CN111782438B - An Improved Radiation Hardened Matrix Code Decoding Circuit - Google Patents
An Improved Radiation Hardened Matrix Code Decoding Circuit Download PDFInfo
- Publication number
- CN111782438B CN111782438B CN201910271188.6A CN201910271188A CN111782438B CN 111782438 B CN111782438 B CN 111782438B CN 201910271188 A CN201910271188 A CN 201910271188A CN 111782438 B CN111782438 B CN 111782438B
- Authority
- CN
- China
- Prior art keywords
- bits
- bit
- check
- information
- information bits
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/08—Error detection or correction by redundancy in data representation, e.g. by using checking codes
- G06F11/10—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
- G06F11/1008—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
- G06F11/1048—Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices using arrangements adapted for a specific error detection or correction feature
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/38—Response verification devices
- G11C29/42—Response verification devices using error correcting codes [ECC] or parity check
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Detection And Correction Of Errors (AREA)
- Error Detection And Correction (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种对于存储器抗辐射加固改进的矩阵码译码电路。The present invention relates to an improved matrix code decoding circuit for memory radiation hardening.
背景技术Background technique
空间辐照环境下,高能粒子会使得存储器发生多位翻转。存储器发生2-5位数据宽度的软错误概率较大,也有极小的概率发生更多宽度的数据比特翻转。一般而言,存储器也可以通过BCH码、RS码以及LDPC纠错能力强的码字进行纠错。但这类码字的高性能使得电路实现复杂,不但本身需要存储校验矩阵,辐射环境下校验矩阵容易出错导致译码失效,而且译码过程时延严重,硬件开销也难以承受。In the environment of space irradiation, high-energy particles can cause multiple bit flips in the memory. The memory has a high probability of soft errors with a data width of 2-5 bits, and a very small probability of data bit flips with a larger width. Generally speaking, the memory can also perform error correction through BCH code, RS code and LDPC codeword with strong error correction capability. However, the high performance of such codewords complicates the circuit implementation. Not only does it need to store the parity check matrix, but the parity check matrix is prone to errors in a radiation environment, resulting in decoding failure. Moreover, the decoding process has a serious delay and the hardware overhead is unbearable.
针对辐射环境下的出错特性构造二维矩阵码,二维矩阵码将一个字在逻辑上划分为矩阵形式,可对指定数据宽度的存储器翻转进行纠错,除了添加冗余电路外,不需要更改存储器电路结构。矩阵码电路实现简单,可较好的对存储器进行抗辐射加固,但随着电路工艺尺寸的降低,存储器需要纠错能力更强的纠错码。A two-dimensional matrix code is constructed according to the error characteristics in the radiation environment. The two-dimensional matrix code logically divides a word into a matrix form, which can correct the memory flip of the specified data width. Except for adding redundant circuits, no changes are required. Memory circuit structure. The matrix code circuit is simple to implement, and can better harden the memory against radiation. However, with the reduction of the circuit process size, the memory needs an error correction code with stronger error correction capability.
经检索DOI号为10.16708/j.cnki.1000-758X.2018.0070提出了一种矩阵码构造方法,本发明设计了一种改进的译码电路,对6位数据宽度的翻转进行多次分割后纠错,其可以对单个码字的6位数据宽度翻转进行纠错。After searching the DOI number is 10.16708/j.cnki.1000-758X.2018.0070, a matrix code construction method is proposed. The present invention designs an improved decoding circuit, which performs multiple divisions for the inversion of the 6-bit data width and then corrects error, it can correct the 6-bit data width inversion of a single codeword.
矩阵码对存储器的字在逻辑上划分为多个4阶矩阵,矩阵码校验位生成公式如下,其中公式3和公式4对所校验信息位进行联合校验,例如信息位翻转时,公式3的状态应当表示为‘1110’。The matrix code logically divides the words of the memory into multiple 4th-order matrices. The matrix code check bit generation formula is as follows, where Equation 3 and Equation 4 perform joint checking on the checked information bits, such as information bits When flipped, the state of Equation 3 should be represented as '1110'.
(1) (1)
(2) (2)
(3) (3)
(4) (4)
发明内容SUMMARY OF THE INVENTION
本发明要解决的问题在于提供一种改进的译码电路增加矩阵码的纠错性能。The problem to be solved by the present invention is to provide an improved decoding circuit to increase the error correction performance of the matrix code.
为达到上述目的,本发明提供如下实现方案:In order to achieve the above object, the present invention provides following realization scheme:
步骤1:数据接收信息位根据产生14个新的校验位,以此得到校正子:Step 1: Generate 14 new parity bits according to data reception information bits , so as to get the corrector :
(5) (5)
步骤2:对信息矩阵中的部分信息位进行纠错,纠错公式如下:Step 2: Correct some information bits in the information matrix. The error correction formula is as follows:
(6) (6)
(7) (7)
步骤3: 对纠正后信息位进行更新得到新的校验位与校正子,根据新的校正子对剩余的信息位中的部分信息位进行纠错:Step 3: Update the corrected information bit to get a new check bit with syndrome , and correct some of the remaining information bits according to the new syndrome:
(8) (8)
(9) (9)
(10) (10)
步骤4:对步骤3中信息位的纠正结果进行更新,更新后产生新的校验位,并以此得到新的校正子。Step 4: Update the correction result of the information bit in Step 3, and generate a new check bit after the update , and use this to get a new correction .
(11) (11)
步骤5:剩余信息位的校验状态可根据更新后的校正子得到,通过校验状态即可对3区信息位进行纠错:Step 5: Check Status of Remaining Information Bits According to the updated syndrome It can be obtained that the error correction of the 3-zone information bits can be performed by checking the status:
(12) (12)
其中表示信息位在指定数据宽度内根据公式3和公式4可能得到校验状态的所有情况的或运算。剩余信息位纠错完成,纠错算法完成译码。in Indicates information bits According to Equation 3 and Equation 4, it is possible to obtain the OR operation of all cases of the check state within the specified data width. The error correction of the remaining information bits is completed, and the error correction algorithm completes the decoding.
本发明的优异效果在于:本发明提出了一种改进的矩阵码译码电路,电路对信息位发生的连续错误通过多次迭代将翻转位进行分割;每次的迭代更新将减少校验位出错位数;从而在不提高太多功耗、时延开销的同时增加纠错码译码性能。The excellent effects of the present invention are as follows: the present invention proposes an improved matrix code decoding circuit, the circuit divides the flipped bits through multiple iterations for continuous errors occurring in the information bits; each iteration update will reduce check bit errors The number of bits; thereby increasing the decoding performance of the error correction code without increasing too much power consumption and delay overhead.
附图说明Description of drawings
为了更好的阐述本发明的目的、细节及优点,提供如下附图进行说明:In order to better illustrate the purpose, details and advantages of the present invention, the following accompanying drawings are provided for description:
图1是译码流程图;Fig. 1 is a decoding flow chart;
图2是位宽为16bit位的字在逻辑上的矩阵排列Figure 2 is the logical matrix arrangement of a word with a bit width of 16 bits
图3是对逻辑上的矩阵在码字编码时将矩阵分割为3个部分;Fig. 3 divides the matrix into 3 parts when the codeword is encoded to the logical matrix;
图4~19是16bit位宽的字的各个信息位纠错电路。Figures 4 to 19 are error correction circuits for each information bit of a 16-bit wide word.
具体实施方式Detailed ways
参照图2中的码字逻辑排列结构,本发明以16bit位宽的字作为较佳实施例,具体步骤如下:With reference to the codeword logical arrangement structure in Fig. 2, the present invention takes the word of 16bit bit width as a preferred embodiment, and the concrete steps are as follows:
步骤1:数据接收信息位根据产生14个新的校验位,以此得到校正子:Step 1: Generate 14 new parity bits according to data reception information bits , so as to get the corrector :
(13) (13)
步骤2:参照图3中的各分区位置,首先对信息矩阵中的1区和2区的部分信息位进行纠错,纠错公式如下:Step 2: Referring to the position of each partition in Fig. 3, firstly correct some information bits in the 1st area and 2nd area in the information matrix, and the error correction formula is as follows:
(6) (6)
(7) (7)
步骤3: 对纠正后的和进行更新得到新的校验位与校正子,根据新的校正子对图3中1区和2区剩余的信息位进行纠错:Step 3: Update the corrected sum to get the new check digit with syndrome , and correct the remaining information bits in areas 1 and 2 in Figure 3 according to the new syndrome:
(8) (8)
(9) (9)
(10) (10)
步骤4:对步骤3中信息位的纠正结果对3区校验位进行更新,更新后产生新的校验位,并以此得到新的校正子。Step 4: Update the 3-area check digit for the correction result of the information bit in step 3, and generate a new check digit after the update , and use this to get a new correction .
(11) (11)
步骤5:剩余信息位的校验状态可根据更新后的校正子得到,通过校验状态即可对3区信息位进行纠错:Step 5: Check Status of Remaining Information Bits According to the updated syndrome It can be obtained that the error correction of the 3-zone information bits can be performed by checking the status:
(12) (12)
其中表示信息位在6位数据宽度内根据公式3和公式4可能得到校验状态的所有情况的或运算。剩余信息位纠错完成,纠错算法完成译码。in Indicates information bits According to formula 3 and formula 4, it is possible to obtain the OR operation of all cases of the check state within the data width of 6 bits. The error correction of the remaining information bits is completed, and the error correction algorithm completes the decoding.
各信息位的对应电路如图4~19所示。The corresponding circuit of each information bit is shown in Figure 4~19.
以上详细描述的实施例仅用于说明本发明的具体实施方式,需要说明,上述描述的内容仅具有说明性而非限制,但是本领域技术人员应当理解,可以在形式和细节上对其作不同的改变,而不偏离发明权利要求书所限定的范围。The above-detailed embodiments are only used to illustrate the specific implementation of the present invention. It should be noted that the above-described content is only illustrative and not restrictive, but those skilled in the art should understand that different forms and details can be made. changes without departing from the scope defined by the claims of the invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910271188.6A CN111782438B (en) | 2019-04-04 | 2019-04-04 | An Improved Radiation Hardened Matrix Code Decoding Circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910271188.6A CN111782438B (en) | 2019-04-04 | 2019-04-04 | An Improved Radiation Hardened Matrix Code Decoding Circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111782438A CN111782438A (en) | 2020-10-16 |
CN111782438B true CN111782438B (en) | 2022-08-05 |
Family
ID=72755177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910271188.6A Expired - Fee Related CN111782438B (en) | 2019-04-04 | 2019-04-04 | An Improved Radiation Hardened Matrix Code Decoding Circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111782438B (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120059806A (en) * | 2010-12-01 | 2012-06-11 | 한국전자통신연구원 | Method for producing and decoding of error correcting code, and apparatus thereof |
US9286154B2 (en) * | 2013-06-07 | 2016-03-15 | Alcatel Lucent | Error correction for entangled quantum states |
US9342404B2 (en) * | 2013-12-12 | 2016-05-17 | Phison Electronics Corp. | Decoding method, memory storage device, and memory controlling circuit unit |
US9543981B2 (en) * | 2014-03-25 | 2017-01-10 | Texas Instruments Incorporated | CRC-based forward error correction circuitry and method |
TWI543178B (en) * | 2014-06-10 | 2016-07-21 | 群聯電子股份有限公司 | Decoding method, memory storage device and memory controlling circuit unit |
CN106328209B (en) * | 2015-06-30 | 2020-01-21 | 中国科学院电子学研究所 | Memory single-particle multi-bit upset fault-tolerant method and circuit |
-
2019
- 2019-04-04 CN CN201910271188.6A patent/CN111782438B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN111782438A (en) | 2020-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11740960B2 (en) | Detection and correction of data bit errors using error correction codes | |
US8543891B2 (en) | Power-optimized decoding of linear codes | |
US11115051B2 (en) | Systems and methods for decoding error correcting codes | |
CN109586731B (en) | System and method for decoding error correction codes | |
US9391641B2 (en) | Syndrome tables for decoding turbo-product codes | |
US20130031447A1 (en) | Fast detection of convergence or divergence in iterative decoding | |
KR20190008335A (en) | Method and apparatus for encoding and decoding structured LDPC | |
WO2017194013A1 (en) | Error correction coding method and device | |
CN107425856A (en) | Low density parity check decoder and method for saving power thereof | |
KR20090041224A (en) | Synchronous Decoder and Synchronous Decoding Method | |
CN103023518B (en) | Error correction method of cyclic Hamming code based on parallel coding and decoding | |
WO2020052672A1 (en) | Decoding method and apparatus for turbo product code, decoder, and computer storage medium | |
KR101775969B1 (en) | Method and circuit for qc-ldpc codes in nand flash memory | |
JP2012050008A (en) | Error detection/correction method and semiconductor memory device | |
CN111782438B (en) | An Improved Radiation Hardened Matrix Code Decoding Circuit | |
CN1756090B (en) | Channel encoding apparatus and method | |
US12119841B2 (en) | G-LDPC decoder and G-LDPC decoding method | |
WO2011144161A1 (en) | Method, device and system for forward error correction | |
EP1643653A1 (en) | Iterative decoding of low-density parity-check (LDPC) codes | |
KR101154923B1 (en) | BCH decoder, memory system having the same and BCHBCH decoding method | |
CN103309766A (en) | Error correction method of cyclic hamming code based on parallel coding and decoding | |
CN113489995A (en) | Decoding method for decoding received information and related decoding device | |
CN114880161A (en) | Bi-adjacent error correction code based on (23, 12) Golay code for data storage correction | |
KR101226439B1 (en) | Rs decoder, memory system having the same and decoding method | |
CN108880564B (en) | A low-density parity-check code decoding method with cache fault tolerance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220805 |
|
CF01 | Termination of patent right due to non-payment of annual fee |