CN111747661A - Manufacturing method of chemically strengthened glass, molten salt composition, and life extension method of molten salt composition - Google Patents
Manufacturing method of chemically strengthened glass, molten salt composition, and life extension method of molten salt composition Download PDFInfo
- Publication number
- CN111747661A CN111747661A CN202010221883.4A CN202010221883A CN111747661A CN 111747661 A CN111747661 A CN 111747661A CN 202010221883 A CN202010221883 A CN 202010221883A CN 111747661 A CN111747661 A CN 111747661A
- Authority
- CN
- China
- Prior art keywords
- molten salt
- salt composition
- glass
- nitrate
- chemically strengthened
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 171
- 150000003839 salts Chemical class 0.000 title claims abstract description 171
- 239000005345 chemically strengthened glass Substances 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 239000011521 glass Substances 0.000 claims abstract description 97
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 claims abstract description 61
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims abstract description 60
- 229910052796 boron Inorganic materials 0.000 claims abstract description 51
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 49
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 31
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 31
- 229910052751 metal Inorganic materials 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 31
- 235000010333 potassium nitrate Nutrition 0.000 claims abstract description 31
- 239000004323 potassium nitrate Substances 0.000 claims abstract description 30
- 239000004317 sodium nitrate Substances 0.000 claims abstract description 30
- 235000010344 sodium nitrate Nutrition 0.000 claims abstract description 30
- 239000012535 impurity Substances 0.000 claims abstract description 27
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 23
- 238000005728 strengthening Methods 0.000 claims abstract description 16
- 150000001449 anionic compounds Chemical class 0.000 claims abstract 4
- 238000003426 chemical strengthening reaction Methods 0.000 claims description 47
- -1 anionic hetero compound Chemical class 0.000 claims description 32
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 9
- 239000004115 Sodium Silicate Substances 0.000 claims description 8
- 235000019795 sodium metasilicate Nutrition 0.000 claims description 8
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 8
- 229910052788 barium Inorganic materials 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 150000002823 nitrates Chemical class 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000001488 sodium phosphate Substances 0.000 claims description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 claims description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 claims description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 33
- ICSSIKVYVJQJND-UHFFFAOYSA-N calcium nitrate tetrahydrate Chemical compound O.O.O.O.[Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ICSSIKVYVJQJND-UHFFFAOYSA-N 0.000 description 14
- 238000011282 treatment Methods 0.000 description 13
- 238000005342 ion exchange Methods 0.000 description 9
- 239000011734 sodium Substances 0.000 description 9
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 8
- 239000004327 boric acid Substances 0.000 description 8
- 150000001450 anions Chemical class 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229910001960 metal nitrate Inorganic materials 0.000 description 6
- 229910001415 sodium ion Inorganic materials 0.000 description 6
- 102100033973 Anaphase-promoting complex subunit 10 Human genes 0.000 description 5
- OAUWKHSGCCPXOD-UHFFFAOYSA-N DOC1 Natural products C1=CC(O)=C2C(CC(=O)NCCCCCNCCCNCCCNCCCN)=CNC2=C1 OAUWKHSGCCPXOD-UHFFFAOYSA-N 0.000 description 5
- 101000779315 Homo sapiens Anaphase-promoting complex subunit 10 Proteins 0.000 description 5
- 101000737813 Homo sapiens Cyclin-dependent kinase 2-associated protein 1 Proteins 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 229910001413 alkali metal ion Inorganic materials 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910018068 Li 2 O Inorganic materials 0.000 description 2
- 238000006124 Pilkington process Methods 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Chemical compound [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 2
- FLJPGEWQYJVDPF-UHFFFAOYSA-L caesium sulfate Chemical compound [Cs+].[Cs+].[O-]S([O-])(=O)=O FLJPGEWQYJVDPF-UHFFFAOYSA-L 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000003280 down draw process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 239000006123 lithium glass Substances 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000005407 aluminoborosilicate glass Substances 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004554 molding of glass Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 235000007686 potassium Nutrition 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- YPNVIBVEFVRZPJ-UHFFFAOYSA-L silver sulfate Chemical compound [Ag+].[Ag+].[O-]S([O-])(=O)=O YPNVIBVEFVRZPJ-UHFFFAOYSA-L 0.000 description 1
- 229910000367 silver sulfate Inorganic materials 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- POWFTOSLLWLEBN-UHFFFAOYSA-N tetrasodium;silicate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-][Si]([O-])([O-])[O-] POWFTOSLLWLEBN-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C21/00—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
- C03C21/001—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
- C03C21/002—Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Description
技术领域technical field
本发明涉及化学强化玻璃的制造方法、熔融盐组合物以及熔融盐组合物的寿命延长方法。The present invention relates to a method for producing a chemically strengthened glass, a molten salt composition, and a method for extending the life of the molten salt composition.
背景技术Background technique
在作为数码照相机、手机和PDA(Personal Digital Assistants:便携信息终端)这样的显示装置等的保护玻璃和作为显示器使用的玻璃基板中,使用通过离子交换等进行了化学强化处理的玻璃(以下,称为化学强化玻璃)。对于用于这些用途的化学强化玻璃而言,为了满足其目的,对表面和端面均要求高强度。Glass that has been chemically strengthened by ion exchange or the like is used as a cover glass for display devices such as digital cameras, cell phones, and PDAs (Personal Digital Assistants: Portable Information Terminals), etc. for chemically strengthened glass). For chemically strengthened glass used for these applications, high strength is required for both the surface and the end surface in order to satisfy the purpose.
通过离子交换进行的化学强化处理是在玻璃化转变温度以下的温度下利用离子交换将存在于玻璃板表面附近的离子半径小的碱金属离子置换为离子半径更大的碱金属离子的处理。由此,在玻璃的表面残留压应力,玻璃的强度提高。The chemical strengthening treatment by ion exchange is a treatment in which alkali metal ions with a small ionic radius existing near the surface of the glass plate are replaced by alkali metal ions with a larger ionic radius by ion exchange at a temperature below the glass transition temperature. Thereby, compressive stress remains on the surface of the glass, and the strength of the glass is improved.
含有Li的玻璃(以下,称为含锂玻璃)是能够通过高速的离子交换(例如,利用Na离子或K离子置换Li离子)而得到深的压应力层深度(以下,称为DOL)的玻璃材料。因此,近年来对开发含锂玻璃的化学强化处理的期望提高了。Li-containing glass (hereinafter, referred to as lithium-containing glass) is a glass that can obtain a deep compressive stress layer depth (hereinafter, referred to as DOL) by high-speed ion exchange (for example, replacement of Li ions with Na ions or K ions) Material. Therefore, in recent years, expectations for developing chemical strengthening treatments for lithium-containing glasses have increased.
含锂玻璃的化学强化处理与不含有Li离子的玻璃的化学强化处理的不同点多,例如Li离子溶出到熔融盐组合物中;等等。在含锂玻璃的化学强化处理中,特别是由于化学强化处理前后的玻璃的膨胀率的降低、化学强化玻璃的应力(CT)的降低、化学强化玻璃的外观的变差(雾度值的升高),用于化学强化处理的熔融盐组合物的寿命变短的倾向强烈。这成为管理含锂玻璃的化学强化处理中的大课题。The chemical strengthening treatment of the lithium-containing glass differs from the chemical strengthening treatment of the glass not containing Li ions in many points, such as the dissolution of Li ions into the molten salt composition; and the like. In the chemical strengthening treatment of lithium-containing glass, in particular, due to the reduction of the expansion coefficient of the glass before and after the chemical strengthening treatment, the reduction of the stress (CT) of the chemically strengthened glass, and the deterioration of the appearance of the chemically strengthened glass (increase in the haze value) high), the life of the molten salt composition used for chemical strengthening treatment tends to be shortened. This has become a major issue in the management of chemical strengthening treatment of lithium-containing glass.
在含锂玻璃的化学强化中,作为用于排除Li离子的影响的手段,使用在熔融盐组合物中预先添加作为异种阴离子化合物的偏硅酸钠等的方法。根据该方法,通过偏硅酸钠吸附熔融盐组合物中的Li离子,能够恢复熔融盐组合物的强化性能、提高所得到的化学强化玻璃的CT。In chemical strengthening of the lithium-containing glass, as a means for eliminating the influence of Li ions, a method of adding sodium metasilicate or the like as a dissimilar anion compound to the molten salt composition in advance is used. According to this method, by adsorbing Li ions in the molten salt composition by sodium metasilicate, the strengthening performance of the molten salt composition can be recovered, and the CT of the obtained chemically strengthened glass can be improved.
现有技术文献prior art literature
专利文献Patent Literature
专利文献1:日本特开昭61-178004号公报Patent Document 1: Japanese Patent Laid-Open No. 61-178004
发明内容SUMMARY OF THE INVENTION
发明所要解决的问题The problem to be solved by the invention
本发明人等发现,在含有异种阴离子化合物的熔融盐组合物中含有作为杂质的硼的情况下,在含锂玻璃的化学强化处理中,所得到的化学强化玻璃的外观变差,熔融盐组合物的寿命变短。The present inventors have found that when boron is contained as an impurity in a molten salt composition containing a dissimilar anion compound, the appearance of the obtained chemically strengthened glass is deteriorated in the chemical strengthening treatment of the lithium-containing glass, and the molten salt composition The lifespan of things is shortened.
作为由于硼而导致化学强化玻璃的外观变差的理由,考虑为如下的机理。通过异种阴离子化合物的添加,熔融盐组合物的pH升高,硼在pH9以上以硼酸的形式存在。通过硼酸促进玻璃的浸蚀,在玻璃表面和表层形成含锂的晶体,玻璃表面脆化,晶体脱落,由此成为缺陷,外观变差。The following mechanism is considered as the reason why the appearance of the chemically strengthened glass is deteriorated by boron. The addition of the dissimilar anion compound increases the pH of the molten salt composition, and boron exists in the form of boric acid at pH 9 or higher. The etching of the glass is accelerated by boric acid, and lithium-containing crystals are formed on the glass surface and the surface layer, the glass surface becomes embrittled, and the crystals fall off, thereby becoming defects and deteriorating the appearance.
因此,本发明的目的在于提供一种制造方法,其中,在包含使用含有硝酸钾和硝酸钠中的至少一者、异种阴离子化合物以及作为杂质的硼的熔融盐组合物对含锂玻璃进行化学强化的工序的化学强化玻璃的制造方法中,能够抑制由于硼的混入而导致化学强化玻璃的外观变差,并且能够延长熔融盐组合物的寿命。Therefore, an object of the present invention is to provide a method for chemically strengthening lithium-containing glass in a molten salt composition containing at least one of potassium nitrate and sodium nitrate, a dissimilar anion compound, and boron as an impurity In the manufacturing method of the chemically strengthened glass of the process, the deterioration of the external appearance of the chemically strengthened glass due to the mixing of boron can be suppressed, and the life of the molten salt composition can be extended.
用于解决问题的手段means to solve the problem
本发明人等发现,在包含使用含有硝酸钾和硝酸钠中的至少一者、异种阴离子化合物以及作为杂质的硼的熔融盐组合物对含锂玻璃进行化学强化的工序的化学强化玻璃的制造方法中,通过使熔融盐组合物含有2价金属的硝酸盐,能够解决上述问题,从而完成了本发明。The present inventors have found a method for producing chemically strengthened glass including a step of chemically strengthening lithium-containing glass using a molten salt composition containing at least one of potassium nitrate and sodium nitrate, a dissimilar anion compound, and boron as an impurity Among them, by making the molten salt composition contain a nitrate of a divalent metal, the above-mentioned problems can be solved, and the present invention has been completed.
即,本发明提供一种化学强化玻璃的制造方法,所述化学强化玻璃的制造方法包含:使用含有硝酸钾和硝酸钠中的至少一者、异种阴离子化合物以及作为杂质的硼的熔融盐组合物对含锂玻璃进行化学强化的工序,其中,所述熔融盐组合物还含有2价金属的硝酸盐。That is, the present invention provides a method for producing chemically strengthened glass comprising using a molten salt composition containing at least one of potassium nitrate and sodium nitrate, a dissimilar anion compound, and boron as an impurity The process of chemically strengthening the lithium-containing glass, wherein the molten salt composition further contains a nitrate of a divalent metal.
另外,本发明提供一种熔融盐组合物,所述熔融盐组合物为用于含锂玻璃的化学强化并且含有硝酸钾和硝酸钠中的至少一者、异种阴离子化合物以及作为杂质的硼的熔融盐组合物,其中,所述熔融盐组合物还含有2价金属的硝酸盐。In addition, the present invention provides a molten salt composition that is used for chemical strengthening of lithium-containing glass and contains at least one of potassium nitrate and sodium nitrate, a dissimilar anion compound, and molten boron as an impurity. A salt composition, wherein the molten salt composition further contains a nitrate of a divalent metal.
另外,本发明提供一种熔融盐组合物的寿命延长方法,其为延长用于含锂玻璃的化学强化的熔融盐组合物的寿命的方法,其中,在含有硝酸钾和硝酸钠中的至少一者、异种阴离子化合物以及作为杂质的硼的熔融盐组合物中混合2价金属的硝酸盐。In addition, the present invention provides a method for prolonging the life of a molten salt composition, which is a method for prolonging the life of a molten salt composition for chemical strengthening of lithium-containing glass, wherein at least one of potassium nitrate and sodium nitrate is included in the method. A divalent metal nitrate is mixed in the molten salt composition of the compound, the dissimilar anion compound, and boron as an impurity.
发明效果Invention effect
在本发明的化学强化玻璃的制造方法中,使含有异种阴离子化合物而且含有作为杂质的硼的熔融盐组合物含有2价金属的硝酸盐。如果这样做的话,2价金属离子使硼酸沉降,阻碍由硼酸引起的玻璃的浸蚀,从而能够抑制由于硼的混入而导致化学强化玻璃的外观变差,并且能够延长熔融盐组合物的寿命。In the manufacturing method of the chemically strengthened glass of this invention, the divalent metal nitrate is contained in the molten salt composition containing a dissimilar anion compound and containing boron as an impurity. By doing so, the divalent metal ion precipitates boric acid and inhibits the etching of the glass by boric acid, thereby suppressing the deterioration of the appearance of the chemically strengthened glass due to the incorporation of boron, and prolonging the life of the molten salt composition.
附图说明Description of drawings
图1(A)为表示在熔融盐组合物中添加或未添加Ca(NO3)2·4H2O的情况下的处理面积与化学强化玻璃的DOC1的关系的图。图1(B)为表示在熔融盐组合物中添加或未添加Ca(NO3)2·4H2O的情况下的处理面积与化学强化玻璃的CT的关系的图。图1(C)为表示在熔融盐组合物中添加或未添加Ca(NO3)2·4H2O的情况下的DOL与化学强化玻璃的CS的关系的图。1(A) is a graph showing the relationship between the treated area and DOC1 of the chemically strengthened glass when Ca(NO 3 ) 2 ·4H 2 O is added or not added to the molten salt composition. Fig. 1(B) is a graph showing the relationship between the treated area and the CT of the chemically strengthened glass when Ca(NO 3 ) 2 ·4H 2 O is added or not added to the molten salt composition. Fig. 1(C) is a graph showing the relationship between DOL and CS of chemically strengthened glass when Ca(NO 3 ) 2 ·4H 2 O is added or not added to the molten salt composition.
图2为表示在熔融盐组合物中添加Ca(NO3)2·4H2O(实施例1)的情况下的处理面积与化学强化玻璃的CS的关系的图。2 is a graph showing the relationship between the treated area and the CS of the chemically strengthened glass when Ca(NO 3 ) 2 ·4H 2 O is added to the molten salt composition (Example 1).
具体实施方式Detailed ways
以下,对本发明详细地进行说明,但本发明不限于以下的实施方式,在不脱离本发明的主旨的范围内,可以任意变形而实施。Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be implemented with arbitrary modifications without departing from the gist of the present invention.
以下,对本发明涉及的化学强化玻璃的制造方法的一个方式进行说明,但本发明不限于此。Hereinafter, although one form of the manufacturing method of the chemically strengthened glass which concerns on this invention is demonstrated, this invention is not limited to this.
本发明涉及的化学强化玻璃的制造方法包含:使用含有硝酸钾和硝酸钠中的至少一者、异种阴离子化合物以及作为杂质的硼的熔融盐组合物对含锂玻璃进行化学强化的工序,其特征在于,熔融盐组合物还含有2价金属的硝酸盐。The method for producing chemically strengthened glass according to the present invention includes a step of chemically strengthening the lithium-containing glass using a molten salt composition containing at least one of potassium nitrate and sodium nitrate, a dissimilar anion compound, and boron as an impurity, and is characterized by the fact that However, the molten salt composition further contains nitrate of a divalent metal.
(玻璃组成)(glass composition)
本发明中使用的玻璃只要含有锂即可,并且只要是具有能够利用成形、化学强化处理进行强化的组成的玻璃,则可以使用各种组成的玻璃。具体而言,例如可以列举:铝硅酸盐玻璃、钠钙玻璃、硼硅酸盐玻璃、铅玻璃、碱钡玻璃、铝硼硅酸盐玻璃等。The glass used in the present invention only needs to contain lithium, and any glass of various compositions can be used as long as it has a composition capable of being strengthened by forming and chemical strengthening treatment. Specifically, aluminosilicate glass, soda lime glass, borosilicate glass, lead glass, alkali barium glass, aluminoborosilicate glass, etc. are mentioned, for example.
玻璃的制造方法没有特别限制,可以通过以下方式制造:将所期望的玻璃原料投入连续熔化炉中,将玻璃原料在优选1500℃~1600℃下加热熔融,澄清,然后供给至成形装置,然后将熔融玻璃成形为板状,并缓慢冷却。The method for producing glass is not particularly limited, and it can be produced by throwing a desired glass raw material into a continuous melting furnace, heating and melting the glass raw material at preferably 1500° C. to 1600° C., clarifying it, supplying it to a forming apparatus, and then The molten glass is formed into a plate shape and slowly cooled.
需要说明的是,玻璃的成形可以采用各种方法。例如可以采用下拉法(例如,溢流下拉法、流孔下引法和再曳引法等)、浮法、辊压法和压制法等各种成形方法。其中,从容易在玻璃面的至少一部分产生裂纹、更显著地观察到本发明的效果的观点考虑,优选浮法。In addition, various methods can be employ|adopted for shaping|molding of glass. For example, various forming methods such as a down-draw method (for example, an overflow down-draw method, an orifice down-draw method, a redraw method, etc.), a float method, a rolling method, and a pressing method can be adopted. Among them, the float method is preferable from the viewpoint that cracks are easily generated in at least a part of the glass surface and the effects of the present invention are more prominently observed.
玻璃的厚度没有特别限制,但是为了有效地进行化学强化处理,通常优选为5mm以下,更优选为3mm以下,进一步优选为1mm以下,特别优选为0.7mm以下。The thickness of the glass is not particularly limited, but is usually preferably 5 mm or less, more preferably 3 mm or less, still more preferably 1 mm or less, and particularly preferably 0.7 mm or less in order to effectively perform chemical strengthening treatment.
另外,本发明中使用的玻璃的形状没有特别限制。例如可以采用具有均匀板厚的平板形状、表面和背面中的至少一者具有曲面的形状以及具有弯曲部等的立体形状等各种形状的玻璃。需要说明的是,优选在化学强化处理之前对玻璃进行根据用途的形状加工,例如切割、端面加工和开孔加工等机械加工。In addition, the shape of the glass used in the present invention is not particularly limited. For example, glass of various shapes such as a flat plate shape having a uniform plate thickness, a shape in which at least one of the front and back surfaces has a curved surface, and a three-dimensional shape having a curved portion or the like can be used. In addition, before the chemical strengthening process, it is preferable to subject glass to shape processing according to the application, for example, mechanical processing such as cutting, end surface processing, and drilling processing.
以氧化物基准的摩尔百分率表示,本发明中使用的玻璃中的锂的含量优选为0.1%~20%。The content of lithium in the glass used in the present invention is preferably 0.1% to 20% in terms of molar percentage on an oxide basis.
作为玻璃的组成没有特别限制,例如可以列举以下的玻璃的组成。It does not specifically limit as a composition of glass, For example, the composition of the following glass is mentioned.
以氧化物基准的摩尔百分率表示,包含50%~80%的SiO2、2%~25%的Al2O3、0.1%~20%的Li2O、0.1%~18%的Na2O、0%~10%的K2O、0%~15%的MgO、0%~5%的CaO、0%~5%的P2O5、0%~5%的B2O3、0%~5%的Y2O3和0%~5%的ZrO2的组成。In terms of molar percentage on oxide basis, it contains 50%-80% SiO 2 , 2%-25% Al 2 O 3 , 0.1%-20% Li 2 O, 0.1%-18% Na 2 O, 0%-10% K 2 O, 0%-15% MgO, 0%-5% CaO, 0%-5% P 2 O 5 , 0%-5% B 2 O 3 , 0% Composition of -5 % Y2O3 and 0-5 % ZrO2.
由本发明的制造方法得到的化学强化玻璃在玻璃表面具有通过进行离子交换而得到的压应力层。在离子交换法中,对玻璃的表面进行离子交换,形成残留压应力的表面层。具体而言,在玻璃化转变温度以下的温度下,利用离子交换将玻璃板表面的离子半径小的碱金属离子(典型地为Li离子、Na离子)置换为离子半径更大的碱金属离子(典型地,相对于Li离子为Na离子或K离子,相对于Na离子为K离子)。由此,在玻璃的表面残留压应力,玻璃的强度提高。The chemically strengthened glass obtained by the production method of the present invention has a compressive stress layer obtained by ion exchange on the glass surface. In the ion-exchange method, the surface of the glass is ion-exchanged to form a surface layer with residual compressive stress. Specifically, at a temperature below the glass transition temperature, alkali metal ions (typically Li ions and Na ions) with a small ionic radius on the surface of the glass plate are replaced by alkali metal ions with a larger ionic radius ( Typically, Na ions or K ions with respect to Li ions, K ions with respect to Na ions). Thereby, compressive stress remains on the surface of the glass, and the strength of the glass is improved.
(熔融盐组合物)(molten salt composition)
在本发明的制造方法中,通过使含锂玻璃与含有硝酸钾和硝酸钠中的至少一者的熔融盐组合物接触而进行化学强化。由此,玻璃表面的Li离子与熔融盐组合物中的K离子、Na离子进行离子交换,从而形成高密度的压应力层。作为使玻璃与熔融盐组合物接触的方法,可以是将糊状的熔融盐组合物涂布在玻璃上的方法、将熔融盐组合物喷射到玻璃上的方法、将玻璃浸渍在加热至熔点以上的熔融盐组合物的盐浴中的方法等,其中,优选将玻璃浸渍在熔融盐组合物中的方法。In the production method of the present invention, chemical strengthening is performed by bringing the lithium-containing glass into contact with the molten salt composition containing at least one of potassium nitrate and sodium nitrate. Thereby, Li ions on the glass surface are ion-exchanged with K ions and Na ions in the molten salt composition, thereby forming a high-density compressive stress layer. As a method of bringing the glass into contact with the molten salt composition, a method of coating a paste-like molten salt composition on the glass, a method of spraying the molten salt composition on the glass, or immersing the glass in a glass heated to a melting point or higher may be used. Among them, the method of immersing glass in the molten salt composition is preferable.
作为熔融盐组合物,优选在进行化学强化的玻璃的应变点(通常为500℃~600℃)以下具有熔点的熔融盐组合物,在本发明中为含有硝酸钾(熔点为334℃)和硝酸钠(熔点为308℃)中的至少一者的熔融盐组合物。通过含有硝酸钾和硝酸钠中的至少一者,熔融盐在玻璃的应变点以下为熔融状态,并且在工作温度范围(使用温度領域)中容易操作,因此是优选的。在熔融盐组合物中,硝酸钾和硝酸钠的合计含量优选为50质量%以上,更优选为60质量%以上,进一步优选为70质量%以上,特别优选为80质量%以上,最优选为90质量%以上。The molten salt composition is preferably a molten salt composition having a melting point below the strain point (usually 500° C. to 600° C.) of the chemically strengthened glass, and in the present invention contains potassium nitrate (melting point: 334° C.) and nitric acid A molten salt composition of at least one of sodium (melting point is 308°C). By containing at least one of potassium nitrate and sodium nitrate, the molten salt is preferably in a molten state below the strain point of the glass and is easy to handle in the operating temperature range (use temperature range). In the molten salt composition, the total content of potassium nitrate and sodium nitrate is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, particularly preferably 80% by mass or more, and most preferably 90% by mass or more mass % or more.
熔融盐组合物含有异种阴离子化合物。异种阴离子化合物是指,包含与构成熔融盐的阴离子不同的阴离子种类的化合物。通过使熔融盐组合物中含有异种阴离子化合物,熔融盐组合物中的异种阴离子化合物与Li离子反应,能够吸附熔融盐组合物中的Li离子。作为异种阴离子化合物,例如可以列举:异种阴离子钠、异种阴离子钾。作为异种阴离子钠,例如可以列举:偏硅酸钠、原硅酸钠、倍半硅酸钠、磷酸钠、碳酸钠。作为异种阴离子钾,例如可以列举:偏硅酸钾、磷酸钾、碳酸钾。这些异种阴离子化合物可以使用一种,也可以组合使用两种以上。The molten salt composition contains a heterogeneous anion compound. The heterogeneous anion compound refers to a compound containing an anion species different from the anion constituting the molten salt. By containing a dissimilar anion compound in a molten salt composition, the dissimilar anion compound in a molten salt composition reacts with Li ion, and Li ion in a molten salt composition can be adsorb|sucked. As a dissimilar anion compound, a dissimilar anion sodium, a dissimilar anion potassium are mentioned, for example. Examples of the dissimilar anion sodium include sodium metasilicate, sodium orthosilicate, sodium sesquisilicate, sodium phosphate, and sodium carbonate. As a dissimilar anion potassium, potassium metasilicate, potassium phosphate, potassium carbonate are mentioned, for example. These dissimilar anion compounds may be used alone or in combination of two or more.
例如在使用偏硅酸钠作为熔融盐组合物中的异种阴离子化合物的情况下,异种阴离子化合物与熔融盐组合物中的Li离子的反应式如下所述。For example, when sodium metasilicate is used as the dissimilar anion compound in the molten salt composition, the reaction formula between the dissimilar anion compound and the Li ion in the molten salt composition is as follows.
Na2SiO3→NaSiO3 -+Na+ Na 2 SiO 3 →NaSiO 3 - +Na +
NaSiO3 -+Li+→LiNaSiO3 NaSiO 3 - +Li + →LiNaSiO 3
SiO3 2-+2Li+→Li2SiO3 SiO 3 2- +2Li + →Li 2 SiO 3
对于含锂玻璃的化学强化处理而言,由于Li离子溶出到熔融盐组合物中,从而Li离子存在于玻璃表层,并且由于熔融盐组合物中的Li离子的存在,阻碍玻璃中的Li离子与熔融盐组合物中的Na离子的离子交换。本发明中的熔融盐组合物通过含有异种阴离子化合物,熔融盐组合物中的Li离子被异种阴离子化合物吸附而抑制该阻碍,熔融盐组合物的强化性能变得稳定,能够提高应力。For chemical strengthening treatment of lithium-containing glass, Li ions are present in the glass surface layer due to the dissolution of Li ions into the molten salt composition, and the presence of Li ions in the molten salt composition prevents Li ions in the glass from interacting with each other. Ion exchange of Na ions in molten salt compositions. When the molten salt composition of the present invention contains a dissimilar anion compound, Li ions in the molten salt composition are adsorbed by the dissimilar anion compound to suppress this hindrance, the strengthening performance of the molten salt composition becomes stable, and stress can be increased.
在熔融盐组合物中,相对于全部熔融盐组合物,异种阴离子化合物的含量优选为0.1质量%以上,更优选为0.5质量%以上,进一步优选为1质量%以上。熔融盐组合物中的异种阴离子化合物的含量为1质量%以上时,能够有效地吸附熔融盐组合物中的Li离子,稳定熔融盐组合物的强化性能。另外,熔融盐组合物中的异种阴离子化合物的含量优选为10质量%以下,更优选为7.5质量%以下,进一步优选为5质量%以下。In the molten salt composition, the content of the dissimilar anion compound is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass or more with respect to the entire molten salt composition. When the content of the dissimilar anion compound in the molten salt composition is 1 mass % or more, Li ions in the molten salt composition can be effectively adsorbed, and the strengthening performance of the molten salt composition can be stabilized. Moreover, content of the dissimilar anion compound in a molten salt composition becomes like this. Preferably it is 10 mass % or less, More preferably, it is 7.5 mass % or less, More preferably, it is 5 mass % or less.
在熔融盐组合物中,相对于硝酸钾和硝酸钠的合计含量,异种阴离子化合物的含量优选为0.1摩尔%~10摩尔%。通过相对于硝酸钾和硝酸钠的合计含量的将异种阴离子化合物的量设定为上述范围,能够有效地吸附熔融盐组合物中的Li离子,稳定熔融盐组合物的强化性能。In the molten salt composition, the content of the dissimilar anion compound is preferably 0.1 mol % to 10 mol % with respect to the total content of potassium nitrate and sodium nitrate. By setting the amount of the dissimilar anion compound relative to the total content of potassium nitrate and sodium nitrate to the above range, Li ions in the molten salt composition can be effectively adsorbed, and the strengthening performance of the molten salt composition can be stabilized.
熔融盐组合物中作为杂质含有的硼的含量越少越优选,优选为100质量ppm以下,更优选为50质量ppm以下,进一步优选为10质量ppm以下。另外,硼的典型含量为10质量ppm~50质量ppm。需要说明的是,包含硼作为杂质是指非有意地添加硼。例如,在硼包含在熔融盐组合物的原材料的杂质等中的情况下,能够混入熔融盐中。The content of boron contained as an impurity in the molten salt composition is preferably as small as possible, preferably 100 mass ppm or less, more preferably 50 mass ppm or less, and still more preferably 10 mass ppm or less. In addition, the typical content of boron is 10 mass ppm to 50 mass ppm. In addition, containing boron as an impurity means adding boron unintentionally. For example, when boron is contained in impurities of the raw material of the molten salt composition, etc., it can be mixed into the molten salt.
熔融盐组合物含有2价金属的硝酸盐。作为上述2价金属,例如可以列举:Ca、Mg、Ba、Zn、Cu、Fe、Pb、Ni、Mn、Sn,优选Ca、Mg、Ba。2价金属的硝酸盐可以使用一种,也可以组合使用两种以上。The molten salt composition contains nitrates of divalent metals. As said divalent metal, Ca, Mg, Ba, Zn, Cu, Fe, Pb, Ni, Mn, Sn are mentioned, for example, Ca, Mg, and Ba are preferable. Nitrate of a divalent metal may be used alone or in combination of two or more.
作为杂质而包含在熔融盐组合物中的硼在高pH的条件下以硼酸的形式存在,但是通过在熔融盐组合物中含有2价金属的硝酸盐,能够使2价金属离子与硼酸反应而使硼酸沉降。由此,能够抑制由于硼的混入而导致化学强化玻璃的外观变差,并且能够延长熔融盐组合物的寿命。The boron contained in the molten salt composition as an impurity exists in the form of boric acid under high pH conditions, but by including the nitrate of a divalent metal in the molten salt composition, the divalent metal ion can be reacted with boric acid to The boric acid is allowed to settle. Thereby, the deterioration of the appearance of the chemically strengthened glass due to the incorporation of boron can be suppressed, and the life of the molten salt composition can be extended.
作为具体例,关于(1)熔融盐组合物中含有Mg(NO3)2作为2价金属的硝酸盐的情况;(2)熔融盐组合物中含有Ca(NO3)2作为2价金属的硝酸盐的情况,下述示出硼酸与金属离子的反应式。As a specific example, about (1) the case of nitrate containing Mg(NO 3 ) 2 as a divalent metal in the molten salt composition; (2) the case of containing Ca(NO 3 ) 2 as a divalent metal in the molten salt composition In the case of nitrate, the reaction formula between boric acid and metal ions is shown below.
在熔融盐组合物中,在每1g全部熔融盐组合物中的硼含量为3.57×10-2质量ppm以下的情况下,2价金属的硝酸盐的含量优选为0.02摩尔%以上。通过使2价金属的硝酸盐的含量在上述范围内,能够与作为杂质的熔融盐组合物中所含的硼正适量地反应,能够有效地排除硼的影响、能够抑制由于硼的混入而导致化学强化玻璃的外观变差、能够进一步延长熔融盐组合物的寿命。另一方面,在每1g全部熔融盐组合物中的硼含量为3.57×10-2质量ppm以下的情况下,2价金属的硝酸盐的含量优选为0.5摩尔%以下,更优选为0.3摩尔%以下,进一步优选为0.25摩尔%以下。通过使2价金属的硝酸盐的含量在上述范围内,不会阻碍离子交换。In the molten salt composition, when the boron content per 1 g of the entire molten salt composition is 3.57×10 −2 mass ppm or less, the content of the nitrate of the divalent metal is preferably 0.02 mol % or more. By making the content of the nitrate of the divalent metal within the above-mentioned range, the reaction with boron contained in the molten salt composition as an impurity can be positively and appropriately reacted, the influence of boron can be effectively eliminated, and the contamination of boron can be suppressed. The appearance of the chemically strengthened glass deteriorates, and the life of the molten salt composition can be further extended. On the other hand, when the boron content per 1 g of the entire molten salt composition is 3.57×10 −2 mass ppm or less, the content of the nitrate of the divalent metal is preferably 0.5 mol % or less, and more preferably 0.3 mol % Below, it is more preferable that it is 0.25 mol% or less. By making content of the nitrate of a divalent metal in the said range, ion exchange will not be inhibited.
在熔融盐组合物中,相对于1摩尔的硼,2价金属的硝酸盐的含量优选为0.5摩尔以上,更优选为1摩尔以上,进一步优选为2摩尔以上。通过2价金属的硝酸盐相对于硼的添加量在上述范围内,能够有效地排除作为杂质包含在熔融盐组合物中的硼的影响、能够抑制由于硼的混入而导致化学强化玻璃的外观变差、能够进一步延长熔融盐组合物的寿命。另一方面,相对于1摩尔的硼,2价金属的硝酸盐的含量优选为6.5摩尔以下,更优选为6摩尔以下。通过2价金属的硝酸盐的含量在上述范围内,不会阻碍离子交换。In the molten salt composition, the content of the nitrate of the divalent metal is preferably 0.5 mol or more, more preferably 1 mol or more, and further preferably 2 mol or more with respect to 1 mol of boron. When the addition amount of the divalent metal nitrate with respect to boron is within the above-mentioned range, the influence of boron contained in the molten salt composition as an impurity can be effectively eliminated, and the appearance of chemically strengthened glass due to the incorporation of boron can be suppressed. poor, the life of the molten salt composition can be further extended. On the other hand, the content of the nitrate of the divalent metal is preferably 6.5 mol or less, more preferably 6 mol or less, with respect to 1 mol of boron. When the content of the divalent metal nitrate is within the above range, ion exchange is not hindered.
熔融盐组合物除了含有硝酸钾和硝酸钠以外,还可以在不阻碍本发明的效果的范围内含有其它的化学物质,例如可以列举:硝酸盐、硫酸盐、碳酸盐、氯化物等。其中作为硝酸盐,例如可以列举:硝酸锂、硝酸铯、硝酸银等。作为硫酸盐,例如可以列举:硫酸锂、硫酸钠、硫酸钾、硫酸铯、硫酸银等。作为碳酸盐,例如可以列举:碳酸锂、碳酸钠、碳酸钾等。作为氯化物,例如可以列举:氯化锂、氯化钠、氯化钾、氯化铯、氯化银等。这些熔融盐可以单独使用,也可以组合使用多种。In addition to potassium nitrate and sodium nitrate, the molten salt composition may contain other chemical substances within a range that does not inhibit the effects of the present invention, and examples thereof include nitrates, sulfates, carbonates, and chlorides. Among them, as nitrate, lithium nitrate, cesium nitrate, silver nitrate, etc. are mentioned, for example. As a sulfate, lithium sulfate, sodium sulfate, potassium sulfate, cesium sulfate, silver sulfate, etc. are mentioned, for example. As carbonate, lithium carbonate, sodium carbonate, potassium carbonate, etc. are mentioned, for example. As a chloride, lithium chloride, sodium chloride, potassium chloride, cesium chloride, silver chloride, etc. are mentioned, for example. These molten salts may be used alone or in combination of two or more.
作为本发明的化学强化玻璃的制造方法中、使用含有硝酸钾和硝酸钠中的至少一者、异种阴离子化合物以及作为杂质的硼的熔融盐组合物对含锂玻璃进行化学强化的工序而言,例如将玻璃在约350℃~约500℃的熔融盐组合物中浸渍0.1小时~10小时。As a process for chemically strengthening the lithium-containing glass using a molten salt composition containing at least one of potassium nitrate and sodium nitrate, a dissimilar anion compound, and boron as an impurity in the method for producing a chemically strengthened glass of the present invention, For example, glass is immersed in the molten salt composition of about 350 degreeC - about 500 degreeC for 0.1 hour - 10 hours.
可以将上述工序作为第一步强化处理,在上述工序后,使用包含K离子的熔融盐组合物(例如,包含硝酸钾的熔融盐组合物)进行第二步及此后的强化处理。优选在第一步强化处理与第二步强化处理之间设置清洗工序。The above-mentioned process may be regarded as the first step of strengthening treatment, and after the above-mentioned step, the second and subsequent strengthening treatments may be performed using a molten salt composition containing K ions (for example, a molten salt composition containing potassium nitrate). Preferably, a cleaning step is provided between the first-step strengthening treatment and the second-step strengthening treatment.
具体而言,例如,作为第二步强化处理而言,将玻璃在约350℃~约500℃的含有K离子的金属盐组成物(例如,含有硝酸钾的熔融盐组合物)中浸渍约0.1小时~约10小时。在进行第二步及此后的化学强化处理的情况下,从生产效率的观点考虑,处理时间合计优选为10小时以下,更优选为5小时以下,进一步优选为3小时以下。Specifically, for example, as the second-step strengthening treatment, the glass is immersed in a K ion-containing metal salt composition (for example, a potassium nitrate-containing molten salt composition) at about 350° C. to about 500° C. for about 0.1 hours to about 10 hours. When the chemical strengthening treatment of the second step and subsequent steps is performed, the total treatment time is preferably 10 hours or less, more preferably 5 hours or less, and even more preferably 3 hours or less, from the viewpoint of production efficiency.
(熔融盐组合物的寿命延长方法)(Life extension method of molten salt composition)
根据本发明,通过在熔融盐组合物中含有2价金属的硝酸盐,即使在熔融盐组合物中含有作为杂质的硼的情况下,也能够延长用于含锂玻璃的化学强化的含有硝酸钾和硝酸钠中的至少一者以及异种阴离子化合物的熔融盐组合物的使用寿命(寿命)。According to the present invention, by including a divalent metal nitrate in the molten salt composition, even when boron is contained as an impurity in the molten salt composition, it is possible to extend the amount of potassium nitrate used for chemical strengthening of the lithium-containing glass. The service life (lifetime) of the molten salt composition of at least one of and sodium nitrate and a heterogeneous anion compound.
因此,作为本发明的一个方式,可以列举一种熔融盐组合物的寿命延长方法,其为延长用于含锂玻璃的化学强化的熔融盐组合物的寿命的方法,其中,在含有硝酸钾和硝酸钠中的至少一者、异种阴离子化合物以及作为杂质的硼的熔融盐组合物中混合2价金属的硝酸盐。Therefore, as one aspect of the present invention, a method for extending the life of a molten salt composition, which is a method for extending the life of a molten salt composition for chemical strengthening of lithium-containing glass, in which potassium nitrate and Nitrate of a divalent metal is mixed with at least one of sodium nitrate, a dissimilar anion compound, and a molten salt composition of boron as an impurity.
为了定量地评价熔融盐组合物的使用寿命(寿命),作为指标,可以使用化学强化玻璃的应力(CT)、化学强化处理前后的玻璃的膨胀率、化学强化玻璃的外观(雾度)。In order to quantitatively evaluate the service life (life) of the molten salt composition, the stress (CT) of the chemically strengthened glass, the expansion ratio of the glass before and after chemical strengthening, and the appearance (haze) of the chemically strengthened glass can be used as indexes.
在使用化学强化玻璃的应力作为熔融盐组合物的寿命的指标的情况下,将作为指标的CT值设定为:将由初始状态的包含硝酸钾和硝酸钠中的至少一者的熔融盐得到的CT值设为100%时的所期望的值(%)以上的CT值。而且,将在化学强化处理中无法得到作为指标的CT值时、即小于所期望的值(%)时的熔融盐组合物中的Li离子浓度作为熔融盐组合物的使用寿命。When the stress of the chemically strengthened glass is used as an index of the life of the molten salt composition, the CT value as an index is set as a value obtained from a molten salt containing at least one of potassium nitrate and sodium nitrate in an initial state. The CT value is set to a CT value equal to or greater than a desired value (%) at 100%. In addition, the Li ion concentration in the molten salt composition when the CT value as an index cannot be obtained in the chemical strengthening treatment, that is, when the value (%) is less than the desired value, is used as the service life of the molten salt composition.
在使用化学强化玻璃的应力作为熔融盐组合物的寿命的指标的情况下,具体而言,例如熔融盐组合物的寿命可以如下进行评价。首先,为了模拟地制作反复进行化学强化处理后的状态,将Li离子源有意地添加到熔融盐组合物中。然后,用添加有Li离子源的熔融盐组合物对含锂玻璃进行化学强化处理,在处理后的玻璃的CT值低于作为指标的CT值时,根据Li离子源的添加量计算Li离子浓度,可以将其作为熔融盐组合物的寿命的指标。When the stress of the chemically strengthened glass is used as an index of the life of the molten salt composition, specifically, for example, the life of the molten salt composition can be evaluated as follows. First, a Li ion source was intentionally added to the molten salt composition in order to simulate a state in which the chemical strengthening treatment was repeated. Then, the lithium-containing glass is chemically strengthened with the molten salt composition to which the Li ion source is added, and when the CT value of the treated glass is lower than the CT value as an index, the Li ion concentration is calculated from the added amount of the Li ion source. , which can be used as an indicator of the life of the molten salt composition.
膨胀率是指,化学强化处理后的玻璃相对于化学强化处理前的玻璃的膨胀率。在使用膨胀率作为熔融盐组合物的寿命的指标的情况下,将作为指标的膨胀率设定为:将由初始状态的包含硝酸钾和硝酸钠中的至少一者的熔融盐得到的膨胀率设为100%时的所期望的值(%)以上的膨胀率。而且,将在化学强化处理中无法得到作为指标的膨胀率时、即小于所期望的值(%)时的熔融盐组合物中的Li离子浓度作为熔融盐组合物的使用寿命。The expansion coefficient refers to the expansion coefficient of the glass after the chemical strengthening treatment with respect to the glass before the chemical strengthening treatment. When the expansion ratio is used as an index of the life of the molten salt composition, the expansion ratio as the index is set as the expansion ratio obtained from the molten salt containing at least one of potassium nitrate and sodium nitrate in the initial state as The expansion ratio of the desired value (%) at 100%. Moreover, the Li ion concentration in the molten salt composition when the expansion coefficient as an index cannot be obtained in the chemical strengthening treatment, that is, when it is less than a desired value (%), is used as the service life of the molten salt composition.
在使用膨胀率作为熔融盐组合物的寿命的指标的情况下,具体而言,例如熔融盐组合物的寿命可以如下进行评价。首先,为了模拟地制作反复进行化学强化处理后的状态,将Li离子源有意地添加到熔融盐组合物中。然后,用添加有Li离子源的熔融盐组合物对含锂玻璃进行化学强化处理,在处理后的玻璃的膨胀率低于作为指标的膨胀率时,根据Li离子源的添加量计算Li离子浓度,可以将其作为熔融盐组合物的寿命的指标。When the expansion ratio is used as an index of the life of the molten salt composition, specifically, for example, the life of the molten salt composition can be evaluated as follows. First, a Li ion source was intentionally added to the molten salt composition in order to simulate a state in which the chemical strengthening treatment was repeated. Then, the lithium-containing glass is chemically strengthened with the molten salt composition to which the Li ion source is added, and when the expansion coefficient of the treated glass is lower than the expansion coefficient as an index, the Li ion concentration is calculated from the addition amount of the Li ion source. , which can be used as an indicator of the life of the molten salt composition.
在使用化学强化玻璃的外观(雾度)作为熔融盐组合物的寿命的指标的情况下,例如由初始状态的包含硝酸钾和硝酸钠中的至少一者的熔融盐得到的雾度值为0.1%~0.2%时,例如将雾度值增加至大于1%(ヘーズ値が1%より増加する)时的熔融盐组合物中的Li离子浓度作为熔融盐组合物的使用寿命。“雾度”通过JIS K7136:2000(ISO14782:1999)中记载的方法来测定。雾度的测定可以使用日本电色工业株式会社制造的雾度计(型号NDH7000)。When the appearance (haze) of the chemically strengthened glass is used as an index of the life of the molten salt composition, for example, the haze value obtained from the molten salt containing at least one of potassium nitrate and sodium nitrate in the initial state is 0.1 % to 0.2%, for example, the Li ion concentration in the molten salt composition when the haze value is increased to more than 1% is used as the service life of the molten salt composition. "Haze" is measured by the method described in JIS K7136:2000 (ISO14782:1999). For the measurement of the haze, a haze meter (model NDH7000) manufactured by Nippon Denshoku Kogyo Co., Ltd. can be used.
在使用雾度值作为熔融盐组合物的寿命的指标的情况下,具体而言,例如熔融盐组合物的寿命可以如下进行评价。首先,为了模拟地制作反复进行化学强化处理后的状态,将Li离子源有意地添加到熔融盐组合物中。然后,用添加有Li离子源的熔融盐组合物对含锂玻璃进行化学强化处理,在处理后的玻璃的雾度值大于作为指标的雾度值时,根据Li离子源的添加量计算Li离子浓度,可以将其作为熔融盐组合物的寿命的指标。When the haze value is used as an index of the life of the molten salt composition, specifically, for example, the life of the molten salt composition can be evaluated as follows. First, a Li ion source was intentionally added to the molten salt composition in order to simulate a state in which the chemical strengthening treatment was repeated. Then, the lithium-containing glass is chemically strengthened with the molten salt composition to which the Li ion source is added, and when the haze value of the glass after the treatment is greater than the haze value as an index, Li ions are calculated from the added amount of the Li ion source. The concentration can be used as an indicator of the life of the molten salt composition.
[实施例][Example]
以下,对本发明的实施例进行具体说明,但本发明不限于此。Hereinafter, although the Example of this invention is demonstrated concretely, this invention is not limited to this.
(玻璃组成)(glass composition)
作为要进行化学强化的玻璃,使用以氧化物基准的摩尔%表示为下述组成的玻璃。As the glass to be chemically strengthened, the glass having the following composition represented by the mol % on an oxide basis was used.
SiO2:70%、Al2O3:7.5%、Li2O:8.0%、Na2O:5.3%、K2O:1.0%、MgO:7.0%、CaO:0.2%、ZrO2:1.0%SiO 2 : 70%, Al 2 O 3 : 7.5%, Li 2 O: 8.0%, Na 2 O: 5.3%, K 2 O: 1.0%, MgO: 7.0%, CaO: 0.2%, ZrO 2 : 1.0%
(玻璃的评价方法)(Evaluation method of glass)
(1)应力(1) Stress
如以下的式所示,CT根据表面压应力值(CS,单位:MPa)和CS为0时的压应力层深度(DOC1,单位:μm)求出。玻璃的表面压应力值(单位为MPa)、各深度处的压应力值(单位为MPa)和压应力层的深度(DOL,单位为μm)使用折原制作所公司制造的表面应力计(FSM-6000)和折原制作所公司制造的散射光光弹性应力计(SLP-1000)进行测定。关于表1中的应力(CT),对于未添加2价金属的硝酸盐时的CT的标准偏差σ,在σ≤5的情况下,评价为“无异常”。CT is obtained from the surface compressive stress value (CS, unit: MPa) and the depth of the compressive stress layer (DOC1, unit: μm) when CS is 0, as shown in the following formula. The surface compressive stress value (in MPa) of the glass, the compressive stress value at each depth (in MPa), and the depth of the compressive stress layer (DOL, in μm) were measured using a surface stress meter (FSM- 6000) and a scattered light photoelastic stress meter (SLP-1000) manufactured by Orihara, Ltd. Regarding the stress (CT) in Table 1, when σ≦5, the standard deviation σ of CT in the case where nitrate of divalent metal was not added was evaluated as “no abnormality”.
CT=CS[MPa]*DOC1[mm]/(玻璃厚度[mm]-2*DOC1[mm])CT=CS[MPa]*DOC1[mm]/(Glass thickness[mm]-2*DOC1[mm])
(2)外观(2) Appearance
关于外观,将雾度值的边界值(限界値)设定为1.4%,并且利用达到该雾度值时的处理面积进行评价。在此,“处理面积”是指,利用熔融盐组合物的单位质量的熔融盐组合物进行化学强化处理后的玻璃的累积处理面积(m2/kg)。雾度(Hz)(%)使用雾度计(制造商:日本电色工业株式会社,型号:NDH7000)并根据JIS K7136:2000中规定的方法进行测定。Regarding the appearance, the boundary value (limit value) of the haze value was set to 1.4%, and the evaluation was performed using the treated area when the haze value was reached. Here, the "treatment area" means the cumulative treatment area (m 2 /kg) of the glass after chemical strengthening treatment with the molten salt composition per unit mass of the molten salt composition. The haze (Hz) (%) was measured according to the method specified in JIS K7136:2000 using a haze meter (manufacturer: Nippon Denshoku Kogyo Co., Ltd., model: NDH7000).
(3)膨胀率(3) Expansion rate
关于玻璃的膨胀率,将化学强化前的玻璃的主面上的任意一边的长度设为L0,将化学强化后的玻璃的上述一边的长度设为L,并根据式|L-L0|/L×100(%)计算。另外,关于表1中的“膨胀率”,在与未添加2价金属的硝酸盐时相比没有显著差异的情况下,评价为“无异常”。Regarding the expansion coefficient of glass, let the length of any side of the main surface of the glass before chemical strengthening be L 0 , and the length of the above-mentioned side of the glass after chemical strengthening be L, according to the formula |LL 0 |/L ×100(%) calculation. In addition, when the "expansion coefficient" in Table 1 was not significantly different from the case where the nitrate of the divalent metal was not added, it was evaluated as "no abnormality".
[试验例1]累积化学强化处理对玻璃/熔融盐组合物的影响的分析[Test Example 1] Analysis of the influence of cumulative chemical strengthening treatment on glass/molten salt composition
累积地进行化学强化处理,研究伴随2价金属的硝酸盐的添加对熔融盐组合物和玻璃的影响。The chemical strengthening treatment was cumulatively performed, and the influence on the molten salt composition and the glass with the addition of the nitrate of the divalent metal was examined.
在SUS制的杯子中添加作为熔融盐组合物的材料的Na2SiO3、B和Ca(NO3)2·4H2O以使其分别成为表1所示的含量。除此之外,加入硝酸钠,用覆套式电阻加热器加热至450℃,制备了熔融盐组合物。Na 2 SiO 3 , B, and Ca(NO 3 ) 2 ·4H 2 O, which are materials of the molten salt composition, were added to the cups made of SUS so as to have the contents shown in Table 1, respectively. In addition, sodium nitrate was added, and it heated to 450 degreeC with the mantle type resistance heater, and prepared the molten salt composition.
准备切割为板厚0.65mm、50mm×50mm的大小的上述组成的玻璃,将该玻璃预热至350℃~400℃,然后作为化学强化处理,将玻璃浸渍在熔融盐组合物中,并在410℃下处理4小时,然后冷却至室温附近,进行第一次化学强化处理,然后利用水清洗附着盐。Prepare glass of the above composition cut into a size of 0.65 mm thick and 50 mm × 50 mm, preheat the glass to 350°C to 400°C, and then as a chemical strengthening treatment, immerse the glass in the molten salt composition, and heat it at 410°C. After being treated at ℃ for 4 hours, it was cooled to around room temperature, and the first chemical strengthening treatment was performed, and then the adhering salt was washed with water.
接着,将玻璃预热至350℃~400℃,然后将玻璃浸渍在100重量%KNO3的熔融盐中并在440℃下处理1小时,然后冷却至室温,进行第二次化学强化处理,然后利用水清洗附着盐。之后,累积地反复进行第一次化学强化处理和第二次化学强化处理的组合。Next, the glass is preheated to 350°C to 400°C, then the glass is immersed in a molten salt of 100 wt% KNO3 and treated at 440°C for 1 hour, then cooled to room temperature, and subjected to a second chemical strengthening treatment, then The adhering salt is washed with water. After that, the combination of the first chemical strengthening treatment and the second chemical strengthening treatment is repeatedly performed cumulatively.
对通过第二次化学强化处理得到的化学强化玻璃评价应力、外观、膨胀率,将其结果以及由盐的添加而带来的影响示于表1中。The stress, appearance, and expansion coefficient were evaluated for the chemically strengthened glass obtained by the second chemical strengthening treatment, and Table 1 shows the results and the influence by the addition of the salt.
另外,将进行累积化学强化处理带来的对玻璃深层部中的应力的影响示于图1(A)~(C)中。图1(A)为表示对熔融盐组合物添加Ca(NO3)2·4H2O(实施例1)或未添加Ca(NO3)2·4H2O(比较例2)的情况下的处理面积与化学强化玻璃的DOC1的关系的图。图1(B)为表示对熔融盐组合物添加Ca(NO3)2·4H2O(实施例1)或未添加Ca(NO3)2·4H2O(比较例2)的情况下的处理面积与化学强化玻璃的CT的关系的图。图1(C)为表示对熔融盐组合物添加Ca(NO3)2·4H2O(实施例1)或未添加Ca(NO3)2·4H2O(比较例2)的情况下的DOL与化学强化玻璃的CS关系的图。In addition, the influence on the stress in the glass deep part by carrying out the cumulative chemical strengthening treatment is shown in FIGS. 1(A) to (C). Fig. 1(A) shows the case of adding Ca(NO 3 ) 2 .4H 2 O (Example 1) or not adding Ca(NO 3 ) 2 .4H 2 O (Comparative Example 2) to the molten salt composition A graph showing the relationship between the treated area and DOC1 of chemically strengthened glass. Fig. 1(B) shows the case of adding Ca(NO 3 ) 2 .4H 2 O (Example 1) or not adding Ca(NO 3 ) 2 .4H 2 O (Comparative Example 2) to the molten salt composition A graph showing the relationship between the treatment area and the CT of the chemically strengthened glass. Fig. 1(C) shows the case of adding Ca(NO 3 ) 2 .4H 2 O (Example 1) or not adding Ca(NO 3 ) 2 .4H 2 O (Comparative Example 2) to the molten salt composition Graph of the CS relationship between DOL and chemically strengthened glass.
作为对玻璃表层部中的应力的影响,将在熔融盐组合物中添加Ca(NO3)2·4H2O(实施例1)的情况下的处理面积与化学强化玻璃的CS的关系示于图2中。The relationship between the treated area and CS of the chemically strengthened glass when Ca(NO 3 ) 2 ·4H 2 O (Example 1) is added to the molten salt composition as an influence on the stress in the glass surface layer portion is shown in Figure 2.
如表1所示,使用在含有硝酸钠、偏硅酸钠和作为杂质的硼的熔融盐组合物中添加了Ca(NO3)2·4H2O的组合物对含锂玻璃进行化学强化处理后的实施例1,与熔融盐组合物中不含有硼的比较例1相比,显示出相同的外观和应力。另外,与使用含有作为杂质的硼且未添加Ca(NO3)2·4H2O的熔融盐组合物进行化学强化后的比较例2相比,实施例1显示出同等的应力和膨胀率,并且显示出优异的外观。As shown in Table 1, the lithium-containing glass was chemically strengthened using a composition obtained by adding Ca(NO 3 ) 2 .4H 2 O to a molten salt composition containing sodium nitrate, sodium metasilicate, and boron as an impurity. The following Example 1 showed the same appearance and stress as compared with Comparative Example 1 in which boron was not contained in the molten salt composition. In addition, as compared with Comparative Example 2 after chemical strengthening using a molten salt composition containing boron as an impurity and without adding Ca(NO 3 ) 2 .4H 2 O, Example 1 showed the same stress and expansion ratio, And showed excellent appearance.
如图1(A)~(C)所示,可知,通过使用含有硝酸钠、偏硅酸钠和作为杂质的硼且添加了Ca(NO3)2·4H2O的熔融盐组合物对含锂玻璃进行化学强化处理,与未添加Ca(NO3)2·4H2O的比较例相比,显示出同等的应力,化学强化特性未受到阻碍。另外,如图2所示,对于使用含有硝酸钠、偏硅酸钠和作为杂质的硼且添加了Ca(NO3)2·4H2O的熔融盐组合物对含锂玻璃进行化学强化处理后的应力值,与未添加Ca(NO3)2·4H2O的情况是同等的,化学强化特性未受到阻碍。As shown in FIGS. 1(A) to (C) , it was found that by using the molten salt composition containing sodium nitrate, sodium metasilicate, and boron as impurities and adding Ca(NO 3 ) 2 .4H 2 O, the The lithium glass was chemically strengthened, and showed the same stress as the comparative example in which Ca(NO 3 ) 2 ·4H 2 O was not added, and the chemical strengthening properties were not hindered. In addition, as shown in FIG. 2 , the lithium-containing glass was subjected to chemical strengthening treatment using a molten salt composition containing sodium nitrate, sodium metasilicate, and boron as impurities and added with Ca(NO 3 ) 2 .4H 2 O. The stress value is the same as that in the case where Ca(NO 3 ) 2 ·4H 2 O is not added, and the chemical strengthening properties are not hindered.
因此,可知通过使用在含有硝酸钾和硝酸钠中的至少一者、异种阴离子化合物以及作为杂质的硼的熔融盐组合物中添加了2价金属的硝酸盐的组合物对含锂玻璃进行化学强化处理,能够抑制由硼的混入而导致的外观变差,并且能够延长熔融盐组合物的寿命。Therefore, it was found that the lithium-containing glass was chemically strengthened by using a composition obtained by adding a divalent metal nitrate to a molten salt composition containing at least one of potassium nitrate and sodium nitrate, a dissimilar anion compound, and boron as an impurity. The treatment can suppress the deterioration of the appearance due to the incorporation of boron, and can prolong the life of the molten salt composition.
[试验例2]熔融盐组合物的液相观察和元素分析[Test Example 2] Liquid phase observation and elemental analysis of molten salt composition
使用在包含50质量ppm的硼、1.15质量ppm的Na2SiO3的450℃的硝酸钠中添加了Ca(NO3)2·4H2O的熔融盐组合物,与试验例1同样地对含锂玻璃累积地进行了化学强化处理。将测定熔融盐组合物中的元素浓度(质量ppm)而得到的结果示于表2中。元素浓度的测定通过ICP PS3520 UVDDII进行。Using a molten salt composition obtained by adding Ca(NO 3 ) 2 ·4H 2 O to sodium nitrate at 450° C. containing 50 mass ppm of boron and 1.15 mass ppm of Na 2 SiO 3 The lithium glass is chemically strengthened cumulatively. Table 2 shows the results obtained by measuring the element concentration (mass ppm) in the molten salt composition. Determination of elemental concentrations was carried out by ICP PS3520 UVDIII.
表2Table 2
如表2所示,可知通过在含有硝酸钾和硝酸钠中的至少一者、异种阴离子化合物以及作为杂质的硼的熔融盐组合物中添加2价金属的硝酸盐,能够减少熔融盐组合物中的硼浓度。As shown in Table 2, it was found that by adding a nitrate of a divalent metal to a molten salt composition containing at least one of potassium nitrate and sodium nitrate, a dissimilar anion compound, and boron as an impurity, the amount of the divalent metal in the molten salt composition can be reduced. boron concentration.
另外,关于处理面积(0m2/kg)的熔融盐组合物,添加Ca(NO3)2·4H2O,然后在经过2小时、6小时、25小时之后观察液相的状态。结果可知,在刚添加后,液相变得浑浊,在添加2小时后,在熔融盐组合物的液相中残留有浑浊,但是在添加6小时后浑浊得到改善,在经过25小时后,液相的浑浊消失。In addition, Ca(NO 3 ) 2 ·4H 2 O was added to the molten salt composition of the treatment area (0 m 2 /kg), and the state of the liquid phase was observed after 2 hours, 6 hours, and 25 hours. As a result, it was found that the liquid phase became cloudy immediately after the addition, and the liquid phase of the molten salt composition remained cloudy 2 hours after the addition, but the cloudiness was improved 6 hours after the addition, and 25 hours later, the liquid phase became cloudy. The turbidity of the phase disappeared.
虽然参照特定的实施方式对本发明进行了详细地说明,但是在不脱离本发明的精神和范围的情况下可以进行各种修正和变更,这对于本领域技术人员而言是显而易见的。Although this invention was demonstrated in detail with reference to the specific embodiment, it is clear for those skilled in the art that various corrections and changes can be added without deviating from the mind and range of this invention.
本申请基于2019年3月26日申请的日本专利申请2019-059039号,其内容作为参考并入本申请中。This application is based on Japanese Patent Application No. 2019-059039 filed on March 26, 2019, the contents of which are incorporated herein by reference.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311797070.XA CN117945669A (en) | 2019-03-26 | 2020-03-26 | Method for producing chemically strengthened glass, molten salt composition, and method for prolonging life of molten salt composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-059039 | 2019-03-26 | ||
JP2019059039A JP7172790B2 (en) | 2019-03-26 | 2019-03-26 | Method for producing chemically strengthened glass, molten salt composition, and method for extending life of molten salt composition |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311797070.XA Division CN117945669A (en) | 2019-03-26 | 2020-03-26 | Method for producing chemically strengthened glass, molten salt composition, and method for prolonging life of molten salt composition |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111747661A true CN111747661A (en) | 2020-10-09 |
CN111747661B CN111747661B (en) | 2024-01-05 |
Family
ID=72641696
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010221883.4A Active CN111747661B (en) | 2019-03-26 | 2020-03-26 | Method for producing chemically strengthened glass, molten salt composition, and method for prolonging life of molten salt composition |
CN202311797070.XA Pending CN117945669A (en) | 2019-03-26 | 2020-03-26 | Method for producing chemically strengthened glass, molten salt composition, and method for prolonging life of molten salt composition |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311797070.XA Pending CN117945669A (en) | 2019-03-26 | 2020-03-26 | Method for producing chemically strengthened glass, molten salt composition, and method for prolonging life of molten salt composition |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7172790B2 (en) |
CN (2) | CN111747661B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113754315A (en) * | 2021-07-30 | 2021-12-07 | 翔实光电科技(昆山)有限公司 | Method for improving activity and long-acting property of nitrate in chemical toughening of glass |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023137438A (en) * | 2022-03-18 | 2023-09-29 | 日本電気硝子株式会社 | Manufacturing method of strengthened glass, and strengthened glass |
CN114853363A (en) * | 2022-05-16 | 2022-08-05 | 蓝思科技股份有限公司 | Method for reversely strengthening and recovering boron-lithium-aluminosilicate strengthened glass |
WO2024057820A1 (en) * | 2022-09-16 | 2024-03-21 | 日本電気硝子株式会社 | Method for producing strengthened glass, and ion-exchange liquid |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1215722A (en) * | 1967-04-24 | 1970-12-16 | Glaverbel | Processes for tempering glass and vitro-crystalline materials |
WO2012086544A1 (en) * | 2010-12-20 | 2012-06-28 | 三菱化学株式会社 | Silicon preparation method and preparation apparatus, silicon wafer, and solar cell panel |
CN103781739A (en) * | 2011-09-09 | 2014-05-07 | Hoya株式会社 | Process for producing cover glass for potable appliance |
JP2015129063A (en) * | 2014-01-07 | 2015-07-16 | 旭硝子株式会社 | Regeneration method of molten salt for toughening glass, and production method of toughened glass |
JP2016188166A (en) * | 2015-03-27 | 2016-11-04 | 旭硝子株式会社 | Method for manufacturing chemically strengthened glass |
-
2019
- 2019-03-26 JP JP2019059039A patent/JP7172790B2/en active Active
-
2020
- 2020-03-26 CN CN202010221883.4A patent/CN111747661B/en active Active
- 2020-03-26 CN CN202311797070.XA patent/CN117945669A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1215722A (en) * | 1967-04-24 | 1970-12-16 | Glaverbel | Processes for tempering glass and vitro-crystalline materials |
WO2012086544A1 (en) * | 2010-12-20 | 2012-06-28 | 三菱化学株式会社 | Silicon preparation method and preparation apparatus, silicon wafer, and solar cell panel |
CN103781739A (en) * | 2011-09-09 | 2014-05-07 | Hoya株式会社 | Process for producing cover glass for potable appliance |
JP2015129063A (en) * | 2014-01-07 | 2015-07-16 | 旭硝子株式会社 | Regeneration method of molten salt for toughening glass, and production method of toughened glass |
JP2016188166A (en) * | 2015-03-27 | 2016-11-04 | 旭硝子株式会社 | Method for manufacturing chemically strengthened glass |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113754315A (en) * | 2021-07-30 | 2021-12-07 | 翔实光电科技(昆山)有限公司 | Method for improving activity and long-acting property of nitrate in chemical toughening of glass |
Also Published As
Publication number | Publication date |
---|---|
CN111747661B (en) | 2024-01-05 |
JP2020158340A (en) | 2020-10-01 |
CN117945669A (en) | 2024-04-30 |
JP7172790B2 (en) | 2022-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111747661A (en) | Manufacturing method of chemically strengthened glass, molten salt composition, and life extension method of molten salt composition | |
JP7040456B2 (en) | Manufacturing method of chemically strengthened glass, chemically strengthened glass and chemically strengthened glass | |
CN110546115B (en) | Chemically strengthened glass and glass for chemical strengthening | |
CN106277840B (en) | The manufacturing method of chemically reinforced glass | |
JP5957097B2 (en) | Glass composition, glass composition for chemical strengthening, tempered glass article, and cover glass for display | |
US11198642B2 (en) | Production method of chemically strengthened glass, and chemically strengthened glass | |
CN110944954A (en) | Glass for chemical strengthening, chemically strengthened glass, and electronic device case | |
TW201742841A (en) | Glass compositions that retain high compressive stress after post-ion exchange heat treatment | |
JP7533456B2 (en) | Glass, chemically strengthened glass and method for producing same | |
CN107207335B (en) | Method for producing glass substrate | |
CN106167357B (en) | Method for producing chemically strengthened glass | |
WO2016010050A1 (en) | Glass for anti-glare processing and anti-glare glass using same | |
JP2020007222A (en) | Method for manufacturing chemically strengthened glass | |
TWI759530B (en) | Crystallized glass substrate | |
WO2023082936A1 (en) | Crystalline glass and reinforced crystalline glass, and preparation methods therefor | |
WO2022065132A1 (en) | Tempered glass | |
JP7569007B2 (en) | Method for producing ion-exchanged glass, mixture for ion exchange, and apparatus for producing ion-exchanged glass | |
CN118666492A (en) | Chemically tempered glass plate and production method thereof | |
CN111051262B (en) | Glass | |
WO2022215717A1 (en) | Chemically strengthened glass and manufacturing method therefor | |
WO2012066989A1 (en) | Glass composition for chemical strengthening | |
TWI759531B (en) | Crystallized glass substrate | |
JP2017114718A (en) | Glass sheet for chemical reinforcement and manufacturing method of glass sheet for chemical reinforcement | |
CN113716880B (en) | Method for producing ion-exchange glass, mixture for ion exchange, and device for producing ion-exchange glass | |
TW202413305A (en) | Method for producing strengthened glass, and ion-exchange liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |