为单层结构,第一隔离组层的材料包括氧化硅。Optionally, the first isolation group layer has a single-layer structure, and the material of the first isolation group layer includes silicon oxide.
可选的,所述第一单元还包括:位于半导体衬底中的第一侧隔离阱,第一侧隔离阱沿第一方向位于第一P型阱侧部且与第一P型阱邻接,第一P型阱位于第一侧隔离阱和第一N型阱之间,第一侧隔离阱的导电类型为N型;第一底隔离阱,第一底隔离阱位于第一P型阱的底部且与第一P型阱邻接,第一底隔离阱还分别与第一N型阱的底部和第一侧隔离阱的底部连接,第一底隔离阱的导电类型为N型。Optionally, the first unit further includes: a first side isolation well located in the semiconductor substrate, the first side isolation well is located at the side of the first P-type well along the first direction and is adjacent to the first P-type well, The first P-type well is located between the first side isolation well and the first N-type well, and the conductivity type of the first side isolation well is N-type; the first bottom isolation well, the first bottom isolation well is located between the first P-type well The bottom is adjacent to the first P-type well, the first bottom isolation well is also connected to the bottom of the first N-type well and the bottom of the first side isolation well, and the conductivity type of the first bottom isolation well is N-type.
可选的,所述第二单元还包括:位于半导体衬底中的第二侧隔离阱,第二侧隔离阱沿第一方向位于第二P型阱侧部且与第二P型阱邻接,第二P型阱位于第二侧隔离阱和第二N型阱之间,第二侧隔离阱的导电类型为N型;第二底隔离阱,第二底隔离阱位于第二P型阱的底部且与第二P型阱邻接,第二底隔离阱还分别与第二N型阱的底部和第二侧隔离阱底部连接,第二底隔离阱的导电类型为N型。Optionally, the second unit further includes: a second side isolation well located in the semiconductor substrate, the second side isolation well is located at the side of the second P-type well along the first direction and is adjacent to the second P-type well, The second P-type well is located between the second side isolation well and the second N-type well, and the conductivity type of the second side isolation well is N-type; the second bottom isolation well, the second bottom isolation well is located between the second P-type well The bottom is adjacent to the second P-type well, the second bottom isolation well is also connected to the bottom of the second N-type well and the bottom of the second side isolation well, and the conductivity type of the second bottom isolation well is N-type.
可选的,还包括:位于部分半导体衬底中顶部的第七P型掺杂区,且所述第七P型掺杂区分别位于相邻的第一单元和第二单元之间、以及第二单元沿第一方向两侧,各第七P型掺杂区均接地。Optionally, it further includes: a seventh P-type doped region located at the top of part of the semiconductor substrate, and the seventh P-type doped region is respectively located between the adjacent first unit and second unit, and the seventh P-type doped region On both sides of the two units along the first direction, each seventh P-type doped region is grounded.
可选的,所述导电结构位于第四N型掺杂区的表面且延伸至第四P型掺杂区表面;所述导电结构的材料为金属硅化物。Optionally, the conductive structure is located on the surface of the fourth N-type doping region and extends to the surface of the fourth P-type doping region; the material of the conductive structure is metal silicide.
可选的,所述半导体衬底中具有衬底阱离子,所述衬底阱离子的导电类型为P型。Optionally, the semiconductor substrate has substrate trap ions, and the conductivity type of the substrate trap ions is P-type.
本发明还提供形成上述任意一项SCR静电保护结构的方法,包括:提供半导体衬底;在半导体衬底中形成分立的第一单元和第二单元;形成第一单元的方法包括:在半导体衬底中形成第一N型阱;在第一N型阱沿第一方向的侧部形成与第一N型阱邻接的第一P型阱;在第一N型阱中的顶部形成第一P型掺杂区;在第一P型阱中的顶部形成第一N型掺杂区;形成第二单元的方法包括:在半导体衬底中形成第二N型阱;在第二N型阱沿第一方向的侧部形成与第二N型阱邻接的第二P型阱;在第二N型阱中的顶部形成相互分立的第二P型掺杂区和第三N型掺杂区;在第二P型阱中的顶部形成相互分立的第二N型掺杂区和第三P型掺杂区;形成跨接掺杂组;对于相邻的第一单元和第二单元,第一N型掺杂区、第二P型掺杂区和第三N型掺杂区电学连接;形成所述跨接掺杂组的方法包括:形成沿第二方向排列的若干分立的第四P型掺杂区,各第四P型掺杂区位于部分第二N型阱中的顶部且延伸至部分第二P型阱中的顶部,第二方向与第一方向垂直;在相邻第四P型掺杂区之间形成与第四P型掺杂区邻接的第四N型掺杂区,第四N型掺杂区位于部分第二N型阱中的顶部且延伸至部分第二P型阱中的顶部;在半导体衬底上形成导电结构,导电结构电学连接第四N型掺杂区和第四P型掺杂区。The present invention also provides a method for forming any one of the above-mentioned SCR electrostatic protection structures, including: providing a semiconductor substrate; forming a discrete first unit and a second unit in the semiconductor substrate; the method for forming the first unit includes: forming a first unit on the semiconductor substrate A first N-type well is formed in the bottom; a first P-type well adjacent to the first N-type well is formed at the side of the first N-type well along the first direction; a first P-type well is formed at the top of the first N-type well A first N-type doped region is formed on top of the first P-type well; the method for forming a second unit includes: forming a second N-type well in a semiconductor substrate; along the edge of the second N-type well A second P-type well adjacent to the second N-type well is formed on the side in the first direction; a second P-type doped region and a third N-type doped region that are separated from each other are formed on the top of the second N-type well; Forming a second N-type doped region and a third P-type doped region separate from each other on top of the second P-type well; forming a bridge doping group; for adjacent first and second cells, the first The N-type doped region, the second P-type doped region and the third N-type doped region are electrically connected; the method of forming the bridging doping group includes: forming a plurality of discrete fourth P-type doped regions arranged along the second direction Doping regions, each fourth P-type doping region is located at the top of part of the second N-type well and extends to the top of part of the second P-type well, and the second direction is perpendicular to the first direction; in the adjacent fourth P-type well A fourth N-type doped region adjacent to the fourth P-type doped region is formed between the doped regions, and the fourth N-type doped region is located at the top of part of the second N-type well and extends to part of the second P-type doped region The top in the well; a conductive structure is formed on the semiconductor substrate, and the conductive structure is electrically connected to the fourth N-type doped region and the fourth P-type doped region.
可选的,形成所述第一单元的方法还包括:形成位于第一N型阱中顶部的第五N型掺杂区,第五N型掺杂区与第一P型掺杂区相互分立,且第五N型掺杂区与第一P型掺杂区电学连接;形成位于第一P型阱中顶部的第五P型掺杂区,第五P型掺杂区与第一N型掺杂区相互分立,且第五P型掺杂区与第一N型掺杂区电学连接。Optionally, the method for forming the first unit further includes: forming a fifth N-type doped region located at the top of the first N-type well, and the fifth N-type doped region and the first P-type doped region are separated from each other , and the fifth N-type doped region is electrically connected to the first P-type doped region; a fifth P-type doped region located at the top of the first P-type well is formed, and the fifth P-type doped region is connected to the first N-type doped region. The doping regions are separated from each other, and the fifth P-type doping region is electrically connected to the first N-type doping region.
可选的,形成所述第一单元的方法还包括:在第一P型掺杂区和第一N型掺杂区之间半导体衬底中形成第一隔离组层,第一隔离组层位于部分第一N型阱中的顶部且延伸至部分第一P型阱中的顶部。Optionally, the method for forming the first unit further includes: forming a first isolation group layer in the semiconductor substrate between the first P-type doped region and the first N-type doped region, and the first isolation group layer is located in the semiconductor substrate. A portion of the top portion of the first N-type well and extending to a portion of the top portion of the first P-type well.
可选的,形成所述第一单元的方法还包括:在形成第一P型掺杂区和第一N型掺杂区之前,在半导体衬底中形成第一侧隔离阱和第一底隔离阱,第一侧隔离阱沿第一方向位于第一P型阱侧部且与第一P型阱邻接,第一P型阱位于第一侧隔离阱和第一N型阱之间,第一底隔离阱位于第一P型阱的底部且与第一P型阱邻接,第一底隔离阱还分别与第一N型阱的底部和第一侧隔离阱的底部连接,第一侧隔离阱和第一底隔离阱的导电类型均为N型。Optionally, the method for forming the first unit further includes: before forming the first P-type doped region and the first N-type doped region, forming a first side isolation well and a first bottom isolation in the semiconductor substrate well, the first side isolation well is located at the side of the first P-type well along the first direction and is adjacent to the first P-type well, the first P-type well is located between the first side isolation well and the first N-type well, the first The bottom isolation well is located at the bottom of the first P-type well and is adjacent to the first P-type well. The first bottom isolation well is also connected to the bottom of the first N-type well and the bottom of the first side isolation well respectively. The first side isolation well The conductivity types of the first bottom isolation well and the first bottom isolation well are both N-type.
可选的,形成所述第二单元的方法还包括:在形成第二P型掺杂区、第二N型掺杂区、第三N型掺杂区和第三P型掺杂区之前,在半导体衬底中形成第二侧隔离阱和第二底隔离阱,第二侧隔离阱沿第一方向位于第二P型阱侧部且与第二P型阱邻接,第二P型阱位于第二侧隔离阱和第二N型阱之间,第二底隔离阱位于第二P型阱的底部且与第二P型阱邻接,第二底隔离阱还分别与第二N型阱的底部和第二侧隔离阱底部连接,第二侧隔离阱和第二底隔离阱的导电类型均为N型。Optionally, the method for forming the second unit further includes: before forming the second P-type doped region, the second N-type doped region, the third N-type doped region and the third P-type doped region, A second side isolation well and a second bottom isolation well are formed in the semiconductor substrate, the second side isolation well is located at the side of the second P-type well along the first direction and is adjacent to the second P-type well, and the second P-type well is located in Between the second side isolation well and the second N-type well, the second bottom isolation well is located at the bottom of the second P-type well and is adjacent to the second P-type well, and the second bottom isolation well is also respectively connected to the second N-type well. The bottom is connected to the bottom of the second side isolation well, and the conductivity types of the second side isolation well and the second bottom isolation well are both N type.
可选的,还包括:在部分半导体衬底中的顶部形成第七P型掺杂区,且所述第七P型掺杂区分别位于相邻的第一单元和第二单元之间、以及第二单元沿第一方向两侧,各第七P型掺杂区均接地。Optionally, it further includes: forming a seventh P-type doped region on the top of part of the semiconductor substrate, and the seventh P-type doped region is respectively located between adjacent first units and second units, and On both sides of the second unit along the first direction, each seventh P-type doped region is grounded.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
本发明技术方案提供的SCR静电保护结构中,SCR静电保护结构包括第一电流泄放结构和第二电流泄放结构。第一电流泄放结构为PNPN结构,第一电流泄放结构包括第一PNP管和第一NPN管,第一P型掺杂区作为第一PNP管的发射极,第一P型掺杂区底部的第一N型阱作为第一PNP管的基极,第一N型掺杂区底部的第一P型阱作为第一PNP管的集电极,第一P型掺杂区底部的第一N型阱作为第一NPN管的集电极,第一N型掺杂区底部的第一P型阱作为第一NPN管的基极,第一N型掺杂区作为第一NPN管的发射极。第二电流泄放结构为PNPN结构,第二电流泄放结构包括第二PNP管和第二NPN管,第二P型掺杂区作为第二PNP管的发射极,第二P型掺杂区底部的第二N型阱作为第二PNP管的基极,第二N型掺杂区底部的第二P型阱作为第二PNP管的集电极,第二P型掺杂区底部的第二N型阱作为第二NPN管的集电极,第二N型掺杂区底部的第二P型阱作为第二NPN管的基极,第二N型掺杂区作为第二NPN管的发射极。各级第二单元中的第二电流泄放结构串联连接。SCR静电保护结构还包括电阻导流结构,电阻导流结构包括:第三N型掺杂区、第二N型阱、跨接掺杂组、第二P型阱和第三P型掺杂区。第一电流泄放路径对应第一电流泄放结构,第二电流泄放路径对应第二电流泄放结构。电阻导流结构具有电阻导流路径,电阻导流路径包括:自第三N型掺杂区至第二N型阱、自第二N型阱至跨接掺杂组中的第四N型掺杂区,自第四N型掺杂区经过导电结构至第四P型掺杂区,自第四P型掺杂区至第二P型阱,自第二P型阱至第三P型掺杂区。各级第二单元中的电阻导流路径串联连接。由于第一电流泄放路径和第二电流泄放路径串联叠加,因此增加了SCR静电保护结构的保持电压,SCR静电保护结构的保持电压为第一电流泄放结构的保持电压和第二电流泄放结构的保持电压之和,因此使得SCR静电保护结构的保持电压增加。由于SCR静电保护结构的保持电压提高,因此对于SCR静电保护结构所保护的半导体器件,半导体器件的正常工作电压的范围得到扩展。在阴极和阳极上施加触发电压,在初始阶段,第二单元中的第二电流泄放路径不导通,第二单元中的电阻导流结构导通,第二单元上的压降较小,这时触发电压中大部分电压施加在第一单元上,触发电压中大部分电压施加在第一单元上使第一单元中的第一电流泄放路径导通,这样就触发第一电流泄放路径进行泄流,随后,由于第一电流泄放路径的导通触发第二电流泄放路径的导通,这样就触发第一电流泄放路径进行泄流。这样SCR静电保护结构中第一电流泄放路径的导通触发第二电流泄放路径的导通所需的触发电压降低。综上,提高了SCR静电保护结构的性能。In the SCR electrostatic protection structure provided by the technical solution of the present invention, the SCR electrostatic protection structure includes a first current discharge structure and a second current discharge structure. The first current discharge structure is a PNPN structure, the first current discharge structure includes a first PNP tube and a first NPN tube, the first P-type doped region is used as the emitter of the first PNP tube, and the first P-type doped region The first N-type well at the bottom is used as the base of the first PNP transistor, the first P-type well at the bottom of the first N-type doped region is used as the collector of the first PNP transistor, and the first P-type well at the bottom of the first P-type doped region is used as the collector of the first PNP transistor. The N-type well is used as the collector of the first NPN tube, the first P-type well at the bottom of the first N-type doped region is used as the base of the first NPN tube, and the first N-type doped region is used as the emitter of the first NPN tube . The second current bleeder structure is a PNPN structure, the second current bleeder structure includes a second PNP transistor and a second NPN transistor, the second P-type doped region is used as the emitter of the second PNP transistor, and the second P-type doped region The second N-type well at the bottom is used as the base of the second PNP transistor, the second P-type well at the bottom of the second N-type doped region is used as the collector of the second PNP transistor, and the second P-type well at the bottom of the second P-type doped region is used as the collector of the second PNP transistor. The N-type well is used as the collector of the second NPN transistor, the second P-type well at the bottom of the second N-type doped region is used as the base of the second NPN transistor, and the second N-type doped region is used as the emitter of the second NPN transistor . The second current discharge structures in the second units of each stage are connected in series. The SCR electrostatic protection structure further includes a resistive conducting structure, and the resistive conducting structure includes: a third N-type doped region, a second N-type well, a bridge doping group, a second P-type well and a third P-type doped region . The first current discharge path corresponds to the first current discharge structure, and the second current discharge path corresponds to the second current discharge structure. The resistive conducting structure has a resistive conducting path, and the resistive conducting path includes: from the third N-type doping region to the second N-type well, and from the second N-type well to the fourth N-type doping in the bridge doping group Impurity region, from the fourth N-type doped region through the conductive structure to the fourth P-type doped region, from the fourth P-type doped region to the second P-type well, from the second P-type well to the third P-type doped region Miscellaneous area. The resistance diversion paths in the second units of each stage are connected in series. Since the first current discharge path and the second current discharge path are superimposed in series, the holding voltage of the SCR electrostatic protection structure is increased, and the holding voltage of the SCR electrostatic protection structure is the holding voltage of the first current discharge structure and the second current discharge structure. Therefore, the holding voltage of the SCR electrostatic protection structure is increased. Since the holding voltage of the SCR electrostatic protection structure is increased, the normal operating voltage range of the semiconductor device is expanded for the semiconductor device protected by the SCR electrostatic protection structure. A trigger voltage is applied to the cathode and the anode. In the initial stage, the second current discharge path in the second unit is not conducting, the resistance conducting structure in the second unit is conducting, and the voltage drop on the second unit is small. At this time, most of the trigger voltage is applied to the first cell, and most of the trigger voltage is applied to the first cell to make the first current bleeder path in the first cell conduct, thus triggering the first current bleeder The path discharges current, and subsequently, the conduction of the first current discharge path triggers the conduction of the second current discharge path, thus triggering the first current discharge path to discharge current. In this way, the trigger voltage required for the conduction of the first current discharge path in the SCR electrostatic protection structure to trigger the conduction of the second current discharge path is reduced. In conclusion, the performance of the SCR electrostatic protection structure is improved.
附图说明Description of drawings
图1至图4是本发明一实施例中SCR静电保护结构形成过程的结构示意图。1 to 4 are schematic structural diagrams of a process of forming an SCR electrostatic protection structure according to an embodiment of the present invention.
具体实施方式Detailed ways
正如背景技术所述,现有技术形成的半导体器件的性能较差。As mentioned in the background, semiconductor devices formed by the prior art have poor performance.
SCR静电保护结构中有两个重要的参数,分别为保持电压和触发电压。较高的保持电压和较低的触发电压是SCR静电保护结构不断追求的工艺方向。There are two important parameters in the SCR electrostatic protection structure, namely the holding voltage and the trigger voltage. Higher holding voltage and lower trigger voltage are the technological directions that the SCR electrostatic protection structure is constantly pursuing.
现有的SCR静电保护结构包括:P型的半导体衬底;位于半导体衬底中SCR单元;SCR单元包括:位于半导体衬底中的第一N型阱;位于第一N型阱中的第一P型阱,第一P型阱位于第一N型阱的侧部且与第一N型阱邻接;包围第一P型阱和第一N型阱的第二N型阱;位于第一N型阱中顶部的P型掺杂区;位于第一P型阱中顶部的N型掺杂区。The existing SCR electrostatic protection structure includes: a P-type semiconductor substrate; an SCR unit located in the semiconductor substrate; the SCR unit includes: a first N-type well located in the semiconductor substrate; a first N-type well located in the first N-type well P-type well, the first P-type well is located on the side of the first N-type well and is adjacent to the first N-type well; the second N-type well surrounding the first P-type well and the first N-type well; Located in the first N-type well P-type doped region at the top in the first P-type well; N-type doped region at the top of the first P-type well.
为了增加SCR静电保护结构的保持电压,通常SCR静电保护结构具有多个SCR单元,多个SCR单元串联连接,具体的,多个SCR单元分别为第一级SCR单元至第W级SCR单元,W为大于等于2的整数,第j级SCR单元中的N型掺杂区与第j+1级SCR单元中的P型掺杂区电学连接,j为大于等于1且小于等于W-1的整数,第一级SCR单元中的P型掺杂区与阳极电位连接,第W级SCR单元中的N型掺杂区与阴极电位连接。In order to increase the holding voltage of the SCR electrostatic protection structure, usually the SCR electrostatic protection structure has multiple SCR units, and the multiple SCR units are connected in series. is an integer greater than or equal to 2, the N-type doped region in the j-th SCR unit is electrically connected to the P-type doped region in the j+1-th SCR unit, and j is an integer greater than or equal to 1 and less than or equal to W-1 , the P-type doped region in the first-level SCR unit is connected to the anode potential, and the N-type doped region in the W-th level SCR unit is connected to the cathode potential.
然而,上述结构在提高保持电压的同时会提高SCR静电保护结构的触发电压。However, the above structure will increase the trigger voltage of the SCR electrostatic protection structure while increasing the holding voltage.
在此基础上,本发明提供一种SCR静电保护结构,包括:位于半导体衬底中的第一单元和第二单元;第一单元包括:位于半导体衬底中的第一N型阱和第一P型阱,第一P型阱沿第一方向位于第一N型阱侧部且与第一N型阱邻接;位于第一N型阱中顶部的第一P型掺杂区;位于第一P型阱中顶部的第一N型掺杂区;第二单元包括:位于半导体衬底中的第二N型阱和第二P型阱,第二P型阱沿第一方向位于第二N型阱侧部且与第二N型阱邻接;位于第二N型阱中顶部且相互分立的第二P型掺杂区和第三N型掺杂区;位于第二P型阱中顶部且相互分立的第二N型掺杂区和第三P型掺杂区;跨接掺杂组;对于相邻的第一单元和第二单元,第一N型掺杂区、第二P型掺杂区和第三N型掺杂区电学连接;所述跨接掺杂组包括:沿第二方向排列的若干分立的第四P型掺杂区,各第四P型掺杂区位于部分第二N型阱中的顶部且延伸至部分第二P型阱中的顶部,第二方向与第一方向垂直;位于相邻第四P型掺杂区之间且与第四P型掺杂区邻接的第四N型掺杂区;电学连接第四N型掺杂区和第四P型掺杂区的导电结构。所述SCR静电保护结构的性能得到提高。On this basis, the present invention provides an SCR electrostatic protection structure, including: a first unit and a second unit located in a semiconductor substrate; the first unit includes: a first N-type well located in the semiconductor substrate and a first unit P-type well, the first P-type well is located at the side of the first N-type well along the first direction and is adjacent to the first N-type well; the first P-type doped region located at the top of the first N-type well; located in the first N-type well The first N-type doped region at the top in the P-type well; the second unit includes: a second N-type well and a second P-type well located in the semiconductor substrate, and the second P-type well is located in the second N-type well along the first direction The side part of the type well is adjacent to the second N-type well; the second P-type doped region and the third N-type doped region are located at the top of the second N-type well and are separated from each other; are located at the top of the second P-type well and are separated from each other. The second N-type doped region and the third P-type doped region are separated from each other; the doping group is bridged; for the adjacent first and second cells, the first N-type doped region and the second P-type doped region The impurity region and the third N-type impurity region are electrically connected; the bridge doping group includes: a plurality of discrete fourth P-type impurity regions arranged along the second direction, and each fourth P-type impurity region is located in a part of the first The tops of the two N-type wells extend to the tops of part of the second P-type wells, the second direction is perpendicular to the first direction; it is located between the adjacent fourth P-type doped regions and is connected to the fourth P-type doped regions The adjacent fourth N-type doped region; the conductive structure electrically connecting the fourth N-type doped region and the fourth P-type doped region. The performance of the SCR electrostatic protection structure is improved.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图1至图4是本发明一实施例中SCR静电保护结构形成过程的结构示意图。1 to 4 are schematic structural diagrams of a process of forming an SCR electrostatic protection structure according to an embodiment of the present invention.
参考图1,提供半导体衬底200。Referring to FIG. 1, a
所述半导体衬底200中具有衬底阱离子,所述衬底阱离子的导电类型为P型。The
所述半导体衬底200的材料为单晶硅、单晶锗或者单晶锗化硅。The material of the
所述半导体衬底200包括第一单元区A和第二单元区B,第一单元区A和第二单元区B相互分立。The
所述第二单元区B的数量为一个或多个,本实施例中,以第二单元区B的数量为多个为示例进行说明,当第二单元区B的数量为多个时,多个第二单元区B相互分立。The number of the second unit area B is one or more. In this embodiment, the number of the second unit area B is multiple as an example for description. When the number of the second unit area B is multiple, the number of the second unit area B is multiple. The second unit regions B are separated from each other.
第一单元区A和第二单元区B沿第一方向X排列,多个第二单元区B沿第一方向X排列。The first unit area A and the second unit area B are arranged along the first direction X, and the plurality of second unit areas B are arranged along the first direction X.
接着,在半导体衬底200中形成分立的第一单元和第二单元。具体的,在第一单元区A中形成第一单元,在第二单元区B中形成第二单元。Next, discrete first and second cells are formed in the
本实施例中,第二单元区B的数量为多个,相应的,第二单元的数量为多个。在其他实施例中,第二单元的数量为一个。In this embodiment, the number of the second unit regions B is multiple, and correspondingly, the number of the second unit is multiple. In other embodiments, the number of second units is one.
形成第一单元的方法包括:在半导体衬底中形成第一N型阱;在第一N型阱沿第一方向的侧部形成与第一N型阱邻接的第一P型阱;在第一N型阱中的顶部形成第一P型掺杂区;在第一P型阱中的顶部形成第一N型掺杂区;The method of forming the first unit includes: forming a first N-type well in a semiconductor substrate; forming a first P-type well adjacent to the first N-type well on a side of the first N-type well along a first direction; A first P-type doped region is formed on the top of an N-type well; a first N-type doped region is formed on the top of the first P-type well;
形成第二单元的方法包括:在半导体衬底中形成第二N型阱;在第二N型阱沿第一方向的侧部形成与第二N型阱邻接的第二P型阱;在第二N型阱中的顶部形成相互分立的第二P型掺杂区和第三N型掺杂区;在第二P型阱中的顶部形成相互分立的第二N型掺杂区和第三P型掺杂区;形成跨接掺杂组;对于相邻的第一单元和第二单元,第一N型掺杂区、第二P型掺杂区和第三N型掺杂区电学连接。The method of forming the second unit includes: forming a second N-type well in a semiconductor substrate; forming a second P-type well adjacent to the second N-type well on a side of the second N-type well along the first direction; The top of the two N-type wells form a second P-type doped region and a third N-type doped region that are separate from each other; the top of the second P-type well is formed to form a mutually separate second N-type doped region and a third N-type doped region. P-type doped region; forming a bridge doping group; for adjacent first and second cells, the first N-type doped region, the second P-type doped region and the third N-type doped region are electrically connected .
参考图2,在半导体衬底200中形成第一N型阱201;在第一N型阱201沿第一方向X的侧部形成与第一N型阱201邻接的第一P型阱202;在半导体衬底200中形成第二N型阱301;在第二N型阱301沿第一方向X的侧部形成与第二N型301阱邻接的第二P型阱302。2, a first N-
所述半导体衬底200的表面均暴露出第一N型阱201、第一P型阱202、第二N型阱301和第二P型阱302,也就是说,第一N型阱201的顶部表面与半导体衬底200的表面齐平,第一P型阱202的顶部表面与半导体衬底200的表面齐平,第二N型阱301的顶部表面与半导体衬底200的表面齐平,第二P型阱302的顶部表面与半导体衬底200的表面齐平。The surface of the
本实施例中,参考图2,形成第一单元的方法还包括:在半导体衬底200中形成第一侧隔离阱203和第一底隔离阱204,第一侧隔离阱203沿第一方向X位于第一P型阱202侧部且与第一P型阱202邻接,第一P型阱202位于第一侧隔离阱203和第一N型阱201之间,第一底隔离阱204位于第一P型阱202的底部且与第一P型阱202邻接,第一底隔离阱204还分别与第一N型阱201的底部和第一侧隔离阱203的底部连接。In this embodiment, referring to FIG. 2 , the method for forming the first unit further includes: forming a first side isolation well 203 and a first bottom isolation well 204 in the
第一侧隔离阱203的导电类型为N型,第一底隔离阱204的导电类型为N型。The conductivity type of the first side isolation well 203 is N-type, and the conductivity type of the first bottom isolation well 204 is N-type.
第一底隔离阱204位于第一P型阱202底部且与第一P型阱202邻接,第一底隔离阱204还分别与第一N型阱201的底部和第一侧隔离阱203的底部连接,这样第一底隔离阱204、第一N型阱201和第一侧隔离阱203将第一P型阱202包围,使得第一P型阱202与第一底隔离阱204底部的半导体衬底200隔离,使得第一P型阱202与第一侧隔离阱203侧部的半导体衬底200隔离。The first bottom isolation well 204 is located at the bottom of the first P-
本实施例中,参考图2,形成所述第二单元的方法还包括:在半导体衬底200中形成第二侧隔离阱303和第二底隔离阱304,第二侧隔离阱303沿第一方向位于第二P型阱302侧部且与第二P型阱302邻接,第二P型阱302位于第二侧隔离阱303和第二N型阱301之间,第二底隔离阱304位于第二P型阱302的底部且与第二P型阱302邻接,第二底隔离阱304还分别与第二N型阱301的底部和第二侧隔离阱303底部连接。In this embodiment, referring to FIG. 2 , the method for forming the second unit further includes: forming a second side isolation well 303 and a second bottom isolation well 304 in the
第二侧隔离阱303的导电类型为N型,第二底隔离阱304的导电类型为N型。The conductivity type of the second side isolation well 303 is N-type, and the conductivity type of the second bottom isolation well 304 is N-type.
第二底隔离阱304位于第二P型阱302底部且与第二P型阱302邻接,第二底隔离阱304还分别与第二N型阱301的底部和第二侧隔离阱303底部连接,这样第二底隔离阱304、第二N型阱301和第二侧隔离阱303将第二P型阱302包围,使得第二P型阱302与第二底隔离阱304底部的半导体衬底200隔离,使得第二P型阱302与第二侧隔离阱303侧部的半导体衬底200隔离。The second bottom isolation well 304 is located at the bottom of the second P-
本实施例中,形成第一单元的方法还包括:在半导体衬底200的第一单元区中形成第一隔离绝缘层510和第二隔离绝缘层520。本实施例中,第一隔离绝缘层510用于构成后续第一隔离组层的一部分。In this embodiment, the method for forming the first unit further includes: forming a first
部分第二隔离绝缘层520位于第一N型阱201中,部分第二隔离绝缘层520位于第一P型阱202中,部分第二隔离绝缘层520位于第一侧隔离阱203中的顶部且延伸至部分第一P型阱202中。Part of the second
本实施例中,形成第二单元的方法还包括:在半导体衬底200的第二单元区中形成第三隔离绝缘层530。In this embodiment, the method for forming the second cell further includes: forming a third
部分第三隔离绝缘层530位于第二N型阱301中,部分第三隔离绝缘层530位于第二P型阱302中,部分第三隔离绝缘层530位于第二侧隔离阱303中的顶部且延伸至部分第二P型阱302中。Part of the third
第一隔离绝缘层510的材料包括氧化硅。第二隔离绝缘层520的材料包括氧化硅。第三隔离绝缘层530的材料包括氧化硅。The material of the first
参考图3,在第一N型阱201中的顶部形成第一P型掺杂区210;在第一P型阱202中的顶部形成第一N型掺杂区220;在第二N型阱301中的顶部形成相互分立的第二P型掺杂区310和第三N型掺杂区330;在第二P型阱302中的顶部形成相互分立的第二N型掺杂区320和第三P型掺杂区340;形成跨接掺杂组。Referring to FIG. 3, a first P-type doped
对于相邻的第一单元和第二单元,第一N型掺杂区220、第二P型掺杂区310和第三N型掺杂区330电学连接。For the adjacent first and second cells, the first N-type doped
形成所述跨接掺杂组的方法包括:形成沿第二方向Y排列的若干分立的第四P型掺杂区350,各第四P型掺杂区350位于部分第二N型阱301中的顶部且延伸至部分第二P型阱302中的顶部,第二方向Y与第一方向X垂直;在相邻第四P型掺杂区350之间形成与第四P型掺杂区350邻接的第四N型掺杂区360,第四N型掺杂区360位于部分第二N型阱301中的顶部且延伸至部分第二P型阱302中的顶部。The method for forming the bridge doping group includes: forming a plurality of discrete fourth P-
形成所述第一单元的方法还包括:形成位于第一N型阱201中顶部的第五N型掺杂区230,第五N型掺杂区230与第一P型掺杂区210相互分立,且第五N型掺杂区230与第一P型掺杂区210电学连接。The method of forming the first unit further includes: forming a fifth N-type doped
本实施例中,第一P型掺杂区210和第五N型掺杂区230均接阳极电位。In this embodiment, the first P-
形成所述第一单元的方法还包括:形成位于第一P型阱202中顶部的第五P型掺杂区240,第五P型掺杂区240与第一N型掺杂区220相互分立,且第五P型掺杂区240与第一N型掺杂区220电学连接。The method of forming the first unit further includes: forming a fifth P-type doped
本实施例中,形成所述第一单元的方法还包括:在半导体衬底200中形成第六P型掺杂区250,所述第六P型掺杂区250位于部分第一N型阱201中的顶部且延伸至部分第一P型阱202中的顶部。In this embodiment, the method for forming the first unit further includes: forming a sixth P-type doped
本实施例中,第一隔离绝缘层分别位于第六P型掺杂区250在第一方向X上的两侧,第六P型掺杂区250一侧的第一隔离绝缘层位于第一N型阱201中,第六P型掺杂区250另一侧的第一隔离绝缘层位于第一P型阱202中。In this embodiment, the first isolation insulating layer is located on both sides of the sixth P-type doped
本实施例中,第一隔离绝缘层和第六P型掺杂区250构成第一隔离组层,第一隔离组层位于第一P型掺杂区210和第一N型掺杂区220之间的半导体衬底200中,第一隔离组层位于部分第一N型阱201中的顶部且延伸至部分第一P型阱202中的顶部。In this embodiment, the first isolation insulating layer and the sixth P-type doped
第六P型掺杂区250中P型离子的浓度远大于第一P型阱202中P型离子的浓度。The concentration of P-type ions in the sixth P-type doped
在其他实施例中,第一隔离组层为单层结构,第一隔离组层的材料包括氧化硅,第一隔离组层位于第一P型掺杂区和第一N型掺杂区之间的半导体衬底中,第一隔离组层位于部分第一N型阱中的顶部且延伸至部分第一P型阱中的顶部。In other embodiments, the first isolation group layer is a single-layer structure, the material of the first isolation group layer includes silicon oxide, and the first isolation group layer is located between the first P-type doping region and the first N-type doping region In the semiconductor substrate, the first isolation group layer is located on top of a portion of the first N-type well and extends to the top of a portion of the first P-type well.
本实施例中,第一P型掺杂区210、第一N型掺杂区220、第五N型掺杂区230、第五P型掺杂区240和第六P型掺杂区250相互分立,第五P型掺杂区240、第一P型掺杂区210、第六P型掺杂区250、第一N型掺杂区220和第五N型掺杂区230沿第一方向X排列。In this embodiment, the first P-
在一个具体的实施例中,第一P型掺杂区210位于第五N型掺杂区230和第一隔离组层之间,第一N型掺杂区220位于第五P型掺杂区240和第一隔离组层之间。In a specific embodiment, the first P-
第一P型掺杂区210和第五N型掺杂区230之间、以及第一N型掺杂区220和第五P型掺杂区240之间具有第二隔离绝缘层520。A second
第二P型掺杂区310、第二N型掺杂区320、第三N型掺杂区330、第三P型掺杂区340和所述跨接掺杂组相互分立。The second P-
在一个具体的实施例中,第二P型掺杂区310位于所述跨接掺杂组和所述第三N型掺杂区330之间,第二N型掺杂区320位于所述跨接掺杂组和所述第三P型掺杂区340之间。In a specific embodiment, the second P-
第二P型掺杂区310和第三N型掺杂区330之间、第二P型掺杂区310和所述跨接掺杂组之间、第二N型掺杂区320和第三P型掺杂区340之间、以及第二N型掺杂区320和所述跨接掺杂组之间具有第三隔离绝缘层530。Between the second P-
第四P型掺杂区350中P型离子的浓度大于第二P型阱302中P型离子的浓度。第四N型掺杂区360中N型离子的浓度大于第二N型阱301中N型离子的浓度。The concentration of P-type ions in the fourth P-type doped
对于相邻的第一单元和第二单元,第一N型掺杂区220、第二P型掺杂区310和第三N型掺杂区330电学连接。For the adjacent first and second cells, the first N-type doped
本实施例中,以所述第二单元的数量为多个作为示例,多个第二单元分别为第一级第二单元至第Q级第二单元,Q为大于等于2的整数;第i级第二单元中的第二N型掺杂区320和第三P型掺杂区340与第i+1级第二单元中的第二P型掺杂区310和第三N型掺杂区330电学连接,i为大于等于1且小于等于Q-1的整数,第Q级第二单元中的第二N型掺杂区320和第三P型掺杂区340接阴极电位,第一N型掺杂区与第一级第二单元中的第二P型掺杂区310和第三N型掺杂区330电学连接。In this embodiment, the number of the second units is multiple as an example, and the multiple second units are respectively the first-level second unit to the Q-th level second unit, where Q is an integer greater than or equal to 2; The second N-type doped
本实施例中,以Q等于2为示例进行说明,第二单元的数量为两个,多个第二单元分别为第一级第二单元至第二级第二单元。In this embodiment, it is described by taking Q equal to 2 as an example, the number of the second cells is two, and the plurality of second cells are the first-level second cells to the second-level second cells respectively.
在其他实施例中,Q可以为3、4、5、6或大于等于7的整数。In other embodiments, Q may be 3, 4, 5, 6, or an integer greater than or equal to 7.
在其他实施例中,所述第二单元的数量为一个,所述第二N型掺杂区和第三P型掺杂区均接阴极电位。In other embodiments, the number of the second unit is one, and both the second N-type doped region and the third P-type doped region are connected to a cathode potential.
所述SCR静电保护结构的形成方法还包括:在部分半导体衬底200中的顶部形成第七P型掺杂区400,且所述第七P型掺杂区400分别位于相邻的第一单元和第二单元之间、以及第二单元沿第一方向X两侧,各第七P型掺杂区400均接地。The method for forming the SCR electrostatic protection structure further includes: forming a seventh P-type doped
各第七P型掺杂区400均接地,使半导体衬底200接地,这样避免闩锁效应。Each of the seventh P-type doped
本实施例中,第七P型掺杂区400与第五P型掺杂区240之间具有第二隔离绝缘层520,具体的,第一单元和第一级第二单元之间的第七P型掺杂区400与第一单元中的第五P型掺杂区240之间具有第二隔离绝缘层520。In this embodiment, there is a second
本实施例中,第七P型掺杂区400与第三N型掺杂区330之间具有第三隔离绝缘层530。具体的,第一单元和第一级第二单元之间的第七P型掺杂区400与第一级第二单元中的第三N型掺杂区330之间具有第三隔离绝缘层530;第i级第二单元与第i+1级第二单元之间的第七P型掺杂区400,与第i+1级第二单元中的第三N型掺杂区330之间具有第三隔离绝缘层530。In this embodiment, a third
本实施例中,第七P型掺杂区400与第三P型掺杂区340之间具有第三隔离绝缘层530,具体的,第i级第二单元与第i+1级第二单元之间的第七P型掺杂区400与第i级第二单元中的第三P型掺杂区340之间具有第三隔离绝缘层530。In this embodiment, there is a third
参考图4,在半导体衬底200上形成导电结构500,导电结构500电学连接第四N型掺杂区和第四P型掺杂区。Referring to FIG. 4 , a
本实施例中,所述导电结构500位于第四N型掺杂区的表面且延伸至第四P型掺杂区表面;所述导电结构500的材料为金属硅化物。In this embodiment, the
在其他实施例中,导电结构包括:位于第四N型掺杂区表面的第一金属硅化物层;位于第四P型掺杂区表面的第二金属硅化物层,第一金属硅化物层和第二金属硅化物层相互分立;位于第一金属硅化物层和第二金属硅化物层上的金属连接层,所述金属连接层分别连接第一金属硅化物层和第二金属硅化物层。In other embodiments, the conductive structure includes: a first metal silicide layer on the surface of the fourth N-type doped region; a second metal silicide layer on the surface of the fourth P-type doped region, the first metal silicide layer and the second metal silicide layer are separated from each other; a metal connection layer located on the first metal silicide layer and the second metal silicide layer, the metal connection layer is respectively connected to the first metal silicide layer and the second metal silicide layer .
当所述导电结构500位于第四N型掺杂区的表面且延伸至第四P型掺杂区表面,所述导电结构500的材料为金属硅化物时,使得导电结构500的结构较为简单,制作成本降低。When the
本实施例中,还包括:位于半导体衬底上的第一连接层,第一连接层分别与第一P型掺杂区210上和第五N型掺杂区230连接,第一连接层接阳极电位。第一连接层的材料包括金属,如铜或铝。In this embodiment, it further includes: a first connection layer on the semiconductor substrate, the first connection layer is connected to the first P-
本实施例中,还包括:位于半导体衬底上的第二连接层,第二连接层分别与第五P型掺杂区240、第一N型掺杂区220、第一级第二单元中的第二P型掺杂区310和第三N型掺杂区330连接,第二连接层的材料参照第一连接层的材料。In this embodiment, it further includes: a second connection layer on the semiconductor substrate, the second connection layer is respectively connected with the fifth P-type doped
本实施例中,还包括:位于半导体衬底上的第i级连接层,第i级连接层连接第i级第二单元中的第二N型掺杂区320和第三P型掺杂区340、以及第i+1级第二单元中的第二P型掺杂区310和第三N型掺杂区330,i为大于等于1且小于等于Q-1的整数。第i级连接层的材料参照第一连接层的材料。In this embodiment, it further includes: an i-th level connection layer on the semiconductor substrate, and the i-th level connection layer connects the second N-
本实施例中,还包括:位于半导体衬底上的第三连接层,第三连接层连接第Q级第二单元中的第二N型掺杂区320和第三P型掺杂区340,第三连接层接阴极电位。第三连接层的材料参照第一连接层的材料。In this embodiment, it further includes: a third connection layer on the semiconductor substrate, the third connection layer is connected to the second N-
本实施例中,还包括:位于半导体衬底200上的第四连接层,第四连接层连接各第七P型掺杂区400,第四连接层的材料参照第一连接层的材料。In this embodiment, it further includes: a fourth connection layer on the
本实施例的SCR静电保护结构包括第一电流泄放结构和第二电流泄放结构。The SCR electrostatic protection structure of this embodiment includes a first current discharge structure and a second current discharge structure.
第一电流泄放结构为PNPN结构,第一电流泄放结构包括第一PNP管和第一NPN管,第一P型掺杂区210作为第一PNP管的发射极,第一P型掺杂区210底部的第一N型阱201作为第一PNP管的基极,第一N型掺杂区220底部的第一P型阱202作为第一PNP管的集电极,第一P型掺杂区210底部的第一N型阱201作为第一NPN管的集电极,第一N型掺杂区220底部的第一P型阱202作为第一NPN管的基极,第一N型掺杂区220作为第一NPN管的发射极。The first current bleed structure is a PNPN structure, the first current bleed structure includes a first PNP transistor and a first NPN transistor, the first P-type doped
第二电流泄放结构为PNPN结构,第二电流泄放结构包括第二PNP管和第二NPN管,第二P型掺杂区310作为第二PNP管的发射极,第二P型掺杂区310底部的第二N型阱301作为第二PNP管的基极,第二N型掺杂区320底部的第二P型阱302作为第二PNP管的集电极,第二P型掺杂区310底部的第二N型阱301作为第二NPN管的集电极,第二N型掺杂区320底部的第二P型阱302作为第二NPN管的基极,第二N型掺杂区320作为第二NPN管的发射极。各级第二单元中的第二电流泄放结构串联连接。The second current bleeder structure is a PNPN structure, the second current bleeder structure includes a second PNP transistor and a second NPN transistor, the second P-type doped
本实施例的SCR静电保护结构还包括电阻导流结构,电阻导流结构包括:第三N型掺杂区330、第二N型阱301、跨接掺杂组、第二P型阱302和第三P型掺杂区340。The SCR electrostatic protection structure of this embodiment further includes a resistive current conducting structure, and the resistive current conducting structure includes: a third N-type doped
本实施例的SCR静电保护结构中,具有第一电流泄放路径L1和第二电流泄放路径L2,第一电流泄放路径L1对应第一电流泄放结构,第二电流泄放路径L2对应第二电流泄放结构。电阻导流结构具有电阻导流路径L3,电阻导流路径L3包括:自第三N型掺杂区330至第二N型阱、自第二N型阱至跨接掺杂组中的第四N型掺杂区360,自第四N型掺杂区360经过导电结构500至第四P型掺杂区350,自第四P型掺杂区350至第二P型阱302,自第二P型阱302至第三P型掺杂区340。各级第二单元中的电阻导流路径串联连接。In the SCR electrostatic protection structure of this embodiment, there are a first current discharge path L1 and a second current discharge path L2, the first current discharge path L1 corresponds to the first current discharge structure, and the second current discharge path L2 corresponds to The second current discharge structure. The resistive conducting structure has a resistive conducting path L3, and the resistive conducting path L3 includes: from the third N-type doped
本实施例中,由于第一电流泄放路径L1和第二电流泄放路径L2串联叠加,因此增加了SCR静电保护结构的保持电压,SCR静电保护结构的保持电压为第一电流泄放结构的保持电压和第二电流泄放结构的保持电压之和,因此使得SCR静电保护结构的保持电压增加。由于SCR静电保护结构的保持电压提高,因此对于SCR静电保护结构所保护的半导体器件,半导体器件的正常工作电压的范围得到扩展。In this embodiment, since the first current discharge path L1 and the second current discharge path L2 are superimposed in series, the holding voltage of the SCR electrostatic protection structure is increased, and the holding voltage of the SCR electrostatic protection structure is the same as that of the first current discharge structure. The sum of the holding voltage and the holding voltage of the second current discharge structure, thus increasing the holding voltage of the SCR electrostatic protection structure. Since the holding voltage of the SCR electrostatic protection structure is increased, the normal operating voltage range of the semiconductor device is expanded for the semiconductor device protected by the SCR electrostatic protection structure.
本实施例中,在阴极和阳极上施加触发电压,在初始阶段,第二单元中的第二电流泄放路径不导通,第二单元中的电阻导流结构导通,第二单元上的压降较小,这时触发电压中大部分电压施加在第一单元上,触发电压中大部分电压施加在第一单元上使第一单元中的第一电流泄放路径导通,这样就触发第一电流泄放路径进行泄流,随后,由于第一电流泄放路径的导通触发第二电流泄放路径的导通,这样就触发第一电流泄放路径进行泄流。这样SCR静电保护结构中第一电流泄放路径的导通触发第二电流泄放路径的导通所需的触发电压降低。In this embodiment, a trigger voltage is applied to the cathode and the anode. In the initial stage, the second current discharge path in the second unit is non-conductive, the resistance current conducting structure in the second unit is conductive, and the The voltage drop is small. At this time, most of the voltage in the trigger voltage is applied to the first unit, and most of the voltage in the trigger voltage is applied to the first unit, so that the first current discharge path in the first unit is turned on, thus triggering The first current bleeder path performs the bleeder, and subsequently, the conduction of the second current bleeder path is triggered due to the conduction of the first current bleeder path, thus triggering the first current bleeder path to perform the bleeder. In this way, the trigger voltage required for the conduction of the first current discharge path in the SCR electrostatic protection structure to trigger the conduction of the second current discharge path is reduced.
进一步的,第六P型掺杂区250中P型离子的浓度远大于第一P型阱202中P型离子的浓度,这样第六P型掺杂区250和第一N型阱201之间的击穿电压较低,那么使得第一单元中第一电流泄放路径L1导通需要的触发电压进一步降低。Further, the concentration of P-type ions in the sixth P-type doped
相应的,本实施例还提供一种SCR静电保护结构,请结合参考图3和图4,包括:Correspondingly, this embodiment also provides an SCR electrostatic protection structure, please refer to FIG. 3 and FIG. 4 in combination, including:
半导体衬底200;
位于半导体衬底200中分立的第一单元和第二单元;discrete first and second units located in the
第一单元包括:位于半导体衬底200中的第一N型阱201和第一P型阱202,第一P型阱202沿第一方向X位于第一N型阱201侧部且与第一N型阱201邻接;位于第一N型阱201中顶部的第一P型掺杂区210;位于第一P型阱202中顶部的第一N型掺杂区220;The first unit includes: a first N-
第二单元包括:位于半导体衬底200中的第二N型阱301和第二P型阱302,第二P型阱302沿第一方向X位于第二N型阱301侧部且与第二N型阱301邻接;位于第二N型阱301中顶部且相互分立的第二P型掺杂区310和第三N型掺杂区330;位于第二P型阱302中顶部且相互分立第二N型掺杂区320和第三P型掺杂区340;跨接掺杂组;对于相邻的第一单元和第二单元,第一N型掺杂区220、第二P型掺杂区310和第三N型掺杂区330电学连接;The second unit includes: a second N-
所述跨接掺杂组包括:沿第二方向Y排列的若干分立的第四P型掺杂区350,各第四P型掺杂区350位于部分第二N型阱301中的顶部且延伸至部分第二P型阱302中的顶部,第二方向Y与第一方向X垂直;位于相邻第四P型掺杂区350之间且与第四P型掺杂区350邻接的第四N型掺杂区360,第四N型掺杂区360位于部分第二N型阱301中的顶部且延伸至部分第二P型阱302中的顶部;The bridge doping group includes: a plurality of discrete fourth P-
位于半导体衬底200上的导电结构500,导电结构500电学连接第四N型掺杂区360和第四P型掺杂区350。The
所述半导体衬底200中具有衬底阱离子,所述衬底阱离子的导电类型为P型。The
本实施例中,以所述第二单元的数量为多个作为示例,多个第二单元分别为第一级第二单元至第Q级第二单元,Q为大于等于2的整数;第i级第二单元中的第二N型掺杂区320和第三P型掺杂区340与第i+1级第二单元中的第二P型掺杂区310和第三N型掺杂区330电学连接,i为大于等于1且小于等于Q-1的整数,第Q级第二单元中的第二N型掺杂区320和第三P型掺杂区340接阴极电位,第一N型掺杂区与第一级第二单元中的第二P型掺杂区310和第三N型掺杂区330电学连接。In this embodiment, the number of the second units is multiple as an example, and the multiple second units are respectively the first-level second unit to the Q-th level second unit, where Q is an integer greater than or equal to 2; The second N-type doped
在其他实施例中,所述第二单元的数量为一个,所述第二N型掺杂区和第三P型掺杂区均接阴极电位。In other embodiments, the number of the second unit is one, and both the second N-type doped region and the third P-type doped region are connected to a cathode potential.
第一P型掺杂区210和第五N型掺杂区230均接阳极电位。The first P-type doped
所述第一单元还包括:位于第一N型阱201中顶部的第五N型掺杂区230,第五N型掺杂区230与第一P型掺杂区210相互分立,且第五N型掺杂区230与第一P型掺杂区210电学连接。The first unit further includes: a fifth N-type doped
所述第一单元还包括:位于第一P型阱202中顶部的第五P型掺杂区240,第五P型掺杂区240与第一N型掺杂区220相互分立,且第五P型掺杂区240与第一N型掺杂区220电学连接。The first unit further includes: a fifth P-type doped
所述第一单元还包括:位于第一P型掺杂区210和第一N型掺杂区220之间半导体衬底200中的第一隔离组层,第一隔离组层位于部分第一N型阱201中的顶部且延伸至部分第一P型阱202中的顶部。The first unit further includes: a first isolation group layer located in the
本实施例中,所述第一隔离组层包括第六P型掺杂区250和沿第一方向X分别位于第六P型掺杂区250两侧的第一隔离绝缘层510,第六P型掺杂区250位于部分第一N型阱201中的顶部且延伸至部分第一P型阱202中的顶部,第六P型掺杂区250一侧的第一隔离绝缘层510位于第一N型阱201中,第六P型掺杂区另一侧的第一隔离绝缘层510位于第一P型阱202中。In this embodiment, the first isolation group layer includes a sixth P-type doped
在其他实施例中,第一隔离组层为单层结构,第一隔离组层的材料包括氧化硅。In other embodiments, the first isolation group layer is a single-layer structure, and the material of the first isolation group layer includes silicon oxide.
所述第一单元还包括:位于半导体衬底200中的第一侧隔离阱203,第一侧隔离阱203沿第一方向X位于第一P型阱202侧部且与第一P型阱202邻接,第一P型阱202位于第一侧隔离阱203和第一N型阱201之间,第一侧隔离阱的导电类型为N型;第一底隔离阱204,第一底隔离阱204位于第一P型阱202的底部且与第一P型阱202邻接,第一底隔离阱204还分别与第一N型阱201的底部和第一侧隔离阱203的底部连接,第一底隔离阱的导电类型为N型。The first unit further includes: a first side isolation well 203 located in the
所述第二单元还包括:位于半导体衬底200中的第二侧隔离阱303,第二侧隔离阱303沿第一方向X位于第二P型阱302侧部且与第二P型阱302邻接,第二P型阱302位于第二侧隔离阱303和第二N型阱301之间,第二侧隔离阱303的导电类型为N型;第二底隔离阱304,第二底隔离阱304位于第二P型阱302的底部且与第二P型阱302邻接,第二底隔离阱304还分别与第二N型阱301的底部和第二侧隔离阱303底部连接,第二底隔离阱304的导电类型为N型。The second unit further includes: a second side isolation well 303 located in the
所述SCR静电保护结构还包括:位于部分半导体衬底200中顶部的第七P型掺杂区400,且所述第七P型掺杂区400,分别位于相邻的第一单元和第二单元之间、以及第二单元沿第一方向两侧,各第七P型掺杂区400均接地。The SCR electrostatic protection structure further includes: a seventh P-type doped
本实施例中,所述导电结构500位于第四N型掺杂区的表面且延伸至第四P型掺杂区表面;所述导电结构500的材料为金属硅化物。In this embodiment, the
在其他实施例中,导电结构包括:位于第四N型掺杂区表面的第一金属硅化物层;位于第四P型掺杂区表面的第二金属硅化物层,第一金属硅化物层和第二金属硅化物层相互分立;位于第一金属硅化物层和第二金属硅化物层上的金属连接层,所述金属连接层分别连接第一金属硅化物层和第二金属硅化物层。In other embodiments, the conductive structure includes: a first metal silicide layer on the surface of the fourth N-type doped region; a second metal silicide layer on the surface of the fourth P-type doped region, the first metal silicide layer and the second metal silicide layer are separated from each other; a metal connection layer located on the first metal silicide layer and the second metal silicide layer, the metal connection layer is respectively connected to the first metal silicide layer and the second metal silicide layer .
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910272299.9A CN111785717B (en) | 2019-04-04 | 2019-04-04 | SCR electrostatic protection structure and forming method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910272299.9A CN111785717B (en) | 2019-04-04 | 2019-04-04 | SCR electrostatic protection structure and forming method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111785717A true CN111785717A (en) | 2020-10-16 |
CN111785717B CN111785717B (en) | 2023-05-26 |
Family
ID=72755101
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910272299.9A Active CN111785717B (en) | 2019-04-04 | 2019-04-04 | SCR electrostatic protection structure and forming method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111785717B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114121943A (en) * | 2022-01-27 | 2022-03-01 | 江苏应能微电子有限公司 | SCR device with high trigger current and electrostatic discharge circuit structure |
CN116314277A (en) * | 2023-05-15 | 2023-06-23 | 微龛(广州)半导体有限公司 | SCR (selective catalytic reduction) type ESD (electro-static discharge) protection device, electronic device and preparation method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5986307A (en) * | 1998-01-09 | 1999-11-16 | Winbond Electronics Corp. | Silicon-controlled rectifier integral with output buffer |
CN1396662A (en) * | 2001-07-09 | 2003-02-12 | 联华电子股份有限公司 | Low voltage trigger silicon controlled rectifier with silicon insulating layer and electrostatic discharge protection circuit |
CN102884624A (en) * | 2010-02-22 | 2013-01-16 | 索菲科斯公司 | High holding voltage device |
US20130032882A1 (en) * | 2011-08-04 | 2013-02-07 | Analog Devices, Inc. | Bi-directional blocking voltage protection devices and methods of forming the same |
CN104752417A (en) * | 2013-12-30 | 2015-07-01 | 中芯国际集成电路制造(上海)有限公司 | Silicon controlled rectifier protection device and forming method thereof |
US20160276335A1 (en) * | 2013-10-18 | 2016-09-22 | Jean Philippe Laine | Electrostatic discharge protection device structures and methods of manufacture |
CN108807364A (en) * | 2017-05-05 | 2018-11-13 | 旺宏电子股份有限公司 | Electrostatic discharge protection device, circuit and manufacturing method thereof |
-
2019
- 2019-04-04 CN CN201910272299.9A patent/CN111785717B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5986307A (en) * | 1998-01-09 | 1999-11-16 | Winbond Electronics Corp. | Silicon-controlled rectifier integral with output buffer |
CN1396662A (en) * | 2001-07-09 | 2003-02-12 | 联华电子股份有限公司 | Low voltage trigger silicon controlled rectifier with silicon insulating layer and electrostatic discharge protection circuit |
CN102884624A (en) * | 2010-02-22 | 2013-01-16 | 索菲科斯公司 | High holding voltage device |
US20130032882A1 (en) * | 2011-08-04 | 2013-02-07 | Analog Devices, Inc. | Bi-directional blocking voltage protection devices and methods of forming the same |
US20160276335A1 (en) * | 2013-10-18 | 2016-09-22 | Jean Philippe Laine | Electrostatic discharge protection device structures and methods of manufacture |
CN104752417A (en) * | 2013-12-30 | 2015-07-01 | 中芯国际集成电路制造(上海)有限公司 | Silicon controlled rectifier protection device and forming method thereof |
CN108807364A (en) * | 2017-05-05 | 2018-11-13 | 旺宏电子股份有限公司 | Electrostatic discharge protection device, circuit and manufacturing method thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114121943A (en) * | 2022-01-27 | 2022-03-01 | 江苏应能微电子有限公司 | SCR device with high trigger current and electrostatic discharge circuit structure |
CN116314277A (en) * | 2023-05-15 | 2023-06-23 | 微龛(广州)半导体有限公司 | SCR (selective catalytic reduction) type ESD (electro-static discharge) protection device, electronic device and preparation method |
CN116314277B (en) * | 2023-05-15 | 2023-08-22 | 微龛(广州)半导体有限公司 | SCR type ESD protection device, electronic device and preparation method |
Also Published As
Publication number | Publication date |
---|---|
CN111785717B (en) | 2023-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100505240C (en) | Semiconductor device | |
CN108807371B (en) | A kind of high protection grade two-way thyristor electrostatic protection device and manufacturing method thereof | |
TWI580001B (en) | Electrostatic discharge protection circuit, structure and manufacturing method thereof | |
US20050275032A1 (en) | MOS type semiconductor device having electrostatic discharge protection arrangement | |
US20050088801A1 (en) | Decoupling capacitor | |
KR100642651B1 (en) | Silicon-Controlled Rectifiers for Electrostatic Discharge | |
CN1122519A (en) | Electrostatic discharge protection device and manufacturing method thereof | |
JPH11251574A (en) | Static electricity protection circuit | |
JP2008541414A (en) | Guard wall structure for ESD protection | |
CN103165600B (en) | A kind of esd protection circuit | |
US6353237B1 (en) | ESD protection circuit triggered by diode | |
US11139288B2 (en) | Silicon-controlled-rectifier electrostatic protection structure and fabrication method thereof | |
CN111785717B (en) | SCR electrostatic protection structure and forming method thereof | |
CN1351378A (en) | Semiconductor IC system | |
US6949806B2 (en) | Electrostatic discharge protection structure for deep sub-micron gate oxide | |
TWI697092B (en) | Semiconductor electrostatic discharge protection circuit, esd protection semiconductor device, and layout structure of esd protection semiconductor device | |
CN111725202B (en) | SCR electrostatic protection structure and forming method thereof | |
CN100514678C (en) | Low capacitance ESD-protection structure under a bond pad | |
CN112234056A (en) | Semiconductor device with a plurality of transistors | |
CN109037195B (en) | Semiconductor structure and method of forming the same | |
CN115621273B (en) | Electrostatic protection circuit and semiconductor device | |
JP5085045B2 (en) | Semiconductor device | |
CN111816650B (en) | SCR electrostatic protection structure and its forming method | |
CN112490240A (en) | Grid grounding field effect transistor for ESD protection circuit and manufacturing method thereof | |
CN111799256A (en) | Protection ring for improving negative current latching prevention capability of high-voltage integrated circuit and implementation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |