CN111781648A - A marine information detection cluster system and detection method - Google Patents
A marine information detection cluster system and detection method Download PDFInfo
- Publication number
- CN111781648A CN111781648A CN202010765463.2A CN202010765463A CN111781648A CN 111781648 A CN111781648 A CN 111781648A CN 202010765463 A CN202010765463 A CN 202010765463A CN 111781648 A CN111781648 A CN 111781648A
- Authority
- CN
- China
- Prior art keywords
- acquisition unit
- underwater
- wireless communication
- underwater instrument
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/38—Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
- G01V1/3808—Seismic data acquisition, e.g. survey design
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/22—Transmitting seismic signals to recording or processing apparatus
- G01V1/223—Radioseismic systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/38—Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
- G01V1/3817—Positioning of seismic devices
- G01V1/3835—Positioning of seismic devices measuring position, e.g. by GPS or acoustically
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/38—Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
- G01V1/3843—Deployment of seismic devices, e.g. of streamers
- G01V1/3852—Deployment of seismic devices, e.g. of streamers to the seabed
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/10—Aspects of acoustic signal generation or detection
- G01V2210/12—Signal generation
- G01V2210/123—Passive source, e.g. microseismics
- G01V2210/1232—Earthquakes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/10—Aspects of acoustic signal generation or detection
- G01V2210/12—Signal generation
- G01V2210/129—Source location
- G01V2210/1297—Sea bed
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/10—Aspects of acoustic signal generation or detection
- G01V2210/14—Signal detection
- G01V2210/142—Receiver location
- G01V2210/1427—Sea bed
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- Acoustics & Sound (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Oceanography (AREA)
- Radar, Positioning & Navigation (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
Description
技术领域technical field
本发明属于海洋信息探测技术领域,尤其涉及一种海洋地球物理信息探测集群系统及探测方法。The invention belongs to the technical field of marine information detection, in particular to a marine geophysical information detection cluster system and a detection method.
背景技术Background technique
目前:现有的海洋地球物理信息探测技术主要是海底人工地震勘探技术,主要由震源和采集仪器组成。海底地震勘探技术多数采用非炸药(空气枪、蒸汽枪、电火花等)人工震源激发,震源一般沉放到设定的海面下一定深度,由专用的海上震源系统组成。采集仪器一般沉放到海底来接收人工震源发生的,经过海面、水体、海底及地下深层反射、折射回来的信号,对采集到的信号进行后续的处理解释,满足不同行业的需求,采集仪器目前大部分采用四分量接收。海底地震勘探技术主要有海底电缆(Ocean Bottom Cable,简称OBC)和海底水下节点仪器(Ocean Bottom Node,简称OBN)。At present: the existing marine geophysical information detection technology is mainly seabed artificial seismic exploration technology, which is mainly composed of seismic source and acquisition instruments. Most of the submarine seismic exploration technology uses non-explosive (air gun, steam gun, electric spark, etc.) artificial source excitation. The acquisition instruments are generally sunk on the seabed to receive the signals generated by the artificial seismic source, reflected and refracted by the sea surface, water bodies, seabed and deep underground layers, and the acquired signals are subsequently processed and interpreted to meet the needs of different industries. Most use four-component reception. Seabed seismic exploration technology mainly includes submarine cable (Ocean Bottom Cable, referred to as OBC) and submarine underwater node instrument (Ocean Bottom Node, referred to as OBN).
OBC海底勘探技术是将若干个采集单元(内含四分量检波器),通过电缆按设计要求有规律地连接在一起,用布放船只将电缆布放在海底,电缆的主要功能是传输控制指令、传输地震数据、为采集单元供电等,地震数据最终通过电缆送往计算机处理并记录下来,这台计算机也统称为仪器主机。工作中通过主机对海底采集单元进行控制,对采集单元的工作状态进行检查。The OBC seabed exploration technology is to connect several acquisition units (including four-component detectors) regularly through cables according to the design requirements, and use a laying vessel to lay the cables on the seabed. The main function of the cable is to transmit control commands. , transmit seismic data, supply power to the acquisition unit, etc. The seismic data is finally sent to the computer through the cable for processing and recording, and this computer is also collectively referred to as the instrument host. During the work, the seabed acquisition unit is controlled by the host computer, and the working status of the acquisition unit is checked.
OBN称为独立海底水下节点仪器,每个水下节点仪器独立运行互不联系,一般内置采集模块、通讯模块、多分量检波器、记录模块、计时模块等。OBN海底水下节点仪器勘探技术是将多个OBN节点仪器放置海底,OBN节点仪器的采集布设方式相对于OBC来讲更具有其灵活性。为了便于布设收放节点仪器,将每个节点仪器用绳索(尼龙绳、钢丝缆等)连接在一起。在深水海域布放节点仪器时,为了提高精度,一般采用ROV机器人根据设计要求进行布放,回收时也是由ROV机器人下潜到海底去逐一收回水下节点仪器。OBN is called an independent submarine underwater node instrument. Each underwater node instrument operates independently and does not communicate with each other. Generally, it has built-in acquisition module, communication module, multi-component detector, recording module, timing module, etc. The OBN subsea underwater node instrument exploration technology is to place multiple OBN node instruments on the seabed, and the acquisition and layout of OBN node instruments is more flexible than OBC. In order to facilitate the deployment and deployment of node instruments, each node instrument is connected with ropes (nylon ropes, steel cables, etc.). When deploying node instruments in deep-water seas, in order to improve the accuracy, ROV robots are generally used to deploy according to the design requirements, and the ROV robot is also used to dive to the seabed to retrieve the underwater node instruments one by one during recovery.
OBC系统因为所有采集单元必须用电缆连接、数据传输和通电,限制技术的应用,存在如下缺陷:(1)采集单元的扩展受到限制,不适合海上高密度采集的要求;(2)海底布设要求高,需要专用的甲板设备和专业操作人员;(3)电缆一旦出现故障,现场难以修复,造成停工;(4)设备结构对采集资料有一定的影响。基于以上技术缺陷,OBC设备逐渐被OBN设备替代。The OBC system has the following defects because all acquisition units must be connected with cables, data transmission and power-on, which limits the application of the technology: (1) The expansion of the acquisition unit is limited, and it is not suitable for the requirements of high-density offshore acquisition; (2) The seabed layout requirements High, special deck equipment and professional operators are required; (3) Once the cable fails, it is difficult to repair on site, resulting in shutdown; (4) The equipment structure has a certain impact on the collected data. Based on the above technical defects, OBC equipment is gradually replaced by OBN equipment.
目前工业界的海底水下节点仪器均为独立运行,各水下节点仪器之间无任何相互联系,水下节点仪器自身不能定位,无法实时监测海底水下节点仪器的工作状态,水下节点仪器的计时系统均采用目前价格昂贵的原子钟芯片,即使这样长时间在海底工作,也会受到原子钟芯片的时间漂移给系统带来误差,影响采集质量。由于水下仪器采集单元本身不能克服的上述缺陷,阻碍了水下仪器采集单元在国内外的广泛推广应用。At present, the subsea underwater node instruments in the industry operate independently, and there is no mutual connection between the underwater node instruments. The underwater node instruments themselves cannot be positioned, and the working status of the subsea underwater node instruments cannot be monitored in real time. All of the timing systems used in our research use expensive atomic clock chips. Even if they work on the seabed for a long time, the time drift of the atomic clock chip will bring errors to the system and affect the acquisition quality. Due to the above-mentioned defects that cannot be overcome by the underwater instrument acquisition unit itself, the widespread application of the underwater instrument acquisition unit at home and abroad is hindered.
通过上述分析,现有OBN技术存在的问题及缺陷为:Through the above analysis, the existing problems and defects of OBN technology are as follows:
第一、水下节点仪器自身不能定位,需配置另外的定位设备,给施工带来困难并增加成本。First, the underwater node instrument itself cannot be positioned, and additional positioning equipment needs to be configured, which brings difficulties to the construction and increases the cost.
第二、无法实时监测海底水下节点仪器的工作状态,无法实时传输水下节点仪器采集到的相关数据。Second, it is impossible to monitor the working status of the subsea underwater node instruments in real time, and it is impossible to transmit the relevant data collected by the underwater node instruments in real time.
第三、水下节点仪器长期在海底,其计时系统的漂移给系统带来误差,影响采集质量,无法再次给海底工作的水下节点仪器授时,进行时间矫正。Third, the underwater node instruments have been on the seabed for a long time, and the drift of the timing system will bring errors to the system and affect the acquisition quality.
解决以上问题及缺陷的难度为:The difficulty of solving the above problems and defects is as follows:
用授时定位系统主机与海底单元通讯,在不同海况下,采用无线通讯技术的通讯距离不能少于1000米或一定的距离,通讯频段的选择和编码技术问题,定位数据和状态数据的解调问题等。The main engine of the timing positioning system is used to communicate with the submarine unit. Under different sea conditions, the communication distance using wireless communication technology cannot be less than 1000 meters or a certain distance. The selection of communication frequency bands and the technical problems of coding, the problem of demodulation of positioning data and status data Wait.
海面主机系统通过GPS或北斗或其它等高精度授时,并通过主机系统在一定时间间隔内广播时间对海底采集单元进行时间矫正。The sea host system uses GPS or Beidou or other high-precision time service, and broadcasts time through the host system to perform time correction on the seabed acquisition unit within a certain time interval.
解决以上问题及缺陷的意义为:The significance of solving the above problems and defects is:
现有的OBN技术,处于盲采状态,布设完成后不能确定工作是否正常,通过现有技术,可以将海底采集单元的工作状态,例如,电池余量、存储器余量、节点的姿态、采集单元是否正常、计时电路精度等进行收集,克服常规节点的不足,该状态数据量小,该技术可以满足要求。The existing OBN technology is in the state of blind mining, and it cannot be determined whether the operation is normal after the layout is completed. Through the existing technology, the working status of the seabed acquisition unit, such as battery remaining, memory remaining, node attitude, and acquisition unit can be analyzed. Whether it is normal or not, timing circuit accuracy, etc. are collected to overcome the shortcomings of conventional nodes. The amount of state data is small, and this technology can meet the requirements.
在节点授时问题上,常规节点采用价格昂贵的原子钟,原子钟在长时间工作下照样存在漂移问题,采用间隔授时技术,既可节约成本,也解决了时钟漂移问题。In terms of node timing, conventional nodes use expensive atomic clocks, which still have drift problems under long-term operation. The use of interval timing technology can not only save costs, but also solve the clock drift problem.
解决以上问题及缺陷后,海洋信息探测集群系统技术填补了本行业的全球空白,并引领海洋信息探测仪器设备的发展方向,打破国外的技术垄断与技术封锁等“卡脖子”现状。将广泛应用于国内外的海洋矿产勘查、自然灾害预报、科学考察、国防军事等各个领域。After solving the above problems and defects, the marine information detection cluster system technology fills the global gap in the industry, leads the development direction of marine information detection instruments and equipment, and breaks the "stuck neck" status quo of foreign technology monopoly and technology blockade. It will be widely used in various fields such as marine mineral exploration, natural disaster forecasting, scientific investigation, national defense and military at home and abroad.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明提供了一种海洋信息探测集群系统及探测方法。Aiming at the problems existing in the prior art, the present invention provides a marine information detection cluster system and a detection method.
本发明是这样实现的,一种用于海洋探测的水下仪器采集单元,所述水下仪器采集单元近距离组成有线或无线通信网络;相邻所述水下仪器采集单元通过接力的方式将所有所述水下仪器采集单元的工作状态、电池电量、存储情况、位置坐标、采集的数据质量信息一并传输到水面上的可控计算机。The present invention is realized in this way, an underwater instrument acquisition unit for ocean exploration, the underwater instrument acquisition unit forms a wired or wireless communication network in a short distance; the adjacent underwater instrument acquisition units connect the The working status, battery power, storage status, location coordinates, and collected data quality information of all the underwater instrument collection units are transmitted to the controllable computer on the water surface.
进一步,所述水下仪器采集单元设置有高强度金属或非金属密封舱,密封舱内设置有四分量传感器装置、信息采集模数转换装置、数据处理存储输出装置、无线通讯装置、高精度晶振计时装置、授时定位装置、可充电电池;所述密封舱为扁椭球形体,顶部设置有密封盖,顶底外侧设置有若干不同方向凸棱;密封舱后端设置有充电与数据接口、工作状态指示灯和WIFI数据端口。Further, the underwater instrument collection unit is provided with a high-strength metal or non-metal sealed cabin, and the sealed cabin is provided with a four-component sensor device, an information acquisition analog-to-digital conversion device, a data processing and storage output device, a wireless communication device, and a high-precision crystal oscillator. Timing device, timing positioning device, and rechargeable battery; the sealed cabin is an oblate ellipsoid body, with a sealing cover on the top, and a number of convex edges in different directions on the outside of the top and bottom; Status indicator and WIFI data port.
进一步,所述密封舱采用减少拖曳阻力的扁椭球形体。Further, the capsule adopts an oblate ellipsoid to reduce drag resistance.
进一步,所述无线通讯装置为声呐装置、无线电装置或红外装置或几种不同装置的组合;Further, the wireless communication device is a sonar device, a radio device or an infrared device or a combination of several different devices;
所述密封舱内设置有一个金属或非金属的底盘,所述四分量传感器装置、信息采集模数转换装置、数据处理存储输出装置、无线通讯装置、高精度晶振计时装置、授时定位装置、可充电电池均固定于所述底盘上。A metal or non-metal chassis is arranged in the sealed cabin, the four-component sensor device, the information acquisition analog-to-digital conversion device, the data processing and storage output device, the wireless communication device, the high-precision crystal oscillator timing device, the timing positioning device, the The rechargeable batteries are all fixed on the chassis.
本发明的另一目的在于提供一种安装上述水下仪器采集单元的海洋信息探测集群系统,所述海洋信息探测集群系统配置有:Another object of the present invention is to provide a marine information detection cluster system equipped with the above-mentioned underwater instrument acquisition unit, and the marine information detection cluster system is configured with:
水下仪器采集单元,所述水下仪器采集单元配置有多个,通过串联的方式或并联的方式或串联并联结合的方式固定于万向绳索上;an underwater instrument collection unit, which is configured with a plurality of underwater instrument collection units, and is fixed on the universal rope in a series or a parallel manner or a series-parallel combination;
水上无线通讯应答器,所述水上无线通讯应答器设置有一个或多个,设置在专用工作船上或拖曳或漂浮在水面上;Water wireless communication transponders, one or more of the water wireless communication transponders are arranged on a special working boat or towed or floated on the water;
与所述水下仪器采集单元、水上无线通讯应答器无线连接的可控计算机;A controllable computer wirelessly connected with the underwater instrument acquisition unit and the underwater wireless communication transponder;
所述水下仪器采集单元状态通过编码形式发送给海面的所述水上无线通讯应答器;所述可控计算机通过网路连接到指定的工作平台,实现对海洋信息探测集群系统的远程控制。The state of the acquisition unit of the underwater instrument is sent to the above-water wireless communication transponder on the sea surface in a coded form; the controllable computer is connected to a designated working platform through a network to realize remote control of the marine information detection cluster system.
进一步,所述水下仪器采集单元对关键事件(例如,海底地震、水面外来船舶航行干扰、水体中类似潜艇的潜水器等都能引起常规监测环境突然异常变化)进行识别,并触发发射装置,将信息发送到数据管理平台进行智能化预警;Further, the underwater instrument acquisition unit identifies key events (for example, submarine earthquakes, external ship navigation disturbances on the water surface, submersibles similar to submarines in the water body can cause sudden and abnormal changes in the conventional monitoring environment), and triggers the launch device, Send information to the data management platform for intelligent early warning;
海面多个所述水上无线通讯应答器通过无线方式组成局域网络,数据可有选择地发到一个所述数据管理平台。A plurality of the water wireless communication transponders on the sea form a local area network wirelessly, and data can be selectively sent to one of the data management platforms.
进一步,所述水下仪器采集单元与授时定位装置集成在一起,根据形状和结构进行一体化设计,一体化供电;所述授时定位装置通过水上无线通讯应答器接收GPS或北斗信号,采用水声定位技术,获取每个水下采集单元的地理坐标位置信息。Further, the underwater instrument acquisition unit is integrated with the timing and positioning device, and is designed in an integrated manner according to the shape and structure, and the power supply is integrated; the timing and positioning device receives GPS or Beidou signals through the wireless communication transponder on the water, and adopts underwater acoustics. Positioning technology to obtain the geographic coordinate position information of each underwater collection unit.
进一步,所述水上无线通讯应答器发送指令允许所述水下仪器采集单元发送相关的时间脉冲和数据,并对数据进行解码,确定那个所述水下仪器采集单元的数据,区分是定位数据还是所述水下仪器采集单元的状态数据;Further, the underwater wireless communication transponder sends an instruction to allow the underwater instrument acquisition unit to send relevant time pulses and data, and decode the data, determine the data of the underwater instrument acquisition unit, and distinguish whether it is positioning data or State data of the underwater instrument collection unit;
所述水上无线通讯应答器在卫星定位系统导航下,按一定的设计点发送指令,给距离内的所述水上无线通讯应答器发送高精度时间,所述水下仪器采集单元进行时钟矫正,在一定时间内完成所有所述水下仪器采集单元的授时。Under the navigation of the satellite positioning system, the water wireless communication transponder sends an instruction according to a certain design point, and sends high-precision time to the water wireless communication transponder within the distance. The timing of all the underwater instrument acquisition units is completed within a certain period of time.
本发明的另一目的在于提供一种海洋信息探测的方法,所述海洋信息探测的方法为:Another object of the present invention is to provide a method for detecting marine information, the method for detecting marine information is:
步骤一、将水下仪器采集单元通过充电与数据接口充电,在露天情况下通过授时定位装置自动授时,确保水下仪器采集单元工作状态指示灯正常;Step 1: Charge the underwater instrument acquisition unit through the charging and data interface, and automatically provide timing through the timing positioning device in the open air to ensure that the working status indicator light of the underwater instrument acquisition unit is normal;
步骤二、分一批或多批将多个水下仪器采集单元按设计要求的间隔距离,通过绳索连接,用专用设备或人工,在水上定位仪的引导下,将水下仪器采集单元放入海底指定的目标范围内,在底部或密封盖外部凸棱的作用下,绳索和水下仪器采集单元在海底相对固定;直至按要求布放完海底的水下仪器采集单元和绳索;
步骤三、利用在水面上的水上无线通讯应答器,通过无线通讯装置和海底仪器进行数据通讯,控制并监测记录来自于人工激发、天然地震、人为因素信息的探测采集。Step 3: Use the water wireless communication transponder on the water surface to carry out data communication through the wireless communication device and the submarine instrument, control and monitor and record the detection and collection of information from artificial excitation, natural earthquakes and human factors.
进一步,所述水下仪器采集单元将探测到的信息数据,通过模数转换装置,全部记录在数据处理存储输出装置;Further, the information data detected by the underwater instrument acquisition unit is all recorded in the data processing, storage and output device through the analog-to-digital conversion device;
按设计要求探测的信息达到标准后,将水下仪器采集单元通过绳索逐个或分批次回收到船上,再通过充电与数据接口或WIFI数据端口,将全部探测到的数据回收,并存储在指定的介质上;此过程在不同的区域重复进行,直至按要求探测完所有指定的区域或按要求在指定的区域永久性探测监视;永久性探测监视时需通过充电数据接口外接电源供电;After the information detected according to the design requirements reaches the standard, the underwater instrument collection units are recovered to the ship one by one or in batches through ropes, and then all the detected data are recovered through the charging and data interface or WIFI data port, and stored in the designated This process is repeated in different areas until all the designated areas are detected as required or permanently detected and monitored in the designated area as required; permanent detection and monitoring need to be powered by an external power supply through the charging data interface;
水下仪器采集单元在海底的探测采集过程中,由水上的水上无线通讯应答器,通过水下仪器采集单元无线装置按要求,定时或不定时地为授时定位装置授时,来提高高精度晶振装置的计时精度;During the detection and acquisition process of the underwater instrument acquisition unit on the seabed, the water wireless communication transponder on the water, through the wireless device of the underwater instrument acquisition unit, provides timing for the timing and positioning device regularly or irregularly according to the requirements, so as to improve the high-precision crystal oscillator device. timing accuracy;
水上可控制计算机利用水上无线通讯应答器,通过无线通讯装置实时调取水下仪器采集单元内部工作状态、电池电量、存储情况或四分量传感器探测采集到的数据,也可按要求实时控制并改变水下仪器采集单元的各种采集参数。The water controllable computer uses the water wireless communication transponder to transfer the internal working status of the underwater instrument acquisition unit, battery power, storage condition or the data detected by the four-component sensor in real time through the wireless communication device. It can also be controlled and changed in real time as required. Various acquisition parameters of the underwater instrument acquisition unit.
本发明的另一目的在于提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行权利要求11所述的步骤。Another object of the present invention is to provide a computer-readable storage medium storing a computer program, which, when executed by a processor, causes the processor to perform the steps of
本发明的另一目的在于提供一种设置有上述的海洋信息探测集群系统的海洋信息探测设备。Another object of the present invention is to provide a marine information detection device provided with the above-mentioned marine information detection cluster system.
结合上述的所有技术方案,本发明所具备的优点及积极效果为:Combined with all the above-mentioned technical solutions, the advantages and positive effects possessed by the present invention are:
本发明海洋信息探测集群系统,利用授时高精度晶振计时装置,极大地降低了海洋信息探测集群系统的制造成本,消除常规水下仪器采集单元昂贵的原子钟芯片计时不能授时的误差。The marine information detection cluster system of the present invention uses a timing high-precision crystal oscillator timing device, which greatly reduces the manufacturing cost of the marine information detection cluster system, and eliminates the error that the expensive atomic clock chip timing of the conventional underwater instrument acquisition unit cannot be timed.
本发明适用于低成本的海底四分量地震勘探数据采集作业,天然海底地震数据监测,探测并记录人为因素(潜水器、船舶、岸上干扰、潜艇、自主航行器、AUV、UUV、ROV、蛙人、水下生物等)形成的信息源位置信息。可以克服目前工业界使用绳索投放的海底节点地震仪器无法实时通讯和数据传输,也无法了解海底水下仪器采集单元在数据作业时的工作情况,解决了目前海底节点地震仪器所面临的种种现实问题。The invention is suitable for low-cost seabed four-component seismic exploration data acquisition operations, natural seabed seismic data monitoring, detection and recording of human factors (submersibles, ships, shore interference, submarines, autonomous vehicles, AUV, UUV, ROV, frogman, etc.) , underwater creatures, etc.) information source location information. It can overcome the inability of real-time communication and data transmission for the submarine node seismic instruments that the industry uses rope to drop, and it is impossible to understand the working conditions of the submarine underwater instrument acquisition unit during data operation, and solves various practical problems faced by the current submarine node seismic instruments. .
本发明提供水下仪器采集单元集成了授时和定位装置,二者一体化设计,克服了目前水下仪器采集单元不具备授时和定位功能;减少了二次定位需要的单独系统,便于海底探测安装,也降低了总体成本;本发明还增加了水下仪器采集单元的实时的定位数据。The invention provides that the underwater instrument acquisition unit integrates timing and positioning devices, and the two are integrated in design, which overcomes the lack of timing and positioning functions of the current underwater instrument acquisition unit; reduces the need for a separate system for secondary positioning, and facilitates seabed detection and installation , and the overall cost is also reduced; the invention also increases the real-time positioning data of the underwater instrument acquisition unit.
本发明便于海洋地震勘探公司高效安全低成本采集海底多分量地震数据,为海底矿产和油气资源的高效低成本勘探开发提供有力的技术支持;便于自然减灾部门低成本采集到天然地震数据,为减少海洋自然灾害预警,提供有利的数据;便于远海组成网络探测来自人为因素的潜水器、船舶等外来入侵设备,为国防安全提供有利保障。海洋信息探测集群系统有着良好的推广应用前景。The invention is convenient for marine seismic exploration companies to collect seabed multi-component seismic data efficiently, safely and at low cost, and provides strong technical support for efficient and low-cost exploration and development of seabed mineral and oil and gas resources; Early warning of marine natural disasters provides favorable data; it is convenient for the formation of a network in the open sea to detect foreign intrusion equipment such as submersibles and ships from human factors, and provides favorable guarantees for national defense security. The marine information detection cluster system has a good prospect of popularization and application.
附图说明Description of drawings
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图做简单的介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下还可以根据这些附图获得其他的附图。In order to explain the technical solutions of the embodiments of the present application more clearly, the following will briefly introduce the drawings that need to be used in the embodiments of the present application. Obviously, the drawings described below are only some embodiments of the present application. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1是本发明实施例提供的海洋信息探测集群系统安装示意图;1 is a schematic diagram of the installation of a marine information detection cluster system provided by an embodiment of the present invention;
图2是本发明实施例提供的海洋信息探测集群系统结构示意图;2 is a schematic structural diagram of a marine information detection cluster system provided by an embodiment of the present invention;
图3是本发明实施例提供的四分量信息探测水下仪器采集单元结构示意图;3 is a schematic structural diagram of a four-component information detection underwater instrument acquisition unit provided by an embodiment of the present invention;
图4是本发明实施例提供的四分量信息探测水下仪器采集单元结构示意图;4 is a schematic structural diagram of a four-component information detection underwater instrument acquisition unit provided by an embodiment of the present invention;
图5是本发明实施例提供的海洋信息探测的方法流程图。FIG. 5 is a flowchart of a method for detecting ocean information provided by an embodiment of the present invention.
图中:1、节点水上无线通讯应答器;2、绳索;3、水下仪器采集单元;4、四分量传感器装置;5、授时定位装置;6、无线通讯装置;7、数据处理存储输出装置;8、模数转换装置;9、可充电电池;10、高精度晶振计时装置;11、密封舱;12、顶部密封盖;13、凸棱;14、把柄;15、充电与数据接口;16、工作状态指示灯;17、WIFI数据端口;18、底盘;19、把柄连接孔;20、挂绳。In the figure: 1. Node water wireless communication transponder; 2. Rope; 3. Underwater instrument acquisition unit; 4. Four-component sensor device; 5. Timing positioning device; 6. Wireless communication device; 7. Data processing, storage and output device ; 8. Analog-to-digital conversion device; 9. Rechargeable battery; 10. High-precision crystal oscillator timing device; 11. Sealed compartment; 12. Top sealing cover; 13. Raised edge; 14. Handle; 15. Charging and data interface; 16 , working status indicator; 17, WIFI data port; 18, chassis; 19, handle connection hole; 20, lanyard.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
针对现有技术存在的问题,本发明提供了一种海洋信息探测集群系统,下面结合附图对本发明作详细的描述。In view of the problems existing in the prior art, the present invention provides a marine information detection cluster system, and the present invention is described in detail below with reference to the accompanying drawings.
在本发明中,无线通讯装置,该装置在30k-50k频段内,选择多个频率与水上无线通讯应答器进行通讯,通讯距离不少于1000米或一定距离,能够区分不同采集单元的身份和不同的数据类型;数据处理存储输出装置,对传感器采集的模拟信号进行滤波、放大等处理;模数转换装置,对模拟信号进行24位或32位的模数转换,并对信号按一定的格式编排;可充电电池,满足节点在水下连续30天工作;高精度晶振计时装置,采用的晶振为采集电路计时,满足0.25ms采样的要求,10小时时钟偏差在100微妙之内。In the present invention, the wireless communication device, the device selects multiple frequencies in the 30k-50k frequency band to communicate with the waterborne wireless communication transponder, the communication distance is not less than 1000 meters or a certain distance, and can distinguish the identity and Different data types; data processing, storage and output device, which filters and amplifies the analog signal collected by the sensor; analog-to-digital conversion device, which performs 24-bit or 32-bit analog-to-digital conversion on the analog signal, and converts the signal according to a certain format Arrangement; rechargeable battery, which can satisfy the node’s continuous work under water for 30 days; high-precision crystal oscillator timing device, the crystal oscillator used for the acquisition circuit timing, meets the requirements of 0.25ms sampling, and the 10-hour clock deviation is within 100 microseconds.
如图1所示,本发明提供的海洋信息探测集群系统安装示意图包括水下仪器采集单元3、挂绳20、绳索2。As shown in FIG. 1 , the installation schematic diagram of the marine information detection cluster system provided by the present invention includes an underwater
水下仪器采集单元3近距离组成网络,使相邻水下仪器采集单元通过接力的方式连接,使用挂绳20减弱从绳索2传至节点站的振动波以减小噪声,更大程度地将所有水下仪器采集单元的工作状态、电池电量、存储情况、位置坐标、采集的数据质量等信息,一并传输到水面上的可控计算机。The underwater
如图2至图4所示,本发明提供的海洋信息探测集群系统包括:节点水上无线通讯应答器1、绳索2、水下仪器采集单元3、四分量传感器装置4、授时定位装置5、无线通讯装置6、数据处理存储输出装置7、模数转换装置8、可充电电池9、高精度晶振计时装置10、密封舱11、顶部密封盖12、凸棱13、把柄14、充电与数据接口15、工作状态指示灯16、WIFI数据端口17、底盘18、把柄连接孔19。As shown in FIG. 2 to FIG. 4 , the marine information detection cluster system provided by the present invention includes: node water wireless communication transponder 1,
实施例1Example 1
本实施例的水下仪器采集单元3设置有多个,通过把柄连接孔19串联的方式固定于万向绳索2上;水上无线通讯应答器1设置有一个或多个,设置在专用工作船上或拖曳或漂浮在水面上;水下仪器采集单元3、节点水上无线通讯应答器1与可控计算机无线连接;节点水上无线通讯应答器1通过无线通讯装置,监测水下仪器采集单元3的工作状态,收集水下仪器采集单元3的数据,水上水下共同组成集群系统探测来自水体、海面、海底及地下的信息。可控计算机通过网路连接到指定的工作平台,实现对海洋信息探测集群系统的远程控制,供有关人员、部门使用。There are a plurality of underwater
实施例2Example 2
在实施例1的基础上,本实施例的水下仪器采集单元3设置有高强度金属或非金属密封舱11,密封舱11内设置有一个金属或非金属的底盘18,底盘18上固定有四分量传感器装置4、信息采集模数转换装置8、数据处理存储输出装置7、无线通讯装置6、高精度晶振计时装置10、授时定位装置5、可充电电池9;底盘18上向密封舱11外还设置有受力把柄14;密封舱11主要用来防止海水、潮湿气体等对内部电器电子元件模块的保护。On the basis of Embodiment 1, the underwater
高精度晶振计时装置10代替价格昂贵的原子钟芯片,节约了大量的制造成本,更有利于海洋信息探测集群系统的推广实现;The high-precision crystal
密封舱11为扁椭球形体,在海水中或被海底泥沙掩埋后,回收水下仪器采集单元3时减少受力面积,减轻水下仪器采集单元3的受力能够起到保护水下仪器采集单元3的作用;The sealed
密封舱11顶部设置有顶部密封盖12,顶底外侧设置有若干不同方向凸棱13,能够增加水下仪器采集单元3与海底的偶合固定作用,确保海底水下仪器采集单元3探测到更高质量的海洋信息数据;密封舱11后端设置有充电与数据接口15、工作状态指示灯16和WIFI数据端口17。The top of the sealed
无线通讯装置6为声呐装置或无线电装置或红外装置或几种不同装置的组合;授时定位装置5通过水上无线通讯应答器接收GPS或北斗信号,采用水声定位技术,获取每个水下采集单元的地理坐标位置信息。The
本发明提供的海洋信息探测集群系统的海洋信息探测的方法,步骤为:The marine information detection method of the marine information detection cluster system provided by the present invention includes the following steps:
S101,将水下仪器采集单元3通过充电与数据接口充电,在露天情况下通过授时定位装置5自动授时,确保水下仪器采集单元3工作状态指示灯正常;S101, charging the underwater
S102,分一批或多批将多个水下仪器采集单元3按设计要求的间隔距离,通过绳索2(尼龙绳、钢丝绳等)连接,用专用设备或人工,在水上定位仪的引导下,将水下仪器采集单元3放入海底指定的目标范围内,在底部或顶部密封盖12外部凸棱13的作用下,绳索2和水下仪器采集单元3在海底相对固定;直至按要求布放完海底的水下仪器采集单元3和绳索2。S102, connect a plurality of underwater
S103,利用在水面上的水下仪器采集单元3节点水上无线通讯应答器1,通过无线通讯装置6和海底仪器进行数据通讯,控制并监测记录来自于人工激发、天然地震、人为因素等各种信息的探测采集。S103, using the underwater
优选的,水下仪器采集单元3将探测到的信息数据,通过模数转换装置8,全部记录在数据处理存储输出装置7。按设计要求探测的信息达到标准后,将水下仪器采集单元3通过绳索2逐个或分批次回收到船上,再通过充电与数据接口或WIFI数据端口,将全部探测到的数据回收,并存储在指定的介质上。此过程在不同的区域重复进行,直至按要求探测完所有指定的区域或按要求在指定的区域永久性探测监视。永久性探测监视时需通过充电数据接口外接电源供电。Preferably, the underwater
水下仪器采集单元3在海底的探测采集过程中,由水上的节点水上无线通讯应答器1,通过水下仪器采集单元3无线装置按要求,定时或不定时地为授时定位装置5授时,来提高高精度晶振装置的计时精度;During the detection and acquisition process of the underwater
水上可控制计算机利用节点水上无线通讯应答器1,通过无线通讯装置6实时调取水下仪器采集单元3内部工作状态、可充电电池9电量(满足节点在水下连续30天工作)、存储情况或四分量传感器探测采集到的数据。The water controllable computer utilizes the node water wireless communication transponder 1, and transfers the internal working status of the underwater
水下仪器采集单元3位于海底独立采集,记录地震信号的多分量地震仪。通常由采集单元、授时与定位装置、控制与存储单元、电源装置等组成。The underwater
在本发明中,水下仪器采集单元3中的四分量检波器,由3个振动型垂直正交的三个检波器构成和1个压力型的检波器构成,3个振动型检波器检测垂向纵波、水平方向转换PS波;压力性检波器检测震动引起的海水压力的变化。4个检波器输出的模拟信号到数据处理单元,通过数字滤波器滤波,再对信号进行前置放大,按照提前设置的采样率进行采样,再通过24位或32位模数转换,将信号转换数字信号。采用头段和数据段的形式将每个样点的二进制数据存储在内部存储单元上,其中的头段部分记录了该数据段起始样点的精确时间,以上描述的采样部分精确的时间控制靠内部的高精度时钟控制,该精度时钟下水前用GPS或北斗系统时钟进行授时校正,施工过程中靠海面主机在一定时间间隔内对水下单元进行时钟授时校正。In the present invention, the four-component geophone in the underwater
水下仪器采集单元3中时钟的精度、电池的容量、存储器的状态、水下单元的姿态等信息,通过编码的形式通过通讯模块发送给海面的应答单元,无线通讯模块的通讯启动,通过指令激活启动,减少功耗,状态数据发送到海面应答器或数据管理平台,使工作人员及时了解水下单元是否正常工作。The accuracy of the clock, the capacity of the battery, the state of the memory, the attitude of the underwater unit and other information in the underwater
将授时定位装置集成水下仪器采集单元3,共用单元的电源模块,外观和防水进行一体化设计。The timing and positioning device is integrated into the underwater
本发明的水下仪器采集单元3近距离组成网络,使相邻水下仪器采集单元3通过接力的方式,更大程度地将所有水下仪器采集单元3的工作状态、电池电量、存储情况、位置坐标、采集的数据质量等信息,一并传输到水面上的可控计算机。The underwater
授时定位装置5通过水上无线通讯应答器接收GPS或北斗信号,采用水声定位技术,获取每个水下采集单元的地理坐标位置信息。The
在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”、“前端”、“后端”、“头部”、“尾部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。In the description of the present invention, unless otherwise stated, "plurality" means two or more; the terms "upper", "lower", "left", "right", "inner", "outer" The orientation or positional relationship indicated by , "front end", "rear end", "head", "tail", etc. are based on the orientation or positional relationship shown in the accompanying drawings, and are only for the convenience of describing the present invention and simplifying the description, not An indication or implication that the referred device or element must have a particular orientation, be constructed and operate in a particular orientation, is not to be construed as a limitation of the invention. Furthermore, the terms "first," "second," "third," etc. are used for descriptive purposes only and should not be construed to indicate or imply relative importance.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Any person skilled in the art is within the technical scope disclosed by the present invention, and all within the spirit and principle of the present invention Any modifications, equivalent replacements and improvements made within the scope of the present invention should be included within the protection scope of the present invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010765463.2A CN111781648A (en) | 2020-08-03 | 2020-08-03 | A marine information detection cluster system and detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010765463.2A CN111781648A (en) | 2020-08-03 | 2020-08-03 | A marine information detection cluster system and detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111781648A true CN111781648A (en) | 2020-10-16 |
Family
ID=72765695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010765463.2A Pending CN111781648A (en) | 2020-08-03 | 2020-08-03 | A marine information detection cluster system and detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111781648A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114852293A (en) * | 2022-04-24 | 2022-08-05 | 吉林大学 | A snail-like bionic robot device for dynamic real-time detection of seabed information |
WO2022257429A1 (en) * | 2021-06-11 | 2022-12-15 | 中国石油集团东方地球物理勘探有限责任公司 | Submarine optical fiber four-component seismic instrument system and data collection method thereof |
CN117872498A (en) * | 2023-03-07 | 2024-04-12 | 南京宁烨霄网络科技有限公司 | Detection system for data acquisition |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1424592A (en) * | 2001-12-10 | 2003-06-18 | 法国石油研究所 | Seismic data gathering system of applied submarine gathering station |
CN101057160A (en) * | 2004-09-21 | 2007-10-17 | 费尔菲尔德工业公司 | Method and device for seismic data acquisition |
CN102914798A (en) * | 2012-09-27 | 2013-02-06 | 中国科学院地质与地球物理研究所 | Real-time transmission multifunctional ocean bottom seismograph |
CN102967880A (en) * | 2012-11-09 | 2013-03-13 | 中国石油集团东方地球物理勘探有限责任公司 | Casing of double-detection detector |
CN103941579A (en) * | 2014-04-09 | 2014-07-23 | 浙江理工大学 | Time recording and clock synchronizing method and device for oceanographic instruments |
CN207198342U (en) * | 2017-09-01 | 2018-04-06 | 美钻能源科技(上海)有限公司 | Underwater kit earthquake monitoring device |
CN109143325A (en) * | 2018-09-29 | 2019-01-04 | 山东蓝海可燃冰勘探开发研究院有限公司 | A kind of four component nodes seismic instrument system of seabed and ocean bottom seismic data acquisition method |
CN109298452A (en) * | 2018-09-12 | 2019-02-01 | 国家海洋局第海洋研究所 | A satellite transmission submarine seismic detection device |
CN109739136A (en) * | 2019-01-11 | 2019-05-10 | 海洋石油工程股份有限公司 | Implementation method of wireless multi-channel synchronous data acquisition and transmission based on offshore platform |
CN109828277A (en) * | 2019-02-02 | 2019-05-31 | 山东蓝海可燃冰勘探开发研究院有限公司 | It is a kind of to lead the Underwater Detection Unit device passively combined, monitoring system and method |
CN110422281A (en) * | 2019-07-26 | 2019-11-08 | 山东蓝海可燃冰勘探开发研究院有限公司 | Ocean Internet of Things intelligence buoy, the water surface or Underwater Target Detection system and method |
CN111141330A (en) * | 2020-01-08 | 2020-05-12 | 中国海洋大学 | Five-component marine natural gas hydrate intelligent sensing node |
CN212460072U (en) * | 2020-08-03 | 2021-02-02 | 广东欧深科技有限公司 | A marine information detection cluster device |
-
2020
- 2020-08-03 CN CN202010765463.2A patent/CN111781648A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1424592A (en) * | 2001-12-10 | 2003-06-18 | 法国石油研究所 | Seismic data gathering system of applied submarine gathering station |
CN101057160A (en) * | 2004-09-21 | 2007-10-17 | 费尔菲尔德工业公司 | Method and device for seismic data acquisition |
CN102914798A (en) * | 2012-09-27 | 2013-02-06 | 中国科学院地质与地球物理研究所 | Real-time transmission multifunctional ocean bottom seismograph |
CN102967880A (en) * | 2012-11-09 | 2013-03-13 | 中国石油集团东方地球物理勘探有限责任公司 | Casing of double-detection detector |
CN103941579A (en) * | 2014-04-09 | 2014-07-23 | 浙江理工大学 | Time recording and clock synchronizing method and device for oceanographic instruments |
CN207198342U (en) * | 2017-09-01 | 2018-04-06 | 美钻能源科技(上海)有限公司 | Underwater kit earthquake monitoring device |
CN109298452A (en) * | 2018-09-12 | 2019-02-01 | 国家海洋局第海洋研究所 | A satellite transmission submarine seismic detection device |
CN109143325A (en) * | 2018-09-29 | 2019-01-04 | 山东蓝海可燃冰勘探开发研究院有限公司 | A kind of four component nodes seismic instrument system of seabed and ocean bottom seismic data acquisition method |
CN109739136A (en) * | 2019-01-11 | 2019-05-10 | 海洋石油工程股份有限公司 | Implementation method of wireless multi-channel synchronous data acquisition and transmission based on offshore platform |
CN109828277A (en) * | 2019-02-02 | 2019-05-31 | 山东蓝海可燃冰勘探开发研究院有限公司 | It is a kind of to lead the Underwater Detection Unit device passively combined, monitoring system and method |
CN110422281A (en) * | 2019-07-26 | 2019-11-08 | 山东蓝海可燃冰勘探开发研究院有限公司 | Ocean Internet of Things intelligence buoy, the water surface or Underwater Target Detection system and method |
CN111141330A (en) * | 2020-01-08 | 2020-05-12 | 中国海洋大学 | Five-component marine natural gas hydrate intelligent sensing node |
CN212460072U (en) * | 2020-08-03 | 2021-02-02 | 广东欧深科技有限公司 | A marine information detection cluster device |
Non-Patent Citations (1)
Title |
---|
赵琳 等: "现代舰船导航系统", 31 August 2015, 国防工业出版社, pages: 149 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022257429A1 (en) * | 2021-06-11 | 2022-12-15 | 中国石油集团东方地球物理勘探有限责任公司 | Submarine optical fiber four-component seismic instrument system and data collection method thereof |
CN114852293A (en) * | 2022-04-24 | 2022-08-05 | 吉林大学 | A snail-like bionic robot device for dynamic real-time detection of seabed information |
CN117872498A (en) * | 2023-03-07 | 2024-04-12 | 南京宁烨霄网络科技有限公司 | Detection system for data acquisition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109143325B (en) | Submarine four-component node seismic instrument system and submarine seismic data acquisition method | |
US10132949B2 (en) | Single vessel range navigation and positioning of an ocean bottom seismic node | |
CN111781648A (en) | A marine information detection cluster system and detection method | |
CN109084745A (en) | Submarine cable inspection submarine navigation device intelligent monitor system and Combinated navigation method | |
CN110562391A (en) | Deep sea data buoy system | |
CN104443280B (en) | A kind of oceanographic buoy | |
CN106405662A (en) | Underwater pipeline detector based on underwater robot | |
CN102914798A (en) | Real-time transmission multifunctional ocean bottom seismograph | |
CN106886048A (en) | A kind of combined type sea bottom earthquake-capturing node and its application method | |
EP2802092A1 (en) | System and method for seafloor exploration | |
CN105068132A (en) | Portable single-cabinet ball highly-integrated seabed electromagnetic device | |
CN113759423A (en) | Seabed four-component nodal seismic data acquisition system and data acquisition method | |
CN106772561A (en) | A kind of long-term real time probe of mobile ocean earthquake | |
CN111232131A (en) | Real-time three-dimensional observation system for marine fishery culture water area | |
CN110768713B (en) | A disposable data passback device for deep sea submerged buoy | |
CN108802833A (en) | Seabed flight node electro-magnetic receiver | |
CN110789671A (en) | Real-time transmission ocean geomagnetic daily variation observation device | |
CN212460072U (en) | A marine information detection cluster device | |
CN104155695B (en) | Submersible type buoy earthquake data acquisition station | |
CN203497134U (en) | Ocean buoy | |
RU111691U1 (en) | BOTTOM MODULE OF SEISMIC STATION | |
CN208872883U (en) | A kind of four component nodes seismic instrument system of seabed | |
CN111122985A (en) | Autonomous underwater electromagnetic signal measuring device and measuring method | |
CN207867045U (en) | A kind of underwater sound array apparatus based on underwater movable platform | |
CN111999702B (en) | Passive underwater navigation communication positioning system and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |