[go: up one dir, main page]

CN111753958A - Microfacies identification method of Dengying Formation microbial rock based on deep learning of logging data - Google Patents

Microfacies identification method of Dengying Formation microbial rock based on deep learning of logging data Download PDF

Info

Publication number
CN111753958A
CN111753958A CN202010572477.2A CN202010572477A CN111753958A CN 111753958 A CN111753958 A CN 111753958A CN 202010572477 A CN202010572477 A CN 202010572477A CN 111753958 A CN111753958 A CN 111753958A
Authority
CN
China
Prior art keywords
data
logging
rock
microbial
deep learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010572477.2A
Other languages
Chinese (zh)
Inventor
宋金民
李柯然
杨迪
李智武
叶玥豪
余晶洁
李立基
金鑫
赵玲丽
冯宇翔
任佳鑫
王瀚
陈伟
范建平
陈俊林
王佳蕊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Univeristy of Technology
Original Assignee
Chengdu Univeristy of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Univeristy of Technology filed Critical Chengdu Univeristy of Technology
Priority to CN202010572477.2A priority Critical patent/CN111753958A/en
Publication of CN111753958A publication Critical patent/CN111753958A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/061Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using biological neurons, e.g. biological neurons connected to an integrated circuit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Evolutionary Biology (AREA)
  • Neurology (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention discloses a lamp shadow group microorganism rock microphase identification method based on logging data deep learning, which comprises the following steps of: s1, establishing a sample database according to the multi-type well logging data of the determined lithology of the microorganism; s2, checking the integrity of the logging curve in the sample database, and processing the missing segment data by using a principal component analysis and linear regression method to realize data supplement; s3, homogenizing the sample data, and dividing the sample data into a training set and a verification set; s4, establishing a neural network model based on TensorFlow/Playground standard spiral data. The invention establishes the neural network model based on the TensorFlow/Playground standard spiral data by analyzing various well logging data of determined microorganism lithology, carries out microorganism rock microphase identification through the neural network model, has stronger objectivity and systematicness, and improves the identification accuracy and the identification efficiency.

Description

基于测井数据深度学习的灯影组微生物岩微相识别方法Microfacies identification method of Dengying Formation microbial rock based on deep learning of logging data

技术领域technical field

本发明涉及一种基于测井数据深度学习的灯影组微生物岩微相识别方法。The invention relates to a method for identifying microfacies of Dengying Formation microbial rock based on deep learning of logging data.

背景技术Background technique

测井,全称地球物理测井或矿场地球物理,简称测井,是利用岩层的电化学特性、导电特性、声学特性、放射性等地球物理特性,测量地球物理参数的方法。油气勘探过程中,通过声波、电阻、自然电位、自然伽马等多种测井曲线的曲线波动特征可对地层岩性进行有效划分,进而完成地层岩石粒度、含流体性质及饱和度、地层孔隙度、地层渗透率的计算,最终完成岩石类型的识别。Well logging, the full name of geophysical logging or mine geophysics, referred to as well logging, is a method of measuring geophysical parameters using the electrochemical properties, electrical conductivity, acoustic properties, radioactivity and other geophysical properties of rock formations. In the process of oil and gas exploration, the formation lithology can be effectively divided by the curve fluctuation characteristics of various logging curves such as acoustic wave, resistance, spontaneous potential, and natural gamma, and then the formation rock particle size, fluid-bearing properties and saturation, formation porosity can be effectively divided. Calculation of degree and formation permeability, and finally complete the identification of rock types.

理论上不同类型岩石会在不同测井曲线上表现出明显的波动异常,但由于实际测井过程中,钻井泥浆类型、井壁垮塌导致等众多因素导致人工识别并判断测井曲线异常艰难。人工判定过程中,判别人员的主观因素也会对识别结果产生较大误差,使得岩石类型的识别工作缺乏客观性及系统性,甚至在对岩石类型做出判断后难以提供判别依据。因此,建立客观化、系统化、自动化的多测井曲线结合的识别模式显得尤为重要。In theory, different types of rocks will show obvious fluctuation anomalies on different logging curves. However, in the actual logging process, many factors such as the type of drilling mud and the collapse of the wellbore make it extremely difficult to manually identify and judge the logging curves. In the process of manual determination, the subjective factors of the discriminating personnel will also produce large errors in the identification results, which makes the identification of rock types lack objectivity and systematicness, and it is even difficult to provide a basis for discrimination after judging the rock types. Therefore, it is particularly important to establish an objective, systematic and automatic identification mode combining multiple logging curves.

现有的基于测井数据识别岩性的方法主要针对煤田地质中煤的属性和砂泥岩划分的问题,尚无针对微生物岩的测井识别技术。且现有的技术仅针对某一条曲线,如煤属性预测和砂泥岩划分中仅用GR曲线,尚无多种曲线同时作为判定依据的识别方法。Existing methods for identifying lithology based on logging data are mainly aimed at the properties of coal and the division of sand and mudstone in coalfield geology, and there is no logging identification technology for microbial rocks. And the existing technology is only for a certain curve, for example, only the GR curve is used in coal property prediction and sand-mudstone division, and there is no identification method for multiple curves as the judgment basis at the same time.

现有的沉积微相测井识别技术通过对已知的各沉积微相在GR曲线上的表现形式进行识别,以达到识别岩性及沉积微相的目的。各沉积微相在GR曲线上的表现形式如图1所示。The existing logging identification technology of sedimentary microfacies recognizes the manifestations of known sedimentary microfacies on the GR curve, so as to achieve the purpose of identifying lithology and sedimentary microfacies. The manifestations of each sedimentary microphase on the GR curve are shown in Fig. 1.

提取GR测井曲线上形态的统计特征,包括:平均幅度、幅度差异、相对重心、相对变号个数、方差、平均中位数、变差方差根等,将测井资料上的形态差异转化成数学语言。Extract the statistical characteristics of the morphology on the GR logging curve, including: average amplitude, amplitude difference, relative center of gravity, relative number of sign changes, variance, average median, variance root of variation, etc., and transform the morphological difference on the logging data. into mathematical language.

判定未知曲线上形态异常。常见判定方法有:模糊均值聚类法、bayes判别法。所谓模糊均值聚类法,基本原理就是统计计算出各类沉积微相的聚类中心,然后对需要判相的样本,计算出其距离各类微相聚类中心的距离,按照距离最小归属到哪一类微相中。而bayes判别法,实际上是对最短距离判别方法的修正,在利用距离进行判别的同时考虑到各类微相先验概率的不同,以期望距离进行聚类。Determine the abnormal shape on the unknown curve. Common judgment methods are: fuzzy mean clustering method, bayes discrimination method. The basic principle of the so-called fuzzy mean clustering method is to statistically calculate the clustering centers of various sedimentary microfacies, and then calculate the distance from the clustering centers of various microfacies for the samples that need to be identified, and attribute them to the lowest distance. which type of microphase. The bayes discriminant method is actually a modification of the shortest distance discrimination method. While using the distance to discriminate, it takes into account the difference in the prior probabilities of various microphases, and performs clustering by the expected distance.

现有技术的缺点:Disadvantages of the prior art:

(1)现有岩性及沉积微相的测井识别技术仅针对砂泥岩剖面,难以应用在微生物岩所属的碳酸盐岩。(1) The existing logging identification technology of lithology and sedimentary microfacies is only for sand and mudstone sections, and it is difficult to apply to carbonate rocks to which microbial rocks belong.

(2)现有测井识别技术仅能对单一测井曲线完成识别判定,同多曲线综合识别相比,易造成判别误差。(2) The existing logging identification technology can only complete the identification and judgment of a single log curve, and compared with the comprehensive identification of multiple curves, it is easy to cause identification errors.

(3)现有测井识别技术需要对曲线形态的所有数学特征进行提取,提取时间较长,效率低。(3) The existing logging identification technology needs to extract all the mathematical features of the curve shape, and the extraction time is long and the efficiency is low.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于克服现有技术的不足,提供一种通过对已确定微生物岩性的多种类测井数据进行分析,建立基于TensorFlow/Playground标准螺旋式数据的神经网络模型,通过神经网络模型来进行微生物岩微相识别,在提高识别准确度的同时也提高了识别工作的效率的基于测井数据深度学习的灯影组微生物岩微相识别方法。The object of the present invention is to overcome the deficiencies of the prior art, and provide a kind of neural network model based on the standard spiral data of TensorFlow/Playground by analyzing the various types of logging data of the determined microbial lithology. The identification method of microbial rock microfacies in Dengying Formation based on deep learning of logging data is used to identify microbial rock microfacies, which not only improves the accuracy of identification but also improves the efficiency of identification work.

本发明的目的是通过以下技术方案来实现的:一种基于测井数据深度学习的灯影组微生物岩微相识别方法,包括以下步骤:The object of the present invention is achieved through the following technical solutions: a method for identifying microfacies of Dengying Formation microbial rock based on deep learning of logging data, comprising the following steps:

S1、根据已确定微生物岩性的多种类测井数据,建立样本数据库;S1. Establish a sample database according to various types of logging data that have determined microbial lithology;

S2、检验样本数据库中测井曲线的完整性,对缺失段数据利用主成分分析及线性回归的方法进行处理,实现数据补充;S2. Check the integrity of the logging curves in the sample database, and use the principal component analysis and linear regression methods to process the missing data to realize data supplementation;

S3、对样本数据进行均已化,并将均已化后的样本数据划分为训练集和验证集;S3. The sample data is equalized, and the equalized sample data is divided into a training set and a verification set;

S4、建立基于TensorFlow/Playground标准螺旋式数据的神经网络模型。S4. Establish a neural network model based on TensorFlow/Playground standard spiral data.

进一步地,所述步骤S1具体实现方法为:利用偏光显微镜对钻井岩心薄片进行鉴定,明确微生物岩组构,进而确定微生物岩石类型及沉积微相类型;将测井数据与微生物岩类型进行匹配,建立样本数据库。Further, the specific implementation method of step S1 is as follows: using a polarized light microscope to identify the drilling core slices, clarifying the microbial rock fabric, and then determining the microbial rock type and sedimentary microfacies type; matching the logging data with the microbial rock type, Build a sample database.

进一步地,所述步骤S2具体实现方法为:利用Tesorflow/pandas处理模块内置函数对各条测井曲线进行快速遍历及统计,检验测井曲线的完整性;具体方法如下:对每条测井曲线进行数值灰度转化,依据图像模糊边界将非突变像素点取值转换为0(黑色),图像模糊边界突变像素点取值转换为1(白色);然后利用Pandas.isnull函数判断曲线是否完整。Further, the specific implementation method of the step S2 is: using the built-in function of the Tesorflow/pandas processing module to quickly traverse and count each logging curve to check the integrity of the logging curve; the specific method is as follows: for each logging curve Perform numerical grayscale conversion, convert the value of non-mutated pixel points to 0 (black) according to the blurred boundary of the image, and convert the value of abrupt pixel points to 1 (white) according to the blurred boundary of the image; then use the Pandas.isnull function to judge whether the curve is complete.

进一步地,所述步骤S3具体实现方法为:将各地球物理测井参数进行归一/正值化操作,将各测井参数统一到0~1刻度:Further, the specific implementation method of step S3 is: performing normalization/positive value operation on each geophysical logging parameter, and unifying each logging parameter to a scale of 0 to 1:

Figure BDA0002549913520000021
Figure BDA0002549913520000021

其中,Pi为归一/正值化之后的刻度值,Li为第i个测井参数,Lmin表示所有测井参数中的最小值,Lmax为所有测井参数中的最大值。Among them, P i is the scale value after normalization/positive value, Li is the ith logging parameter, L min represents the minimum value among all logging parameters, and L max is the maximum value among all logging parameters.

进一步地,所述步骤S4具体实现方法为:利用Python/Keras接口下结合独热编码one-hot/Softmax函数接口构建针对测井曲线的神经网络模型,网络模型包括一个输入层、一个输出层和4个隐藏层,其中,隐藏层1含600个神经元,激活函数使用elu;隐藏层2 含128个神经元,激活函数使用Relu;隐藏层3含32个神经元,激活函数使用sigmoid;隐藏层4含8含神经元,激活函数使用softsign。Further, the specific implementation method of step S4 is: using the Python/Keras interface in combination with the one-hot/Softmax function interface of one-hot encoding to construct a neural network model for the logging curve, the network model includes an input layer, an output layer and 4 hidden layers, of which, hidden layer 1 contains 600 neurons, and the activation function uses elu; hidden layer 2 contains 128 neurons, and the activation function uses Relu; hidden layer 3 contains 32 neurons, and the activation function uses sigmoid; hidden Layer 4 contains 8 neurons, and the activation function uses softsign.

本发明的有益效果是:本发明通过对已确定微生物岩性的多种类测井数据进行分析,建立基于TensorFlow/Playground标准螺旋式数据的神经网络模型,通过神经网络模型来进行微生物岩微相识别,具有较强的客观性及系统性,在提高识别准确度的同时也提高了识别工作的效率。The beneficial effects of the present invention are as follows: the present invention establishes a neural network model based on TensorFlow/Playground standard spiral data by analyzing various types of well logging data that have determined microbial lithology, and uses the neural network model to identify microbial rock microfacies , has strong objectivity and systematicness, and improves the efficiency of identification work while improving the accuracy of identification.

附图说明Description of drawings

图1为各沉积微相在GR曲线上的表现形式;Figure 1 shows the manifestations of each sedimentary microphase on the GR curve;

图2为本发明的灯影组微生物岩微相识别方法的流程图;2 is a flow chart of a method for identifying microfacies of Dengying Formation microbial rock according to the present invention;

图3为本实施例微生物岩石类型及沉积微相类型图;FIG. 3 is a diagram of microbial rock types and sedimentary microfacies types of this embodiment;

图4为本发明对测井曲线进行识别的结果图。FIG. 4 is a result diagram of the identification of the logging curve according to the present invention.

具体实施方式Detailed ways

神经网络是受到生物(人或其他动物)神经网络功能的运作启发而产生的一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则按照网络的连接方式,权重值和激励函数的不同而不同。神经网络通常是通过一个基于数学统计学类型的学习方法 (Learning Method)的优化组合,是数学统计学方法的拓展应用。神经网络在人工智能学的人工感知领域,通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力)。Neural network is a mathematical model that is inspired by the operation of biological (human or other animal) neural network functions and applies the structure similar to the synaptic connection of the brain for information processing. A neural network is an operational model that consists of a large number of nodes (or neurons) and connections between them. Each node represents a specific output function, called the activation function. The connection between each two nodes represents a weighted value for the signal passing through the connection, called the weight, which is equivalent to the memory of the artificial neural network. The output of the network is different according to the connection mode of the network, the weight value and the excitation function. The neural network is usually an optimized combination of a learning method based on the mathematical statistics type, which is an extended application of the mathematical statistics method. In the field of artificial perception of artificial intelligence, neural networks can make decisions about artificial perception through the application of mathematical statistics (that is to say, through statistical methods, artificial neural networks can have the same simple decision-making ability and simplicity as human beings. ability to judge).

测井曲线的复杂性及其由岩性变化产生的波动的规律性使得运用神经网络来识别测井曲线的工作具有了较强的客观性及系统性,在提高识别准确度的同时也提高了识别工作的效率。The complexity of logging curves and the regularity of fluctuations caused by changes in lithology make the work of using neural networks to identify logging curves more objective and systematic, which not only improves the recognition accuracy but also improves the Identify work efficiency.

GR曲线:自然电位测井,是电法测井的一部分,主要用于砂泥岩剖面。自然电位测井测量的是自然电位随井深变化的曲线。由于自然电位测井在渗透层处有明显的异常显示,是划分和评价储集层的重要方法之一。GR curve: Spontaneous potential logging, which is a part of electrical logging, is mainly used for sand and mudstone sections. Spontaneous potential logging measures the curve of spontaneous potential as a function of well depth. Spontaneous potential logging is one of the important methods to divide and evaluate reservoirs because of the obvious abnormal display in the permeable layer.

下面结合附图进一步说明本发明的技术方案。The technical solutions of the present invention are further described below with reference to the accompanying drawings.

如图2所示,本发明的一种基于测井数据深度学习的灯影组微生物岩微相识别方法,包括以下步骤:As shown in FIG. 2 , a method for identifying microfacies of Dengying Formation microbial rocks based on deep learning of logging data of the present invention includes the following steps:

S1、根据已确定微生物岩性的多种类测井数据,建立样本数据库;S1. Establish a sample database according to various types of logging data that have determined microbial lithology;

具体实现方法为:利用偏光显微镜对钻井岩心薄片进行鉴定,明确微生物岩组构,进而确定微生物岩石类型及沉积微相类型;将测井数据与微生物岩类型进行匹配,建立样本数据库。如图3所示,图中,(A)为硅化纹层粘结岩微相镜下特征,MX105,灯四段,5360.58m, 5倍正交偏光;(B)为硅化纹层粘结岩微相镜下特征,MX105,灯四段,5321.4m,5倍正交偏光;(C)为凝块粘结岩微相镜下特征,MX105,灯四段,5303.7m,4倍单偏光;(D) 为凝块粘结岩微相镜下特征,MX105-3,灯四段,5倍单偏光;(E)为纹层叠层粘结岩微相镜下特征,MX13-5,灯四段,5倍单偏光;(F)为泥晶粘结岩微相镜下特征,MX11-0041, 5485.69m,灯四段,2倍单偏光。所述测井数据包括同井同深度段声波AC、井径CAL、补偿中子CNL、补偿密度DEN、自然伽马GR、光电吸收截面指数PE、底部梯度电阻率RT 及冲洗带电阻率RXO等参数。The specific implementation method is as follows: using polarized light microscope to identify drilling core slices to clarify microbial rock fabric, and then determine microbial rock types and sedimentary microfacies types; match well logging data with microbial rock types to establish a sample database. As shown in Figure 3, in the figure, (A) is the microscopic characteristics of the silicified laminar bond rock, MX105, the fourth member of the lamp, 5360.58m, 5 times the cross polarized light; (B) is the silicified laminar bond rock Microscopic features, MX105, Deng 4th member, 5321.4m, 5x crossed polarized light; (C) Microscopic features of the clot-bonded rock, MX105, Deng 4th member, 5303.7m, 4X single polarized light; (D) Microscopic features of clotted bond rock, MX105-3, Deng 4 member, 5x single polarized light; (E) Microscopic features of laminar bond rock, MX13-5, Deng 4 Section, 5 times single polarized light; (F) is the microscopic characteristics of micrite bond rock, MX11-0041, 5485.69m, the fourth section of the lamp, 2 times single polarized light. The logging data includes acoustic AC, well diameter CAL, compensated neutron CNL, compensated density DEN, natural gamma GR, photoelectric absorption cross section index PE, bottom gradient resistivity RT and flushing zone resistivity RXO, etc. parameter.

S2、检验样本数据库中测井曲线的完整性,对缺失段数据利用主成分分析及线性回归的方法进行处理,实现数据补充;S2. Check the integrity of the logging curves in the sample database, and use the principal component analysis and linear regression methods to process the missing data to realize data supplementation;

作为前处理的重要步骤之一,测井曲线完整性检验及缺失段数据处理是运用神经网络模型开展预测工作的关键。具体检验方法为:利用Tesorflow/pandas处理模块内置函数对各条测井曲线进行快速遍历及统计,检验测井曲线的完整性;具体方法如下:对每条测井曲线进行数值灰度转化,依据图像模糊边界将非突变像素点取值转换为0(黑色),图像模糊边界突变像素点取值转换为1(白色);然后利用Pandas.isnull函数判断曲线是否完整,像素矩阵取值越接近255越接近白色。模糊图像化处理完成后将神经网络的识别样本从变化范围巨大的离散数据集合变成一定颜色区间的组合,实现了离散样本数据的天然分类。As one of the important steps of preprocessing, the integrity test of logging curve and data processing of missing segments are the keys to using neural network model to carry out prediction work. The specific inspection method is: use the built-in function of the Tesorflow/pandas processing module to quickly traverse and count each logging curve to check the integrity of the logging curve; the specific method is as follows: perform numerical grayscale transformation on each logging curve, The blurred boundary of the image converts the value of the non-mutated pixel point to 0 (black), and the value of the mutation pixel of the blurred boundary of the image is converted to 1 (white); then use the Pandas.isnull function to judge whether the curve is complete, the closer the value of the pixel matrix is to 255 closer to white. After the fuzzy image processing is completed, the recognition samples of the neural network are changed from a discrete data set with a huge variation range to a combination of a certain color interval, which realizes the natural classification of discrete sample data.

利用主成分分析及线性回归的方法进行处理,即对缺失数据进行补充,在数据缺失处填入该测井曲线的平均值。The method of principal component analysis and linear regression is used for processing, that is, the missing data is supplemented, and the average value of the logging curve is filled in the missing data.

利用Python的实现过程如下:The implementation process using Python is as follows:

#筛选特征AC->RXO#Filter feature AC->RXO

selected_cols=['AC','CAL','CNL','DEN','GR','PE','RT','RXO',selected_cols=['AC','CAL','CNL','DEN','GR','PE','RT','RXO',

'纹层叠层','凝块','硅质','泥晶']'Laminated lamellae', 'clumps', 'siliceous', 'micrite']

selected_learn_data=learn_data[selected_cols]selected_learn_data=learn_data[selected_cols]

#取心段测井数据完整性检验#Integrity check of logging data in coring section

#判断哪些测井曲线不完整,True表示存在不完整项,并统计null数目#Determine which logging curves are incomplete, True indicates that there are incomplete items, and count the number of nulls

selected_learn_data.isnull().sum()selected_learn_data.isnull().sum()

#为缺失PE曲线填充值,在空缺处填入平均值# Fill in the value for the missing PE curve and fill in the average value in the vacancy

PE_mean_value=selected_learn_data['PE'].mean()PE_mean_value=selected_learn_data['PE'].mean()

selected_learn_data['PE']=selected_learn_data['PE'].fillna(PE_mean_value)selected_learn_data['PE']=selected_learn_data['PE'].fillna(PE_mean_value)

S3、对样本数据进行均已化,并将均已化后的样本数据划分为训练集和验证集;S3. The sample data is equalized, and the equalized sample data is divided into a training set and a verification set;

本申请还可以利用Pandas数据库的shuffle函数即可实现数据打乱。打乱数据的目的是:同种岩性在测井上的数据往往呈现相似的数据特征,因此在利用梯度下降法进行样本训练时可能使得学习的数据落在局部最优解,而非全局最优解。而打乱数据后,数据离性显著提高,有效避免了“局部最优解的陷阱”。The application can also use the shuffle function of the Pandas database to shuffle the data. The purpose of shuffling the data is: the logging data of the same lithology often show similar data characteristics, so when using the gradient descent method for sample training, the learned data may fall on the local optimal solution, rather than the global optimal solution. optimal solution. After shuffling the data, the data isolation is significantly improved, effectively avoiding the "trap of local optimal solution".

测井生产施工过程中,不同地球物理参数具有不同的值域范围,且不同参数值域范围通常差异较大,为避免各参数数值差异对训练的干扰,将各地球物理测井参数进行归一/正值化操作,将各测井参数统一到0~1刻度:In the process of logging production and construction, different geophysical parameters have different value ranges, and the value ranges of different parameters are usually quite different. / Positive value operation, unify all logging parameters to 0~1 scale:

Figure BDA0002549913520000051
Figure BDA0002549913520000051

其中,Pi为归一/正值化之后的刻度值,Li为第i个测井参数,Lmin表示所有测井参数中的最小值,Lmax为所有测井参数中的最大值。Among them, P i is the scale value after normalization/positive value, Li is the ith logging parameter, L min represents the minimum value among all logging parameters, and L max is the maximum value among all logging parameters.

进行归一/正值化操作之后,消除了由参数数字引起的训练为保证模型的准确性,神经网络模型中样本需要划分为训练集及验证集。训练集的作用是对样本数据特征进行提取,通过反馈/激励函数与反向传播机制,完成神经网络模型训练。验证集的作用是对训练出的全连接神经网络进行检验,通过对未参与训练的数据进行识别判断,完成对模型准确性判断。本实施例训练集与验证集的数据比例为8:2。After the normalization/normalization operation, the training caused by the parameter numbers is eliminated. To ensure the accuracy of the model, the samples in the neural network model need to be divided into training sets and validation sets. The function of the training set is to extract the characteristics of the sample data, and complete the training of the neural network model through the feedback/excitation function and the back-propagation mechanism. The function of the validation set is to test the trained fully connected neural network, and to judge the accuracy of the model by identifying and judging the data that did not participate in the training. The data ratio of the training set and the validation set in this embodiment is 8:2.

利用Python的实现过程如下:The implementation process using Python is as follows:

#shuffle打乱数据#shuffle shuffle data

shuffled_learn_data=selected_learn_data.sample(frac=1)shuffled_learn_data=selected_learn_data.sample(frac=1)

#分离样本与标签#Separate samples and labels

#转化为ndarray数组#Convert to ndarray array

ndarray_data=shuffled_learn_data.valuesndarray_data=shuffled_learn_data.values

#前8列是学习样本#The first 8 columns are learning samples

learn_sample=ndarray_data[:,:8]learn_sample=ndarray_data[:,:8]

#后4列是标签数据#The last 4 columns are the label data

labels=ndarray_data[:,8:14]labels=ndarray_data[:,8:14]

#学习样本标准化处理# Learning sample normalization processing

from sklearn import preprocessingfrom sklearn import preprocessing

minmax_scale=preprocessing.MinMaxScaler(feature_range=(0,1))minmax_scale=preprocessing.MinMaxScaler(feature_range=(0,1))

norm_learn_sample=minmax_scale.fit_transform(learn_sample)norm_learn_sample=minmax_scale.fit_transform(learn_sample)

#将学习样本划分为训练集和测试集# Divide the learning sample into training set and test set

x_data=norm_learn_samplex_data=norm_learn_sample

y_data=labelsy_data=labels

train_size=int(len(x_data)*0.8)train_size=int(len(x_data)*0.8)

x_train=x_data[:train_size]x_train=x_data[:train_size]

y_train=y_data[:train_size]y_train=y_data[:train_size]

x_test=x_data[train_size:]x_test=x_data[train_size:]

y_test=y_data[train_size:]y_test=y_data[train_size:]

S4、建立基于TensorFlow/Playground标准螺旋式数据的神经网络模型。S4. Establish a neural network model based on TensorFlow/Playground standard spiral data.

基于TensorFlow/Playground标准螺旋式数据的神经网络模型结构测试显示,含有 relu-elu-sogmoid-softsign的四层全连接神经网络具有75%-80%的识别正确率。利用 Python/Keras接口下结合独热编码(one-hot)/Softmax函数接口构建针对测井曲线的神经网络模型:网络模型包括一个输入层、一个输出层和4个隐藏层,其中,隐藏层1含600个神经元,激活函数使用elu;隐藏层2含128个神经元,激活函数使用Relu;隐藏层3含32 个神经元,激活函数使用sigmoid;隐藏层4含8含神经元,激活函数使用softsign。The neural network model structure test based on TensorFlow/Playground standard spiral data shows that the four-layer fully connected neural network with relu-elu-sogmoid-softsign has a recognition accuracy of 75%-80%. Using Python/Keras interface combined with one-hot coding (one-hot)/Softmax function interface to build a neural network model for logging curves: the network model includes an input layer, an output layer and 4 hidden layers, of which hidden layer 1 It contains 600 neurons, and the activation function uses elu; the hidden layer 2 contains 128 neurons, and the activation function uses Relu; the hidden layer 3 contains 32 neurons, and the activation function uses sigmoid; the hidden layer 4 contains 8 neurons, and the activation function Use softsign.

利用Python的实现过程如下:The implementation process using Python is as follows:

#基于Keras建立神经网络构架#Build a neural network architecture based on Keras

model=tf.keras.models.Sequential()model=tf.keras.models.Sequential()

#1st Neural Training Layer#1st Neural Training Layer

model.add(tf.keras.layers.Dense(units=600,model.add(tf.keras.layers.Dense(units=600,

input_dim=8,input_dim=8,

use_bias=True,use_bias=True,

kernel_initializer='uniform',kernel_initializer='uniform',

bias_initializer='zeros',bias_initializer='zeros',

activation='relu'))activation='relu'))

#2nd Neural Training Layer#2nd Neural Training Layer

model.add(tf.keras.layers.Dense(units=128,model.add(tf.keras.layers.Dense(units=128,

activation='elu'))activation='elu'))

#3rd Neural Training Layer#3rd Neural Training Layer

model.add(tf.keras.layers.Dense(units=32,model.add(tf.keras.layers.Dense(units=32,

activation='sigmoid'))activation='sigmoid'))

#4th Neural Training Layer#4th Neural Training Layer

model.add(tf.keras.layers.Dense(units=8,model.add(tf.keras.layers.Dense(units=8,

activation='softsign'))activation='softsign'))

#输出层#output layer

model.add(tf.keras.layers.Dense(units=4,model.add(tf.keras.layers.Dense(units=4,

activation='softmax'))activation='softmax'))

#模型结构打印#model structure print

model.summary()model.summary()

#优化器配置#optimizer configuration

model.compile(optimizer=tf.keras.optimizers.Adam(0.005),model.compile(optimizer=tf.keras.optimizers.Adam(0.005),

loss='categorical_crossentropy',loss='categorical_crossentropy',

metrics=['accuracy'])metrics=['accuracy'])

#优化器配置#optimizer configuration

model.compile(optimizer=tf.keras.optimizers.Adam(0.005),model.compile(optimizer=tf.keras.optimizers.Adam(0.005),

loss='categorical_crossentropy',loss='categorical_crossentropy',

metrics=['accuracy'])metrics=['accuracy'])

#训练模型#train model

train_history=model.fit(x=x_train,train_history=model.fit(x=x_train,

y=y_train,y=y_train,

validation_split=0.2,validation_split=0.2,

epochs=500,epochs=500,

batch_size=100,batch_size=100,

verbose=2)verbose=2)

模型训练可视化Model training visualization

import matplotlib.pyplot as pltimport matplotlib.pyplot as plt

def visual_train(train_history,train_metric,validation_metric):def visual_train(train_history,train_metric,validation_metric):

plt.plot(train_history.history[train_metric])plt.plot(train_history.history[train_metric])

plt.plot(train_history.history[validation_metric])plt.plot(train_history.history[validation_metric])

plt.title('Train History')plt.title('Train History')

plt.ylabel(train_metric)plt.ylabel(train_metric)

plt.xlabel('epochs')plt.xlabel('epochs')

plt.legend(['train','validation'],loc='upper left')plt.legend(['train','validation'],loc='upper left')

plt.showplt.show

进行预测的程序如下:The procedure for making predictions is as follows:

import numpyimport numpy

import pandas as pdimport pandas as pd

import mathimport math

#对未预测井段开展预测# Predict unpredicted well sections

data_file_path="C:\\Users\\74086\\Desktop\\data\\待测试井仿真数据.xlsx"data_file_path="C:\\Users\\74086\\Desktop\\data\\simulation data of the well to be tested.xlsx"

pred_data=pd.read_excel(data_file_path,sheet_name=22)pred_data=pd.read_excel(data_file_path,sheet_name=22)

#筛选未预测井段特征AC->RXO#Filter unpredicted well section features AC->RXO

selected_pred_cols=['AC','CAL','CNL','DEN','GR','PE','RT','RXO']selected_pred_cols=['AC','CAL','CNL','DEN','GR','PE','RT','RXO']

selected_pred_data=pred_data[selected_pred_cols]selected_pred_data=pred_data[selected_pred_cols]

#为缺失PE/RT/RXO曲线填充值,在空缺处填入回归值#Fill values for missing PE/RT/RXO curves, and fill in regression values in the vacancies

PE_mean_value=selected_pred_data['PE'].mean()PE_mean_value=selected_pred_data['PE'].mean()

selected_pred_data['PE']=selected_pred_data['PE'].fillna(PE_mean_value)selected_pred_data['PE']=selected_pred_data['PE'].fillna(PE_mean_value)

RT_mean_value=selected_pred_data['RT'].mean()RT_mean_value=selected_pred_data['RT'].mean()

selected_pred_data['RT']=selected_pred_data['RT'].fillna(RT_mean_value)selected_pred_data['RT']=selected_pred_data['RT'].fillna(RT_mean_value)

RXO_mean_value=selected_pred_data['RXO'].mean()RXO_mean_value=selected_pred_data['RXO'].mean()

selected_pred_data['RXO']=selected_pred_data['RXO'].fillna(RXO_mean_value)selected_pred_data['RXO']=selected_pred_data['RXO'].fillna(RXO_mean_value)

#后8列是待预测样本#The last 8 columns are the samples to be predicted

ndarray_pred_data=selected_pred_data.valuesndarray_pred_data=selected_pred_data.values

#标准化#standardization

from sklearn import preprocessingfrom sklearn import preprocessing

minmax_scale=preprocessing.MinMaxScaler(feature_range=(0,1))minmax_scale=preprocessing.MinMaxScaler(feature_range=(0,1))

norm_learn_sample=minmax_scale.fit_transform(ndarray_pred_data)norm_learn_sample=minmax_scale.fit_transform(ndarray_pred_data)

#预测未取心井段#Predict the uncored section

pred_result=model.predict(norm_learn_sample)pred_result=model.predict(norm_learn_sample)

多次测试针对测井曲线数据运用构建的神经网络对不同井多种测井曲线进行识别。得到如图4所示的测试曲线,图中,(a)表示准确度随训练变化示意图,(b)为误差随训练变化示意图。The neural network constructed according to the logging curve data is used for multiple tests to identify various logging curves of different wells. The test curve shown in Figure 4 is obtained. In the figure, (a) represents a schematic diagram of the variation of the accuracy with the training, and (b) is a schematic diagram of the variation of the error with the training.

本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。Those of ordinary skill in the art will appreciate that the embodiments described herein are intended to assist readers in understanding the principles of the present invention, and it should be understood that the scope of the present invention is not limited to such specific statements and embodiments. Those skilled in the art can make various other specific modifications and combinations without departing from the essence of the present invention according to the technical teachings disclosed in the present invention, and these modifications and combinations still fall within the protection scope of the present invention.

Claims (5)

1. A biological rock microphase identification method based on logging data deep learning is characterized by comprising the following steps:
s1, establishing a sample database according to the multi-type well logging data of the determined lithology of the microorganism;
s2, checking the integrity of the logging curve in the sample database, and processing the missing segment data by using a principal component analysis and linear regression method to realize data supplement;
s3, homogenizing the sample data, and dividing the homogenized sample data into a training set and a verification set;
s4, establishing a neural network model based on TensorFlow/Playground standard spiral data.
2. The method for identifying the microphase of the microbial rock of the lamp shadow group based on the deep learning of the logging data of claim 1, wherein the step S1 is realized by the following steps: identifying the drilling rock core slice by using a polarizing microscope, determining the microbial rock structure, and further determining the type of the microbial rock and the type of the sedimentary microfacies; and matching the logging data with the type of the microbial rock to establish a sample database.
3. The method for identifying the microphase of the microbial rock of the lamp shadow group based on the deep learning of the logging data of claim 1, wherein the step S2 is realized by the following steps: rapidly traversing and counting all the logging curves by using a built-in function of the Tesorflow/pandas processing module, and checking the integrity of the logging curves; the specific method comprises the following steps: performing numerical gray level conversion on each logging curve, converting the value of a non-mutation pixel point into 0 according to the fuzzy boundary of the image, and converting the value of a mutation pixel point of the fuzzy boundary of the image into 1; the pandas isnull function is then used to determine if the curve is complete.
4. The method for identifying the microphase of the microbial rock of the lamp shadow group based on the deep learning of the logging data of claim 1, wherein the step S3 is realized by the following steps: normalizing/correcting the physical logging parameters of each earth, unifying the logging parameters to 0-1 scale:
Figure FDA0002549913510000011
wherein, PiFor scale values after normalization/positification, LiFor the ith logging parameter, LminRepresents the minimum of all logging parameters, LmaxIs the maximum of all logging parameters.
5. The method for identifying the microphase of the microbial rock of the lamp shadow group based on the deep learning of the logging data of claim 1, wherein the step S4 is realized by the following steps: a neural network model for a well logging curve is constructed by combining a one-hot/Softmax function interface with a Python/Keras interface, wherein the network model comprises an input layer, an output layer and 4 hidden layers, the hidden layer 1 comprises 600 neurons, and an activation function is elu; hidden layer 2 contains 128 neurons, and Relu is used as an activation function; the hidden layer 3 contains 32 neurons, and sigmoid is used as an activation function; the hidden layer 4 contains 8 neurons, and the activation function uses softsign.
CN202010572477.2A 2020-06-22 2020-06-22 Microfacies identification method of Dengying Formation microbial rock based on deep learning of logging data Pending CN111753958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010572477.2A CN111753958A (en) 2020-06-22 2020-06-22 Microfacies identification method of Dengying Formation microbial rock based on deep learning of logging data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010572477.2A CN111753958A (en) 2020-06-22 2020-06-22 Microfacies identification method of Dengying Formation microbial rock based on deep learning of logging data

Publications (1)

Publication Number Publication Date
CN111753958A true CN111753958A (en) 2020-10-09

Family

ID=72676323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010572477.2A Pending CN111753958A (en) 2020-06-22 2020-06-22 Microfacies identification method of Dengying Formation microbial rock based on deep learning of logging data

Country Status (1)

Country Link
CN (1) CN111753958A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112712025A (en) * 2020-12-29 2021-04-27 东北石油大学 Complex lithology identification method based on long-term and short-term memory neural network
CN112926680A (en) * 2021-03-29 2021-06-08 成都理工大学 Microbial rock deposition microphase identification method based on Bayesian neural network
CN114575827A (en) * 2022-04-11 2022-06-03 中国地质大学(北京)郑州研究院 Intelligent processing system and method for measurement while drilling data
CN115712827A (en) * 2021-08-20 2023-02-24 大庆油田有限责任公司 Well logging parameter interpretation method under carbonate rock physical phase constraint based on deep learning

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104533400A (en) * 2014-11-12 2015-04-22 中国海洋石油总公司 Method for reconstructing logging curve
WO2015130313A1 (en) * 2014-02-28 2015-09-03 Landmark Graphics Corporation Facies definition using unsupervised classification procedures
CN104989392A (en) * 2015-07-10 2015-10-21 中国石油天然气股份有限公司 Lithology identification method
CN105114067A (en) * 2015-08-26 2015-12-02 中国石油天然气股份有限公司 Lithology logging facies method
CN107688870A (en) * 2017-08-15 2018-02-13 中国科学院软件研究所 A kind of the classification factor visual analysis method and device of the deep neural network based on text flow input
CN108121013A (en) * 2017-11-13 2018-06-05 中国石油天然气股份有限公司 Method for identifying microbial carbonate rock lithofacies
US20180238148A1 (en) * 2015-11-11 2018-08-23 Halliburton Energy Services, Inc Method For Computing Lithofacies Probability Using Lithology Proximity Models
CN109212617A (en) * 2018-08-24 2019-01-15 中国石油天然气股份有限公司 Automatic identification method and device for electric imaging logging phase
CN109298464A (en) * 2018-10-17 2019-02-01 中国石油天然气股份有限公司 Tight sandstone reservoir Diagenetic Facies Logging Identification Method and device
CN109359104A (en) * 2018-09-14 2019-02-19 广州帷策智能科技有限公司 The missing data interpolation method and device of time data sequence
CN109670533A (en) * 2018-11-23 2019-04-23 何旭 A kind of multiple dimensioned well-log facies recognition method based on convolutional neural networks
CN109736790A (en) * 2018-12-28 2019-05-10 新疆工程学院 A logging lithology identification method based on deep belief network
CN109857979A (en) * 2018-12-29 2019-06-07 中国船舶重工集团公司第七一八研究所 A kind of log approximating method based on wavelet analysis and BP neural network
CN111046328A (en) * 2019-12-20 2020-04-21 核工业北京地质研究院 Rock type identification method based on logging curve wavelet Mallet algorithm
CN111104819A (en) * 2018-10-25 2020-05-05 北京国双科技有限公司 Model generation method and device, lithology identification method and device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015130313A1 (en) * 2014-02-28 2015-09-03 Landmark Graphics Corporation Facies definition using unsupervised classification procedures
CN104533400A (en) * 2014-11-12 2015-04-22 中国海洋石油总公司 Method for reconstructing logging curve
CN104989392A (en) * 2015-07-10 2015-10-21 中国石油天然气股份有限公司 Lithology identification method
CN105114067A (en) * 2015-08-26 2015-12-02 中国石油天然气股份有限公司 Lithology logging facies method
US20180238148A1 (en) * 2015-11-11 2018-08-23 Halliburton Energy Services, Inc Method For Computing Lithofacies Probability Using Lithology Proximity Models
CN107688870A (en) * 2017-08-15 2018-02-13 中国科学院软件研究所 A kind of the classification factor visual analysis method and device of the deep neural network based on text flow input
CN108121013A (en) * 2017-11-13 2018-06-05 中国石油天然气股份有限公司 Method for identifying microbial carbonate rock lithofacies
CN109212617A (en) * 2018-08-24 2019-01-15 中国石油天然气股份有限公司 Automatic identification method and device for electric imaging logging phase
CN109359104A (en) * 2018-09-14 2019-02-19 广州帷策智能科技有限公司 The missing data interpolation method and device of time data sequence
CN109298464A (en) * 2018-10-17 2019-02-01 中国石油天然气股份有限公司 Tight sandstone reservoir Diagenetic Facies Logging Identification Method and device
CN111104819A (en) * 2018-10-25 2020-05-05 北京国双科技有限公司 Model generation method and device, lithology identification method and device
CN109670533A (en) * 2018-11-23 2019-04-23 何旭 A kind of multiple dimensioned well-log facies recognition method based on convolutional neural networks
CN109736790A (en) * 2018-12-28 2019-05-10 新疆工程学院 A logging lithology identification method based on deep belief network
CN109857979A (en) * 2018-12-29 2019-06-07 中国船舶重工集团公司第七一八研究所 A kind of log approximating method based on wavelet analysis and BP neural network
CN111046328A (en) * 2019-12-20 2020-04-21 核工业北京地质研究院 Rock type identification method based on logging curve wavelet Mallet algorithm

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
FINTHON: "Tensorflow新手通过PlayGround可视化初始神经网络", 《HTTPS://FINTHON.COM/TENSORFLOW-PLAYGROUND-NN/》 *
LIANSHUANG QI 等: "Neural network prediction of carbonate lithofacies from well logs, Big Bow and Sand Arroyo Creek fields, Southwest Kansas", 《COMPUTERS & GEOSCIENCES》 *
RAFAEL PIRES DE LIMA 等: "Convolutional neural networks as aid in core lithofacies classification", 《INTERPRETATION 》 *
SAUMEN MAITI 等: "Neural network modelling and classification of lithofacies using well log data: a case study from KTB borehole site", 《GEOPHYSICAL JOURNAL INTERNATIONAL》 *
安鹏 等: "基于 TensorFlow进行测井岩性自动识别", 《中国地球科学联合学术年会 2017》 *
安鹏 等: "基于深度学习的测井岩性识别方法研究与应用", 《地球物理学进展》 *
李万 等: "基于主成分回归模型的测井曲线重构方法研究", 《2019年油气地球物理学术年会论文集》 *
陈玉林 等: "深度学习算法在测井曲线识别地层岩性中的应用实践", 《第六届数字油田国际学术会议》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112712025A (en) * 2020-12-29 2021-04-27 东北石油大学 Complex lithology identification method based on long-term and short-term memory neural network
CN112926680A (en) * 2021-03-29 2021-06-08 成都理工大学 Microbial rock deposition microphase identification method based on Bayesian neural network
CN112926680B (en) * 2021-03-29 2022-08-05 成都理工大学 Microbial rock deposition microphase identification method based on Bayesian neural network
CN115712827A (en) * 2021-08-20 2023-02-24 大庆油田有限责任公司 Well logging parameter interpretation method under carbonate rock physical phase constraint based on deep learning
CN114575827A (en) * 2022-04-11 2022-06-03 中国地质大学(北京)郑州研究院 Intelligent processing system and method for measurement while drilling data
CN114575827B (en) * 2022-04-11 2024-06-04 中国地质大学(北京)郑州研究院 Intelligent processing system and method for measurement while drilling data

Similar Documents

Publication Publication Date Title
CN111753958A (en) Microfacies identification method of Dengying Formation microbial rock based on deep learning of logging data
Ye et al. A new tool for electro-facies analysis: multi-resolution graph-based clustering
CN110619353B (en) Multi-scale logging curve automatic identification method based on deep learning
CN109614883A (en) A kind of tight sand crack intelligent identification Method based on convolutional neural networks
CN112761628A (en) Shale gas yield determination method and device based on long-term and short-term memory neural network
CN115277159A (en) A security situation assessment method for industrial Internet based on improved random forest
CN117633658A (en) Rock reservoir lithology identification method and system
CN118349913A (en) An intelligent identification method of favorable shale lithofacies based on four control factors
Abedini et al. Porosity classification from thin sections using image analysis and neural networks including shallow and deep learning in Jahrum formation
CN113447997B (en) Reservoir fracture identification method, identification device and identification system
CN115809601A (en) Sedimentary rock structure background distinguishing method
CN119004289B (en) A diagenetic facies identification method based on geological constraints and well logging parameter fusion clustering
CN114755744A (en) Total organic carbon logging interpretation method and system based on shale heterogeneity
CN112464483B (en) Logging curve reconstruction method based on genetic neural network algorithm
CN114897085A (en) Clustering method based on closed subgraph link prediction and computer equipment
CN116935116B (en) A lithology identification method, device, computer equipment and storage medium
CN114896468B (en) File type matching method and data intelligent input method based on neural network
CN113095398B (en) A fracturing data cleaning method based on BP neural network optimized by genetic algorithm
CN110552693A (en) layer interface identification method of induction logging curve based on deep neural network
CN112801073B (en) Classification and recognition method of acoustic emission first arrival signal based on deep neural network
CN116415625A (en) A logging curve feature learning method and system based on deep neural network
Dai et al. Application of Random Forest method in oil and water layer identification of logging data: a case study of the Liaohe depression
CN117893896A (en) Reservoir classification analysis method and device
CN114397711A (en) Unconventional tight sandstone reservoir porosity prediction method based on machine learning
Gao et al. Anomaly detection for time series with difference rate sample entropy and generative adversarial networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination