CN111763696A - Application of Protein PfuPGM as Glucose Phosphomutase in the Production of Inositol - Google Patents
Application of Protein PfuPGM as Glucose Phosphomutase in the Production of Inositol Download PDFInfo
- Publication number
- CN111763696A CN111763696A CN202010900206.5A CN202010900206A CN111763696A CN 111763696 A CN111763696 A CN 111763696A CN 202010900206 A CN202010900206 A CN 202010900206A CN 111763696 A CN111763696 A CN 111763696A
- Authority
- CN
- China
- Prior art keywords
- protein
- pfupgm
- inositol
- dcw
- reaction system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/18—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y504/00—Intramolecular transferases (5.4)
- C12Y504/02—Phosphotransferases (phosphomutases) (5.4.2)
- C12Y504/02002—Phosphoglucomutase (5.4.2.2)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明属于生物技术领域,具体涉及蛋白质PfuPGM作为葡萄糖磷酸变位酶在生产肌醇中的应用。The invention belongs to the field of biotechnology, in particular to the application of protein PfuPGM as a glucose phosphate mutase in the production of inositol.
背景技术Background technique
肌醇又名环己六醇,属于水溶性维生素B族。肌醇是人、动物与微生物生长的必需物质,其广泛应用于医药、食品、饲料等行业。Inositol, also known as cyclohexanol, belongs to the B group of water-soluble vitamins. Inositol is an essential substance for the growth of humans, animals and microorganisms, and is widely used in medicine, food, feed and other industries.
体外多酶催化制备肌醇的方法受到研究者的广泛关注。专利(CN 106148425 B)公开了一种肌醇的制备方法,是以淀粉、纤维素或其衍生物为底物,在一个多酶反应体系中,通过体外多酶高效催化将底物转化为肌醇。HaruyukiAtomi等公开了一种体外多酶催化淀粉转化生产肌醇的方法,其通过补加NAD+可获得96%的摩尔转化率。专利(CN 105925643 A)公开了一种酶法催化制备肌醇的方法,是以葡萄糖为单位的多糖或寡糖为底物,通过多步酶促转化生产肌醇。研究者致力于反应途径所涉及的各个酶的优化和改造,以提高体外多酶催化制备肌醇的稳健性。In vitro multi-enzyme catalyzed preparation of inositol has received extensive attention from researchers. The patent (CN 106148425 B) discloses a preparation method of inositol, which uses starch, cellulose or its derivatives as substrates, and in a multi-enzyme reaction system, the substrate is converted into muscle by in vitro multi-enzyme efficient catalysis. alcohol. Haruyuki Atomi et al. disclosed an in vitro multi-enzyme-catalyzed starch conversion method to produce inositol, which can obtain a molar conversion rate of 96% by supplementing NAD + . The patent (CN 105925643 A) discloses a method for preparing inositol by enzymatic catalysis, which takes polysaccharide or oligosaccharide with glucose as the substrate as the substrate, and produces inositol through multi-step enzymatic conversion. The researchers are devoted to the optimization and modification of each enzyme involved in the reaction pathway, in order to improve the robustness of the multi-enzyme catalyzed production of inositol in vitro.
发明内容SUMMARY OF THE INVENTION
本发明的目的为生产肌醇。The object of the present invention is the production of inositol.
本发明首先保护蛋白质PfuPGM的应用,可为a-d中的任一种:The present invention first protects the application of protein PfuPGM, which can be any of a-d:
a作为葡萄糖磷酸变位酶的应用;a Application as glucose phosphomutase;
b在制备葡萄糖磷酸变位酶中的应用;The application of b in the preparation of glucose phosphomutase;
c在生产肌醇中的应用;c in the production of inositol;
d在制备用于生产肌醇的产品中的应用。d Use in the manufacture of products for the production of inositol.
所述蛋白质PfuPGM可为如下e或f或g或k:The protein PfuPGM can be e or f or g or k as follows:
e氨基酸序列是SEQ ID NO:1所示的蛋白质;The amino acid sequence of e is the protein shown in SEQ ID NO: 1;
f氨基酸序列是SEQ ID NO:3所示的蛋白质;f amino acid sequence is the protein shown in SEQ ID NO: 3;
g在SEQ ID NO:1或SEQ ID NO:3所示的蛋白质的N端或/和C端连接标签得到的融合蛋白质;g fusion protein obtained by linking a tag to the N-terminus or/and C-terminus of the protein shown in SEQ ID NO: 1 or SEQ ID NO: 3;
k将e或f或g所示的蛋白质经过一个或几个氨基酸残基的取代和/或缺失和/或添加得到的具有葡萄糖磷酸变位酶活性的蛋白质。k is a protein with glucose phosphomutase activity obtained by substituting and/or deleting and/or adding one or several amino acid residues to the protein indicated by e or f or g.
其中,SEQ ID NO:1由455个氨基酸残基组成。SEQ ID NO:3由463个氨基酸残基组成。Among them, SEQ ID NO: 1 consists of 455 amino acid residues. SEQ ID NO: 3 consists of 463 amino acid residues.
为了使e或f中的蛋白质便于纯化,可在SEQ ID NO:1或SEQ ID NO:3所示的蛋白质的氨基末端或羧基末端连接上如表1所示的标签。In order to facilitate purification of the protein in e or f, a tag as shown in Table 1 can be attached to the amino terminus or carboxyl terminus of the protein shown in SEQ ID NO: 1 or SEQ ID NO: 3.
上述k中的蛋白质,所述一个或几个氨基酸残基的取代和/或缺失和/或添加为不超过10个氨基酸残基的取代和/或缺失和/或添加。For the protein in the above k, the substitution and/or deletion and/or addition of one or several amino acid residues is a substitution and/or deletion and/or addition of no more than 10 amino acid residues.
上述k中的蛋白质可人工合成,也可先合成其编码基因,再进行生物表达得到。The protein in the above k can be artificially synthesized, or can be obtained by first synthesizing its encoding gene and then carrying out biological expression.
上述k中的蛋白质的编码基因可通过将SEQ ID NO:2所示的DNA序列中缺失一个或几个氨基酸残基的密码子,和/或进行一个或几个碱基对的错义突变,和/或在其5′端和/或3′端连上表1所示的标签的编码序列得到。The gene encoding the protein in the above k can be obtained by deleting the codon of one or several amino acid residues in the DNA sequence shown in SEQ ID NO: 2, and/or carrying out missense mutation of one or several base pairs, And/or the coding sequence of the tag shown in Table 1 is attached to its 5' end and/or 3' end.
本发明还保护编码上述任一所述蛋白质PfuPGM的核酸分子或“含有编码上述任一所述蛋白质PfuPGM的核酸分子的表达盒、重组载体或重组微生物”的应用,可为a-d中的任一种:The present invention also protects the application of a nucleic acid molecule encoding any of the above-mentioned proteins PfuPGM or "an expression cassette, recombinant vector or recombinant microorganism containing a nucleic acid molecule encoding any of the above-mentioned proteins PfuPGM", which can be any of a-d :
a作为葡萄糖磷酸变位酶的应用;a Application as glucose phosphomutase;
b在制备葡萄糖磷酸变位酶中的应用;The application of b in the preparation of glucose phosphomutase;
c在生产肌醇中的应用;c in the production of inositol;
d在制备用于生产肌醇的产品中的应用。d Use in the manufacture of products for the production of inositol.
上述应用中,编码上述任一所述蛋白质PfuPGM的核酸分子可为x或y或m或n所示的DNA分子:In the above-mentioned application, the nucleic acid molecule encoding any of the above-mentioned proteins PfuPGM can be a DNA molecule shown in x or y or m or n:
x编码区是SEQ ID NO:2所示的DNA分子;The x coding region is the DNA molecule shown in SEQ ID NO: 2;
y核苷酸序列是SEQ ID NO:2所示的DNA分子;The y nucleotide sequence is the DNA molecule shown in SEQ ID NO: 2;
m与x或y限定的核苷酸序列具有75%或75%以上同一性,且编码上述任一所述蛋白质PfuPGM的DNA分子;m has 75% or more identity with the nucleotide sequence defined by x or y, and encodes a DNA molecule of any of the above-mentioned proteins PfuPGM;
n在严格条件下与x或y限定的核苷酸序列杂交,且编码上述任一所述蛋白质PfuPGM的DNA分子。n A DNA molecule that hybridizes to a nucleotide sequence defined by x or y under stringent conditions and encodes any of the proteins described above, PfuPGM.
其中,所述核酸分子可以是DNA,如cDNA、基因组DNA或重组DNA;所述核酸分子也可以是RNA,如mRNA或hnRNA等。Wherein, the nucleic acid molecule can be DNA, such as cDNA, genomic DNA or recombinant DNA; the nucleic acid molecule can also be RNA, such as mRNA or hnRNA.
其中,SEQ ID NO:2由1368个核苷酸组成,SEQ ID NO:2所示的核苷酸序列编码SEQID NO:1所示的氨基酸序列。Wherein, SEQ ID NO: 2 consists of 1368 nucleotides, and the nucleotide sequence shown in SEQ ID NO: 2 encodes the amino acid sequence shown in SEQ ID NO: 1.
本领域普通技术人员可以很容易地采用已知的方法,例如定向进化和点突变的方法,对本发明的编码蛋白质PfuPGM的核苷酸序列进行突变。那些经过人工修饰的,具有与本发明分离得到的蛋白质PfuPGM的核苷酸序列80%或者更高同一性的核苷酸,只要编码蛋白质PfuPGM,均是衍生于本发明的核苷酸序列并且等同于本发明的序列。Those of ordinary skill in the art can easily mutate the nucleotide sequence encoding the protein PfuPGM of the present invention using known methods, such as directed evolution and point mutation. Those artificially modified nucleotides with 80% or higher identity to the nucleotide sequence of the protein PfuPGM isolated by the present invention, as long as they encode the protein PfuPGM, are derived from the nucleotide sequence of the present invention and are equivalent sequences of the present invention.
这里使用的术语“同一性”指与天然核酸序列的序列相似性。“同一性”包括与本发明的编码SEQ ID NO:1所示的氨基酸序列组成的蛋白质PfuPGM的核苷酸序列具有75%或更高,或80%或更高,或85%或更高,或90%或更高,或95%或更高同一性的核苷酸序列。同一性可以用肉眼或计算机软件进行评价。使用计算机软件,两个或多个序列之间的同一性可以用百分比(%)表示,其可以用来评价相关序列之间的同一性。The term "identity" as used herein refers to sequence similarity to a native nucleic acid sequence. "Identity" includes 75% or higher, or 80% or higher, or 85% or higher with the nucleotide sequence of the present invention encoding the protein PfuPGM consisting of the amino acid sequence shown in SEQ ID NO: 1, or 90% or more, or 95% or more identical nucleotide sequences. Identity can be assessed with the naked eye or with computer software. Using computer software, the identity between two or more sequences can be expressed in percent (%), which can be used to assess the identity between related sequences.
上述应用中,含有编码上述任一所述蛋白质PfuPGM的核酸分子的重组载体具体可为重组质粒pET-20b-PfuPGM-CO;所述重组质粒pET-20b-PfuPGM-CO为将pET-20b载体的限制性内切酶NdeI和XhoI之间的DNA小片段替换为SEQ ID NO:2所示的DNA分子,得到的重组质粒。In the above-mentioned application, the recombinant vector containing the nucleic acid molecule encoding any of the above-mentioned proteins PfuPGM can specifically be the recombinant plasmid pET-20b-PfuPGM-CO; The small DNA fragment between the restriction endonucleases NdeI and XhoI is replaced with the DNA molecule shown in SEQ ID NO: 2 to obtain a recombinant plasmid.
上述应用中,含有编码上述任一所述蛋白质PfuPGM的核酸分子重组微生物可为将所述重组质粒pET-20b-PfuPGM-CO导入出发微生物,得到的重组菌。所述出发微生物可为大肠杆菌。所述大肠杆菌具体可为大肠杆菌BL21(DE3)。In the above application, the recombinant microorganism containing the nucleic acid molecule encoding any of the above-mentioned proteins PfuPGM may be a recombinant bacteria obtained by introducing the recombinant plasmid pET-20b-PfuPGM-CO into the starting microorganism. The starting microorganism may be Escherichia coli. The Escherichia coli can specifically be Escherichia coli BL21 (DE3).
上述任一所述的应用中,所述生产肌醇是以淀粉作为底物。In any of the above-mentioned applications, the production of inositol is based on starch as a substrate.
本发明还保护生产肌醇的方法。The present invention also protects methods of producing inositol.
本发明所保护的生产肌醇的方法,具体可为方法一,包括如下步骤:The method for producing myo-inositol protected by the present invention can specifically be method one, comprising the steps:
h制备反应体系1(为体外多酶催化体系);反应体系1中含有缓冲液、二价镁离子、葡聚糖磷酸化酶(αGP)、上述任一所述蛋白质PfuPGM、肌醇3磷酸合成酶(IPS)、肌醇单磷酸酶(IMP)和淀粉;h Preparation of reaction system 1 (in vitro multi-enzyme catalytic system);
i取反应体系1,65-75℃(如65-70℃、70-75℃、65℃、70℃或75℃)反应12h以上(如12h、24h、36h、48h),得到反应产物1;i Take
j从反应产物1中分离肌醇。jIsolation of myo-inositol from
所述步骤h中,缓冲液可为磷酸缓冲液。所述磷酸缓冲液具体可为40mM的磷酸缓冲液(pH7.0)。所述淀粉可为可溶性淀粉。In the step h, the buffer may be a phosphate buffer. The phosphate buffer can be specifically 40mM phosphate buffer (pH 7.0). The starch can be soluble starch.
所述步骤h中,反应体系1中可含有30-50mM(如30-40mM、40-50mM、30mM、40mM或50mM)的磷酸缓冲液(pH7.0)、4-6mM(如4-5mM、5-6mM、4mM、5mM或6mM)的二价镁离子、0.8-1.2U/ml(如0.8-1.0U/ml、1.0-1.2U/ml、0.8U/ml、1.0U/ml或1.2U/ml)的αGP、0.8-1.2U/ml(如0.8-1.0U/ml、1.0-1.2U/ml、0.8U/ml、1.0U/ml或1.2U/ml)的蛋白质PfuPGM、0.8-1.2U/ml(如0.8-1.0U/ml、1.0-1.2U/ml、0.8U/ml、1.0U/ml或1.2U/ml)的IPS、0.8-1.2U/ml(如0.8-1.0U/ml、1.0-1.2U/ml、0.8U/ml、1.0U/ml或1.2U/ml)的IMP和90-110g/L(如90-100g/L、100-110g/L、90g/L、100g/L或110g/L)的可溶性淀粉。In the step h, the
所述步骤h中,反应体系1中具体含有40mM的磷酸缓冲液(pH7.0)、5mM的二价镁离子、1U/ml的αGP、1U/ml的蛋白质PfuPGM、1U/ml的IPS、1U/ml的IMP和100g/L的可溶性淀粉。In the step h,
上述方法中,所述反应体系1中还可含有异淀粉酶(IA)。异淀粉酶在反应体系1中的浓度为0.8-1.2U/ml(如0.8-1.0U/ml、1.0-1.2U/ml、0.8U/ml、1.0U/ml或1.2U/ml)。In the above method, the
具体的,反应体系1中含有40mM的磷酸缓冲液(pH 7.0)、5mM的二价镁离子、1U/ml的αGP、1U/ml的蛋白质PfuPGM、1U/ml的IPS、1U/ml的IMP、1U/ml的IA和100g/L的可溶性淀粉。Specifically,
上述方法中,αGP来源于Thermotogamaritima,基因在KEGG上的编号为TM1168。IPS来源于Archaeoglobusfulgidus,基因在KEGG上的编号为AF1794。IMP来源于Thermotogamaritima,基因在KEGG上的编号为TM1415。IA来源于Sulfolobustokodaii,基因在KEGG上的编号为ST0928。所有酶都在大肠杆菌中异源表达并进行了纯化。In the above method, αGP is derived from Thermotogamaritima , and the gene number on KEGG is TM1168. IPS is derived from Archaeoglobus fulgidus , and the gene number on KEGG is AF1794. IMP is derived from Thermotogamaritima , and the gene number on KEGG is TM1415. IA is derived from Sulfolobustokodaii , and the gene number on KEGG is ST0928. All enzymes were heterologously expressed and purified in E. coli.
所述步骤i中,65-75℃(如65-70℃、70-75℃、65℃、70℃或75℃)反应12h以上(如12h、24h、36h、46h、48h)可以一步完成,也可以多次循环使用。In the step i, the reaction at 65-75°C (eg 65-70°C, 70-75°C, 65°C, 70°C or 75°C) for more than 12h (eg 12h, 24h, 36h, 46h, 48h) can be completed in one step, It can also be recycled multiple times.
本发明所保护的生产肌醇的方法,具体可为方法二,包括如下步骤:The method for producing myo-inositol protected by the present invention can be specifically method two, comprising the steps:
o制备反应体系2(为全细胞体系);反应体系2中含有缓冲液、二价镁离子、表达葡聚糖磷酸化酶(αGP)的细胞、表达上述任一所述蛋白质PfuPGM的细胞、表达肌醇3磷酸合成酶(IPS)的细胞、表达肌醇单磷酸酶(IMP)的细胞和淀粉;o Prepare reaction system 2 (which is a whole-cell system);
p取反应体系2,65-75℃(如65-70℃、70-75℃、65℃、70℃或75℃)反应12h以上(如12h、24h、36h、48h),得到反应产物2;p take
q从反应产物2中分离肌醇。q Isolation of myo-inositol from
所述步骤o中,缓冲液可为磷酸缓冲液。所述磷酸缓冲液具体可为10mM的磷酸缓冲液(pH7.0)。所述淀粉可为可溶性淀粉。In the step o, the buffer can be a phosphate buffer. The phosphate buffer may specifically be a 10mM phosphate buffer (pH 7.0). The starch can be soluble starch.
所述步骤o中,反应体系2中可含有8-12mM(如8-10mM、10-12mM、8mM、10mM或12mM)的磷酸缓冲液(pH7.0)、4-6mM(如4-5mM、5-6mM、4mM、5mM或6mM)的二价镁离子、0.12-0.16gDCW/L(如0.12-0.14g DCW/L、0.14-0.16g DCW/L、0.12g DCW/L、0.14g DCW/L、0.16g DCW/L)的表达αGP的细胞、0.06-0.10g DCW/L(如0.06-0.08g DCW/L、0.08-0.10g DCW/L、0.06gDCW/L、0.08g DCW/L或0.10g DCW/L)表达蛋白质PfuPGM的细胞、0.4-0.6g DCW/L(如0.4-0.5g DCW/L、0.5-0.6g DCW/L、0.4g DCW/L、0.5g DCW/L或0.6g DCW/L)表达IPS的细胞、0.06-0.10g DCW/L(如0.06-0.08g DCW/L、0.08-0.10g DCW/L、0.06g DCW/L、0.08g DCW/L或0.10g DCW/L)表达IMP的细胞和90-110g/L(如90-100g/L、100-110g/L、90g/L、100g/L或110g/L)的可溶性淀粉。In the step o, the reaction system 2 may contain 8-12mM (such as 8-10mM, 10-12mM, 8mM, 10mM or 12mM) of phosphate buffer (pH7.0), 4-6mM (such as 4-5mM, 5-6mM, 4mM, 5mM or 6mM) of divalent magnesium ions, 0.12-0.16g DCW/L (eg 0.12-0.14g DCW/L, 0.14-0.16g DCW/L, 0.12g DCW/L, 0.14g DCW/ L, 0.16g DCW/L) of αGP-expressing cells, 0.06-0.10g DCW/L (eg 0.06-0.08g DCW/L, 0.08-0.10g DCW/L, 0.06gDCW/L, 0.08g DCW/L or 0.10g DCW/L) cells expressing the protein PfuPGM, 0.4-0.6g DCW/L (such as 0.4-0.5g DCW/L, 0.5-0.6g DCW/L, 0.4g DCW/L, 0.5g DCW/L or 0.6g DCW/L) g DCW/L) cells expressing IPS, 0.06-0.10g DCW/L (eg 0.06-0.08g DCW/L, 0.08-0.10g DCW/L, 0.06g DCW/L, 0.08g DCW/L or 0.10g DCW /L) IMP-expressing cells and 90-110 g/L (eg, 90-100 g/L, 100-110 g/L, 90 g/L, 100 g/L, or 110 g/L) of soluble starch.
上述方法中,所述反应体系2中还可含有表达异淀粉酶(IA)的细胞。In the above method, the
所述步骤o中,反应体系2中可含有8-12mM(如8-10mM、10-12mM、8mM、10mM或12mM)的磷酸缓冲液(pH7.0)、4-6mM(如4-5mM、5-6mM、4mM、5mM或6mM)的二价镁离子、0.12-0.16gDCW/L(如0.12-0.14g DCW/L、0.14-0.16g DCW/L、0.12g DCW/L、0.14g DCW/L、0.16g DCW/L)的表达αGP的细胞、0.06-0.10g DCW/L(如0.06-0.08g DCW/L、0.08-0.10g DCW/L、0.06gDCW/L、0.08g DCW/L或0.10g DCW/L)表达蛋白质PfuPGM的细胞、0.4-0.6g DCW/L(如0.4-0.5g DCW/L、0.5-0.6g DCW/L、0.4g DCW/L、0.5g DCW/L或0.6g DCW/L)表达IPS的细胞、0.06-0.10g DCW/L(如0.06-0.08g DCW/L、0.08-0.10g DCW/L、0.06g DCW/L、0.08g DCW/L或0.10g DCW/L)表达IMP的细胞、0.06-0.10g DCW/L(如0.06-0.08g DCW/L、0.08-0.10gDCW/L、0.06g DCW/L、0.08g DCW/L或0.10g DCW/L)表达IA的细胞和90-110g/L(如90-100g/L、100-110g/L、90g/L、100g/L或110g/L)的可溶性淀粉。In the step o, the reaction system 2 may contain 8-12mM (such as 8-10mM, 10-12mM, 8mM, 10mM or 12mM) of phosphate buffer (pH7.0), 4-6mM (such as 4-5mM, 5-6mM, 4mM, 5mM or 6mM) of divalent magnesium ions, 0.12-0.16g DCW/L (eg 0.12-0.14g DCW/L, 0.14-0.16g DCW/L, 0.12g DCW/L, 0.14g DCW/ L, 0.16g DCW/L) of αGP-expressing cells, 0.06-0.10g DCW/L (eg 0.06-0.08g DCW/L, 0.08-0.10g DCW/L, 0.06gDCW/L, 0.08g DCW/L or 0.10g DCW/L) cells expressing the protein PfuPGM, 0.4-0.6g DCW/L (such as 0.4-0.5g DCW/L, 0.5-0.6g DCW/L, 0.4g DCW/L, 0.5g DCW/L or 0.6g DCW/L) g DCW/L) cells expressing IPS, 0.06-0.10g DCW/L (eg 0.06-0.08g DCW/L, 0.08-0.10g DCW/L, 0.06g DCW/L, 0.08g DCW/L or 0.10g DCW /L) IMP expressing cells, 0.06-0.10g DCW/L (eg 0.06-0.08g DCW/L, 0.08-0.10g DCW/L, 0.06g DCW/L, 0.08g DCW/L or 0.10g DCW/L) IA-expressing cells and 90-110 g/L (eg, 90-100 g/L, 100-110 g/L, 90 g/L, 100 g/L, or 110 g/L) of soluble starch.
具体的,反应体系2中含有10mM的磷酸缓冲液(pH 7.0)、5mM的二价镁离子、0.14gDCW/L的表达αGP的细胞、0.08g DCW/L表达蛋白质PfuPGM的细胞、0.5g DCW/L表达IPS的细胞、0.08g DCW/L表达IMP的细胞、0.08g DCW/L表达IA的细胞和100g/L的可溶性淀粉。Specifically,
上述任一所述葡萄糖磷酸变位酶可将葡萄糖1磷酸转化为葡萄糖6磷酸。Any of the glucose phosphomutases described above can convert
实验证明,蛋白质PfuPGM具有将葡萄糖1磷酸转化为葡萄糖6磷酸的活性,即葡萄糖磷酸变位酶活性,葡萄糖磷酸变位酶的比活力达到为16.2U/mg,且具有较高的稳定性和循环使用性。蛋白质PfuPGM与葡聚糖磷酸化酶(αGP)、肌醇3磷酸合成酶(IPS)和肌醇单磷酸酶(IMP)共同构建的体外多酶催化体系,表达蛋白质PfuPGM的细胞与表达葡聚糖磷酸化酶(αGP)的细胞、表达肌醇3磷酸合成酶(IPS)的细胞和表达肌醇单磷酸酶(IMP)的细胞共同构建的全细胞体系,均可以将淀粉生产肌醇,肌醇的转化率为55%以上。本发明具有重要的应用价值。Experiments have shown that the protein PfuPGM has the activity of converting
附图说明Description of drawings
图1为重组质粒pET-20b-PfuPGM-CO的结构示意图。Figure 1 is a schematic diagram of the structure of the recombinant plasmid pET-20b-PfuPGM-CO.
图2为实施例1中步骤二的SDS-PAGE检测结果。Figure 2 is the SDS-PAGE detection result of
图3为实施例2蛋白质PfuPGM的葡萄糖磷酸变位酶活力的测定结果。Fig. 3 is the measurement result of the glucose phosphomutase activity of the protein PfuPGM of Example 2.
图4为实施例3蛋白质PfuPGM的热稳定性结果。Figure 4 shows the thermal stability results of the protein PfuPGM in Example 3.
图5为实施例4蛋白质PfuPGM、αGP、IPS和IMP催化淀粉生产肌醇HPLC检测结果。Figure 5 is the HPLC detection result of protein PfuPGM, αGP, IPS and IMP catalyzed starch production of inositol in Example 4.
图6为实施例5中蛋白质PfuPGM制备肌醇的循环使用效果。FIG. 6 shows the recycling effect of protein PfuPGM to prepare inositol in Example 5. FIG.
具体实施方式Detailed ways
以下的实施例便于更好地理解本发明,但并不限定本发明。The following examples facilitate a better understanding of the present invention, but do not limit the present invention.
下述实施例中的实验方法,如无特殊说明,均为常规方法。The experimental methods in the following examples are conventional methods unless otherwise specified.
下述实施例中所用的试验材料,如无特殊说明,均为自常规生化试剂公司购买得到的。The test materials used in the following examples were purchased from conventional biochemical reagent companies unless otherwise specified.
以下实施例中的定量试验,均设置三次重复实验,结果取平均值。The quantitative tests in the following examples are all set to repeat the experiments three times, and the results are averaged.
下列实施例中未注明具体条件的实验方法,通常按照常规条件如Sambrook等人,分子克隆:实验室手册(New York:ColdSpring HarborLaboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。The experimental method of unreceipted specific conditions in the following examples, usually according to conventional conditions such as people such as Sambrook, molecular cloning: conditions described in laboratory manual (New York: Cold Spring Harbor Laboratory Press, 1989), or according to the manufacturer's suggestion conditions of.
下述实施例中,装配了美国伯乐(Bio-Rad)HPX-87H柱子的高效液相色谱(HPLC)分析仪可以用来区分反应液中的肌醇、葡萄糖、葡萄糖1磷酸、葡萄糖6磷酸;并且可以对肌醇进行定量,肌醇的浓度与HPLC图中肌醇特征峰的强度是成正比的。In the following examples, a high performance liquid chromatography (HPLC) analyzer equipped with a US Bio-Rad HPX-87H column can be used to distinguish inositol, glucose,
实施例1、蛋白质PfuPGM的表达和纯化Example 1. Expression and purification of protein PfuPGM
一、重组质粒pET-20b-PfuPGM-CO的构建1. Construction of recombinant plasmid pET-20b-PfuPGM-CO
本发明的发明人委托无锡青兰生物科技有限公司构建重组质粒pET-20b-PfuPGM-CO。具体步骤如下:The inventor of the present invention entrusted Wuxi Qinglan Biotechnology Co., Ltd. to construct the recombinant plasmid pET-20b-PfuPGM-CO. Specific steps are as follows:
1、蛋白质PfuPGM的氨基酸序列如SEQ ID NO:1所示。根据蛋白质PfuPGM的氨基酸序列,设计并优化(大肠杆菌表达系统)编码蛋白质PfuPGM的DNA分子。优化后的DNA分子如SEQ IDNO:2所示。1. The amino acid sequence of the protein PfuPGM is shown in SEQ ID NO:1. According to the amino acid sequence of protein PfuPGM, design and optimize (E. coli expression system) the DNA molecule encoding protein PfuPGM. The optimized DNA molecule is shown in SEQ ID NO:2.
2、人工合成SEQ ID NO:2所示的DNA分子。2. Artificially synthesize the DNA molecule shown in SEQ ID NO: 2.
3、将pET-20b载体(优宝生物公司的产品,产品目录号为VT1196)的限制性内切酶NdeI和XhoI之间的DNA小片段替换为SEQ ID NO:2所示的DNA分子,其它步骤均不变,得到重组质粒pET-20b-PfuPGM-CO。3. Replace the small DNA fragment between the restriction endonucleases NdeI and XhoI of the pET-20b vector (a product of Youbao Biotechnology Co., Ltd., product catalog number VT1196) with the DNA molecule shown in SEQ ID NO: 2, other The steps were unchanged, and the recombinant plasmid pET-20b-PfuPGM-CO was obtained.
重组质粒pET-20b-PfuPGM-CO表达SEQ ID NO:3所示的蛋白质PfuPGM。The recombinant plasmid pET-20b-PfuPGM-CO expresses the protein PfuPGM shown in SEQ ID NO:3.
重组质粒pET-20b-PfuPGM-CO的结构示意图见图1。The schematic diagram of the structure of the recombinant plasmid pET-20b-PfuPGM-CO is shown in Figure 1.
二、蛋白质PfuPGM的表达和纯化2. Expression and purification of protein PfuPGM
1、将重组质粒pET-20b-PfuPGM-CO转化至大肠杆菌BL21(DE3),得到重组大肠杆菌。1. Transform the recombinant plasmid pET-20b-PfuPGM-CO into Escherichia coli BL21 (DE3) to obtain recombinant Escherichia coli.
2、完成步骤1后,将重组大肠杆菌单克隆接种至3ml含100μg/ml氨苄霉素的LB液体培养基,37℃、220rpm培养过夜,得到培养菌液1。2. After
3、完成步骤2后,将1ml培养菌液1接种至200ml含100μg/ml氨苄霉素的LB液体培养基,37℃、220rpm培养,得到OD600nm值达到0.8左右的培养菌液2。3. After completing
4、完成步骤3后,向培养菌液2中加入IPTG,得到培养体系;该培养体系中,IPTG的浓度为100μM。4. After
5、完成步骤4后,取培养体系,37℃诱导4h或18℃诱导20h。5. After completing
6、完成步骤5后,离心,收集菌体。6. After completing
7、完成步骤6后,取菌体,用30mM磷酸缓冲液(pH7.0)重悬,然后超声破壁,得到细胞破碎液。7. After completing
8、完成步骤7后,取细胞破碎液,12000rpm离心10min,收集上清液。8. After completing step 7, take the cell disruption liquid, centrifuge at 12000 rpm for 10 min, and collect the supernatant.
9、将步骤7得到的细胞破碎液和步骤8收集的上清液进行SDS-PAGE。9. Perform SDS-PAGE on the cell disrupted liquid obtained in step 7 and the supernatant collected in
SDS-PAGE检测结果见图2(M为蛋白Marker,1为37℃诱导4h的细胞破碎液,2为18℃诱导20h的细胞破碎液,4为37℃诱导4h的上清液,5为18℃诱导20h的上清液)。结果表明,不管18℃诱导20h还是37℃诱导4h,蛋白质PfuPGM几乎都是可溶性表达。SDS-PAGE detection results are shown in Figure 2 (M is the protein marker, 1 is the cell disrupted solution induced at 37°C for 4 h, 2 is the cell disrupted solution induced at 18 °C for 20 h, 4 is the supernatant induced at 37 °C for 4 h, 5 is the 18 The supernatant was induced for 20 h at ℃). The results showed that the protein PfuPGM was almost always expressed in soluble form regardless of whether it was induced at 18°C for 20 hours or at 37°C for 4 hours.
10、取步骤8收集的上清液,80℃处理20min(目的为进行纯化),得到纯化产物;之后SDS-PAGE检测。10. Take the supernatant collected in
SDS-PAGE检测结果见图2(M为蛋白Marker,3为37℃诱导4h的纯化产物,6为18℃诱导20h的纯化产物)。结果表明,蛋白质PfuPGM只获得了部分纯化,但纯度并不高。SDS-PAGE detection results are shown in Figure 2 (M is the protein marker, 3 is the purified product induced at 37 °C for 4 h, and 6 is the purified product induced at 18 °C for 20 h). The results showed that the protein PfuPGM was only partially purified, but the purity was not high.
11、取步骤10得到的纯化产物,采用Ni-NTA柱进行纯化,得到纯化的蛋白质PfuPGM,用于后续实验。11. Take the purified product obtained in
按照上述方法,将SEQ ID NO:2所示的DNA分子替换为TmPGM基因,其它步骤均不变,得到蛋白质TmPGM。TmPGM基因编码蛋白质TmPGM,蛋白质TmPGM来源于Thermotogamaritima,基因在KEGG上的编号为TM0769。According to the above method, the DNA molecule shown in SEQ ID NO: 2 was replaced with the TmPGM gene, and other steps remained unchanged to obtain the protein TmPGM. The TmPGM gene encodes the protein TmPGM. The protein TmPGM is derived from Thermotogamaritima , and the gene number on KEGG is TM0769.
实施例2、蛋白质PfuPGM的葡萄糖磷酸变位酶(将葡萄糖1磷酸转化为葡萄糖6磷酸)的酶活力的测定Example 2. Determination of the enzyme activity of the glucose phosphate mutase (converting
测定葡萄糖磷酸变位酶活力的方法如下:The method for determining the activity of glucose phosphomutase is as follows:
1、制备反应体系。该反应体系含有100mM HEPES缓冲液、10mM 葡萄糖1磷酸、5mM的硫酸镁和0.0005g/l或0.001g/l蛋白质PfuPGM。1. Prepare the reaction system. The reaction system contained 100 mM HEPES buffer, 10
2、取步骤1制备的反应体系,70℃反应10min。2. Take the reaction system prepared in
3、完成步骤2后,冰浴终止反应;之后利用葡萄糖6磷酸脱氢酶偶联测定葡萄糖6磷酸的增长量,根据葡萄糖6磷酸的增长量获得蛋白质PfuPGM的葡萄糖磷酸变位酶活力。3. After completing
葡萄糖磷酸变位酶活力定义为:在70℃条件下,每分钟将葡萄糖1磷酸转化为1μmol葡萄糖6磷酸所需要的酶量为1U。Glucose phosphomutase activity was defined as: the amount of enzyme required to convert
反应过程中产生的葡萄糖6磷酸如图3中A所示。结果表明,酶的反应是线性反应。也就是说,生成的葡萄糖6磷酸和反应时间与酶浓度是成正比的。The
将酶浓度和生产葡萄糖6磷酸的速度作图,见图3中B。结果表明,70℃时,蛋白质PfuPGM的葡萄糖磷酸变位酶的比活力为16.2U/mg。The enzyme concentration was plotted against the rate of
按照上述方法,将蛋白质PfuPGM替换为蛋白质TmPGM,其它步骤均不变。结果表明,70℃时,蛋白质TmPGM的葡萄糖磷酸变位酶的比活力为16.6U/mg。According to the above method, the protein PfuPGM was replaced with the protein TmPGM, and other steps were unchanged. The results showed that the specific activity of glucose phosphomutase of protein TmPGM was 16.6U/mg at 70℃.
实施例3、蛋白质PfuPGM的稳定性Example 3. Stability of protein PfuPGM
1、将蛋白质PfuPGM加入含5mM硫酸镁离子的30mM磷酸缓冲液(pH7.0)中,得到样品溶液。该样品溶液中,蛋白质PfuPGM的浓度为0.1mg/ml。1. Add protein PfuPGM to 30 mM phosphate buffer (pH 7.0) containing 5 mM magnesium sulfate ions to obtain a sample solution. In this sample solution, the concentration of protein PfuPGM was 0.1 mg/ml.
2、取步骤1得到的样品溶液,70℃处理4h、8h、16h、20h或32h,得到处理溶液。2. Take the sample solution obtained in
3、按照实施例2测定葡萄糖磷酸变位酶活力的方法,将“0.0005g/l或0.001g/l蛋白质PfuPGM”替换为5μl或10μl处理溶液,获得处理溶液的葡萄糖磷酸变位酶活力;将“0.0005g/l或0.001g/l蛋白质PfuPGM”替换为5μl或10μl样品溶液,获得样品溶液的葡萄糖磷酸变位酶活力。3. According to the method for measuring glucose phosphomutase activity in Example 2, replace "0.0005g/l or 0.001g/l protein PfuPGM" with 5 μl or 10 μl of the treatment solution to obtain the glucose phosphomutase activity of the treatment solution; "0.0005 g/l or 0.001 g/l protein PfuPGM" was replaced with 5 μl or 10 μl of the sample solution, and the glucose phosphomutase activity of the sample solution was obtained.
检测结果见图4。结果表明,蛋白质PfuPGM在70℃的t1/2时间(即酶活失去一半的时间)为31.8h,具有较好的稳定性。The test results are shown in Figure 4. The results showed that the t 1/2 time of the protein PfuPGM at 70°C (that is, the time when the enzyme activity lost half of the enzyme activity) was 31.8h, and it had good stability.
按照上述方法,将蛋白质PfuPGM替换为蛋白质TmPGM,其它步骤均不变。According to the above method, the protein PfuPGM was replaced with the protein TmPGM, and other steps were unchanged.
检测结果见图4。结果表明,蛋白质TmPGM在70℃的t1/2时间(即酶活失去一半的时间)为8.9h。The test results are shown in Figure 4. The results showed that the t 1/2 time of protein TmPGM at 70°C (ie the time when the enzyme activity lost half) was 8.9h.
实施例4、蛋白质PfuPGM在制备肌醇中的应用Example 4. Application of protein PfuPGM in the preparation of inositol
构建含有葡聚糖磷酸化酶(αGP)、葡萄糖磷酸变位酶(即蛋白质PfuPGM)、肌醇3磷酸合成酶(IPS)和肌醇单磷酸酶(IMP)的体外多酶催化体系,以淀粉为底物生产肌醇。体外多酶催化体系中,αGP用于从淀粉和无机磷离子生产葡萄糖1磷酸,蛋白质PfuPGM用于将葡萄糖1磷酸转化为葡萄糖6磷酸,IPS用于将葡萄糖6磷酸转化为肌醇1磷酸,IMP用于将肌醇1磷酸转化为肌醇,释放出无机磷。整个反应过程中磷离子是平衡的。αGP来源于Thermotogamaritima,基因在KEGG上的编号为TM1168。IPS来源于Archaeoglobusfulgidus,基因在KEGG上的编号为AF1794。IMP来源于Thermotogamaritima,基因在KEGG上的编号为TM1415。所有酶都在大肠杆菌中异源表达并进行了纯化。To construct an in vitro multi-enzyme catalytic system containing glucan phosphorylase (αGP), glucose phosphate mutase (ie protein PfuPGM), inositol 3-phosphate synthase (IPS) and inositol monophosphatase (IMP), starch Produces inositol for substrates. In the in vitro multi-enzyme catalytic system, αGP is used to produce
1、制备1ml反应体系;该反应体系中含有40mM的磷酸缓冲液(pH 7.0)、5mM的二价镁离子、1U/ml的αGP、1U/ml的蛋白质PfuPGM、1U/ml的IPS、1U/ml的IMP和100g/L的可溶性淀粉。1. Prepare a 1ml reaction system; the reaction system contains 40mM phosphate buffer (pH 7.0), 5mM divalent magnesium ions, 1U/ml αGP, 1U/ml protein PfuPGM, 1U/ml IPS, 1U/ml ml of IMP and 100 g/L of soluble starch.
2、取步骤1制备的反应体系,70℃反应0h、24h或48h。2. Take the reaction system prepared in
3、用装配了美国伯乐(Bio-Rad)HPX-87H柱子的高效液相色谱(HPLC)分析仪检测完成步骤2后的反应体系中的组分。HPLC的流动相为5mM的稀硫酸。3. Use a high performance liquid chromatography (HPLC) analyzer equipped with a US Bio-Rad HPX-87H column to detect the components in the reaction system after completing
检测结果见图5。结果表明,肌醇的浓度是随着反应时间增加而增加的;70℃反应48h时,肌醇的浓度为55g/L,转化率为55%。由此可见,蛋白质PfuPGM具有将葡萄糖1磷酸转化为葡萄糖6磷酸的活性,并可与其他酶构建体外多酶催化体系,用于将淀粉生产肌醇的反应中。The test results are shown in Figure 5. The results showed that the concentration of inositol increased with the increase of reaction time; when the reaction was carried out at 70℃ for 48h, the concentration of inositol was 55g/L, and the conversion rate was 55%. It can be seen that the protein PfuPGM has the activity of converting
实施例5、蛋白质PfuPGM制备肌醇的循环使用效果
肌醇相对含量=滤出液N中的肌醇含量/滤出液1中的肌醇含量×100%,N为2、3、4或5。Relative inositol content = inositol content in filtrate N / inositol content in
一、蛋白质PfuPGM制备肌醇的循环使用效果1. The recycling effect of protein PfuPGM to prepare inositol
1、制备1ml反应体系;该反应体系中含有40mM的磷酸缓冲液(pH 7.0)、5mM的二价镁离子、1U/ml的αGP、1U/ml的蛋白质PfuPGM、1U/ml的IPS、1U/ml的IMP和100g/L的可溶性淀粉。1. Prepare a 1ml reaction system; the reaction system contains 40mM phosphate buffer (pH 7.0), 5mM divalent magnesium ions, 1U/ml αGP, 1U/ml protein PfuPGM, 1U/ml IPS, 1U/ml ml of IMP and 100 g/L of soluble starch.
2、取步骤1制备的反应体系,70℃反应12h;超滤,得到滤出液1和浓缩液1。2. Take the reaction system prepared in
通过HPLC检测滤出液1中的肌醇含量。将该肌醇含量记为100%。The content of inositol in
3、取浓缩液1,利用超滤方法用缓冲液洗涤2次,随后加入终浓度为40mM的磷酸缓冲液(pH 7.0)、5mM的二价镁离子和100g/L的可溶性淀粉,70℃反应12h;超滤,得到滤出液2和浓缩液2。3. Take the
通过HPLC检测滤出液2中的肌醇含量,并计算肌醇相对含量。The content of inositol in
4、取浓缩液2,利用超滤方法用缓冲液洗涤2次,随后加入终浓度为40mM的磷酸缓冲液(pH 7.0)、5mM的二价镁离子和100g/L的可溶性淀粉,70℃反应12h;超滤,得到滤出液3和浓缩液3。4. Take the
通过HPLC检测滤出液3中的肌醇含量,并计算肌醇相对含量。The content of inositol in
5、取浓缩液3,利用超滤方法用缓冲液洗涤2次,随后加入终浓度为40mM的磷酸缓冲液(pH 7.0)、5mM的二价镁离子和100g/L的可溶性淀粉,70℃反应12h;超滤,得到滤出液4和浓缩液4。5. Take the
通过HPLC检测滤出液4中的肌醇含量,并计算肌醇相对含量。The content of inositol in
6、取浓缩液4,利用超滤方法用缓冲液洗涤2次,随后加入终浓度为40mM的磷酸缓冲液(pH 7.0)、5mM的二价镁离子和100g/L的可溶性淀粉,70℃反应12h;超滤,得到滤出液5和浓缩液5。6. Take
通过HPLC检测滤出液5中的肌醇含量,并计算肌醇相对含量。The content of inositol in the
检测结果见图6。结果表明,滤出液5中肌醇相对含量可达49.5%。The test results are shown in Figure 6. The results showed that the relative content of inositol in
二、蛋白质TmPGM制备肌醇的循环使用效果2. The recycling effect of protein TmPGM to prepare inositol
按照步骤一中1至4的方法,将蛋白质PfuPGM替换为蛋白质TmPGM,其它步骤均不变。Replace the protein PfuPGM with the protein TmPGM according to the
检测结果见图6。结果表明,采用蛋白质TmPGM制备肌醇时,滤出液3中肌醇相对含量仅为9.5%。The test results are shown in Figure 6. The results showed that when the protein TmPGM was used to prepare inositol, the relative content of inositol in
由此可见,含有蛋白质PfuPGM的多酶催化体系的稳定性和循环使用性得到较大提高。It can be seen that the stability and reusability of the multi-enzyme catalytic system containing protein PfuPGM have been greatly improved.
实施例6、异淀粉酶(IA)在制备肌醇中的应用Example 6. Application of isoamylase (IA) in the preparation of inositol
为提高淀粉的利用率,本发明在制备肌醇的反应体系中添加了异淀粉酶(IA)。IA来源于Sulfolobustokodaii,基因在KEGG上的编号为ST0928。In order to improve the utilization rate of starch, the present invention adds isoamylase (IA) to the reaction system for preparing inositol. IA is derived from Sulfolobustokodaii , and the gene number on KEGG is ST0928.
1、制备1ml反应体系;该反应体系中含有40mM的磷酸缓冲液(pH 7.0)、5mM的二价镁离子、1U/ml的αGP、1U/ml的蛋白质PfuPGM、1U/ml的IPS、1U/ml的IMP、1U/ml的IA和100g/L的可溶性淀粉。1. Prepare a 1ml reaction system; the reaction system contains 40mM phosphate buffer (pH 7.0), 5mM divalent magnesium ions, 1U/ml αGP, 1U/ml protein PfuPGM, 1U/ml IPS, 1U/ml ml of IMP, 1 U/ml of IA and 100 g/L of soluble starch.
2、取步骤1制备的反应体系,70℃反应48h。2. Take the reaction system prepared in
3、用装配了美国伯乐(Bio-Rad)HPX-87H柱子的高效液相色谱(HPLC)分析仪检测完成步骤2后的反应体系中的组分。HPLC的流动相为5mM的稀硫酸。3. Use a high performance liquid chromatography (HPLC) analyzer equipped with a US Bio-Rad HPX-87H column to detect the components in the reaction system after completing
结果表明,肌醇的浓度是随着反应时间增加而增加的;反应结束后,肌醇的浓度为70g/L,转化率为70%。The results showed that the concentration of inositol increased with the increase of reaction time; after the reaction, the concentration of inositol was 70g/L, and the conversion rate was 70%.
按照上述方法,将蛋白质PfuPGM替换为蛋白质TmPGM,其它步骤均不变。结果表明,肌醇的浓度是随着反应时间增加而增加的;反应结束后,肌醇的浓度为69g/L,转化率为69%。According to the above method, the protein PfuPGM was replaced with the protein TmPGM, and other steps were unchanged. The results showed that the concentration of inositol increased with the increase of reaction time; after the reaction, the concentration of inositol was 69 g/L, and the conversion rate was 69%.
由此可见,添加IA有助于提高肌醇的产量。It can be seen that adding IA helps to increase the production of inositol.
实施例7、含蛋白质PfuPGM的全细胞体系在制备肌醇中的应用Example 7. Application of whole cell system containing protein PfuPGM in the preparation of inositol
分别构建表达α葡聚糖磷酸化酶(αGP)的细胞、表达葡萄糖磷酸变位酶(即蛋白质PfuPGM)的细胞、表达肌醇3磷酸合成酶(IPS)的细胞、表达肌醇单磷酸酶(IMP)的细胞和表达异淀粉酶(IA)的细胞;诱导表达产酶后进行透性化处理。将透性化处理的细胞混合在一起后加入无机磷酸根以及淀粉等进行全细胞催化反应。Cells expressing α-glucan phosphorylase (αGP), cells expressing glucose phosphomutase (ie protein PfuPGM), cells expressing inositol 3-phosphate synthase (IPS), and cells expressing inositol monophosphatase ( IMP) cells and cells expressing isoamylase (IA); permeabilization treatment was performed after inducing the expression of the enzyme. After the permeabilized cells were mixed together, inorganic phosphate and starch were added to carry out the whole-cell catalytic reaction.
透性化处理的方式为热处理。具体为:收集含有酶的全细胞,先加入10mM磷酸缓冲液(pH7.0)洗涤1次,弃上清;然后再加入10mM磷酸缓冲液(pH7.0)重悬;重悬后的细胞75℃处理15min,即完成透性化处理。The way of permeabilization treatment is heat treatment. Specifically: collect the whole cells containing the enzyme, add 10mM phosphate buffer (pH7.0) to wash once, discard the supernatant; then add 10mM phosphate buffer (pH7.0) to resuspend; the resuspended cells 75 After 15min treatment at ℃, the permeabilization treatment was completed.
具体步骤如下:Specific steps are as follows:
1、制备1ml反应体系;该反应体系中含有10mM的磷酸缓冲液(pH 7.0)、5mM的二价镁离子、0.14g DCW/L的表达αGP的细胞、0.08g DCW/L表达蛋白质PfuPGM的细胞、0.5g DCW/L表达IPS的细胞、0.08g DCW/L表达IMP的细胞、0.08g DCW/L表达IA的细胞和100g/L的可溶性淀粉。1. Prepare a 1ml reaction system; the reaction system contains 10mM phosphate buffer (pH 7.0), 5mM divalent magnesium ions, 0.14g DCW/L cells expressing αGP, and 0.08g DCW/L cells expressing protein PfuPGM , 0.5 g DCW/L IPS expressing cells, 0.08 g DCW/L IMP expressing cells, 0.08 g DCW/L IA expressing cells and 100 g/L soluble starch.
2、取步骤1制备的反应体系,70℃反应46h。2. Take the reaction system prepared in
3、用装配了美国伯乐(Bio-Rad)HPX-87H柱子的高效液相色谱(HPLC)分析仪检测完成步骤2后的反应体系中的组分。HPLC的流动相为5mM的稀硫酸。3. Use a high performance liquid chromatography (HPLC) analyzer equipped with a US Bio-Rad HPX-87H column to detect the components in the reaction system after completing
结果表明,肌醇的浓度是随着反应时间的增加而增加的;反应结束后,肌醇的浓度是65.3g/L,转化率为65.3%。由此可见,表达蛋白质PfuPGM的细胞同样具有催化葡萄糖1磷酸转化为葡萄糖6磷酸的活性,并且可与其它表达酶的细胞组建全细胞催化体系,将淀粉生产肌醇。The results showed that the concentration of inositol increased with the increase of reaction time; after the reaction, the concentration of inositol was 65.3g/L, and the conversion rate was 65.3%. It can be seen that the cells expressing the protein PfuPGM also have the activity of catalyzing the conversion of
<110> 中国科学院天津工业生物技术研究所<110> Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences
<120> 蛋白质PfuPGM作为葡萄糖磷酸变位酶在生产肌醇中的应用<120> Application of Protein PfuPGM as Glucose Phosphomutase in the Production of Inositol
<160> 3<160> 3
<170> PatentIn version 3.5<170> PatentIn version 3.5
<210> 1<210> 1
<211> 455<211> 455
<212> PRT<212> PRT
<213> Artificial sequence<213> Artificial sequence
<400> 1<400> 1
Met Gly Lys Leu Phe Gly Thr Phe Gly Val Arg Gly Thr Ala Asn LysMet Gly Lys Leu Phe Gly Thr Phe Gly Val Arg Gly Thr Ala Asn Lys
1 5 10 151 5 10 15
Asp Ile Thr Pro Glu Phe Ala Leu Lys Ile Gly Met Ala Phe Gly ThrAsp Ile Thr Pro Glu Phe Ala Leu Lys Ile Gly Met Ala Phe Gly Thr
20 25 30 20 25 30
Leu Leu Arg Arg Glu Gly Lys Lys Lys Pro Val Val Val Val Gly ArgLeu Leu Arg Arg Glu Gly Lys Lys Lys Pro Val Val Val Val Gly Arg
35 40 45 35 40 45
Asp Thr Arg Val Ser Gly Glu Met Leu Lys Ser Ala Leu Ile Ser GlyAsp Thr Arg Val Ser Gly Glu Met Leu Lys Ser Ala Leu Ile Ser Gly
50 55 60 50 55 60
Leu Leu Ser Val Gly Cys Asp Val Ile Asp Val Gly Ile Ala Pro ThrLeu Leu Ser Val Gly Cys Asp Val Ile Asp Val Gly Ile Ala Pro Thr
65 70 75 8065 70 75 80
Pro Ala Ile Gln Trp Ala Thr Asn His Leu Lys Ala Asp Gly Gly AlaPro Ala Ile Gln Trp Ala Thr Asn His Leu Lys Ala Asp Gly Gly Ala
85 90 95 85 90 95
Val Ile Thr Ala Ser His Asn Pro Pro Glu Tyr Asn Gly Ile Lys LeuVal Ile Thr Ala Ser His Asn Pro Pro Glu Tyr Asn Gly Ile Lys Leu
100 105 110 100 105 110
Leu Glu Pro Asn Gly Met Gly Leu Lys Lys Glu Arg Glu Ala Ile ValLeu Glu Pro Asn Gly Met Gly Leu Lys Lys Glu Arg Glu Ala Ile Val
115 120 125 115 120 125
Glu Glu Ile Phe Phe Lys Glu Asp Phe Asp Arg Val Glu Trp His GluGlu Glu Ile Phe Phe Lys Glu Asp Phe Asp Arg Val Glu Trp His Glu
130 135 140 130 135 140
Ile Gly Glu Val Arg Glu Val Asp Ile Ile Lys Pro Tyr Ile Glu AlaIle Gly Glu Val Arg Glu Val Asp Ile Ile Lys Pro Tyr Ile Glu Ala
145 150 155 160145 150 155 160
Ile Lys Ser Lys Val Asp Val Glu Ala Ile Lys Lys Arg Arg Pro PheIle Lys Ser Lys Val Asp Val Glu Ala Ile Lys Lys Arg Arg Pro Phe
165 170 175 165 170 175
Val Val Val Asp Thr Ser Asn Gly Ala Gly Ser Leu Thr Leu Pro TyrVal Val Val Asp Thr Ser Asn Gly Ala Gly Ser Leu Thr Leu Pro Tyr
180 185 190 180 185 190
Leu Leu Arg Glu Leu Gly Cys Lys Val Val Ser Val Asn Ala His ProLeu Leu Arg Glu Leu Gly Cys Lys Val Val Ser Val Asn Ala His Pro
195 200 205 195 200 205
Asp Gly His Phe Pro Ala Arg Asn Pro Glu Pro Asn Glu Glu Asn LeuAsp Gly His Phe Pro Ala Arg Asn Pro Glu Pro Asn Glu Glu Asn Leu
210 215 220 210 215 220
Lys Gly Phe Met Glu Ile Val Lys Ala Leu Gly Ala Asp Phe Gly ValLys Gly Phe Met Glu Ile Val Lys Ala Leu Gly Ala Asp Phe Gly Val
225 230 235 240225 230 235 240
Ala Gln Asp Gly Asp Ala Asp Arg Ala Val Phe Ile Asp Glu Asn GlyAla Gln Asp Gly Asp Ala Asp Arg Ala Val Phe Ile Asp Glu Asn Gly
245 250 255 245 250 255
Arg Phe Ile Gln Gly Asp Lys Thr Phe Ala Leu Val Ala Asp Ala ValArg Phe Ile Gln Gly Asp Lys Thr Phe Ala Leu Val Ala Asp Ala Val
260 265 270 260 265 270
Leu Arg Glu Asn Gly Gly Gly Leu Leu Val Thr Thr Val Ala Thr SerLeu Arg Glu Asn Gly Gly Gly Leu Leu Val Thr Thr Val Ala Thr Ser
275 280 285 275 280 285
Asn Leu Leu Asp Asp Ile Ala Lys Lys His Gly Ala Lys Val Met ArgAsn Leu Leu Asp Asp Ile Ala Lys Lys His Gly Ala Lys Val Met Arg
290 295 300 290 295 300
Thr Lys Val Gly Asp Leu Ile Val Ala Arg Ala Leu Tyr Glu Asn AsnThr Lys Val Gly Asp Leu Ile Val Ala Arg Ala Leu Tyr Glu Asn Asn
305 310 315 320305 310 315 320
Gly Thr Ile Gly Gly Glu Glu Asn Gly Gly Val Ile Phe Pro Asp HisGly Thr Ile Gly Gly Gly Glu Glu Asn Gly Gly Val Ile Phe Pro Asp His
325 330 335 325 330 335
Val Leu Gly Arg Asp Gly Ala Met Thr Val Ala Lys Val Val Glu IleVal Leu Gly Arg Asp Gly Ala Met Thr Val Ala Lys Val Val Glu Ile
340 345 350 340 345 350
Phe Ala Lys Ser Gly Lys Lys Phe Ser Glu Leu Ile Asp Glu Leu ProPhe Ala Lys Ser Gly Lys Lys Phe Ser Glu Leu Ile Asp Glu Leu Pro
355 360 365 355 360 365
Lys Tyr Tyr Gln Ile Lys Thr Lys Arg His Val Glu Gly Asp Arg TyrLys Tyr Tyr Gln Ile Lys Thr Lys Arg His Val Glu Gly Asp Arg Tyr
370 375 380 370 375 380
Ala Ile Val Asn Lys Val Ala Glu Met Ala Arg Glu Arg Gly Tyr ThrAla Ile Val Asn Lys Val Ala Glu Met Ala Arg Glu Arg Gly Tyr Thr
385 390 395 400385 390 395 400
Val Asp Thr Thr Asp Gly Ala Lys Ile Ile Phe Glu Asp Gly Trp ValVal Asp Thr Thr Asp Gly Ala Lys Ile Ile Phe Glu Asp Gly Trp Val
405 410 415 405 410 415
Leu Val Arg Ala Ser Gly Thr Glu Pro Ile Ile Arg Ile Phe Ser GluLeu Val Arg Ala Ser Gly Thr Glu Pro Ile Ile Arg Ile Phe Ser Glu
420 425 430 420 425 430
Ala Lys Ser Glu Glu Lys Ala Gln Glu Tyr Leu Asp Leu Gly Ile GluAla Lys Ser Glu Glu Lys Ala Gln Glu Tyr Leu Asp Leu Gly Ile Glu
435 440 445 435 440 445
Leu Leu Glu Lys Ala Leu SerLeu Leu Glu Lys Ala Leu Ser
450 455 450 455
<210> 2<210> 2
<211> 1368<211> 1368
<212> DNA<212> DNA
<213> Artificial sequence<213> Artificial sequence
<400> 2<400> 2
atgggtaaac tgttcggcac ctttggtgtg cgcggcacgg cgaataaaga cattaccccg 60atgggtaaac tgttcggcac ctttggtgtg cgcggcacgg cgaataaaga cattaccccg 60
gagttcgcgc tgaaaatcgg catggccttt ggcacgctgc tgcgccgtga aggcaaaaag 120gagttcgcgc tgaaaatcgg catggccttt ggcacgctgc tgcgccgtga aggcaaaaag 120
aagccagtgg ttgtggttgg ccgcgatacc cgtgtgagcg gtgaaatgct gaaaagcgcg 180aagccagtgg ttgtggttgg ccgcgatacc cgtgtgagcg gtgaaatgct gaaaagcgcg 180
ctgatcagcg gtctgctgag cgtgggttgc gatgtgatcg atgttggcat cgcgccaacg 240ctgatcagcg gtctgctgag cgtgggttgc gatgtgatcg atgttggcat cgcgccaacg 240
ccagccattc agtgggccac gaatcatctg aaagccgatg gcggcgcggt tattaccgcc 300ccagccattc agtgggccac gaatcatctg aaagccgatg gcggcgcggt tattaccgcc 300
agccataatc cgccggaata caacggcatt aagctgctgg agccgaatgg catgggtctg 360agccataatc cgccggaata caacggcatt aagctgctgg agccgaatgg catgggtctg 360
aaaaaggaac gcgaggccat cgtggaagag atcttcttca aggaggattt cgatcgcgtt 420aaaaaggaac gcgaggccat cgtggaagag atcttcttca aggaggattt cgatcgcgtt 420
gagtggcatg aaatcggcga ggtgcgtgag gtggacatca tcaaaccgta tatcgaagcg 480gagtggcatg aaatcggcga ggtgcgtgag gtggacatca tcaaaccgta tatcgaagcg 480
atcaagagca aggtggacgt tgaggccatc aagaaacgcc gcccgtttgt ggtggttgat 540atcaagagca aggtggacgt tgaggccatc aagaaacgcc gcccgtttgt ggtggttgat 540
accagcaatg gtgcgggtag tctgacgctg ccatatctgc tgcgcgaact gggttgcaaa 600accagcaatg gtgcgggtag tctgacgctg ccatatctgc tgcgcgaact gggttgcaaa 600
gtggtgagcg ttaacgcgca tccagatggc catttcccag cgcgcaatcc ggaaccgaac 660gtggtgagcg ttaacgcgca tccagatggc catttcccag cgcgcaatcc ggaaccgaac 660
gaggaaaatc tgaagggctt catggagatc gtgaaagcgc tcggcgcgga ctttggcgtt 720gaggaaaatc tgaagggctt catggagatc gtgaaagcgc tcggcgcgga ctttggcgtt 720
gcccaagatg gtgatgccga ccgtgccgtg ttcatcgacg agaatggccg cttcatccaa 780gcccaagatg gtgatgccga ccgtgccgtg ttcatcgacg agaatggccg cttcatccaa 780
ggcgacaaaa cgtttgcgct ggtggccgat gcggtgctcc gtgaaaatgg cggtggtctg 840ggcgacaaaa cgtttgcgct ggtggccgat gcggtgctcc gtgaaaatgg cggtggtctg 840
ctggttacca cggtggccac cagtaatctg ctggatgaca tcgccaaaaa gcatggcgcc 900ctggttacca cggtggccac cagtaatctg ctggatgaca tcgccaaaaa gcatggcgcc 900
aaagtgatgc gcaccaaagt tggcgatctg atcgtggcgc gtgcgctgta tgagaataat 960aaagtgatgc gcaccaaagt tggcgatctg atcgtggcgc gtgcgctgta tgagaataat 960
ggcaccatcg gcggcgaaga gaatggtggc gttatcttcc cggaccatgt tctgggccgc 1020ggcaccatcg gcggcgaaga gaatggtggc gttatcttcc cggaccatgt tctgggccgc 1020
gatggtgcga tgaccgttgc caaagtggtg gagatcttcg ccaaaagcgg caagaagttc 1080gatggtgcga tgaccgttgc caaagtggtg gagatcttcg ccaaaagcgg caagaagttc 1080
agcgagctga tcgacgaact gccaaagtac tatcaaatca agaccaaacg ccatgtggaa 1140agcgagctga tcgacgaact gccaaagtac tatcaaatca agaccaaacg ccatgtggaa 1140
ggcgaccgct acgccattgt gaacaaggtt gccgaaatgg cgcgcgaacg cggttacacg 1200ggcgaccgct acgccattgt gaacaaggtt gccgaaatgg cgcgcgaacg cggttacacg 1200
gttgacacga ccgatggcgc gaaaatcatc ttcgaggacg gctgggttct cgttcgcgcc 1260gttgacacga ccgatggcgc gaaaatcatc ttcgaggacg gctgggttct cgttcgcgcc 1260
agtggcaccg agccgattat ccgcatcttc agcgaggcca aaagcgagga gaaggcgcaa 1320agtggcaccg agccgattat ccgcatcttc agcgaggcca aaagcgagga gaaggcgcaa 1320
gaatatctgg atctgggcat cgagctgctg gagaaagcgc tgagttaa 1368gaatatctgg atctgggcat cgagctgctg gagaaagcgc tgagttaa 1368
<210> 3<210> 3
<211> 463<211> 463
<212> PRT<212> PRT
<213> Artificial sequence<213> Artificial sequence
<400> 3<400> 3
Met Gly Lys Leu Phe Gly Thr Phe Gly Val Arg Gly Thr Ala Asn LysMet Gly Lys Leu Phe Gly Thr Phe Gly Val Arg Gly Thr Ala Asn Lys
1 5 10 151 5 10 15
Asp Ile Thr Pro Glu Phe Ala Leu Lys Ile Gly Met Ala Phe Gly ThrAsp Ile Thr Pro Glu Phe Ala Leu Lys Ile Gly Met Ala Phe Gly Thr
20 25 30 20 25 30
Leu Leu Arg Arg Glu Gly Lys Lys Lys Pro Val Val Val Val Gly ArgLeu Leu Arg Arg Glu Gly Lys Lys Lys Pro Val Val Val Val Gly Arg
35 40 45 35 40 45
Asp Thr Arg Val Ser Gly Glu Met Leu Lys Ser Ala Leu Ile Ser GlyAsp Thr Arg Val Ser Gly Glu Met Leu Lys Ser Ala Leu Ile Ser Gly
50 55 60 50 55 60
Leu Leu Ser Val Gly Cys Asp Val Ile Asp Val Gly Ile Ala Pro ThrLeu Leu Ser Val Gly Cys Asp Val Ile Asp Val Gly Ile Ala Pro Thr
65 70 75 8065 70 75 80
Pro Ala Ile Gln Trp Ala Thr Asn His Leu Lys Ala Asp Gly Gly AlaPro Ala Ile Gln Trp Ala Thr Asn His Leu Lys Ala Asp Gly Gly Ala
85 90 95 85 90 95
Val Ile Thr Ala Ser His Asn Pro Pro Glu Tyr Asn Gly Ile Lys LeuVal Ile Thr Ala Ser His Asn Pro Pro Glu Tyr Asn Gly Ile Lys Leu
100 105 110 100 105 110
Leu Glu Pro Asn Gly Met Gly Leu Lys Lys Glu Arg Glu Ala Ile ValLeu Glu Pro Asn Gly Met Gly Leu Lys Lys Glu Arg Glu Ala Ile Val
115 120 125 115 120 125
Glu Glu Ile Phe Phe Lys Glu Asp Phe Asp Arg Val Glu Trp His GluGlu Glu Ile Phe Phe Lys Glu Asp Phe Asp Arg Val Glu Trp His Glu
130 135 140 130 135 140
Ile Gly Glu Val Arg Glu Val Asp Ile Ile Lys Pro Tyr Ile Glu AlaIle Gly Glu Val Arg Glu Val Asp Ile Ile Lys Pro Tyr Ile Glu Ala
145 150 155 160145 150 155 160
Ile Lys Ser Lys Val Asp Val Glu Ala Ile Lys Lys Arg Arg Pro PheIle Lys Ser Lys Val Asp Val Glu Ala Ile Lys Lys Arg Arg Pro Phe
165 170 175 165 170 175
Val Val Val Asp Thr Ser Asn Gly Ala Gly Ser Leu Thr Leu Pro TyrVal Val Val Asp Thr Ser Asn Gly Ala Gly Ser Leu Thr Leu Pro Tyr
180 185 190 180 185 190
Leu Leu Arg Glu Leu Gly Cys Lys Val Val Ser Val Asn Ala His ProLeu Leu Arg Glu Leu Gly Cys Lys Val Val Ser Val Asn Ala His Pro
195 200 205 195 200 205
Asp Gly His Phe Pro Ala Arg Asn Pro Glu Pro Asn Glu Glu Asn LeuAsp Gly His Phe Pro Ala Arg Asn Pro Glu Pro Asn Glu Glu Asn Leu
210 215 220 210 215 220
Lys Gly Phe Met Glu Ile Val Lys Ala Leu Gly Ala Asp Phe Gly ValLys Gly Phe Met Glu Ile Val Lys Ala Leu Gly Ala Asp Phe Gly Val
225 230 235 240225 230 235 240
Ala Gln Asp Gly Asp Ala Asp Arg Ala Val Phe Ile Asp Glu Asn GlyAla Gln Asp Gly Asp Ala Asp Arg Ala Val Phe Ile Asp Glu Asn Gly
245 250 255 245 250 255
Arg Phe Ile Gln Gly Asp Lys Thr Phe Ala Leu Val Ala Asp Ala ValArg Phe Ile Gln Gly Asp Lys Thr Phe Ala Leu Val Ala Asp Ala Val
260 265 270 260 265 270
Leu Arg Glu Asn Gly Gly Gly Leu Leu Val Thr Thr Val Ala Thr SerLeu Arg Glu Asn Gly Gly Gly Leu Leu Val Thr Thr Val Ala Thr Ser
275 280 285 275 280 285
Asn Leu Leu Asp Asp Ile Ala Lys Lys His Gly Ala Lys Val Met ArgAsn Leu Leu Asp Asp Ile Ala Lys Lys His Gly Ala Lys Val Met Arg
290 295 300 290 295 300
Thr Lys Val Gly Asp Leu Ile Val Ala Arg Ala Leu Tyr Glu Asn AsnThr Lys Val Gly Asp Leu Ile Val Ala Arg Ala Leu Tyr Glu Asn Asn
305 310 315 320305 310 315 320
Gly Thr Ile Gly Gly Glu Glu Asn Gly Gly Val Ile Phe Pro Asp HisGly Thr Ile Gly Gly Gly Glu Glu Asn Gly Gly Val Ile Phe Pro Asp His
325 330 335 325 330 335
Val Leu Gly Arg Asp Gly Ala Met Thr Val Ala Lys Val Val Glu IleVal Leu Gly Arg Asp Gly Ala Met Thr Val Ala Lys Val Val Glu Ile
340 345 350 340 345 350
Phe Ala Lys Ser Gly Lys Lys Phe Ser Glu Leu Ile Asp Glu Leu ProPhe Ala Lys Ser Gly Lys Lys Phe Ser Glu Leu Ile Asp Glu Leu Pro
355 360 365 355 360 365
Lys Tyr Tyr Gln Ile Lys Thr Lys Arg His Val Glu Gly Asp Arg TyrLys Tyr Tyr Gln Ile Lys Thr Lys Arg His Val Glu Gly Asp Arg Tyr
370 375 380 370 375 380
Ala Ile Val Asn Lys Val Ala Glu Met Ala Arg Glu Arg Gly Tyr ThrAla Ile Val Asn Lys Val Ala Glu Met Ala Arg Glu Arg Gly Tyr Thr
385 390 395 400385 390 395 400
Val Asp Thr Thr Asp Gly Ala Lys Ile Ile Phe Glu Asp Gly Trp ValVal Asp Thr Thr Asp Gly Ala Lys Ile Ile Phe Glu Asp Gly Trp Val
405 410 415 405 410 415
Leu Val Arg Ala Ser Gly Thr Glu Pro Ile Ile Arg Ile Phe Ser GluLeu Val Arg Ala Ser Gly Thr Glu Pro Ile Ile Arg Ile Phe Ser Glu
420 425 430 420 425 430
Ala Lys Ser Glu Glu Lys Ala Gln Glu Tyr Leu Asp Leu Gly Ile GluAla Lys Ser Glu Glu Lys Ala Gln Glu Tyr Leu Asp Leu Gly Ile Glu
435 440 445 435 440 445
Leu Leu Glu Lys Ala Leu Ser Leu Glu His His His His His HisLeu Leu Glu Lys Ala Leu Ser Leu Glu His His His His His His
450 455 460 450 455 460
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010900206.5A CN111763696B (en) | 2020-09-01 | 2020-09-01 | Application of protein PfuPGM as glucose phosphoglucomutase in production of inositol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010900206.5A CN111763696B (en) | 2020-09-01 | 2020-09-01 | Application of protein PfuPGM as glucose phosphoglucomutase in production of inositol |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111763696A true CN111763696A (en) | 2020-10-13 |
CN111763696B CN111763696B (en) | 2021-02-05 |
Family
ID=72729140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010900206.5A Active CN111763696B (en) | 2020-09-01 | 2020-09-01 | Application of protein PfuPGM as glucose phosphoglucomutase in production of inositol |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111763696B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106148425A (en) * | 2015-04-17 | 2016-11-23 | 张以恒 | The preparation method of inositol |
-
2020
- 2020-09-01 CN CN202010900206.5A patent/CN111763696B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106148425A (en) * | 2015-04-17 | 2016-11-23 | 张以恒 | The preparation method of inositol |
Non-Patent Citations (2)
Title |
---|
LAURE JOLLY等: "Reaction mechanism of phosphoglucosamine mutase from Escherichia coli", 《EUR. J. BIOCHEM.》 * |
NONE: "I6UNM4,Bifunctional phosphomannomutase/phosphoglucomutase", 《UNIPROT》 * |
Also Published As
Publication number | Publication date |
---|---|
CN111763696B (en) | 2021-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113151201B (en) | High thermostability and high activity isoeugenol monooxygenase mutant and its application | |
CN110438100A (en) | A kind of method of biocatalysis synthetic glycerine glucoside | |
CN110551771A (en) | Synthesis method of chiral 3-amino-1-butanol | |
CN114703158A (en) | Sucrose phosphorylase mutant, coding gene and application thereof | |
CN115820608B (en) | λ-carrageenase mutant OUC-CglA-DPQQ and its application | |
CN110423787B (en) | Preparation method of uniform brown algae trisaccharide | |
CN109593749B (en) | Halogen alcohol dehalogenase mutant and application thereof in synthesis of chiral epichlorohydrin | |
CN113337495B (en) | A kind of method and application of improving sialic acid production | |
CN108048494A (en) | A kind of method using biological enzymatic synthesis 1,3- propylene glycol | |
CN106520733B (en) | Beta-xylosidase enzyme aggregate and preparation method thereof | |
CN117230051B (en) | Algin lyase mutant Pl7MaM and preparation method and application thereof | |
CN111763696A (en) | Application of Protein PfuPGM as Glucose Phosphomutase in the Production of Inositol | |
CN107418938B (en) | 10-Deacetylbaccatine III 10β-O-acetyltransferase mutant and its application in catalytic synthesis of paclitaxel and its analogs | |
CN108060186B (en) | A kind of biological preparation method of p-nitrobenzyl alcohol malonate monoester | |
CN102911923B (en) | Alpha-glycosidase, coding gene, vector, engineering bacterium and application of alpha-glycosidase, coding gene, vector and engineering bacterium | |
CN114058601A (en) | Enzyme with function of catalyzing glycolaldehyde to synthesize ethylene glycol and application thereof | |
CN115125222A (en) | Synthesis of taxol and its analogs by using 10-deacetylbaccatin III10 beta-O-acetyltransferase mutant as catalyst | |
CN116064477B (en) | A β-glycosidase of glycosidase family 43 and its encoding gene and application | |
CN105524936A (en) | Mutant trehalose synthase as well as expression gene and application thereof | |
CN110951711A (en) | Esterase with activity of degrading chiral ester and encoding gene and application thereof | |
CN114752581B (en) | A kind of α-galactosidase mutant and its application | |
CN114958894B (en) | Construction method and application of spermidine synthetic multienzyme complex based on CcmK2 fibrous protein | |
CN113789293B (en) | A high-yield natural hirudin engineering strain of Escherichia coli and its application | |
CN112481245B (en) | Recombinant D-tagatose 3 epimerase DTE-CM and construction method and application thereof | |
CN115786296B (en) | Meso-diaminopimelate dehydrogenase mutant and production method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |