CN111781602A - An airport runway foreign body radar monitoring system, monitoring method and monitoring device - Google Patents
An airport runway foreign body radar monitoring system, monitoring method and monitoring device Download PDFInfo
- Publication number
- CN111781602A CN111781602A CN202010609892.0A CN202010609892A CN111781602A CN 111781602 A CN111781602 A CN 111781602A CN 202010609892 A CN202010609892 A CN 202010609892A CN 111781602 A CN111781602 A CN 111781602A
- Authority
- CN
- China
- Prior art keywords
- radar
- detection
- target
- rotating
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000012806 monitoring device Methods 0.000 title claims abstract description 13
- 238000001514 detection method Methods 0.000 claims abstract description 82
- 238000012545 processing Methods 0.000 claims abstract description 33
- 238000003384 imaging method Methods 0.000 claims abstract description 27
- 230000007246 mechanism Effects 0.000 claims description 12
- 238000009825 accumulation Methods 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 6
- 238000004422 calculation algorithm Methods 0.000 claims description 4
- 230000001427 coherent effect Effects 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 241000288940 Tarsius Species 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000035559 beat frequency Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000035485 pulse pressure Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/933—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft
- G01S13/934—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of aircraft or spacecraft on airport surfaces, e.g. while taxiing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/04—Systems determining presence of a target
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明涉及一种机场跑道异物雷达监控系统、监控方法和监控装置。一种机场跑道异物雷达监控系统,包括旋转装置和检测转臂装置;所述检测转臂装置装设在所述旋转装置上,由所述旋转装置驱动转动;所述检测转臂装置包括发射机、接收机、频率综合器、数据采集模块、信号处理模块;所述频率综合器分别与所述发射机、所述接收机连接;所述接收机、所述数据采集模块、所述信号处理模块依次连接;所述信号处理模块与计算平台连接。使用基于圆弧合成孔径雷达体制的成像和检测方法,能够有效降低闪烁杂波的噪点干扰,有效的滤除可能的干扰项;同时,充分考虑检测转臂装置与目标物之间的高度因素,可以更加快速的确定目标物的空间位置,提高检测能力。
The invention relates to an airport runway foreign body radar monitoring system, a monitoring method and a monitoring device. An airport runway foreign body radar monitoring system, comprising a rotating device and a detection rotating arm device; the detection rotating arm device is installed on the rotating device, and is driven to rotate by the rotating device; the detection rotating arm device includes a transmitter , receiver, frequency synthesizer, data acquisition module, signal processing module; the frequency synthesizer is respectively connected with the transmitter and the receiver; the receiver, the data acquisition module, the signal processing module connected in sequence; the signal processing module is connected with the computing platform. Using the imaging and detection method based on the arc synthetic aperture radar system can effectively reduce the noise interference of scintillation clutter and effectively filter out possible interference items; at the same time, fully consider the height factor between the detection arm device and the target, The spatial position of the target can be determined more quickly, and the detection capability can be improved.
Description
技术领域technical field
本发明涉及雷达监控领域,尤其涉及一种机场跑道异物雷达监控系统、监控方法和监控装置。The invention relates to the field of radar monitoring, in particular to an airport runway foreign body radar monitoring system, a monitoring method and a monitoring device.
背景技术Background technique
机场跑道异物(Foreign Object Debris,简写FOD),指的是不应存在跑道上的会对系统或航空器造成损伤的物体。在飞行区,任何可能危及航空器地面运行安全的物体,如石块、金属器件、胶带、塑料制品、树叶等,统称为机场跑道异物。FOD对飞机起飞和降落的安全造成了严重的威胁,飞机的发动机很容易吸入机场跑道上的外来物,从而致使其失效,那些碎片也会在机械装置中堆积,这些都会让飞机无法正常运行,每年全世界因为FOD而造成的直接损失至少大于30-40亿美元,而间接损失是直接损失的数倍。Airport runway foreign objects (Foreign Object Debris, abbreviated FOD) refer to objects that should not exist on the runway and cause damage to the system or aircraft. In the flight area, any objects that may endanger the safety of the ground operation of the aircraft, such as stones, metal parts, tapes, plastic products, leaves, etc., are collectively referred to as foreign objects on the airport runway. FOD poses a serious threat to the safety of aircraft take-off and landing. The aircraft's engine can easily absorb foreign objects on the airport runway, causing it to fail. Those debris will also accumulate in the mechanical devices, which will make the aircraft unable to operate normally. The direct loss caused by FOD in the world every year is at least more than 3-4 billion US dollars, and the indirect loss is several times that of the direct loss.
按照国际民航组织(ICAO)的规定,跑道每天至少需要被检查四次,人工检查耗费的时间长,在检查期间还要关闭跑道,降低跑道的交通流量,此外受到天气和人为因素影响,人眼发现能力有限,无法探测全部FOD而造成的运行安全隐患。因此,需要通过配置自动化的FOD监测系统解决人工检查的问题。According to the regulations of the International Civil Aviation Organization (ICAO), the runway needs to be inspected at least four times a day. Manual inspection takes a long time. During the inspection, the runway must be closed to reduce the traffic flow of the runway. In addition, it is affected by weather and human factors. The ability to discover is limited, and it is unable to detect the hidden dangers of operation safety caused by all FODs. Therefore, the problem of manual inspection needs to be solved by configuring an automated FOD monitoring system.
FOD自动监测系统主要采用雷达探测技术和视频图像处理识别技术。基于视频图像处理技术的监测系统容易收到雨雪雾等恶劣天候条件、以及强光、夜晚等光照条件影响,而采用雷达技术的监测系统能够全天候和全天时工作,探测效率高,是一种具有广阔应用前景的FOD自动监测技术手段。The FOD automatic monitoring system mainly adopts radar detection technology and video image processing identification technology. The monitoring system based on video image processing technology is easily affected by bad weather conditions such as rain, snow and fog, as well as strong light, night and other lighting conditions, while the monitoring system using radar technology can work around the clock and all day, and has high detection efficiency. A FOD automatic monitoring technology with broad application prospects.
目前典型的FOD监测雷达产品有英国QinetiQ公司的Tarsier(眼镜猴)塔台式系统、以色列Xsight公司的FODetect边灯式系统、美国Trex公司的FOD Finder车载机动式系统、中国民航局第二研究所的边灯式系统、中国电子科技集团第50研究所的塔台式系统等,并已经在国内外的多个机场得到了实际使用。但是现有系统全部式采用窄波束实孔径天线机械扫描方式对场景进行成像的,虽然技术较为成熟,但也存在原理性的局限性,具体为:At present, typical FOD monitoring radar products include the Tarsier (tarsier) tower system of QinetiQ Company of the United Kingdom, the FODetect sidelight system of Xsight Company of Israel, the FOD Finder vehicle-mounted mobile system of Trex Company of the United States, and the second institute of the Civil Aviation Administration of China. The edge light system, the tower system of the 50th Research Institute of China Electronics Technology Group, etc., have been practically used in many airports at home and abroad. However, the existing systems all use the narrow beam real-aperture antenna mechanical scanning method to image the scene. Although the technology is relatively mature, there are also principle limitations, as follows:
1.由于实孔径对目标的照射时间为毫秒级,对于雨滴/雪粒、跑道上移动的树叶/草团、偶尔停留的鸟、雨滴在跑道上溅起的水花等“闪烁”杂波,在扫描期间无法与静止图像区别开,因此对此类“闪烁”杂波抑制能力弱,时间上突发的杂波会在整个扫描周期内停留于图像中。如果要进行抑制的话,必须通过多帧扫描图像进行平均抑制,但这样又增加了处理时间,无法满足FOD监测对实时性的要求。“闪烁”杂波造成探测性能下降的一个典型现象就是在雨雪条件下探测距离大大缩短,如中国民用航空局机场司2016年7月1日发布了《机场道面外来物探测设备(IB-CA-2016-01)》,其附录A给出了美国机场卓越技术中心对探测设备的评估结果,其中2007年6月至2008年3月,在普罗维登斯机场的5/23跑道,对QinetiQ公司的Tarsier系统进行了详细的测试,《Performance Assessment of a Radar-BasedForeign Object Debris Detection System(DOT/FAA/AR-10/33)》中的测试结果表明探测效果有显著下降,其主要原因就是空中的雨滴、以及地面溅起的水花在雷达图像中形成杂波,造成图像噪声基底提高,从而降低了目标信噪比,使得相同探测性能下探测距离大大缩短;1. Since the irradiation time of the real aperture to the target is in the millisecond level, for "flickering" clutter such as raindrops/snow particles, leaves/grass moving on the runway, birds that occasionally stay, water splashes from raindrops on the runway, etc. Indistinguishable from still images during a scan, there is little immunity to such "flicker" clutter, temporally bursty clutter that stays in the image for the entire scan period. If suppression is to be performed, average suppression must be performed by scanning images of multiple frames, but this increases the processing time and cannot meet the real-time requirements of FOD monitoring. A typical phenomenon of “scintillation” clutter causing the degradation of detection performance is that the detection distance is greatly shortened under rain and snow conditions. CA-2016-01)", its Appendix A gives the results of the evaluation of detection equipment by the US Airport Technology Center of Excellence. The Tarsier system of QinetiQ has been tested in detail. The test results in "Performance Assessment of a Radar-BasedForeign Object Debris Detection System (DOT/FAA/AR-10/33)" show that the detection effect has decreased significantly. The main reason is that Raindrops in the air and water splashes on the ground form clutter in the radar image, which increases the image noise floor, reduces the target SNR, and greatly shortens the detection distance under the same detection performance;
2.实孔径成像中图像方位向分辨率由天线波束宽度决定,为了提高分辨率,因此天线增益很高,造成很强的等效全向辐射功率(EIRP,约等于发射功率与天线增益的乘积),以成都赛英公司的塔台式FOD系统为例,其发射功率不小于10dBmW,天线波束宽度为2.4°×0.4°,则可推算出增益约为45.3dBi,其EIRP高于55.3dBmW或340W,虽然目前没有对于FOD雷达无线电辐射功率管制的法规,但如此强的辐射能量可能会造成未来潜在的电磁兼容问题,带来机载设备安全风险,或人员健康风险;2. The azimuthal resolution of the image in real aperture imaging is determined by the antenna beam width. In order to improve the resolution, the antenna gain is very high, resulting in a strong equivalent isotropic radiated power (EIRP, which is approximately equal to the product of the transmit power and the antenna gain) ), taking the tower-type FOD system of Chengdu Saiying Company as an example, the transmit power is not less than 10dBmW, and the antenna beam width is 2.4°×0.4°, it can be calculated that the gain is about 45.3dBi, and its EIRP is higher than 55.3dBmW or 340W , although there are currently no regulations for the control of FOD radar radio radiation power, such a strong radiation energy may cause potential electromagnetic compatibility problems in the future, bring airborne equipment safety risks, or personnel health risks;
3.在毫米波频段上实现极窄的波束宽度,对反射式天线的加工精度要求极高,而且实孔径成像对转台位置精度的要求也很高,造成加工成本也大幅提高,使得整机成本较高。3. To achieve a very narrow beam width in the millimeter-wave frequency band, the processing accuracy of the reflective antenna is extremely high, and the real-aperture imaging also has high requirements for the positional accuracy of the turntable, resulting in a significant increase in the processing cost and the cost of the whole machine. higher.
目前,在机场跑道检测上的技术方案绝大多数都是基于窄波束天线实孔径机械扫描工作方式的。专利CN204515166U给出了一种合成孔径成像体制的FOD监测雷达技术方案,在跑道两边加装线性轨道,安装了雷达的小车沿轨道运动形成合成孔径并进行成像。此方法可以得到机场跑道的高分辨率图像,也具备上述合成孔径雷达体制的优点,但在跑道两边加装轨道的施工方案复杂度高,维护难度大,也难以通过审批。仅有少数是利用宽波束天线进行监控,专利号为ZL201210506514.5的专利文献公开了一种机场跑道异物检测系统,由雷达发射与接收天线、雷达收发前端、悬臂、旋转机构、信号处理器以及显示控制终端组成;其中:发射与接收天线与雷达收发前端通过波导相连,雷达收发前端通过旋转机构与信号处理器相连,信号处理器与显示控制终端相连。本发明针对线性调频连续波系统,通过宽带线性调频实现高的距离分辨率,通过实现天线半圆弧轨迹旋转构建合成孔径,从而实现高的方位分辨,减少地面杂波单元的面积,实现对跑道碎片小目标的检测。但是依然存在诸多不足,测量的结果还不够精准。At present, most of the technical solutions for airport runway detection are based on the working mode of narrow beam antenna real aperture mechanical scanning. The patent CN204515166U provides a FOD monitoring radar technical scheme with a synthetic aperture imaging system. Linear tracks are installed on both sides of the runway, and the car with the radar installed moves along the track to form a synthetic aperture and perform imaging. This method can obtain high-resolution images of the airport runway, and also has the advantages of the above-mentioned synthetic aperture radar system, but the construction scheme of adding tracks on both sides of the runway is complex, difficult to maintain, and difficult to pass approval. Only a few use wide-beam antennas for monitoring. The patent document with the patent number of ZL201210506514.5 discloses an airport runway foreign object detection system. The display control terminal is composed of: the transmitting and receiving antennas are connected with the radar transceiver front end through a waveguide, the radar transceiver front end is connected with a signal processor through a rotating mechanism, and the signal processor is connected with the display control terminal. Aiming at the linear frequency modulation continuous wave system, the invention realizes high distance resolution through broadband linear frequency modulation, and constructs synthetic aperture by realizing the rotation of the semi-circular track of the antenna, thereby realizing high azimuth resolution, reducing the area of the ground clutter unit, and realizing the detection of the runway. Detection of debris small objects. However, there are still many shortcomings, and the measurement results are not accurate enough.
因而现有的机场跑道异物监控领域还存在不足,还有待改进和提高。Therefore, there are still deficiencies in the field of foreign body monitoring on the existing airport runways, which need to be improved and improved.
发明内容SUMMARY OF THE INVENTION
鉴于上述现有技术的不足之处,本发明的目的在于提供一种机场跑道异物雷达监控系统、监控方法和监控装置,能够实现在布设简单的基础上,对机场跑道上的异物高精度检测。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide an airport runway foreign body radar monitoring system, monitoring method and monitoring device, which can realize high-precision detection of foreign bodies on the airport runway on the basis of simple layout.
为了达到上述目的,本发明采取了以下技术方案:In order to achieve the above object, the present invention has adopted the following technical solutions:
一种机场跑道异物雷达监控系统,包括旋转装置和检测转臂装置;所述检测转臂装置装设在所述旋转装置上,由所述旋转装置驱动转动;An airport runway foreign body radar monitoring system, comprising a rotating device and a detection arm device; the detection arm device is installed on the rotating device, and is driven and rotated by the rotating device;
所述检测转臂装置包括发射机、接收机、频率综合器、数据采集模块、信号处理模块;所述频率综合器分别与所述发射机、所述接收机连接;所述接收机、所述数据采集模块、所述信号处理模块依次连接;The detection arm device includes a transmitter, a receiver, a frequency synthesizer, a data acquisition module, and a signal processing module; the frequency synthesizer is respectively connected with the transmitter and the receiver; the receiver, the The data acquisition module and the signal processing module are connected in sequence;
所述发射机外接发射天线,所述接收机外接接收天线;所述发射天线和所述接收天线位于所述检测转臂装置的顶端;所述信号处理模块与计算平台连接。The transmitter is connected to a transmitting antenna, and the receiver is connected to a receiving antenna; the transmitting antenna and the receiving antenna are located at the top of the detection arm device; the signal processing module is connected to a computing platform.
优选的所述的机场跑道异物雷达监控系统,所述信号处理模块通过有线或无线数据链路与所述计算平台连接。Preferably, in the airport runway foreign body radar monitoring system, the signal processing module is connected with the computing platform through a wired or wireless data link.
优选的所述的机场跑道异物雷达监控系统,所述频率综合器,用于产生调制发射波形;Preferably, in the airport runway foreign body radar monitoring system, the frequency synthesizer is used to generate a modulated emission waveform;
所述调制发射波形为线性调频连续波或步进频率连续波或伪随机码调制信号。The modulated emission waveform is a linear frequency modulated continuous wave or a stepped frequency continuous wave or a pseudo-random code modulated signal.
优选的所述的机场跑道异物雷达监控系统,所述调制发射波形的工作频率为10-300GHz。Preferably, in the airport runway foreign body radar monitoring system, the working frequency of the modulated emission waveform is 10-300 GHz.
优选的所述的机场跑道异物雷达监控系统,所述旋转装置包括旋转机构和伺服控制模块;所述伺服控制模块用于驱动所述旋转机构转动,进而带动所述检测转臂装置转动。Preferably, in the airport runway foreign body radar monitoring system, the rotating device includes a rotating mechanism and a servo control module; the servo control module is used to drive the rotating mechanism to rotate, thereby driving the detection arm device to rotate.
一种应用所述的机场跑道异物雷达监控系统的机场跑道异物雷达监控方法,包括步骤:An airport runway foreign body radar monitoring method using the airport runway foreign body radar monitoring system, comprising the steps of:
S1、驱动旋转装置以预定角速度带动检测转臂装置在预定的角度范围内转动;同时,通过发射天线以预定发射频率对外发送宽波束雷达信号,通过接收天线接收反馈信号;将所述宽波束雷达信号与所述反馈信号均实时传送到信号处理模块;S1. Drive the rotating device to drive the detection arm device to rotate within a predetermined angular range at a predetermined angular velocity; at the same time, send a wide-beam radar signal to the outside at a predetermined transmission frequency through a transmitting antenna, and receive a feedback signal through a receiving antenna; Both the signal and the feedback signal are transmitted to the signal processing module in real time;
S2、所述信号处理模块将所述宽波束雷达信号与所述反馈信号进行混频后得到差频信号,进而获得目标物的雷达距离像;S2. The signal processing module mixes the wide-beam radar signal and the feedback signal to obtain a difference frequency signal, and then obtains the radar range image of the target;
S3、将所述雷达距离像使用后向投影或距离多普勒算法处理得到二维雷达图像,通过对所述二维雷达距离像进行目标检测,得到跑道异物检测结果。S3. The radar range image is processed using a back projection or range Doppler algorithm to obtain a two-dimensional radar image, and a runway foreign object detection result is obtained by performing target detection on the two-dimensional radar range image.
优选的所述的机场跑道异物雷达监控方法,所述步骤S2中,所述宽波束雷达信号sT(t)为线性调频连续波,其生成表达式为:Preferably, in the airport runway foreign object radar monitoring method, in the step S2, the wide-beam radar signal s T (t) is a linear frequency modulated continuous wave, and its generation expression is:
所述反馈信号sR(τm,t,τ0,r0)为:The feedback signal s R (τ m ,t,τ 0 ,r 0 ) is:
目标斜距R(τm)可表示为:The target slope distance R(τ m ) can be expressed as:
其中sinβ=H/r0 where sinβ=H/r 0
经过混频后的差频信号为:The difference frequency signal after mixing is:
其中,P为目标点;β为雷达至目标P的俯视角;H为天线转台相对目标P的垂直高度;ω为天线转动的角速度;L为转臂长度;r0为转臂旋转轴中心到目标P的距离;τ0为起始时刻;R(τm)为雷达与目标P的瞬时斜距;τm为慢时间,t为快时间;Kr表示调频斜率,Tp表示脉冲调制周期,fc表示载波频率,c表示光速。Among them, P is the target point; β is the top view angle from the radar to the target P; H is the vertical height of the antenna turntable relative to the target P; ω is the angular velocity of the antenna rotation; L is the arm length ; The distance to the target P; τ 0 is the starting time; R(τ m ) is the instantaneous slope distance between the radar and the target P; τ m is the slow time, t is the fast time; K r is the frequency modulation slope, and T p is the pulse modulation period , f c is the carrier frequency, and c is the speed of light.
优选的所述的机场跑道异物雷达监控方法,步骤S3中,目标检测的具体步骤为:Preferably, in the airport runway foreign object radar monitoring method, in step S3, the specific steps of target detection are:
S31、对差频信号进行快时间的傅立叶变换,得到目标回波频谱;所述傅立叶变换的公式为:S31, perform fast-time Fourier transform on the difference frequency signal to obtain the target echo spectrum; the formula of the Fourier transform is:
其中,各项的含义与上述的公式相同,不做赘述;Among them, the meaning of each item is the same as the above formula, and will not be repeated;
S32、根据频率与目标距离的对应关系f=2rKr/c,得到目标回波的一维距离像;S32, according to the corresponding relationship f=2rK r /c between the frequency and the target distance, obtain a one-dimensional distance image of the target echo;
S33、根据停-走假设,对成像区域划定极坐标系下成像网络,像素点(θ,r)的雷达复散射图像I(θ,r)为积累角范围内各方位一维距离像对应距离值进行相位补偿后并相干积累的结果:S33. According to the stop-and-go hypothesis, the imaging network in the polar coordinate system is delineated for the imaging area, and the radar complex scattering image I(θ, r) of the pixel point (θ, r) corresponds to the one-dimensional range image of each azimuth within the accumulation angle range. The result of phase compensation and coherent accumulation of distance values:
其中,θ=ω(τm-τ0)为图像像素(θ,r)对应的方位角,τ1和τ2分别为积累角确定的像素点(θ,r)的雷达照射起止时刻;Among them, θ=ω(τ m -τ 0 ) is the azimuth angle corresponding to the image pixel (θ, r), and τ 1 and τ 2 are the start and end times of the radar irradiation of the pixel point (θ, r) determined by the accumulation angle, respectively;
S34、从而获得二维极坐标形式的雷达图像,通过恒虚警检测获得FOD检测结果。S34 , a radar image in the form of two-dimensional polar coordinates is obtained, and a FOD detection result is obtained through constant false alarm detection.
一种使用所述的机场跑道异物雷达监控系统的机场跑道异物雷达监控装置,包括旋臂、配重块和支架;所述支架包括基座和旋转装置,所述旋转装置的一端与所述基座连接,另一端装设有所述旋臂;所述旋臂通过与所述旋转装置连接点分为第一部分和第二部分,所述第一部分的长度大于所述第二部分,所述第二部分的外端装设有配重器,所述第一部分的外端装设有天线支架;An airport runway foreign body radar monitoring device using the airport runway foreign body radar monitoring system, comprising a rotating arm, a counterweight and a bracket; the bracket includes a base and a rotating device, and one end of the rotating device is connected to the base. The other end is equipped with the rotating arm; the rotating arm is divided into a first part and a second part through the connection point with the rotating device, the length of the first part is greater than that of the second part, and the length of the first part is longer than that of the second part. The outer end of the second part is provided with a counterweight, and the outer end of the first part is provided with an antenna bracket;
所述旋臂适配装设所述检测旋臂装置,其中,所述发射天线与所述接收天线装设在所述天线支架上。The rotating arm is adapted to install the detection rotating arm device, wherein the transmitting antenna and the receiving antenna are installed on the antenna support.
优选的所述的机场跑道异物雷达监控装置,所述天线支架与所述旋臂之间可调整仰角。Preferably, in the airport runway foreign object radar monitoring device, the elevation angle can be adjusted between the antenna bracket and the rotating arm.
相较于现有技术,本发明提供的一种机场跑道异物雷达监控系统、监控方法和监控装置,具有以下有益效果:Compared with the prior art, an airport runway foreign body radar monitoring system, monitoring method and monitoring device provided by the present invention have the following beneficial effects:
1)将所述监控系统的高度和位置固定,只要构建成边灯或者塔架的形式即可实现正常检测;1) The height and position of the monitoring system are fixed, and normal detection can be realized as long as it is constructed in the form of a side light or a tower;
2)使用基于圆弧合成孔径雷达体制的成像和检测方法,能够有效降低闪烁杂波的噪点干扰,有效的滤除可能的干扰项;同时,充分考虑检测转臂装置与目标物之间的高度因素,可以更加快速的确定目标物的空间位置,提高检测能力;2) Using the imaging and detection method based on the arc synthetic aperture radar system can effectively reduce the noise interference of scintillation clutter and effectively filter out possible interference items; at the same time, fully consider the height between the detection arm device and the target factor, the spatial position of the target can be determined more quickly, and the detection ability can be improved;
3)天线支架位于旋臂的顶端,此位置使发射天线和接收天线在旋转时可以形成尽可能大的圆弧孔径,提高检测分辨率;同时通过控制天线支架的角度,可以适应不同的检测环境,提高检测能力;3) The antenna bracket is located at the top of the swivel arm. This position enables the transmitting antenna and the receiving antenna to form as large a circular arc aperture as possible when rotating to improve the detection resolution; at the same time, by controlling the angle of the antenna bracket, it can adapt to different detection environments. , improve the detection ability;
4)旋转角度灵活,所述检测转臂装置的旋转角度可以是固定角度,也可以是360°,即可以在固定角度范围内的往复转动,也可以进行周复转动,实现部分区域或全方位监测。4) The rotation angle is flexible. The rotation angle of the detection arm device can be a fixed angle or 360°, that is, it can be rotated back and forth within a fixed angle range, or it can be rotated back and forth to achieve partial or all-round rotation. monitor.
附图说明Description of drawings
图1是本发明提供的机场跑道异物雷达监控系统结构框图;1 is a structural block diagram of an airport runway foreign body radar monitoring system provided by the present invention;
图2是本发明提供的机场跑道异物雷达监控装置的结构框图;Fig. 2 is the structural block diagram of the airport runway foreign body radar monitoring device provided by the present invention;
图3是本发明提供的机场跑道异物雷达监控方法的流程图;Fig. 3 is the flow chart of the airport runway foreign body radar monitoring method provided by the present invention;
图4是本发明提供的机场跑道异物雷达监控方法中各个变量的含义示意图;4 is a schematic diagram of the meaning of each variable in the airport runway foreign body radar monitoring method provided by the present invention;
图5是本发明提供的应用机场跑道异物雷达监控方法仿真得到的成像结果(左)和目标局部放大图(右);Fig. 5 is the imaging result (left) and the partial enlarged view of the target (right) obtained by applying the airport runway foreign body radar monitoring method simulation provided by the present invention;
图6是本发明提供的图5中对于成像结果方位向剖面(左)和距离向剖面(右)。FIG. 6 is an azimuth profile (left) and a range profile (right) for the imaging result in FIG. 5 provided by the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and effects of the present invention clearer and clearer, the present invention will be further described in detail below with reference to the accompanying drawings and examples. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
请一并参阅图1-图6,本发明提供一种机场跑道异物雷达监控系统,包括旋转装置1和检测转臂装置2;所述检测转臂装置2装设在所述旋转装置1上,由所述旋转装置1驱动转动;Please refer to FIG. 1 to FIG. 6 together. The present invention provides an airport runway foreign object radar monitoring system, including a
所述检测转臂装置2包括发射机21、接收机22、频率综合器23、数据采集模块24、信号处理模块25;所述频率综合器23分别与所述发射机21、所述接收机22连接;所述接收机22、所述数据采集模块24、所述信号处理模块25依次连接;The
所述发射机21外接发射天线26,所述接收机22外接接收天线27;所述发射天线26和所述接收天线27位于所述检测转臂装置2的顶端;所述信号处理模块25与计算平台连接。The
具体的,所述发射天线26和所述接收天线27为雷达天线,用于发射和接收雷达信号;所述频率综合器23用于产生调制发射波形,即预设的雷达信号,包括但不限于线性调频连续波(FMCW)、步进频率连续波(SFCW);另外,所述频率综合器23产生的调制波形为宽波束雷达信号,其工作频率为10-300GHz,距离分辨率和测距精度取决于频段带宽,带宽越大,距离分辨率越好。发射机21用于将所述频率综合器23产生的调制发射波形进行功率放大并通过所述发射天线26辐射出去;所述接收机22用于将所述接收天线27馈入的雷达回波信号进行放大、下变频和中频信号调理(如放大、滤波等)处理后得到中频信号,并将所述中频信号输送到数据采集模块24中;所述数据采集模块24将所述中频信号转换成数字信号,输出到所述信号处理模块25,当然,于此同时,所述数据采集模块24同步将所述频率综合器23产生的调制发射波形也转换成数字信号发送到所述信号处理模块25;所述信号处理模块25,根据调制发射波形和雷达回波信号完成圆弧合成孔径成像、变化检测,实现目标定位。应当说明的是,本发明提供的机场跑道异物雷达监控系统使用圆弧合成孔径的方法,实现机场跑道异物的检测,一般情况下,使用圆弧孔径的常规方法即可,不做具体限定。所述旋转装置1带动所述检测转臂装置2进行转动,进而实现圆弧合成孔径的合成。此处,所述旋转装置1的内部结构不做限定,为本领域常用的转动结构,只要能够实现驱动所述检测转臂装置2按照既定的角速度转动,以及能够在一定角度方位内实现定向或来回转动即可。优选的,所述发射天线26和所述接收天线27均为低增益天线,优选为采用增益为10-20dBi的天线,进一步优选为增益为12dBi的天线。Specifically, the transmitting
作为优选方案,本实施例中,所述信号处理模块25通过有线或无线数据链路与所述计算平台连接。具体的,所述信号处理模块25处理相应的数据之后,得到目标定位数据后,可以将得到的相应的结果输出,本实施例中,是通过有线或无线数据链路将结果数据输出到计算平台中,以供计算平台使用。所述有线数据链路优选为RJ45网络连接线;所述无线数据链路优选为WiFi网络连接、3G/4G/5G网络连接。所述计算平台包括计算机、服务器等运算设备,不做具体限定。As a preferred solution, in this embodiment, the
相应的,本发明还提供一种使用所述的机场跑道异物雷达监控系统的机场跑道异物雷达监控装置,包括旋臂10、配重块30和支架20;所述支架20包括基座202和旋转装置1,所述旋转装置1的一端与所述基座202连接,另一端装设有所述旋臂10;所述旋臂10通过与所述旋转装置1连接点分为第一部分和第二部分,所述第一部分的长度大于所述第二部分,所述第二部分的外端装设有配重器,以使所述转臂的重心尽可能的接近与所述旋转机构连接位置,所述第一部分的外端顶部装设有天线支架101;所述检测转臂装置2内设在所述旋臂10中,所述旋臂10具有对外的通信接口,使所述检测转臂装置2能够与后台计算平台通信连接;所述旋转装置1内设在所述支架20内,用于驱动所述旋臂10转动;Correspondingly, the present invention also provides an airport runway foreign body radar monitoring system using the airport runway foreign body radar monitoring system, comprising a
所述旋臂10适配装设所述检测旋臂10装置,其中,所述发射天线26与所述接收天线27装设在所述天线支架101上。The
具体的,所述发射天线26和所述接收天线27安装在所述天线支架101上,向背离旋转结构轴心的方向照射,本实施例中是是所述旋臂10的所述第一部分的外端;所述天线支架101安装于所述旋臂10的外端,可以自动或手动控制俯仰角的调整;所述旋转机构11可以是脉冲电机,或者其他电机与转动限位装置合成装设,具体的实现,为本领域的常用技术手段,不做限定;所述旋转装置1带动所述旋臂10以旋转装置1轴心为中心进行旋转。所述配重块30用于将所述旋臂10的重心转移到所述旋转结构的轴心位置,壁面正极晃动。所述旋转装置1安装在所述基座202上,所述基座202固定在铁架或者水泥台上,所述基座202的安装位置的高低不做限定,以具体现场的安装需求设定。同时,旋臂10越长,方位角分辨率越高,即目标方位分辨率越好。本发明提供的雷达监控装置可塔架式或边灯式装设,工作原理相同,只要根据需求设定不同的工作频率和旋臂10长度即可,具体如下:Specifically, the transmitting
当构成塔架式设备时,一般根据需要检测的区域范围,采用较长的转臂,此时产生的圆弧孔径更长,角分辨率更高,适应远距离探测FOD目标;When a tower-type equipment is formed, a longer arm is generally used according to the range of the area to be detected. At this time, the circular arc generated at this time has a longer aperture and higher angular resolution, which is suitable for long-distance detection of FOD targets;
当构成边灯式设备时,一般采用根据需要检测的区域范围,采用较短的转臂和更高的工作频率,设备整体尺寸更小,适应跑道两侧安装。When the edge light type equipment is formed, it is generally used to detect the area according to the need, using a shorter arm and a higher working frequency, the overall size of the equipment is smaller, and it is suitable for installation on both sides of the runway.
作为优选方案,本实施例中,所述天线支架20与所述旋臂10之间可调整仰角。即,所述天线支架20在装设位置能够进行在一定角度范围内的仰角调整,可调整的范围为0-90°,优选的仰角为0°、45°、90°,这样可以在满足高精度检测的情况下,进行更宽范围的检测。所述仰角为天线本体与垂直地面的面在天线装设位置上方形成的角。As a preferred solution, in this embodiment, the elevation angle between the
优选的,所述基座202为伸缩装置,高度可以根据计算平台的指令进行调整,同时在确定最终的支架20的高度后,所述计算平台将高度数据输送到所述信号处理模块25中。Preferably, the base 202 is a telescopic device, and the height can be adjusted according to the instructions of the computing platform. At the same time, after determining the final height of the
作为优选方案,本实施例中,所述旋转装置1包括旋转机构11和伺服控制模块12;所述伺服控制模块12用于驱动所述旋转机构11转动,进而带动所述检测转臂装置2转动。As a preferred solution, in this embodiment, the
作为优选方案,本实施例中,所述伺服控制模块12可内置在所述基座202,用于控制所述旋转机构11正常运行。As a preferred solution, in this embodiment, the
具体的,所述伺服控制模块12优选为MCU(Microcontroller Unit;微控制单元),能够驱动所述旋转机构11按照既定或者指令工作,带动所述旋臂10按照预定角度范围和角速度转动,同时确定在一定检测范围内的检测时长,是否停顿等工作;优选的,所述伺服控制模块12与计算平台连接,根据计算平台的指令驱动所述旋转结构工作。所述旋转机构11,包括旋转电机(优选为直流电机或脉冲电机)、旋转连接件(用于与所述旋臂10连接,转动带动旋臂10转动)、限位装置(用于限定旋臂10的旋转范围,固定角度范围内旋转还是360°旋转),配合驱动旋臂10旋转。此处,应当说明的是,对于目标物的检测精度上,所述旋臂10旋转的角速度越慢则在同一方向上的两条雷达天线停留的时间就长,因暂留物会在短暂停留后消失,则实现对暂留物或目标物的精准区分。Specifically, the
相应的,请着重参阅图3-图4,本发明提供一种应用所述的机场跑道异物雷达监控系统的机场跑道异物雷达监控方法,包括步骤:Correspondingly, please refer to FIG. 3 to FIG. 4 emphatically, the present invention provides an airport runway foreign body radar monitoring method using the airport runway foreign body radar monitoring system, including the steps:
S1、驱动旋转装置1以预定角速度带动检测转臂装置2在预定的角度范围内转动;同时,通过发射天线26以预定发射频率对外发送宽波束雷达信号,通过接收天线27接收反馈信号;将所述宽波束雷达信号与所述反馈信号均实时传送到信号处理模块25;S1, drive the
S2、所述信号处理模块25将所述宽波束雷达信号与所述反馈信号进行混频后得到差频信号,进而获得目标物的雷达距离像;S2. The
S3、将所述雷达距离像使用后向投影或距离多普勒算法处理得到二维雷达图像,通过对所述二维雷达距离像进行目标检测,得到跑道异物检测结果。S3. The radar range image is processed using a back projection or range Doppler algorithm to obtain a two-dimensional radar image, and a runway foreign object detection result is obtained by performing target detection on the two-dimensional radar range image.
具体的,对于所述宽波束雷达信号和所述反馈信号进行混频的操作可以为本领域的常用操作流程即可,也可以使用其他的混频技术,不做具体限定;Specifically, the operation of mixing the wide-beam radar signal and the feedback signal may be a common operation process in the art, or other mixing technologies may be used, which is not specifically limited;
作为优选方案,本实施例中,所述频率综合器,用于产生调制发射波形;As a preferred solution, in this embodiment, the frequency synthesizer is used to generate a modulated transmit waveform;
所述调制发射波形为线性调频连续波或步进频率连续波或伪随机码调制信号。此中所述的三种调制发射波形均为本领域的常用调制波形,不做赘述。The modulated emission waveform is a linear frequency modulated continuous wave or a stepped frequency continuous wave or a pseudo-random code modulated signal. The three modulation emission waveforms described herein are all commonly used modulation waveforms in the art, and will not be described in detail.
作为优选方案,本实施例中,所述调制发射波形的工作频率为10-300GHzAs a preferred solution, in this embodiment, the operating frequency of the modulated emission waveform is 10-300 GHz
作为优选方案,本实施例中,所述步骤S2中,所述宽波束雷达信号sT(t)为线性调频连续波,其生成表达式为:As a preferred solution, in this embodiment, in the step S2, the wide-beam radar signal s T (t) is a chirp continuous wave, and its generation expression is:
所述反馈信号sR(τm,t,τ0,r0)为:The feedback signal s R (τ m ,t,τ 0 ,r 0 ) is:
目标斜距R(τm)可表示为:The target slope distance R(τ m ) can be expressed as:
其中sinβ=H/r0 where sinβ=H/r 0
经过混频后的差频信号为:The difference frequency signal after mixing is:
其中,P为目标点;β为雷达至目标P的俯视角;H为天线转台(即检测转臂装置)相对目标P的垂直高度;ω为天线转动的角速度;L为转臂长度;r0为转臂旋转轴中心到目标P的距离;τ0为起始时刻;R(τm)为雷达与目标P的瞬时斜距;τm为慢时间,t为快时间;kr表示调频斜率,Tp表示脉冲调制周期,fc表示载波频率,R(τm)表示目标真实距离,c表示光速。应当说明的是,在本发明提供的监控方法中,充分考虑了检测转臂装置相对于目标P的垂直高度,可以更加精准的确定目标物的三维空间位置,提高定位的准确度。常规的FOD检测雷达成像计量方法没有引入所述检测转臂装置的高度参量,会造成距离误差,从而使得所得到的二维雷达图像的相位与实际不符,造成图像的散焦,进而使得信噪比下降,影响对微弱目标的检测。例如,塔架式雷达监控装置,当架高为5米时,对150米处的目标距离误差为83毫米,远大于二维雷达图像所要求的相位误差小于1/8波长(相对于90~110GHz的W波段信号即为0.375毫米);而当将雷达监控装置的高度参量引入计量方法中,而且控制高度误差控制在1厘米时(采用激光测距时易于实现),目标距离的误差小于0.333毫米,满足成像精度要求。Among them, P is the target point; β is the top view angle from the radar to the target P; H is the vertical height of the antenna turntable (that is, the detection arm device) relative to the target P; ω is the angular velocity of the antenna rotation; L is the arm length; r 0 is the distance from the center of the rotation axis of the arm to the target P; τ 0 is the starting time; R(τ m ) is the instantaneous slope distance between the radar and the target P; τ m is the slow time, t is the fast time; k r is the frequency modulation slope , T p represents the pulse modulation period, f c represents the carrier frequency, R(τ m ) represents the real distance of the target, and c represents the speed of light. It should be noted that, in the monitoring method provided by the present invention, the vertical height of the detection arm device relative to the target P is fully considered, the three-dimensional spatial position of the target can be determined more accurately, and the positioning accuracy can be improved. The conventional FOD detection radar imaging measurement method does not introduce the height parameter of the detection arm device, which will cause a distance error, so that the phase of the obtained two-dimensional radar image does not match the actual, resulting in defocusing of the image, which in turn causes signal noise. The ratio decreases, which affects the detection of weak targets. For example, when the height of the tower-type radar monitoring device is 5 meters, the distance error to the target at 150 meters is 83 mm, which is much larger than the phase error required by the two-dimensional radar image, which is less than 1/8 wavelength (relative to 90~ The W-band signal of 110GHz is 0.375mm); when the height parameter of the radar monitoring device is introduced into the measurement method, and the control height error is controlled to 1 cm (easy to achieve when using laser ranging), the error of the target distance is less than 0.333 mm, to meet the imaging accuracy requirements.
上述的混频计算过程中,在所述差频信号的一个周期内,R(τm)为一常数,所述差频信号公式中的第一项表示距离所对应的相位 其中第二项表示回波的多普勒效应,这是进行方位向脉压所必须处理的,第三项是解线性调频方法所特有,称为剩余视频相位,两者均需在成像过程中进行补偿。In the above mixing calculation process, in one cycle of the beat frequency signal, R(τ m ) is a constant, and the first term in the beat frequency signal formula represents the phase corresponding to the distance the second of which Represents the Doppler effect of the echo, which must be dealt with for the azimuth pulse pressure, the third term is specific to the dechirp method and is called residual video phase, both of which need to be compensated during the imaging process.
作为优选方案,本实施例中,步骤S3中,目标检测的具体步骤为:As a preferred solution, in this embodiment, in step S3, the specific steps of target detection are:
S31、对差频信号进行快时间的傅立叶变换,得到目标回波频谱;所述傅立叶变换的公式为:S31, perform fast-time Fourier transform on the difference frequency signal to obtain the target echo spectrum; the formula of the Fourier transform is:
其中,公式中的各项因子,均与上述出现的公式中代表的内容一致,不做赘述;Among them, each factor in the formula is consistent with the content represented in the above formula, and will not be repeated;
S32、根据频率与目标距离的对应关系f=2rKr/c,得到目标回波的一维距离像;S32, according to the corresponding relationship f=2rK r /c between the frequency and the target distance, obtain a one-dimensional distance image of the target echo;
S33、根据停-走假设,对成像区域划定极坐标系下成像网络,像素点(θ,r)的雷达复散射图像I(θ,r)为积累角范围内各方位一维距离像对应距离值进行相位补偿后并相干积累的结果:S33. According to the stop-and-go hypothesis, the imaging network in the polar coordinate system is delineated for the imaging area, and the radar complex scattering image I(θ, r) of the pixel point (θ, r) corresponds to the one-dimensional range image of each azimuth within the accumulation angle range. The result of phase compensation and coherent accumulation of distance values:
其中,θ=ω(τm-τ0)为图像像素(θ,r)对应的方位角,τ1和τ2分别为积累角确定的像素点(θ,r)的雷达照射起止时刻;Among them, θ=ω(τ m -τ 0 ) is the azimuth angle corresponding to the image pixel (θ, r), and τ 1 and τ 2 are the start and end times of the radar irradiation of the pixel point (θ, r) determined by the accumulation angle, respectively;
S34、从而获得二维极坐标形式的雷达图像,通过恒虚警(CFAR)检测获得FOD检测结果。所述恒虚警检测为本领域常用的检测方法,不做限定。S34 , a radar image in the form of two-dimensional polar coordinates is obtained, and a FOD detection result is obtained through constant false alarm (CFAR) detection. The constant false alarm detection is a commonly used detection method in the field, and is not limited.
请着重参阅图5-图6,其中,进行仿真的机场跑道异物雷达监控系统的设定参数为表1所示:Please refer to Fig. 5-Fig. 6 emphatically, among them, the setting parameters of the simulated airport runway foreign object radar monitoring system are shown in Table 1:
表1圆弧合成孔径FOD监测雷达参数Table 1 Circular synthetic aperture FOD monitoring radar parameters
得到的成像结果,如图5和图6所示,可以得出的成像指标如表2所示:The obtained imaging results are shown in Figure 5 and Figure 6, and the imaging indicators that can be obtained are shown in Table 2:
表2圆弧合成孔径FOD监测雷达仿真成像指标Table 2 Arc synthetic aperture FOD monitoring radar simulation imaging index
综上所述,本发明提供的机场跑道异物雷达监控方法使用圆弧合成孔径成像体制是一种通过将低增益天线沿一定轨迹运动、并通过合成孔径成像算法将轨迹上的实孔径天线“虚拟”为一个尺寸达到轨迹长达的合成孔径、从而达到高分辨率成像的方法。具有以下技术效果:To sum up, the use of the arc synthetic aperture imaging system in the foreign object radar monitoring method of the airport runway provided by the present invention is a method by moving the low-gain antenna along a certain trajectory, and using the synthetic aperture imaging algorithm to make the real aperture antenna on the trajectory "virtual". " is a method to achieve high-resolution imaging with a synthetic aperture size up to the trajectory length. Has the following technical effects:
1.对于“闪烁”杂波,使用圆弧合成孔径成像是数百至数千帧图像序列进行相参叠加,“闪烁”杂波出现的若干帧图像的杂波能量被抑制掉,不会形成图像中的“噪点”,因此对“闪烁”杂波具有很好的抑制作用,可以预期,在环境适应性上将显著优于常规的实孔径扫描体制;1. For "flicker" clutter, the use of arc synthetic aperture imaging is to coherently stack hundreds to thousands of image sequences, and the clutter energy of several frames of images that appear in "flicker" clutter is suppressed and will not form. "Noise" in the image, so it has a good suppression effect on "flicker" clutter, and it can be expected that it will be significantly better than the conventional real aperture scanning system in terms of environmental adaptability;
2.低增益天线有助于降低EIRP(equivalent isotropically radiated power等效全向辐射功率),从而易于满足未来电磁兼容性和人体安全要求,如采用增益为12dBi的天线,仍然采用上述10dBm发射功率的话,其EIRP为160mW,甚至低于大部分手机辐射;2. Low-gain antennas help to reduce EIRP (equivalent isotropically radiated power), so that it is easy to meet future electromagnetic compatibility and human safety requirements. For example, if an antenna with a gain of 12dBi is used, the above 10dBm transmit power is still used. , its EIRP is 160mW, which is even lower than most mobile phone radiation;
3.低增益天线价格低,而且合成孔径成像的平均积累特点使得对转台重复精度的要求也不高(仿真发现定位位置抖动不超过步进角度的20%对成像基本无恶化效果),因此可以降低制造和维护成本。3. The price of low-gain antennas is low, and the average accumulation characteristics of synthetic aperture imaging make the requirement for the repeatability of the turntable not high (simulation found that the positioning position jitter does not exceed 20% of the stepping angle, and the imaging has no deterioration effect), so it can be Reduce manufacturing and maintenance costs.
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。It can be understood that for those of ordinary skill in the art, equivalent replacements or changes can be made according to the technical solutions of the present invention and the inventive concept thereof, and all these changes or replacements should belong to the protection scope of the appended claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010609892.0A CN111781602A (en) | 2020-06-30 | 2020-06-30 | An airport runway foreign body radar monitoring system, monitoring method and monitoring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010609892.0A CN111781602A (en) | 2020-06-30 | 2020-06-30 | An airport runway foreign body radar monitoring system, monitoring method and monitoring device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111781602A true CN111781602A (en) | 2020-10-16 |
Family
ID=72761341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010609892.0A Pending CN111781602A (en) | 2020-06-30 | 2020-06-30 | An airport runway foreign body radar monitoring system, monitoring method and monitoring device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111781602A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112380689A (en) * | 2020-11-11 | 2021-02-19 | 中国民用航空总局第二研究所 | Design method for influencing VDB electromagnetic compatibility based on magnetic suspension arc ground reflection |
CN112565966A (en) * | 2020-12-10 | 2021-03-26 | 歌尔科技有限公司 | Rotary key, control method thereof and wearable device |
CN112816979A (en) * | 2021-01-05 | 2021-05-18 | 成都赛英科技有限公司 | Airport runway foreign matter detection device and method |
CN113848549A (en) * | 2021-09-15 | 2021-12-28 | 电子科技大学 | Radiation source positioning method based on synthetic aperture technology |
CN113985404A (en) * | 2021-12-30 | 2022-01-28 | 湖南师范大学 | A high-resolution runway foreign object detection system and its phase drift correction method |
CN114002675A (en) * | 2021-10-19 | 2022-02-01 | 中大检测(湖南)股份有限公司 | High-precision anti-arc radar system |
CN114200535A (en) * | 2021-05-21 | 2022-03-18 | 航科院(北京)科技发展有限公司 | Airborne road surface foreign matter and damage detection system and detection method |
TWI766507B (en) * | 2020-12-25 | 2022-06-01 | 維波科技有限公司 | Emulation system of radar echo data simulation |
CN115453476A (en) * | 2022-11-10 | 2022-12-09 | 齐鲁云商数字科技股份有限公司 | Calibration positioning system for bilateral radar equipment and stereo detection fusion method |
CN117590484A (en) * | 2024-01-12 | 2024-02-23 | 中国民用航空总局第二研究所 | A method and system for locating foreign objects on an airport runway |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070247352A1 (en) * | 2005-10-05 | 2007-10-25 | Dean Michael | Detecting objects within a near-field of a frequency modulated continuous wave (FMCW) radar system |
CN102435991A (en) * | 2011-12-16 | 2012-05-02 | 天津职业技术师范大学 | System for improving azimuth resolution of ground radar by semi-circular arc motion of antennas |
CN103048694A (en) * | 2012-12-03 | 2013-04-17 | 天津职业技术师范大学 | Foreign body detection system for airfield runway |
CN204515166U (en) * | 2015-04-15 | 2015-07-29 | 中国人民解放军空军预警学院 | A kind of foreign body detection system for airfield runway based on synthetic-aperture radar |
CN206311975U (en) * | 2016-12-27 | 2017-07-07 | 成都国卫通信技术有限公司 | A kind of Radar IF simulation device |
TWM573827U (en) * | 2018-08-15 | 2019-02-01 | 楊士緯 | Swinging arm device of resistance-free 360-degree test device |
-
2020
- 2020-06-30 CN CN202010609892.0A patent/CN111781602A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070247352A1 (en) * | 2005-10-05 | 2007-10-25 | Dean Michael | Detecting objects within a near-field of a frequency modulated continuous wave (FMCW) radar system |
CN102435991A (en) * | 2011-12-16 | 2012-05-02 | 天津职业技术师范大学 | System for improving azimuth resolution of ground radar by semi-circular arc motion of antennas |
CN103048694A (en) * | 2012-12-03 | 2013-04-17 | 天津职业技术师范大学 | Foreign body detection system for airfield runway |
CN204515166U (en) * | 2015-04-15 | 2015-07-29 | 中国人民解放军空军预警学院 | A kind of foreign body detection system for airfield runway based on synthetic-aperture radar |
CN206311975U (en) * | 2016-12-27 | 2017-07-07 | 成都国卫通信技术有限公司 | A kind of Radar IF simulation device |
TWM573827U (en) * | 2018-08-15 | 2019-02-01 | 楊士緯 | Swinging arm device of resistance-free 360-degree test device |
Non-Patent Citations (2)
Title |
---|
YUNHUA LUO ET AL.: "Arc FMCW SAR and Applications in Ground Monitoring", IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 30 September 2014 (2014-09-30), pages 5989 - 5998, XP011557100, DOI: 10.1109/TGRS.2014.2325905 * |
路满: "基于调频连续波信号的圆弧式合成孔径雷达成像方法", 雷达学报, vol. 5, no. 4, 31 August 2016 (2016-08-31), pages 425 - 433 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112380689A (en) * | 2020-11-11 | 2021-02-19 | 中国民用航空总局第二研究所 | Design method for influencing VDB electromagnetic compatibility based on magnetic suspension arc ground reflection |
CN112380689B (en) * | 2020-11-11 | 2023-03-14 | 中国民用航空总局第二研究所 | Design method for influencing VDB electromagnetic compatibility based on magnetic suspension arc ground reflection |
CN112565966A (en) * | 2020-12-10 | 2021-03-26 | 歌尔科技有限公司 | Rotary key, control method thereof and wearable device |
CN112565966B (en) * | 2020-12-10 | 2022-09-02 | 歌尔科技有限公司 | Rotary key, control method thereof and wearable device |
TWI766507B (en) * | 2020-12-25 | 2022-06-01 | 維波科技有限公司 | Emulation system of radar echo data simulation |
CN112816979A (en) * | 2021-01-05 | 2021-05-18 | 成都赛英科技有限公司 | Airport runway foreign matter detection device and method |
CN114200535A (en) * | 2021-05-21 | 2022-03-18 | 航科院(北京)科技发展有限公司 | Airborne road surface foreign matter and damage detection system and detection method |
CN113848549A (en) * | 2021-09-15 | 2021-12-28 | 电子科技大学 | Radiation source positioning method based on synthetic aperture technology |
CN113848549B (en) * | 2021-09-15 | 2023-06-23 | 电子科技大学 | A Radiation Source Location Method Based on Synthetic Aperture Technology |
CN114002675A (en) * | 2021-10-19 | 2022-02-01 | 中大检测(湖南)股份有限公司 | High-precision anti-arc radar system |
CN113985404B (en) * | 2021-12-30 | 2022-03-25 | 湖南师范大学 | High-resolution runway foreign object detection system and phase drift correction method thereof |
CN113985404A (en) * | 2021-12-30 | 2022-01-28 | 湖南师范大学 | A high-resolution runway foreign object detection system and its phase drift correction method |
CN115453476A (en) * | 2022-11-10 | 2022-12-09 | 齐鲁云商数字科技股份有限公司 | Calibration positioning system for bilateral radar equipment and stereo detection fusion method |
CN115453476B (en) * | 2022-11-10 | 2023-02-07 | 齐鲁云商数字科技股份有限公司 | Calibration positioning system for bilateral radar equipment and stereo detection fusion method |
CN117590484A (en) * | 2024-01-12 | 2024-02-23 | 中国民用航空总局第二研究所 | A method and system for locating foreign objects on an airport runway |
CN117590484B (en) * | 2024-01-12 | 2024-03-19 | 中国民用航空总局第二研究所 | Airport runway foreign matter positioning method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111781602A (en) | An airport runway foreign body radar monitoring system, monitoring method and monitoring device | |
CN107102325B (en) | A terahertz frequency band rotating array scanning imaging system | |
Beasley et al. | Tarsier/spl R/, a millimetre wave radar for airport runway debris detection | |
AU2006253148B2 (en) | Radar system for aircraft | |
CN110673133B (en) | High-precision finger radar system based on search and tracking coaxiality | |
Wang et al. | Airport runway foreign object debris detection system based on arc-scanning SAR technology | |
CN102590795A (en) | Microwave scattering property test system based on vector network analyzer | |
CN104535996B (en) | Image/laser ranging/ low-altitude frequency-modulated continuous wave radar integrated system | |
CN105572670A (en) | Flying bird detection radar system | |
CN111736150A (en) | Detection method for remote low-power-consumption bird detection radar | |
CN106501799A (en) | A kind of detection and positioner for many rotor SUAVs | |
CN113589290A (en) | Movable multi-band multi-parameter Doppler meteorological radar detection system and detection method | |
CN106772263A (en) | Surveillance radar over the ground | |
CN106597447A (en) | Airport surface detection radar | |
CN107219518A (en) | Low slow small unmanned aerial vehicle flight path measuring system and method | |
CN115561718A (en) | External field measuring device for scattering characteristics of ground clutter and target radar | |
CN112731368B (en) | A radar monitoring system for small targets in near space | |
Futatsumori et al. | Performance measurement of compact and high-range resolution 76 GHz millimeter-wave radar system for autonomous unmanned helicopters | |
CN212675167U (en) | Airport runway foreign matter radar monitoring system and device | |
CN1633050A (en) | System and method for implementing aerial target monitoring based on public mobile communication network | |
CN203773045U (en) | Ground ejection type jamming signal generation system for synthetic aperture radar | |
Martelli et al. | Security enhancement in small private airports through active and passive radar sensors | |
CN112105951B (en) | Radar system, movable platform and control method of radar system | |
CN210376677U (en) | Solid-state high-resolution MIMO millimeter wave FOD detection radar equipment | |
CN115825910A (en) | Target detection method and system based on differential positioning and inertial navigation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |