[go: up one dir, main page]

CN111733182B - Method for improving plant resistance to Fusarium graminearum by using AtALA1 gene - Google Patents

Method for improving plant resistance to Fusarium graminearum by using AtALA1 gene Download PDF

Info

Publication number
CN111733182B
CN111733182B CN202010663567.2A CN202010663567A CN111733182B CN 111733182 B CN111733182 B CN 111733182B CN 202010663567 A CN202010663567 A CN 202010663567A CN 111733182 B CN111733182 B CN 111733182B
Authority
CN
China
Prior art keywords
atala1
plant
gene
fusarium graminearum
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010663567.2A
Other languages
Chinese (zh)
Other versions
CN111733182A (en
Inventor
裴炎
王凡龙
侯磊
韩菁
卓静欣
苏梅
李玉杰
任慧
宋水清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN202010663567.2A priority Critical patent/CN111733182B/en
Publication of CN111733182A publication Critical patent/CN111733182A/en
Application granted granted Critical
Publication of CN111733182B publication Critical patent/CN111733182B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明涉及一种提高植物对禾谷镰刀菌的抗性的方法,其中通过将AtALA1基因整合进入目标植物,并使得所述AtALA1基因在目标植物中表达而降低禾谷镰刀菌毒素含量,提高植物对禾谷镰刀菌的抗性,所述AtALA1基因的核苷酸序列如SEQ ID NO.14所示。本发明利用植物对病原菌毒素的转运降解机制,显著降低植物体中的毒素含量,同时提高了对禾谷镰刀菌的抗性。因此,可以广泛应用于提高不同病原菌及其毒素的抗性,具有广泛的适用性。The invention relates to a method for improving the resistance of plants to Fusarium graminearum, wherein the AtALA1 gene is integrated into the target plant, and the AtALA1 gene is expressed in the target plant to reduce the toxin content of Fusarium graminearum and improve plant For resistance to Fusarium graminearum, the nucleotide sequence of the AtALA1 gene is shown in SEQ ID NO.14. The invention utilizes the transporting and degrading mechanism of plants to pathogenic bacteria toxins, significantly reduces the toxin content in plants, and simultaneously improves the resistance to Fusarium graminearum. Therefore, it can be widely used to improve the resistance of different pathogenic bacteria and their toxins, and has wide applicability.

Description

利用AtALA1基因提高植物对禾谷镰刀菌抗性的方法Method for improving plant resistance to Fusarium graminearum by using AtALA1 gene

技术领域technical field

本发明属于植物基因工程领域。具体地说,涉及利用基因工程技术降低禾谷镰刀菌毒素的含量而提高植物对禾谷镰刀菌抗性的方法。The invention belongs to the field of plant genetic engineering. Specifically, it relates to a method for improving plant resistance to Fusarium graminearum by using genetic engineering technology to reduce the content of Fusarium graminearum toxin.

背景技术Background technique

水稻和玉米是世界三大粮食作物,是全世界食物及饲料的主要来源,其制品的安全性直接关系人类存亡。但这些禾谷类作物在其生长发育中常受到多种病原菌的浸染,不仅严重降低其产量与品质,经病原菌污染的籽粒常含有多种真菌毒素,严重危害人畜健康(Zhen,2010)。根据联合国粮农组织(FAO)估计,多达25%的世界粮食作物被真菌毒素污染,其中脱氧雪腐镰刀菌烯醇(Deoxynivalenol,DON,也称为呕吐毒素)是最常见、最重要的镰孢菌毒素。DON最初由日本科学家Morooka和Yamamoto于1972年在感染赤霉病的大麦中分离得到(Morooka&Yamamoto,1972)。根据它能引发母猪拒食和呕吐的特征,将其定名为呕吐毒素(Vomitoxin,VT),是一种B型单端孢霉烯族化合物,主要由禾谷镰孢(F.graminearum)和黄色镰孢(F.culmorum)产生,包括呕吐毒素(DON)以及其乙酰化形式:15-乙酰基-脱氧雪腐镰刀菌烯醇(15-ADON)和3-乙酰基-脱氧雪腐镰刀菌烯醇(3-ADON)。2018年BIOMIN公司对全球霉菌污染风险进行评估的结果显示,在送检样品中有73%检测出了DON,检出率居于所有毒素的首位。而我国的送检样品中玉米、面粉、小麦还是麸皮及米糠,DON的阳性率均超过了98%,在猪饲料和禽饲料中DON的阳性率高达97%。Rice and corn are the world's three major food crops and the main sources of food and feed in the world. The safety of their products is directly related to the survival of human beings. However, these cereal crops are often infected by a variety of pathogenic bacteria during their growth and development, which not only seriously reduces their yield and quality, but the grains contaminated by pathogenic bacteria often contain a variety of mycotoxins, which seriously endanger human and animal health (Zhen, 2010). According to the United Nations Food and Agriculture Organization (FAO), as many as 25% of the world's food crops are contaminated with mycotoxins, of which deoxynivalenol (DON, also known as vomitoxin) is the most common and important Fusarium Bacterial toxins. DON was first isolated by Japanese scientists Morooka and Yamamoto in 1972 from barley infected with head blight (Morooka & Yamamoto, 1972). According to the characteristics that it can cause sows to refuse to eat and vomit, it is named vomitoxin (Vomitoxin, VT), which is a type B trichothecene compound, mainly composed of Fusarium graminearum (F. graminearum) and yellow Fusarium (F. culmorum) production, including deoxynivalenol (DON) and its acetylated forms: 15-acetyl-deoxynivalenol (15-ADON) and 3-acetyl-deoxynivalene Alcohol (3-ADON). In 2018, the results of BIOMIN's assessment of the global mold contamination risk showed that DON was detected in 73% of the samples submitted for inspection, and the detection rate ranked first among all toxins. However, in the samples submitted for inspection in my country, the positive rate of DON in corn, flour, wheat or bran and rice bran exceeded 98%, and the positive rate of DON in pig feed and poultry feed was as high as 97%.

DON不仅危害农作物,被DON污染的食品或饲料进入人体或动物体内,还严重危害人畜健康(De Walleet al.,2010;Audenaert et al.,2014;Vidalet al.,2016)。DON具有很强的细胞抑制作用,可以抑制人和动物的免疫系统,主要是抑制蛋白质、DNA和RNA的合成、抑制线粒体的功能、影响细胞分裂和细胞膜的功能(Goyarts et al.,2007;Seeling etal.,2006;Valenta et al.,2005)。DON对人类和动物均具有毒性,可损坏人和动物的免疫系统,造成头晕、呕吐、腹泻、恶心以及流产等症状(De Walle et al.,2010;Audenaert etal.,2013;Pestka et al.,2004)。DON极易被人体吸收,误食了被污染的食物后会造成站立不稳,反应迟钝,猪食用了DON污染的谷物会出现拒食、呕吐及采食量下降等症状,严重时会产生流产等病症(Ebarbet al.,2018;Sayyari et al.,2018),因此降低植物中的DON具有重要意义。DON not only harms crops, but DON-contaminated food or feed enters human or animal bodies, and seriously endangers human and animal health (De Walle et al., 2010; Audenaert et al., 2014; Vidalet al., 2016). DON has a strong cytostatic effect and can inhibit the immune system of humans and animals, mainly inhibiting the synthesis of proteins, DNA and RNA, inhibiting the function of mitochondria, affecting cell division and cell membrane function (Goyarts et al., 2007; Seeling et al., 2006; Valenta et al., 2005). DON is toxic to humans and animals, and can damage the immune system of humans and animals, causing symptoms such as dizziness, vomiting, diarrhea, nausea, and abortion (De Walle et al., 2010; Audenaert et al., 2013; Pestka et al., 2004). DON is easily absorbed by the human body. After eating contaminated food by mistake, it will cause unsteady standing and unresponsiveness. Pigs will have symptoms such as food refusal, vomiting and decreased feed intake after eating DON-contaminated grains. In severe cases, abortion will occur. disease (Ebarbet al., 2018; Sayyari et al., 2018), so reducing DON in plants is of great significance.

目前关于降低植物中DON含量的报道较少,仅发现UDP-葡萄糖基转移酶可使DON转变为无毒的D3G,使转基因小麦和拟南芥表现出对DON的抗性,从而提高植物对DON耐受性(Pasquet et al.,2016;Schweigeret al.,2013;Gardiner et al.,2010;Mandalàet al.,2019)。更多的是将抗病相关途径中的调控基因进行作物转化,提高了对DON耐受性,表达TaABCC基因可提高小麦对禾谷镰刀菌的耐受性,还降低了DON在麦穗中的累积(Walter etal.,2015);小麦中TaFROG有助于提高宿主对DON和禾谷镰刀菌的抗性(Alexandreet al.,2015);Song等人在禾谷镰刀菌细胞壁蛋白中,发现抗体CWP2识别的抗原GLX定位于赤霉病菌细胞膜上且特异性结合CWP2,从而使植物抗病(Song et al.,2016);表达TaCYP72A有助于提高宿主对DON的耐受性(Gunupuruet al.,2018);表达TAD1提高了小麦对禾谷镰刀菌的抗性,暗示TAD1可能是是增加谷类作物对FHB抗性的候选基因(Sasakietet al.,2016)。以上方法基本都是提高植物防御功能,但不能降低DON在籽粒中的累积。At present, there are few reports on reducing the content of DON in plants. It is only found that UDP-glucosyltransferase can convert DON into non-toxic D3G, so that transgenic wheat and Arabidopsis show resistance to DON, thereby improving plant resistance to DON. Tolerance (Pasquet et al., 2016; Schweiger et al., 2013; Gardiner et al., 2010; Mandalà et al., 2019). More importantly, the regulatory genes in the disease resistance-related pathways are transformed into crops, which improves the tolerance to DON. The expression of the TaABCC gene can improve the tolerance of wheat to Fusarium graminearum, and also reduce the concentration of DON in wheat ears. Accumulation (Walter et al., 2015); TaFROG in wheat helps to increase host resistance to DON and Fusarium graminearum (Alexandre et al., 2015); Song et al found antibody CWP2 in the cell wall protein of Fusarium graminearum The recognized antigen GLX is located on the cell membrane of Gibberella and specifically binds to CWP2, thereby making plants resistant to disease (Song et al., 2016); expressing TaCYP72A helps to improve the host's tolerance to DON (Gunupuru et al., 2018 ); expression of TAD1 increased the resistance of wheat to Fusarium graminearum, suggesting that TAD1 may be a candidate gene for increasing the resistance of cereal crops to FHB (Sasakiet et al., 2016). The above methods basically improve the plant defense function, but cannot reduce the accumulation of DON in the grain.

纵观以上方法,物理法和化学法作用效果弱且作用范围小,处理样品繁琐,且对环境危害较大。生物法大都是从毒素合成等方面出发来降低毒素的合成,并没有从根本上提高植株自身降解毒素的能力。随着植物基因工程技术的不断发展,以及对植物-病原物互作认识的不断深入,使得将外源抗性基因导入植物来提高抗病性成为一条有效途径。实践证明,利用抗病品种是降低DON含量,提高对禾谷镰刀菌抗性的唯一经济有效的途径。Looking at the above methods, the physical and chemical methods have weak effects and a small range of action, cumbersome sample processing, and greater environmental hazards. Most of the biological methods start from the synthesis of toxins and other aspects to reduce the synthesis of toxins, and have not fundamentally improved the ability of plants to degrade toxins. With the continuous development of plant genetic engineering technology and the deepening understanding of plant-pathogen interaction, it has become an effective way to introduce exogenous resistance genes into plants to improve disease resistance. Practice has proved that the use of disease-resistant varieties is the only cost-effective way to reduce DON content and improve resistance to Fusarium graminearum.

基于对病原菌致病机理的深入研究,以及病原菌分泌毒素的严重危害及在致病中的重要作用,利用外源抗病基因抑制病原菌对植物的侵染,提高植物对病原菌毒素的解毒功能,是提高植物抗病性的有效途径之一。但目前大数研究者主要利用前一种方法达到提高植物抗性的目的,尚未见成功利用外源基因的表达产物解毒病原菌产生的毒素来提高对病原菌抗性的报道。Based on the in-depth study of the pathogenic mechanism of pathogenic bacteria, as well as the serious harm of toxins secreted by pathogenic bacteria and their important role in pathogenicity, it is important to use exogenous disease resistance genes to inhibit the infection of pathogenic bacteria on plants and improve the detoxification function of plants to pathogenic toxins. One of the effective ways to improve plant disease resistance. However, at present, most researchers mainly use the former method to achieve the purpose of improving plant resistance, and there is no report on the successful use of exogenous gene expression products to detoxify the toxins produced by pathogenic bacteria to improve resistance to pathogenic bacteria.

本研究表明表达AtALA1缓解了DON对玉米根长的抑制作用,提高了对DON的耐受性,检测含量发现转基因玉米中DON累积量下降,相比野生型降低105ppb,表明表达AtALA1是一种降低籽粒中DON含量,提高抗禾谷镰刀菌的行之有效的策略,具有重要意义。This study showed that the expression of AtALA1 alleviated the inhibitory effect of DON on maize root growth and improved the tolerance to DON. The detection of content found that the accumulation of DON in transgenic maize decreased by 105 ppb compared with the wild type, indicating that the expression of AtALA1 is a reduction. DON content in grains, a proven strategy to increase resistance to Fusarium graminearum, is of great importance.

发明内容Contents of the invention

本发明的一个目的是提供一种提高植物对禾谷镰刀菌的抗性的方法;本发明的另一个目的是一种抗禾谷镰刀菌的转基因植物的制备方法;本发明也提供AtALA1基因在降低植物中禾谷镰刀菌毒素并提高植物对禾谷镰刀菌抗性中的用途。An object of the present invention is to provide a method for improving the resistance of plants to Fusarium graminearum; Another object of the present invention is a method for preparing a transgenic plant resistant to Fusarium graminearum; The present invention also provides AtALA1 gene in Use for reducing Fusarium graminearum toxins in plants and increasing plant resistance to Fusarium graminearum.

AtALA1属于P4-ATPases家族成员,是包含10个跨膜域的膜蛋白,该蛋白家族在维持细胞膜磷脂不对称分布、起始囊泡形成及介导细胞内蛋白运输中发挥重要作用。AtALA1基因编码AtALA1蛋白,其核苷酸序列如SEQ ID NO.14所示。以模式植物拟南芥中的AtALA1基因为模型,并以具有相同解毒机制的P4-ATPase蛋白的禾谷类植物玉米验证,完成了本发明的研究。AtALA1, a member of the P4-ATPases family, is a membrane protein containing 10 transmembrane domains. This protein family plays an important role in maintaining the asymmetric distribution of phospholipids in the cell membrane, initiating vesicle formation, and mediating intracellular protein transport. AtALA1 gene encodes AtALA1 protein, the nucleotide sequence of which is shown in SEQ ID NO.14. Using the AtALA1 gene in the model plant Arabidopsis thaliana as a model, and verifying it with the cereal plant maize which has the same detoxification mechanism of P4-ATPase protein, the research of the present invention has been completed.

根据本发明的一方面,一种提高植物对禾谷镰刀菌的抗性的方法,其中通过将AtALA1基因整合进入目标植物,并使得所述AtALA1基因在目标植物中表达而降低禾谷镰刀菌毒素含量,提高植物对禾谷镰刀菌的抗性,所述AtALA1基因的核苷酸序列如SEQ IDNO.14所示。According to one aspect of the present invention, a method for improving the resistance of plants to Fusarium graminearum, wherein the AtALA1 gene is integrated into the target plant, and the AtALA1 gene is expressed in the target plant to reduce Fusarium graminearum toxin content, and improve plant resistance to Fusarium graminearum, the nucleotide sequence of the AtALA1 gene is shown in SEQ ID NO.14.

本发明所述的方法,包括下述步骤:The method of the present invention comprises the following steps:

1)构建含有来自AtALA1基因的重组植物表达载体;1) constructing a recombinant plant expression vector containing the AtALA1 gene;

2)将所述重组植物表达载体导入目标植物中,使得AtALA1基因在目标植物中组成型表达;和2) introducing the recombinant plant expression vector into the target plant, so that the AtALA1 gene is constitutively expressed in the target plant; and

3)获得具有对禾谷镰刀菌抗性的转基因植物。3) Obtaining transgenic plants resistant to Fusarium graminearum.

在本发明所述方法中,优选的目标植物为拟南芥或禾谷类植物,例如玉米。In the method of the present invention, preferred target plants are Arabidopsis or cereals, such as maize.

本发明所述的方法中,使用的重组植物表达载体的结构如图4A(拟南芥)或图4B(玉米)所示。In the method of the present invention, the structure of the recombinant plant expression vector used is shown in Figure 4A (Arabidopsis) or Figure 4B (maize).

根据本发明的另一方面,一种抗禾谷镰刀菌的转基因植物的制备方法,包括以下步骤:According to another aspect of the present invention, a method for preparing a transgenic plant resistant to Fusarium graminearum comprises the following steps:

i)获得AtALA1基因,并将其可操作地插入植物表达载体中,构建植物表达载体;i) Obtaining the AtALA1 gene and operatively inserting it into a plant expression vector to construct a plant expression vector;

ii)用步骤i)获得的植物表达载体转化宿主,获得转化体;ii) transforming the host with the plant expression vector obtained in step i) to obtain a transformant;

iii)用步骤ii)获得的转化体转化植物,获得转基因植物;iii) transforming plants with the transformants obtained in step ii) to obtain transgenic plants;

所述AtALA1基因的核苷酸序列如SEQ ID NO.14所示。The nucleotide sequence of the AtALA1 gene is shown in SEQ ID NO.14.

根据本发明的再一方面,提供AtALA1基因在降低植物中禾谷镰刀菌毒素并提高植物对禾谷镰刀菌抗性中的用途,其中通过将AtALA1基因整合进入目标植物,获得转基因植物,并使得所述AtALA1基因在植物体内表达,而降低植物中禾谷镰刀菌毒素的含量,并提高目标植物对禾谷镰刀菌的抗性,所述AtALA1基因的核苷酸序列如SEQ ID NO.14所示。According to another aspect of the present invention, there is provided the use of the AtALA1 gene in reducing Fusarium graminearum toxin in plants and improving the resistance of plants to Fusarium graminearum, wherein by integrating the AtALA1 gene into the target plant, a transgenic plant is obtained, and the The AtALA1 gene is expressed in plants to reduce the content of Fusarium graminearum toxin in the plant and improve the resistance of the target plant to Fusarium graminearum. The nucleotide sequence of the AtALA1 gene is shown in SEQ ID NO.14 Show.

SEQ ID NO.14SEQ ID NO.14

ATGGATCCCAGGAAATCAATTGATAAGCCGCCTCATCACGATCCAATTCTGGGTGTATCTTCAAGATGGAGCGTTTCTTCTAAAGACAACAAAGAAGTTACTTTCGGTGATTTGGGATCTAAGCGTATCCGTCATGGTTCAGCTGGAGCTGATTCTGAGATGCTAAGCATGTCTCAGAAAGAGATCAAAGACGAAGATGCTCGTTTGATTTATATTAACGATCCTGACAGAACTAACGAACGGTTTGAGTTCACTGGGAATTCTATCAAGACTGCTAAATACTCTGTCTTCACCTTCTTGCCTAGGAACTTGTTTGAACAGTTCCATAGAGTTGCTTACATTTACTTCCTTGTTATCGCTGTTCTCAATCAGCTTCCTCAGCTTGCAGTTTTTGGCAGAGGTGCATCCATCATGCCCCTTGCCTTTGTTCTCTTGGTCTCTGCTATCAAAGATGCTTACGAGGATTTCCGGAGACATAGGTCAGATAGAGTTGAGAACAATAGGTTGGCTTTAGTCTTTGAGGATCATCAGTTTCGAGAGAAGAAGTGGAAGCATATCCGGGTTGGGGAAGTCATTAAAGTCCAATCCAATCAGACTCTTCCCTGTGACATGGTGCTCTTGGCTACTAGTGATCCTACTGGGGTTGTCTACGTGCAGACGACTAATTTGGATGGTGAGTCGAATTTGAAGACCAGGTATGCCAAGCAGGAAACTCTTCTGAAAGCTGCTGATATGGAGTCGTTTAATGGATTTATCAAGTGTGAGAAACCTAACAGGAACATTTATGGGTTTCAAGCCAACATGGAGATTGATGGTAGAAGGCTCTCCCTTGGACCTTCTAATATTATTCTAAGAGGGTGTGAGCTTAAGAACACTGCTTGGGCTTTAGGGGTTGTTGTGTATGCTGGTGGTGAGACGAAAGCTATGCTCAACAACTCTGGAGCACCATCAAAGAGGAGTAGGCTAGAGACTCGAATGAATTTGGAGATCATTCTACTCTCTTTGTTTCTGATCGTCTTGTGTACAATCGCAGCCGCGACCGCTGCTGTGTGGTTGAGAACGCACAGGGATGACTTGGACACTATTCTCTTTTATAGAAGAAAGGACTACTCTGAGAGGCCAGGAGGGAAGAACTATAAATACTATGGTTGGGGGTGGGAGATATTCTTCACCTTCTTTATGGCAGTCATTGTGTACCAGATCATGATACCCATTTCTCTCTACATATCGATGGAGCTCGTCCGTATTGGTCAAGCATACTTCATGACCAATGATGATCAGATGTATGACGAGTCTTCAGATTCAAGTTTTCAATGCAGGGCTTTAAATATAAATGAAGATTTAGGGCAGATTAAGTATTTATTCTCTGATAAGACGGGTACACTCACGGACAACAAGATGGAGTTTCAATGTGCCTGCATCGAAGGCGTAGATTACTCTGACAGGGAACCTGCTGATAGCGAGCATCCTGGATACTCCATTGAAGTTGATGGAATTATTTTGAAGCCAAAGATGAGGGTGAGAGTTGATCCTGTGCTTCTTCAGTTAACGAAAACTGGCAAGGCAACAGAAGAAGCAAAACGTGCAAATGAGTTTTTCCTCTCACTGGCAGCTTGCAATACAATTGTGCCAATTGTTAGCAATACATCTGATCCCAATGTGAAACTGGTAGATTATCAAGGGGAGTCCCCTGATGAACAAGCATTGGTCTATGCAGCAGCTGCATATGGTTTCTTGCTCATAGAGAGAACCTCTGGTCATATAGTTATTAATGTGCGAGGAGAAACGCAAAGATTTAATGTTTTGGGATTGCATGAGTTCGATAGTGACCGAAAAAGAATGTCAGTGATACTGGGATGCCCCGACATGTCGGTGAAACTCTTTGTAAAAGGTGCAGACTCATCCATGTTTGGTGTCATGGATGAATCCTACGGTGGCGTCATACATGAGACCAAGATACAACTTCATGCTTACTCATCTGATGGTTTGAGAACACTTGTTGTTGGGATGAGAGAGCTGAACGATTCAGAGTTTGAGCAATGGCATTCTTCATTTGAGGCGGCAAGCACCGCCTTGATTGGTCGGGCTGGATTGCTAAGAAAAGTTGCTGGAAACATTGAGACTAACCTTAGGATAGTAGGAGCCACCGCAATTGAAGACAAATTGCAGCGTGGTGTCCCTGAAGCAATAGAATCTTTGAGGATTGCAGGGATAAAAGTCTGGGTCTTGACTGGTGACAAGCAAGAAACTGCCATATCCATTGGCTTCTCATCGAGGCTTCTGACAAGAAACATGAGGCAAATTGTAATAAATAGCAACTCGTTGGATTCATGTCGGAGGAGCTTAGAAGAAGCAAATGCCAGTATTGCAAGTAATGACGAAAGTGATAATGTGGCCTTGATTATTGACGGTACCAGCCTCATATATGTACTCGACAATGATCTTGAAGATGTGCTGTTCCAGGTGGCATGTAAGTGCTCTGCGATACTCTGCTGCCGGGTTGCTCCTTTCCAGAAAGCTGGAATCGTTGCACTTGTAAAGAACCGGACTTCTGACATGACTCTTGCCATTGGTGATGGTGCCAATGATGTCTCCATGATTCAAATGGCTGATGTTGGGGTAGGGATAAGCGGACAAGAAGGTCGCCAAGCTGTGATGGCATCTGATTTCGCAATGGGACAGTTCAGATTTTTAGTTCCGTTATTGCTCGTCCATGGACACTGGAATTACCAAAGGATGGGTTACATGATACTATATAATTTCTATAGAAATGCAGTTTTTGTTCTAATTTTATTTTGGTACGTTTTGTTTACTTGCTACACCTTGACAACTGCCATCACAGAATGGAGCAGTGTTTTGTACTCAGTCATATACACAGCAATCCCTACAATAATTATCGGTATTCTTGACAAAGACCTTGGAAGGCAGACTCTTCTTGATCATCCTCAGCTCTACGGTGTTGGCCAGAGGGCAGAGGGATATTCCACTACGCTCTTCTGGTATACAATGATTGACACAATCTGGCAAAGTGCAGCCATCTTCTTCATTCCTATGTTTGCTTATTGGGGCAGTACAATTGACACGTCGAGCCTAGGAGACCTATGGACGATAGCTGCAGTTGTGGTGGTTAATCTTCACTTGGCCATGGATGTGATCAGATGGAACTGGATCACACACGCCGCCATATGGGGATCCATTGTTGCAGCTTGTATATGTGTCATTGTGATTGATGTTATACCCACACTCCCTGGTTACTGGGCAATTTTCCAAGTGGGCAAGACATGGATGTTCTGGTTCTGCTTGCTAGCAATAGTTGTGACATCATTGCTTCCTAGATTCGCCATCAAGTTTCTAGTGGAGTATTACAGACCTTCCGATGTTCGGATAGCTAGGGAGGCTGAAAAGCTTGGAACTTTCAGAGAATCCCAACCCGTGGGAGTTGAAATGAACCTGATTCAGGATCCTCCACGGAGATGAATGGATCCCAGGAAATCAATTGATAAGCCGCCTCATCACGATCCAATTCTGGGTGTATCTTCAAGATGGAGCGTTTCTTCTAAAGACAACAAAGAAGTTACTTTCGGTGATTTGGGATCTAAGCGTATCCGTCATGGTTCAGCTGGAGCTGATTCTGAGATGCTAAGCATGTCTCAGAAAGAGATCAAAGACGAAGATGCTCGTTTGATTTATATTAACGATCCTGACAGAACTAACGAACGGTTTGAGTTCACTGGGAATTCTATCAAGACTGCTAAATACTCTGTCTTCACCTTCTTGCCTAGGAACTTGTTTGAACAGTTCCATAGAGTTGCTTACATTTACTTCCTTGTTATCGCTGTTCTCAATCAGCTTCCTCAGCTTGCAGTTTTTGGCAGAGGTGCATCCATCATGCCCCTTGCCTTTGTTCTCTTGGTCTCTGCTATCAAAGATGCTTACGAGGATTTCCGGAGACATAGGTCAGATAGAGTTGAGAACAATAGGTTGGCTTTAGTCTTTGAGGATCATCAGTTTCGAGAGAAGAAGTGGAAGCATATCCGGGTTGGGGAAGTCATTAAAGTCCAATCCAATCAGACTCTTCCCTGTGACATGGTGCTCTTGGCTACTAGTGATCCTACTGGGGTTGTCTACGTGCAGACGACTAATTTGGATGGTGAGTCGAATTTGAAGACCAGGTATGCCAAGCAGGAAACTCTTCTGAAAGCTGCTGATATGGAGTCGTTTAATGGATTTATCAAGTGTGAGAAACCTAACAGGAACATTTATGGGTTTCAAGCCAACATGGAGATTGATGGTAGAAGGCTCTCCCTTGGACCTTCTAATATTATTCTAAGAGGGTGTGAGCTTAAGAACACTGCTTGGGCTTTAGGGGTTGTTGTGTATGCTGGTGGTGAGACGAAAGCTATGCTCAACAACTCTGGAGCACCATCAAAGAGGAGTAGGCTAGAGACTCGAATGAATTTGGAGATCATTCTACTCT CTTTGTTTCTGATCGTCTTGTGTACAATCGCAGCCGCGACCGCTGCTGTGTGGTTGAGAACGCACAGGGATGACTTGGACACTATTCTCTTTTATAGAAGAAAGGACTACTCTGAGAGGCCAGGAGGGAAGAACTATAAATACTATGGTTGGGGGTGGGAGATATTCTTCACCTTCTTTATGGCAGTCATTGTGTACCAGATCATGATACCCATTTCTCTCTACATATCGATGGAGCTCGTCCGTATTGGTCAAGCATACTTCATGACCAATGATGATCAGATGTATGACGAGTCTTCAGATTCAAGTTTTCAATGCAGGGCTTTAAATATAAATGAAGATTTAGGGCAGATTAAGTATTTATTCTCTGATAAGACGGGTACACTCACGGACAACAAGATGGAGTTTCAATGTGCCTGCATCGAAGGCGTAGATTACTCTGACAGGGAACCTGCTGATAGCGAGCATCCTGGATACTCCATTGAAGTTGATGGAATTATTTTGAAGCCAAAGATGAGGGTGAGAGTTGATCCTGTGCTTCTTCAGTTAACGAAAACTGGCAAGGCAACAGAAGAAGCAAAACGTGCAAATGAGTTTTTCCTCTCACTGGCAGCTTGCAATACAATTGTGCCAATTGTTAGCAATACATCTGATCCCAATGTGAAACTGGTAGATTATCAAGGGGAGTCCCCTGATGAACAAGCATTGGTCTATGCAGCAGCTGCATATGGTTTCTTGCTCATAGAGAGAACCTCTGGTCATATAGTTATTAATGTGCGAGGAGAAACGCAAAGATTTAATGTTTTGGGATTGCATGAGTTCGATAGTGACCGAAAAAGAATGTCAGTGATACTGGGATGCCCCGACATGTCGGTGAAACTCTTTGTAAAAGGTGCAGACTCATCCATGTTTGGTGTCATGGATGAATCCTACGGTGGCGTCATACATGAGACCAAGATACAACTTCATGCTTACTCATCTGATGGTTTGAGAACACTTGT TGTTGGGATGAGAGAGCTGAACGATTCAGAGTTTGAGCAATGGCATTCTTCATTTGAGGCGGCAAGCACCGCCTTGATTGGTCGGGCTGGATTGCTAAGAAAAGTTGCTGGAAACATTGAGACTAACCTTAGGATAGTAGGAGCCACCGCAATTGAAGACAAATTGCAGCGTGGTGTCCCTGAAGCAATAGAATCTTTGAGGATTGCAGGGATAAAAGTCTGGGTCTTGACTGGTGACAAGCAAGAAACTGCCATATCCATTGGCTTCTCATCGAGGCTTCTGACAAGAAACATGAGGCAAATTGTAATAAATAGCAACTCGTTGGATTCATGTCGGAGGAGCTTAGAAGAAGCAAATGCCAGTATTGCAAGTAATGACGAAAGTGATAATGTGGCCTTGATTATTGACGGTACCAGCCTCATATATGTACTCGACAATGATCTTGAAGATGTGCTGTTCCAGGTGGCATGTAAGTGCTCTGCGATACTCTGCTGCCGGGTTGCTCCTTTCCAGAAAGCTGGAATCGTTGCACTTGTAAAGAACCGGACTTCTGACATGACTCTTGCCATTGGTGATGGTGCCAATGATGTCTCCATGATTCAAATGGCTGATGTTGGGGTAGGGATAAGCGGACAAGAAGGTCGCCAAGCTGTGATGGCATCTGATTTCGCAATGGGACAGTTCAGATTTTTAGTTCCGTTATTGCTCGTCCATGGACACTGGAATTACCAAAGGATGGGTTACATGATACTATATAATTTCTATAGAAATGCAGTTTTTGTTCTAATTTTATTTTGGTACGTTTTGTTTACTTGCTACACCTTGACAACTGCCATCACAGAATGGAGCAGTGTTTTGTACTCAGTCATATACACAGCAATCCCTACAATAATTATCGGTATTCTTGACAAAGACCTTGGAAGGCAGACTCTTCTTGATCATCCTCAGCTCTACGGTGTTGGCCAGAGGGCAGAGGGATATTCCACTACGCTCTTCTGG TATACAATGATTGACACAATCTGGCAAAGTGCAGCCATCTTCTTCATTCCTATGTTTGCTTATTGGGGCAGTACAATTGACACGTCGAGCCTAGGAGACCTATGGACGATAGCTGCAGTTGTGGTGGTTAATCTTCACTTGGCCATGGATGTGATCAGATGGAACTGGATCACACACGCCGCCATATGGGGATCCATTGTTGCAGCTTGTATATGTGTCATTGTGATTGATGTTATACCCACACTCCCTGGTTACTGGGCAATTTTCCAAGTGGGCAAGACATGGATGTTCTGGTTCTGCTTGCTAGCAATAGTTGTGACATCATTGCTTCCTAGATTCGCCATCAAGTTTCTAGTGGAGTATTACAGACCTTCCGATGTTCGGATAGCTAGGGAGGCTGAAAAGCTTGGAACTTTCAGAGAATCCCAACCCGTGGGAGTTGAAATGAACCTGATTCAGGATCCTCCACGGAGATGA

在本发明的一个具体实施方案中,本发明的方法包括如下的步骤:In a specific embodiment of the invention, the method of the present invention comprises the steps of:

1)获得拟南芥AtALA1基因:引入SmaI和SalI酶切位点设计引物,然后以拟南芥cDNA为模板进行PCR扩增,扩增产物即为添加酶切位点的AtALA1基因序列;1) Obtaining the Arabidopsis AtALA1 gene: introducing SmaI and SalI restriction sites to design primers, and then performing PCR amplification using the Arabidopsis cDNA as a template, and the amplified product is the AtALA1 gene sequence with restriction restriction sites added;

2)构建组成型表达AtALA1基因的植物表达载体:将扩增获得的AtALA1基因序列分别插入双子叶植物表达载体pLGN-35S-Nos与单子叶植物表达载体pCambia2300-Ubi1-Nos,构建两个新的植物表达载体,分别命名为pLGN-35S-AtALA1-Nos与pCambia2300-Ubi1-AtALA1-Nos;2) Construction of plant expression vectors constitutively expressing the AtALA1 gene: the amplified AtALA1 gene sequences were inserted into the dicotyledonous plant expression vector pLGN-35S-Nos and the monocotyledonous plant expression vector pCambia2300-Ubi1-Nos, respectively, to construct two new Plant expression vectors, named pLGN-35S-AtALA1-Nos and pCambia2300-Ubi1-AtALA1-Nos respectively;

3)植物的遗传转化:利用农杆菌浸花法与基因枪转化法,将上述步骤2)获得的pLGN-35S-AtALA1-Nos与pCambia2300-Ubi1-AtALA1-Nos植物表达载体整合入植物基因组,实现AtALA1基因在转基因植物内的组成型表达,降低DON含量而提高转基因植物对禾谷镰刀菌的抗性;3) Genetic transformation of plants: the pLGN-35S-AtALA1-Nos and pCambia2300-Ubi1-AtALA1-Nos plant expression vectors obtained in the above step 2) were integrated into the plant genome by using the Agrobacterium flower dipping method and the gene gun transformation method to realize Constitutive expression of AtALA1 gene in transgenic plants reduces DON content and improves resistance of transgenic plants to Fusarium graminearum;

4)低DON含量抗禾谷镰刀菌的AtALA1转基因植株的获得:将上述步骤3)获得的转基因植物进一步进行繁殖、分子鉴定和抗病性鉴定,获得低DON含量抗禾谷镰刀菌的AtALA1转基因植株。4) Acquisition of AtALA1 transgenic plants with low DON content and resistance to Fusarium graminearum: the transgenic plants obtained in the above step 3) were further propagated, molecularly identified and identified for disease resistance to obtain AtALA1 transgenic plants with low DON content and resistance to Fusarium graminearum plants.

进一步,组成型表达的pLGN-35S-AtALA1-Nos植物表达载体构建的步骤包括:获得拟南芥AtALA1的cDNA后,设计上游引物:5’-TCCCCCGGGATGGATCCCAGGAAATCAATTG(SmaI)-3’,下游引物5’-ACGCGTCGACTCATCTCCGTGGAGGATCCTGA(SalI)-3’进行PCR扩增,扩增产物和pLGN-35S-Nos载体分别进行SmaI和SalI双酶切,分别回收酶切后的大片段,再利用连接酶将回收片段进行连接,构建一个新的植物表达载体,命名为pLGN-35S-AtALA1-Nos,以实现AtALA1基因在转基因植物内的组成型表达。组成型表达的pCambia2300-Ubi1-AtALA1-Nos植物表达载体构建的步骤包括:pCambia2300-GUS载体经Sal I/Kpn I酶切,与单子叶植物组成型启动子Ubi1融合AtALA1(Ubi1-AtALA1)的片段经同源重组获得重组质粒。Further, the steps of constructing the constitutively expressed pLGN-35S-AtALA1-Nos plant expression vector include: after obtaining the cDNA of Arabidopsis thaliana AtALA1, design the upstream primer: 5'-TCC CCCGGG ATGGATCCCAGGAAATCAATTG(SmaI)-3', the downstream primer 5''-ACGC GTCGAC TCATCTCCGTGGAGGATCCTGA(SalI)-3' was amplified by PCR, and the amplified product and the pLGN-35S-Nos vector were subjected to SmaI and SalI double enzyme digestion, respectively, and the large fragments after enzyme digestion were recovered, and then recovered by ligase The fragments were connected to construct a new plant expression vector named pLGN-35S-AtALA1-Nos to realize the constitutive expression of AtALA1 gene in transgenic plants. The steps of constitutively expressed pCambia2300-Ubi1-AtALA1-Nos plant expression vector construction include: the pCambia2300-GUS vector is cut with Sal I/Kpn I, and the fragment of AtALA1 (Ubi1-AtALA1) is fused with the monocot constitutive promoter Ubi1 Recombinant plasmids were obtained by homologous recombination.

不限制任何机理,本发明所提供的降低DON含量而提高植物对禾谷镰刀菌抗性的方法,是将来自植物的AtALA1基因转入目标植物中,实现该基因在转基因植株中的组成型表达,利用P4类ATP酶转运降解DON等禾谷镰刀菌毒素,提高转基因植物对禾谷镰刀菌毒素的解毒能力,进而提高转基因植物对禾谷镰刀菌的抗性。Without limiting any mechanism, the method provided by the present invention to reduce DON content and improve plant resistance to Fusarium graminearum is to transfer the AtALA1 gene from the plant into the target plant, and realize the constitutive expression of the gene in the transgenic plant , using P4 ATPases to transport and degrade DON and other Fusarium graminearum toxins, improve the detoxification ability of transgenic plants to Fusarium graminearum toxins, and then improve the resistance of transgenic plants to Fusarium graminearum.

本发明根据AtALA1突变体对呕吐毒素(DON)敏感且丧失将其转运至液泡的特性,结合禾谷镰刀菌致病机理的特性,创造性地提出利用AtALA1基因在转基因植物中组成型表达,降低转基因植物中的DON含量,提高其对DON的解毒能力,进而提高转基因植物对禾谷镰刀菌抗性的策略。According to the AtALA1 mutant that is sensitive to vomitoxin (DON) and loses the property of transporting it to the vacuole, combined with the characteristics of the pathogenic mechanism of Fusarium graminearum, the present invention creatively proposes to use the AtALA1 gene to constitutively express in transgenic plants to reduce the risk of transgenic Strategies to improve the DON content in plants, improve their detoxification ability to DON, and then improve the resistance of transgenic plants to Fusarium graminearum.

本发明主要是利用转基因产物对禾谷镰刀菌毒素的转运降解机制,降低转基因植物中毒素含量,提高其对禾谷镰刀菌的抗病性,更进一步的以相同的方式利用转基因产物提高植物对其他真菌毒素的解毒能力也是本发明的保护范围。同时本发明中涉及的植物表达载体,转基因植株等也在本发明的保护范围内。The present invention mainly uses the transfer and degradation mechanism of the transgenic product to Fusarium graminearum toxin, reduces the toxin content in the transgenic plant, improves its disease resistance to Fusarium graminearum, and further utilizes the transgenic product in the same way to improve the plant's resistance to The ability to detoxify other mycotoxins is also within the scope of the present invention. At the same time, the plant expression vectors and transgenic plants involved in the present invention are also within the protection scope of the present invention.

本发明获得的AtALA1转基因拟南芥,T3代纯合转基因株系OE-25经50μg/mL DON处理17d,DON含量为5.49ng/g,较野生型(WT)对照降低3.42ng/g。用DON(5μg/mL)与FM4-64(8μM)处理10h,超表达株系OE-25与OE-15中5-FAM-DON均进入FM4-64标记的液泡,荧光强度分别为6.56、6.52,分别比WT升高3.53、3.49。结果表明超量AtALA1促进了DON向液泡的转运与降解,提高了对其耐受性。利用本发明获得的转基因玉米T2代植株,用30μM DON处理玉米籽粒(胚根0.2cm)2d,洗去DON继续培养3d,13-3与15-2转化子胚根长度分别达到1.7cm、1.4cm,分别比WT提高1.4、1.1cm。DON含量检测结果显示,13-3与15-2转化子分别比WT降低56%、52%。此外,接种禾谷镰刀菌7d,13-3与15-2转化子病斑面积分别为6mm2、11mm2,分别比WT减少60%、27%;孢子数分别为1.3×105个/mL、2.4×105个/mL,分别比WT减少87%、76%,表明表达AtALA1提高了玉米对禾谷镰刀菌的抗性。研究结果表明,利用本发明方法获得的转基因拟南芥和玉米可以显著降低DON含量,提高对禾谷镰刀菌的抗性。说明,本发明提供的降低植物中DON含量,提高植物对禾谷镰刀菌抗性的方法效果显著。该方法不仅适用于拟南芥和玉米,所有能受禾谷镰刀菌侵染的植物均可利用该方法降低其DON含量,提高对禾谷镰刀菌的抗性。The AtALA1 transgenic Arabidopsis thaliana obtained in the present invention, T3 homozygous transgenic line OE-25 was treated with 50 μg/mL DON for 17 days, and the DON content was 5.49 ng/g, which was 3.42 ng/g lower than that of the wild type (WT) control. Treated with DON (5 μg/mL) and FM4-64 (8 μM) for 10 h, 5-FAM-DON in the overexpression lines OE-25 and OE-15 all entered the vacuoles labeled with FM4-64, and the fluorescence intensities were 6.56, 6.52 , which were 3.53 and 3.49 higher than WT respectively. The results showed that excess AtALA1 promoted the transport and degradation of DON to the vacuole, and improved its tolerance. Using the transgenic corn T2 generation plants obtained by the present invention, the corn kernels (radicle 0.2 cm) were treated with 30 μM DON for 2 days, and the DON was washed away to continue culturing for 3 days. The radicle lengths of 13-3 and 15-2 transformants reached 1.7 cm and 1.4 cm respectively. cm, 1.4 and 1.1 cm higher than WT, respectively. The results of DON content detection showed that the 13-3 and 15-2 transformants were 56% and 52% lower than WT, respectively. In addition, 7 days after being inoculated with Fusarium graminearum, the lesion areas of 13-3 and 15-2 transformants were 6 mm 2 and 11 mm 2 , which were 60% and 27% less than those of WT; the number of spores was 1.3×10 5 /mL , 2.4×10 5 cells/mL, which were 87% and 76% less than WT, respectively, indicating that the expression of AtALA1 improved the resistance of maize to Fusarium graminearum. The research results show that the transgenic Arabidopsis and corn obtained by the method of the invention can significantly reduce the DON content and improve the resistance to Fusarium graminearum. It shows that the method provided by the invention for reducing the DON content in plants and improving the resistance of plants to Fusarium graminearum has remarkable effects. This method is not only applicable to Arabidopsis and corn, all plants that can be infected by Fusarium graminearum can use this method to reduce their DON content and improve their resistance to Fusarium graminearum.

本发明提供的方法主要是利用植物对病原菌毒素的转运降解机制,降低病原菌毒素含量达到解毒的目的,进而提高植物的抗性,因而不具有病原菌小种抗性的特点。因此,该方法不存在小种专一性抗性的限制,可广泛应用于提高不同病原菌生理小种的抗性。The method provided by the invention mainly utilizes the transporting and degrading mechanism of the pathogen toxin by plants, reduces the content of the toxin of the pathogen to achieve the purpose of detoxification, and further improves the resistance of the plant, so it does not have the characteristics of race resistance of the pathogen. Therefore, this method does not have the limitation of race-specific resistance, and can be widely used to improve the resistance of different physiological races of pathogenic bacteria.

附图说明Description of drawings

图1为拟南芥ala1-12突变体的获得Figure 1 shows the acquisition of Arabidopsis ala1-12 mutant

A为ala1-12突变体的突变位点,该突变位点在AtALA1外显子区域(图中三角形位置);exon为外显子,intron为内含子;LP,RP,LBb1.3:鉴定纯合突变体用引物;B为PCR鉴定ala1纯合突变体,a:LP+RP扩增产物,约1100bp;b:LBb1.3+RP扩增产物,约700bp;DNA分子量标准为Marker 2000;4与12:获得的纯合突变体;Col-0:野生型拟南芥;C为实时荧光定量PCR检测野生型(Col-0)与突变体中AtALA1表达量。A is the mutation site of the ala1-12 mutant, which is located in the exon region of AtALA1 (the triangle position in the figure); exon is an exon, and intron is an intron; LP, RP, LBb1.3: Identification Primers for homozygous mutants; B is PCR identification of ala1 homozygous mutants, a: LP+RP amplification product, about 1100bp; b: LBb1.3+RP amplification product, about 700bp; DNA molecular weight standard is Marker 2000; 4 and 12: obtained homozygous mutants; Col-0: wild-type Arabidopsis; C is real-time fluorescent quantitative PCR detection of AtALA1 expression in wild-type (Col-0) and mutants.

图2为对DON敏感的拟南芥突变体筛选Figure 2 is the screening of Arabidopsis mutants sensitive to DON

A为野生型(Wild Type:Col-0)与不同拟南芥突变体对100μg/mL DON的敏感性检测结果;ala1,ala10,ala6,ala3及ala7:拟南芥不同P4-ATPases突变体;B为DON处理下,统计拟南芥白化叶片所占比率。A is the sensitivity detection results of wild type (Wild Type: Col-0) and different Arabidopsis mutants to 100 μg/mL DON; ala1, ala10, ala6, ala3 and ala7: different P4-ATPases mutants of Arabidopsis; B is the ratio of Arabidopsis albino leaves under DON treatment.

图3为不同拟南芥P4-ATPases突变体对DON的转运情况Figure 3 shows the translocation of DON by different Arabidopsis P4-ATPases mutants

野生型(Wild Type:Col-0);ala1,ala10,ala6,ala3及ala7:拟南芥不同P4-ATPases突变体;FM4-64:一种膜染料,用以染色细胞膜与液泡膜;5-FAM:用荧光集团5-FAM(5-羧基荧光素)标记DON,在488nm激发光下发出绿色荧光。Wild type (Wild Type: Col-0); ala1, ala10, ala6, ala3 and ala7: different P4-ATPases mutants in Arabidopsis; FM4-64: a membrane dye, used to stain cell membrane and tonoplast membrane; 5- FAM: DON is labeled with the fluorescent group 5-FAM (5-carboxyfluorescein), which emits green fluorescence under 488nm excitation light.

图4为植物表达载体结构图;Figure 4 is a structural diagram of a plant expression vector;

A:pLGN-35S-AtALA1-Nos植物表达载体图,该载体中包含一个2×35S启动的GUS::NPTⅡ融合基因的表达框,一个35S启动的AtALA1基因的表达框;A: pLGN-35S-AtALA1-Nos plant expression vector diagram, which contains a 2×35S-promoted GUS::NPTⅡ fusion gene expression cassette and a 35S-promoted AtALA1 gene expression cassette;

B:pCambia2300-Ubi1-AtALA1-Nos植物表达载体图,该载体中包含一个2×35S启动的NPTⅡ基因的表达框,一个单子叶组成型表达Ubi1启动的AtALA1基因的表达框。B: pCambia2300-Ubi1-AtALA1-Nos plant expression vector diagram, which contains an expression cassette of NPTII gene initiated by 2×35S, and an expression cassette of AtALA1 gene initiated by Ubi1 constitutively expressed in monocotyledons.

图5为pLGN-35S-AtALA1-Nos载体质粒酶切验证结果Figure 5 shows the results of pLGN-35S-AtALA1-Nos vector plasmid digestion verification

M:DNA分子量标准Marker15;ALA1:pLGN-35S-AtALA1-Nos载体质粒经酶切后的获得的ALA1目标片段。M: DNA molecular weight standard Marker15; ALA1: ALA1 target fragment obtained after digestion of pLGN-35S-AtALA1-Nos vector plasmid.

图6为ala1中互补AtALA1拟南芥对DON的耐受性Figure 6 shows the tolerance of Arabidopsis thaliana complementary to AtALA1 in ala1 to DON

Col-0:野生型拟南芥;ala1:AtALA1纯合突变体;ala1/ALA1:ala1中互补AtALA1拟南芥;50μg/mL DON处理7d后拍照,Bar=1cm。Col-0: wild-type Arabidopsis; ala1: AtALA1 homozygous mutant; ala1/ALA1: complementary AtALA1 Arabidopsis in ala1; photographed after 50 μg/mL DON treatment for 7 days, Bar=1cm.

图7为转基因拟南芥中AtALA1基因的表达水平Figure 7 is the expression level of AtALA1 gene in transgenic Arabidopsis

Col-0:野生型拟南芥;4、7、9、10、11、13、15、24、25、27、28和29:AtALA1转基因拟南芥独立的转化子。Col-0: wild type Arabidopsis; 4, 7, 9, 10, 11, 13, 15, 24, 25, 27, 28 and 29: independent transformants of AtALA1 transgenic Arabidopsis.

图8为ala1与超量AtALA1拟南芥对DON的耐受性检测A,B:DON(50μg/mL)处理5d的结果,Bar=5mm;C:DON(50μg/mL)处理14d的结果,Bar=1cm;ala1-12:拟南芥AtALA1纯合突变体;OE 15-4,OE 25-1:超量AtALA1拟南芥表达量高的T3代纯合植株。Figure 8 shows the tolerance test of ala1 and excessive AtALA1 Arabidopsis thaliana to DON. A, B: DON (50 μg/mL) treatment results for 5 days, Bar=5 mm; C: DON (50 μg/mL) treatment results for 14 days, Bar=1cm; ala1-12: Arabidopsis AtALA1 homozygous mutant; OE 15-4, OE 25-1: T 3 generation homozygous plants with excessive expression of AtALA1 Arabidopsis.

图9为野生型、突变体ala1及超表达AtALA1拟南芥中DON含量检测结果Figure 9 shows the detection results of DON content in wild type, mutant ala1 and overexpressed AtALA1 Arabidopsis

DON(50μg/mL)处理以下拟南芥幼苗7d,ELISA检测DON含量;WT:野生型拟南芥;ala1:AtALA1拟南芥纯合突变体;11,15,4及24为超量AtALA1拟南芥不同转化子。The following Arabidopsis seedlings were treated with DON (50 μg/mL) for 7 days, and the DON content was detected by ELISA; WT: wild-type Arabidopsis; ala1: AtALA1 homozygous mutant; 11, 15, 4 and 24 were excess AtALA1 Different transformants of A. thaliana.

图10为pCambia2300-Ubi1-AtALA1-Nos植物表达载体构建流程图Figure 10 is a flow chart for the construction of pCambia2300-Ubi1-AtALA1-Nos plant expression vector

pCambia2300-Ubi1-AtALA1-Nos植物表达载体图,该载体中包含一个2×35S启动的NPTⅡ基因的表达框,一个单子叶组成型表达Ubi1启动的AtALA1基因的表达框。The map of pCambia2300-Ubi1-AtALA1-Nos plant expression vector, which contains a 2×35S-promoted NPTII gene expression cassette and a monocotyledon constitutively expressing Ubi1-promoted AtALA1 gene expression cassette.

图11为pCambia2300-Ubi1-AtALA1-Nos载体酶切电泳图Figure 11 is the electrophoresis diagram of pCambia2300-Ubi1-AtALA1-Nos vector restriction enzyme digestion

M:DNA分子量标准DM3100;Ubi1-AtALA1:pCambia2300-Ubi1-AtALA1-Nos载体质粒经SalI/KpnI双酶切后的获得的目标片段。M: DNA molecular weight standard DM3100; Ubi1-AtALA1: the target fragment obtained after the pCambia2300-Ubi1-AtALA1-Nos vector plasmid was digested with SalI/KpnI.

图12为Ubi::AtALA1转基因玉米的PCR鉴定Figure 12 is the PCR identification of Ubi::AtALA1 transgenic maize

M:DNA marker 2000;1:以野生型玉米DNA为模板,为阴性对照;2:以构建成功的Ubi::AtALA1质粒为模板,为阳性对照;3-18:以不同转基因玉米DNA为模板的扩增结果。M: DNA marker 2000; 1: wild-type maize DNA as template, as negative control; 2: successfully constructed Ubi::AtALA1 plasmid as template, as positive control; 3-18: different transgenic maize DNA as template Amplify results.

图13为Ubi::AtALA1转基因玉米各转化子中AtALA1的表达量Figure 13 shows the expression level of AtALA1 in each transformant of Ubi::AtALA1 transgenic maize

表达量分析的内参基因为EF1a,数据为3次重复的平均值;2~N-1:Ubi::AtALA1转基因玉米不同转化子。The internal reference gene for expression analysis is EF1a, and the data are the average value of three repetitions; 2~N-1: Ubi::AtALA1 transgenic maize different transformants.

图14为DON处理下AtALA1转基因玉米的表型Figure 14 is the phenotype of AtALA1 transgenic maize under DON treatment

A为DON处理下玉米籽粒表型;B DON处理下,玉米根长统计结果;C玉米籽粒中DON含量;DON处理浓度为50μM;WT:野生型玉米籽粒;Null:转基因株系中分离的非转基因植株对照;13-3,15-2:表达AtALA1表达量高的玉米籽粒;标尺=1cm。A is the phenotype of maize kernels treated with DON; B is the statistical result of maize root length under DON treatment; C is the content of DON in maize kernels; DON treatment concentration is 50 μM; WT: wild-type maize kernels; Transgenic plant control; 13-3, 15-2: corn kernels expressing high AtALA1 expression; scale bar = 1 cm.

图15为AtALA1转基因玉米对T-2毒素的耐受性结果Figure 15 shows the tolerance results of AtALA1 transgenic maize to T-2 toxin

A为T-2毒素(30μM)对玉米根长的影响;B为T-2毒素下玉米根长统计结果;WT:野生型玉米籽粒;13-3:13-3号T1代转基因玉米籽粒;15-2:15-2号T1代转基因玉米籽粒;标尺=0.5cm。A is the effect of T-2 toxin (30μM) on maize root length; B is the statistical result of maize root length under T-2 toxin; WT: wild-type maize kernels; 13-3: No. 13-3 T1 generation transgenic maize kernels ; 15-2: No. 15-2 T1 generation transgenic corn kernels; scale = 0.5 cm.

图16为AtALA1转基因玉米对禾谷镰刀菌的耐受性分析Figure 16 shows the tolerance analysis of AtALA1 transgenic maize to Fusarium graminearum

A:接种禾谷镰刀菌的表型;B:病斑面积统计;C:孢子数量统计;WT:野生型玉米籽粒;13-3:13-3号T1代转基因玉米籽粒;15-2:15-2号T1代转基因玉米籽粒;标尺=0.5cm。A: Phenotype of Fusarium graminearum inoculation; B: Lesion area statistics; C: Spore number statistics; WT: wild-type corn kernels; 13-3: No. 13-3 T1 transgenic corn kernels; 15-2: No. 15-2 T1 generation transgenic corn kernels; scale bar = 0.5 cm.

图17为AtALA1转基因玉米对禾谷镰刀菌的抗性Figure 17 shows the resistance of AtALA1 transgenic maize to Fusarium graminearum

A为浸泡法在玉米幼嫩籽粒接种禾谷镰刀菌;B为接种3d后的孢子数统计结果。WT:野生型玉米籽粒;13-3:13-3号T1代AtALA1转基因玉米籽粒;15-2:15-2号T1代AtALA1转基因玉米籽粒;标尺=0.3cm。A is the inoculation of Fusarium graminearum on young maize grains by soaking method; B is the statistical result of spore count 3 days after inoculation. WT: wild-type corn kernels; 13-3: No. 13-3 T1 AtALA1 transgenic corn kernels; 15-2: No. 15-2 T1 AtALA1 transgenic corn kernels; scale = 0.3 cm.

具体实施方式Detailed ways

下面结合附图对本发明做进一步的详细说明,但以下说明并不对本发明进行限定。The present invention will be described in further detail below in conjunction with the accompanying drawings, but the following description does not limit the present invention.

本发明实施实例中的药品试剂未进行具体说明的均为国产常规化学试剂,材料方法未进行具体说明的均参考《分子克隆实验指南》(Sambrook和Russell,2001)。The pharmaceutical reagents in the implementation examples of the present invention are domestic conventional chemical reagents that are not specified, and all materials and methods that are not specified are referred to "Molecular Cloning Experiment Guide" (Sambrook and Russell, 2001).

1、发明技术核心策略的提出1. Proposal of the core strategy of the invention technology

1.1 AtALA1基因缺失拟南芥纯合突变体的获得1.1 Obtaining homozygous mutants of Arabidopsis thaliana with deletion of AtALA1 gene

1.1.1拟南芥突变体获得与种植1.1.1 Arabidopsis mutant acquisition and planting

拟南芥突变体购自拟南芥生物资源中心(Arabidopsis Biological ResourceCentre,ABRC)的T-DNA插入突变体,编号分别为:ala1(SALK_056947),ala3(SALK_082157),ala6(SALK_150173),ala7(SALK_125598),ala10(SALK_024877)。Arabidopsis mutants were purchased from Arabidopsis Biological Resource Center (Arabidopsis Biological ResourceCentre, ABRC) T-DNA insertion mutants, numbers are: ala1 (SALK_056947), ala3 (SALK_082157), ala6 (SALK_150173), ala7 (SALK_125598 ), ala10 (SALK_024877).

拟南芥种子培养方法:将种子分装到1.5mL离心管中,用75%酒精0.1%吐温80反复振荡25min进行表面消毒,灭菌蒸馏水冲洗种子3-5次后,0.2%琼脂糖的无菌培养基重悬种子,用移液器将种子铺在在1/2MS固体培养基(2.2g/L MS盐,15g/L蔗糖,2g/L Gelrite,pH 6.0)。4℃冰箱中冷处理2d后按以下条件培养:Arabidopsis seed culture method: divide the seeds into 1.5mL centrifuge tubes, oscillate repeatedly with 75% alcohol and 0.1% Tween 80 for 25 minutes for surface disinfection, rinse the seeds with sterilized distilled water for 3-5 times, and then wash the seeds with 0.2% agarose Resuspend the seeds in sterile medium, and spread the seeds on 1/2 MS solid medium (2.2g/L MS salt, 15g/L sucrose, 2g/L Gelrite, pH 6.0) with a pipette. After cold treatment at 4°C for 2 days, culture according to the following conditions:

16h光照/8h黑暗,150μmolm-2S-1光照强度、70%相对湿度、温度为22℃。当幼苗生长10d后,移到土中(营养土与蛭石的比例大约为1:1),用加入1.5L水和1L B5营养液培养植物。温室光照条件:16h光照/8h黑暗,温度为22℃。16h of light/8h of darkness, light intensity of 150 μmolm -2 S -1 , relative humidity of 70%, and temperature of 22°C. When the seedlings grew for 10 days, they were moved to the soil (the ratio of nutrient soil to vermiculite was about 1:1), and the plants were cultivated by adding 1.5L of water and 1L of B5 nutrient solution. Greenhouse lighting conditions: 16h light/8h dark, temperature 22°C.

1.1.2拟南芥纯合突变体获得1.1.2 Obtaining homozygous mutants of Arabidopsis thaliana

取拟南芥叶片约0.1g,利用新型植物基因组DNA快速提取试剂盒(Aidlab产品,目录号:DN15)提取DNA,操作严格按照说明书进行。突变体筛选PCR引物根据Signal网站设计(http://signal.salk.edu/tdnaprimers.2.html)。About 0.1 g of Arabidopsis leaves were taken, and DNA was extracted using a new plant genomic DNA rapid extraction kit (Aidlab product, catalog number: DN15), and the operation was carried out in strict accordance with the instructions. Mutant screening PCR primers were designed according to Signal website (http://signal.salk.edu/tdnaprimers.2.html).

PCR反应总体系为10μL:1μL模板、引物各0.5μL(20mmol·L-1)、5μL 2×Taq PCRMaster Mix、3μLddH2O。反应程序为:94℃变性5min;94℃变性30s,56℃退火30s,72℃延伸1.5min,30个循环;再于72℃延伸10min。The total PCR reaction system was 10 μL: 1 μL template, 0.5 μL each primer (20 mmol·L −1 ), 5 μL 2×Taq PCRMaster Mix, 3 μL ddH 2 O. The reaction program was: denaturation at 94°C for 5 min; denaturation at 94°C for 30 s, annealing at 56°C for 30 s, extension at 72°C for 1.5 min, 30 cycles; and extension at 72°C for 10 min.

扩增引物为:The amplification primers are:

LP-ala1:5’-GCCATTGGTGATGGTAATGAC-3’(SEQ ID NO.1)LP-ala1:5'-GCCATTGGTGATGGTAATGAC-3' (SEQ ID NO.1)

RP-ala1:5’-ACCAGAACATCCATGTCTTGC-3’(SEQ ID NO.2)RP-ala1:5'-ACCAGAACATCCATGTCTTGC-3' (SEQ ID NO.2)

LBb1.3:5’-ATTTTGCCGATTTCGGAAC-3’(SEQ ID NO.3)LBb1.3:5'-ATTTTGCCGATTTCGGAAC-3' (SEQ ID NO.3)

1.1.3对DON敏感的拟南芥突变体的获得1.1.3 Obtaining DON-sensitive Arabidopsis mutants

在1/2MS固体培养基中种植野生型(Col-0)与纯合突变体拟南芥,待根长至2cm左右,转移至含75μg/mL DON的1/2MS固体培养基中,7d后观察、拍照并统计白化叶片所占比率,结果显示(图2),ala1叶片白化更加严重,其白花叶片所占比率近90%,而其他突变体与野生型相比无显著差异。用5-FAM标记的DON与膜染料FM4-64同时处理野生型与突变体拟南芥,结果表明(图3),处理20h后只有ala1的液泡中没有5-FAM标记的DON,表明AtALA1可能在提高拟南芥对DON的耐受中发挥重要作用。Plant wild-type (Col-0) and homozygous mutant Arabidopsis thaliana in 1/2 MS solid medium, and transfer to 1/2 MS solid medium containing 75 μg/mL DON after the roots grow to about 2 cm, after 7 days Observing, photographing and counting the proportion of albino leaves showed (Fig. 2), the albino leaves of ala1 were more serious, and the proportion of white flower leaves was nearly 90%, while the other mutants had no significant difference compared with the wild type. The wild type and mutant Arabidopsis were treated with 5-FAM-labeled DON and the membrane dye FM4-64 at the same time. The results showed (Figure 3) that there was no 5-FAM-labeled DON in the vacuole with only ala1 after 20 h of treatment, indicating that AtALA1 may Play an important role in improving the tolerance of Arabidopsis to DON.

1.2发明技术核心策略的提出1.2 The proposal of the core strategy of the invention technology

实施实例1.1.3的研究结果表明,AtALA1基因T-DNA突变体ala1对DON更敏感,且失去了转运DON进入液泡的功能。AtALA1属于P4-ATPases家族成员,是包含10个跨膜域的膜蛋白,该蛋白家族在维持细胞膜磷脂不对称分布、起始囊泡形成及介导细胞内囊泡运输中发挥重要作用。因此我们推测,DON可能通过AtALA1介导的囊泡运输,被转运至液泡存储或降解,从而在提高拟南芥对DON的耐受性中发挥重要作用。禾谷镰刀菌分泌很多种毒素,而很多毒素与DON结构类似,结合禾谷镰刀菌毒素对人畜的严重危害,本发明创造性地提出该发明的核心策略,“利用植物来源的P4-ATPases来降低禾谷镰刀菌毒素如DON等的含量,同时提高转基因植株对禾谷镰刀菌的抗性”。The research results of Example 1.1.3 show that the AtALA1 gene T-DNA mutant ala1 is more sensitive to DON and loses the function of transporting DON into the vacuole. AtALA1, a member of the P4-ATPases family, is a membrane protein containing 10 transmembrane domains. This protein family plays an important role in maintaining the asymmetric distribution of phospholipids in the cell membrane, initiating vesicle formation, and mediating intracellular vesicle transport. Therefore, we speculate that DON may be transported to the vacuole for storage or degradation through AtALA1-mediated vesicular transport, thus playing an important role in improving the tolerance of Arabidopsis to DON. Fusarium graminearum secretes many kinds of toxins, and many toxins are similar in structure to DON. Combined with the serious harm of Fusarium graminearum toxins to humans and animals, the present invention creatively proposes the core strategy of the invention, "using plant-derived P4-ATPases to reduce graminearum toxins such as DON, and at the same time increase the resistance of transgenic plants to Fusarium graminearum".

2、AtALA1基因的获得2. Acquisition of AtALA1 gene

2.1拟南芥RNA的提取及cDNA的合成2.1 Arabidopsis RNA extraction and cDNA synthesis

取适量野生型拟南芥(Col-0)叶片,利用液氮研磨法,按Aidlab公司的EASYspinRNA快速提取试剂盒使用说明书提取拟南芥的总RNA,获得的RNA经1%琼脂糖电泳检测质量。再利用TaKaRA公司的PrimeSc-

Figure BDA0002579505340000101
RT reagent Kit with gDNA Eraser试剂盒合成cDNA,操作严格按说明书进行。Take an appropriate amount of leaves of wild-type Arabidopsis thaliana (Col-0), use the liquid nitrogen grinding method, and follow the instructions of the EASYspinRNA rapid extraction kit from Aidlab to extract the total RNA of Arabidopsis thaliana, and the quality of the obtained RNA is detected by 1% agarose electrophoresis. . Reuse of TaKaRA's PrimeSc-
Figure BDA0002579505340000101
RT reagent Kit with gDNA Eraser kit was used to synthesize cDNA, and the operation was carried out strictly according to the instructions.

2.2AtALA1基因的克隆2.2 Cloning of AtALA1 gene

以实施实例2.1获得的拟南芥cDNA为模板,以AtALA1基因上游引物上游引物:5’-TCCCCCGGG ATGGATCCCAGGAAATCAATTG(SmaI)-3’(SEQ ID NO.4),下游引物5’-ACGCGTCGACTCATCTCCGTGGAGGATCCTGA(SalI)-3’(SEQ ID NO.5)为引物,利用KOD-Plus-Neo(TOYOBO)酶进行PCR扩增,回收扩增产物,获得带有SmaI/SalI酶切位点的AtALA1基因片段。Using the Arabidopsis cDNA obtained in Example 2.1 as a template, the upstream primer of the AtALA1 gene upstream primer: 5'-TCC CCCGGG ATGGATCCCAGGAAATCAATTG(SmaI)-3'(SEQ ID NO.4), the downstream primer 5'-ACGC GTCGAC TCATCTCCGTGGAGGATCCTGA( SalI)-3' (SEQ ID NO.5) was used as a primer, and KOD-Plus-Neo (TOYOBO) enzyme was used for PCR amplification, and the amplified product was recovered to obtain an AtALA1 gene fragment with a SmaI/SalI restriction site.

PCR扩增体系为:10×PCR Buffer 5μL,2mM dNTPs 5μL,25mM MgSO4 3μL,10μM上下游引物各2μL,模板(50μg/μL)4μL,KOD-Plus-Neo 1μL(1U/μL),加水至50μL;PCR amplification system: 5 μL of 10×PCR Buffer, 5 μL of 2mM dNTPs, 3 μL of 25mM MgSO 4 , 2 μL of 10 μM upstream and downstream primers, 4 μL of template (50 μg/μL), 1 μL of KOD-Plus-Neo (1U/μL), add water to 50 μL;

扩增程序为94℃2min;98℃10s,68℃4min,循环35次。The amplification program was 94°C for 2min; 98°C for 10s, 68°C for 4min, and cycled 35 times.

3、双子叶植物表达载体pLGN-35S-AtALA1-Nos的构建及农杆菌转化3. Construction of dicot plant expression vector pLGN-35S-AtALA1-Nos and Agrobacterium transformation

3.1 pLGN-35S-Nos植物表达载体的获得3.1 Acquisition of pLGN-35S-Nos plant expression vector

pLGN-35S-Nos为本实验室由pCambia2300改造而来的一个双元植物表达载体。其T-DNA区段(RB和LB之间区域)替换成组成型启动子CaMV35S-P控制的报告基因GUS和标记基因NPTII的融合基因表达盒,并在这个表达盒两端各添加了一个LoxpFRT重组酶识别位点,以及另一个由CaMV35S-P控制的表达盒。pLGN-35S-Nos is a binary plant expression vector transformed from pCambia2300 in our laboratory. Its T-DNA segment (the region between RB and LB) was replaced with a fusion gene expression cassette of the reporter gene GUS and the marker gene NPTII controlled by the constitutive promoter CaMV35S-P, and a LoxpFRT was added at both ends of the expression cassette A recombinase recognition site, and another expression cassette controlled by CaMV35S-P.

3.2 pLGN-35S-AtALA1-Nos植物表达载体的构建3.2 Construction of pLGN-35S-AtALA1-Nos plant expression vector

将上述实施实例2.2获得的片段与pLGN-35S-Nos实施实例3.1中的载体质粒,分别用SmaI/SalI进行双酶切并回收酶切片段,然后利用T4-DNA连接酶连接回收的AtALA1基因片段和pLGN-35S-Nos载体片段。连接产物热激转化大肠杆菌DH5α,筛选阳性克隆并进行酶切验证(如图5所示),结果表明,已成功将AtALA1基因片段连接入pLGN-35S-Nos载体。测序结果与公布的AtALA1基因序列一致,具体序列见SEQ ID NO.14。测序正确的植物表达载体pLGN-35S-AtALA1-Nos单克隆于-80℃保存备用,载体具有图4所示的结构。Carry out double enzyme digestion with SmaI/SalI on the fragment obtained in Example 2.2 above and the vector plasmid in Example 3.1 of pLGN-35S-Nos, respectively, and recover the digested fragment, and then use T4-DNA ligase to ligate the recovered AtALA1 gene fragment and pLGN-35S-Nos vector fragment. The ligated product was heat-shock transformed Escherichia coli DH5α, and the positive clones were screened and verified by enzyme digestion (as shown in Figure 5). The results showed that the AtALA1 gene fragment had been successfully ligated into the pLGN-35S-Nos vector. The sequencing result is consistent with the published AtALA1 gene sequence, and the specific sequence is shown in SEQ ID NO.14. The correctly sequenced plant expression vector pLGN-35S-AtALA1-Nos monoclonal was stored at -80°C for future use, and the vector had the structure shown in Figure 4 .

3.3植物表达载体pLGN-35S-AtALA1-Nos重组农杆菌的获得3.3 Acquisition of plant expression vector pLGN-35S-AtALA1-Nos recombinant Agrobacterium

利用电转化法,将步骤3.2获得的pLGN-35S-AtALA1-Nos植物表达载体转入农杆菌GV3101感受态细胞,利用卡那霉素与利福平作为筛选标记基因进行抗性筛选,获得阳性克隆,再提取农杆菌质粒并用SmaI/SalI进行双酶切,经1%的琼脂糖凝胶进行电泳,获得了3477bp的目的片段(酶切结果与图5酶切结果相同),表明获得了含有pLGN-35S-AtALA1-Nos植物表达载体的重组农杆菌。Using the electroporation method, transfer the pLGN-35S-AtALA1-Nos plant expression vector obtained in step 3.2 into Agrobacterium GV3101 competent cells, and use kanamycin and rifampicin as selection marker genes for resistance screening to obtain positive clones , then extract the Agrobacterium plasmid and carry out double enzyme digestion with SmaI/SalI, and carry out electrophoresis through 1% agarose gel, and obtain the target fragment of 3477bp (the enzyme digestion result is the same as that in Figure 5), indicating that the enzyme containing pLGN has been obtained. -35S-AtALA1-Nos plant expression vector for recombinant Agrobacterium.

4、拟南芥的遗传转化4. Genetic transformation of Arabidopsis

4.1植株种植4.1 Planting

拟南芥种植于1/2MS培养基中,待其长出2片真叶时移至培养土中,在光照培养箱生长,培养条件为:温度22℃/20℃,16h光照/8h黑暗,70%相对湿度,光强150μmol/m2/s。待其长至初生花序约5~15cm、次生花序刚刚形成花芽状时,去除初生花序,有益于次生花序的生长发育,便于渗透转化。渗透转化应在去除初生花序3~5d内完成,并且在渗透转化的前1d植物需充分浇水,以便植物气孔在转化时充分张开。Arabidopsis was planted in 1/2MS medium, moved to culture soil when it grew 2 true leaves, and grown in a light incubator. The culture conditions were: temperature 22°C/20°C, 16h light/8h dark, 70% relative humidity, light intensity 150 μmol/m 2 /s. When the primary inflorescence is about 5-15 cm long and the secondary inflorescence has just formed a flower bud shape, remove the primary inflorescence, which is beneficial to the growth and development of the secondary inflorescence and facilitates infiltration and transformation. The osmotic transformation should be completed within 3-5 days after removing the primary inflorescences, and the plants should be fully watered 1 day before the osmotic transformation, so that the stomata of the plants can fully open during the transformation.

侵染Col-0获得AtALA1转基因拟南芥;侵染ala1纯合突变体获得互补AtALA1拟南芥(ala1/AtALA1)。Infect Col-0 to obtain AtALA1 transgenic Arabidopsis; infect ala1 homozygous mutant to obtain complementary AtALA1 Arabidopsis (ala1/AtALA1).

4.2菌液的培养4.2 Culture of bacteria liquid

取-80℃保存的含pLGN-35S-AtALA1-Nos载体的农杆菌菌株,在含有50mg/L Rif与50mg/L Km的YEB固体培养基(5g/L蔗糖,1g/L酵母提取物,10g/L胰化蛋白胨,0.5g/LMgSO4·7H2O,15g/L琼脂粉,pH 7.0)划线培养获得单菌落,挑取单菌落,接种入附加50mg/LKm和125mg/L Sm(硫酸链霉素)的YEB培养基中(5g/L蔗糖,1g/L细菌用酵母抽提物,10g/L胰化蛋白胨,0.5g/L MgSO4·7H2O,pH 7.0),28℃、200rmp振荡培养过夜,至菌液OD600值达到0.8时,于转化前一天晚上,按1:100进行大量过夜培养(Rif:25mg/L;Kana:50mg/L)。待其由暗红色变为橘黄色时,加入乙酰丁香酮(50mg/L),继续培养2h至OD600约2.0。室温5000r/min离心15min,弃上清液,将农杆菌沉淀悬浮于等体积的渗透培养基(蔗糖50g/L;MS盐2.37g/L;Silwet L-77 500μL/L),使OD600在0.8左右,用于拟南芥侵染。Take the Agrobacterium strain containing the pLGN-35S-AtALA1-Nos carrier stored at -80°C, and put it on the YEB solid medium containing 50mg/L Rif and 50mg/L Km (5g/L sucrose, 1g/L yeast extract, 10g /L tryptone, 0.5g/LMgSO 4 7H 2 O, 15g/L agar powder, pH 7.0) streak culture to obtain a single colony, pick a single colony, inoculate into additional 50mg/LKm and 125mg/L Sm (sulfuric acid Streptomycin) YEB medium (5g/L sucrose, 1g/L bacterial yeast extract, 10g/L tryptone, 0.5g/L MgSO 4 7H 2 O, pH 7.0), 28°C, Shake culture at 200rmp overnight, until the OD600 value of the bacterial solution reaches 0.8, carry out a large amount of overnight culture (Rif: 25mg/L; Kana: 50mg/L) at the ratio of 1:100 the night before transformation. When it turns from dark red to orange, add acetosyringone (50 mg/L) and continue culturing for 2 hours until the OD 600 is about 2.0. Centrifuge at 5000r/min at room temperature for 15min, discard the supernatant, and suspend the Agrobacterium pellet in an equal volume of osmotic medium (sucrose 50g/L; MS salt 2.37g/L; Silwet L-77 500μL/L), so that the OD600 is 0.8 or so, for Arabidopsis infection.

4.3浸花法转化拟南芥4.3 Transformation of Arabidopsis by soaking flowers

用携带目的基因的农杆菌悬浮液侵染拟南芥的地上部分,侵染1min后用黑膜罩覆盖,暗培养12h左右,揭开黑膜并正常培养,侵染1周左右方可浇水,根据其生长情况可再侵染1-2次,继续培养至植物成熟,收获T0代种子用于筛选阳性转化子。Infect the above-ground part of Arabidopsis with the Agrobacterium suspension carrying the target gene, cover it with a black film cover after infecting for 1 minute, and cultivate it in the dark for about 12 hours, uncover the black film and cultivate it normally, and water it after about 1 week of infection According to its growth condition, it can infect again 1-2 times, continue to cultivate until the plant matures, and harvest T 0 generation seeds for screening positive transformants.

4.4转基因拟南芥的分子鉴定4.4 Molecular identification of transgenic Arabidopsis

4.4.1 AtALA1转基因拟南芥的GUS组织化学染色鉴定4.4.1 Identification of AtALA1 transgenic Arabidopsis by GUS histochemical staining

参照Jefferson等(1987)的方法,用镊子取转基因植株幼嫩叶片于GUS染色液(500mg/L X-Gluc,0.1mol/L K3Fe(CN)6,0.1mol/L K4Fe(CN)6,1%Triton X-100(v/v),0.01mol/L Na2EDTA,0.1mol/L磷酸缓冲液pH7.0)中,37℃反应3h。染色后,75%乙醇脱色,每4h更换一次脱色液,直至未着色部分的颜色完全褪去。叶片都没有蓝色出现的再生材料为非转基因植株,染出蓝色的为转基因植株。Referring to the method of Jefferson et al. (1987), take the young leaves of transgenic plants with tweezers and put them in GUS staining solution (500mg/L X-Gluc, 0.1mol/LK 3 Fe(CN) 6 , 0.1mol/LK 4 Fe(CN) 6 , 1% Triton X-100 (v/v), 0.01mol/L Na 2 EDTA, 0.1mol/L phosphate buffer (pH7.0), react at 37°C for 3h. After staining, decolorize with 75% ethanol, and replace the decolorizing solution every 4 hours until the color of the uncolored part fades completely. Regenerated materials with no blue leaves are non-transgenic plants, and those with blue color are transgenic plants.

4.4.2 AtALA1转基因拟南芥的PCR鉴定4.4.2 PCR identification of AtALA1 transgenic Arabidopsis

所有再生的GUS组织化学染色呈阳性反应的转基因植株,取其幼苗叶片约0.1g,按照说明书的操作程序,利用Aidlab公司的新型植物基因组DNA快速提取试剂盒提取DNA,获得DNA后用1%的琼脂糖凝胶电泳检测DNA的质量,然后以提取的DNA为模板,扩增载体特异性片段,以检测再生植株是否整合了AtALA1基因。For all the regenerated transgenic plants with positive GUS histochemical staining, about 0.1 g of the seedling leaves were taken, and the DNA was extracted using the new plant genomic DNA rapid extraction kit of Aidlab Company according to the operating procedures in the manual. After the DNA was obtained, 1% of the The quality of the DNA was detected by agarose gel electrophoresis, and then the extracted DNA was used as a template to amplify the vector-specific fragment to detect whether the regenerated plants integrated the AtALA1 gene.

PCR扩增引物为:PCR amplification primers are:

上游引物:5’-AACAGGCCGATAATGCGCTA-3’;(SEQ ID NO.6)Upstream primer: 5'-AACAGGCCGATAATGCGCTA-3'; (SEQ ID NO.6)

下游引物:5’-GTCTCGGGAAGTCCTTGCTT-3’(SEQ ID NO.7)。Downstream primer: 5'-GTCTCGGGAAGTCCTTGCTT-3' (SEQ ID NO.7).

25μL扩增体系包括:10×LAPCR Buffer,2.5μL;25mmol/L MgCL2,2.5μL;2.5mmol/L dNTP Mixture,2μL;模板DNA,1μL(约10ng);5μmol/L上游引物,1μL;5μmol/L下游引物,1μL;LA Taq酶,0.2μL;ddH2O,14.8μL。25μL amplification system includes: 10×LAPCR Buffer, 2.5μL; 25mmol/L MgCL 2 , 2.5μL; 2.5mmol/L dNTP Mixture, 2μL; template DNA, 1μL (about 10ng); 5μmol/L upstream primer, 1μL; 5μmol /L downstream primer, 1 μL; LA Taq enzyme, 0.2 μL; ddH 2 O, 14.8 μL.

PCR温度循环参数:94℃,5min;94℃,30s,57℃,30s,72℃,30s,扩增30个循环;72℃,10min。最后扩增产物用1%的琼脂糖凝胶电泳检测。PCR temperature cycle parameters: 94°C, 5min; 94°C, 30s, 57°C, 30s, 72°C, 30s, 30 cycles of amplification; 72°C, 10min. Finally, the amplified products were detected by 1% agarose gel electrophoresis.

5转基因植株中AtALA1的转录水平检测5 Detection of AtALA1 transcript level in transgenic plants

5.1 RNA的提取及cDNA的合成5.1 RNA extraction and cDNA synthesis

利用植物RNA快速提取试剂盒(Aidlab产品),提取植物RNA,所有操作严格按说明书进行,获得的RNA利用1%琼脂糖电泳检测质量。再利用Prime

Figure BDA0002579505340000131
RT reagent Kitwith gDNA Eraser试剂盒(TaKaRa产品)合成cDNA,再以cDNA为模板扩增目标基因,RNA中植物基因组DNA的去除以及cDNA的合成均严格按说明书进行。Plant RNA was extracted using a plant RNA rapid extraction kit (Aidlab product), all operations were strictly performed according to the instructions, and the quality of the obtained RNA was detected by 1% agarose electrophoresis. Reuse Prime
Figure BDA0002579505340000131
RT reagent Kit with gDNA Eraser kit (TaKaRa product) was used to synthesize cDNA, and then the cDNA was used as a template to amplify the target gene. The removal of plant genomic DNA in RNA and the synthesis of cDNA were carried out strictly according to the instructions.

5.2 AtALA1基因转录水平检测5.2 AtALA1 gene transcription level detection

利用Real-time PCR方法检测植株内转基因的表达水平。为均一化cDNA浓度,拟南芥以Atactin2基因为内标。Real-time PCR method was used to detect the expression level of the transgene in the plants. To normalize the cDNA concentration, the Arabidopsis gene Atactin2 was used as an internal standard.

10μL反应体系包括:cDNA 1μL,上下游引物各0.5μL,2×iQ SYBR Green Supermix5μL,用无RNA酶的双蒸水补足10μL。The 10 μL reaction system includes: 1 μL of cDNA, 0.5 μL of upstream and downstream primers, 5 μL of 2×iQ SYBR Green Supermix, and make up 10 μL with RNase-free double distilled water.

扩增程序为:95℃预扩增3min;94℃10s,56℃30s,72℃30s,共扩增40个循环。扩增完成后利用Gene Study软件分析基因的相对表达量。The amplification program was: 95°C pre-amplification for 3 minutes; 94°C for 10s, 56°C for 30s, 72°C for 30s, a total of 40 cycles of amplification. After the amplification was completed, the relative expression of the gene was analyzed using Gene Study software.

6、AtALA1转基因拟南芥的DON处理与含量检测6. DON treatment and content detection of AtALA1 transgenic Arabidopsis

6.1 DON处理6.1 DON processing

种植野生型(Col-0)、纯合突变体ala1及互补AtALA1拟南芥(ala1/AtALA1)于1/2MS固体培养基,待根长至2cm左右,转移至含50μg/mL DON的1/2MS固体培养基中,7d后发现ala1叶片白化最严重,其子叶及部分真叶黄化萎蔫;野生型拟南芥部分子叶黄化萎蔫,而回复植株未观察到黄化的叶片(图6),表明互补AtALA1回复了对DON的耐受性。Plant wild-type (Col-0), homozygous mutant ala1 and complementary AtALA1 Arabidopsis (ala1/AtALA1) on 1/2 MS solid medium. After the root grows to about 2 cm, transfer to 1/2 medium containing 50 μg/mL DON In 2MS solid medium, after 7 days, it was found that albino leaves were the most serious, and its cotyledons and some true leaves were yellowed and wilted; some cotyledons of wild-type Arabidopsis were yellowed and wilted, but no yellowed leaves were observed in the recovered plants (Figure 6) , indicating that complementary AtALA1 restored tolerance to DON.

选择AtALA1转基因拟南芥中表达量高的转化子25与15,观察对DON的耐受性,发现50μg/mLDON处理5d时发现突变体ala1-12叶片失绿黄化甚至白化死亡,而超表达株系25与15大部分叶片仍为绿色叶片(图8A,B);处理9d,突变体ala1-12叶片皱缩、失绿黄化,下部叶片白化死亡,而超表达株系25虽有少数黄化叶片,但大部分叶片仍为绿色且叶片舒展不皱缩,部分植株甚至抽薹开花(图8C),表明超表达AtALA1提高了对DON的耐受性。Transformants 25 and 15 with high expression levels in AtALA1 transgenic Arabidopsis were selected to observe their tolerance to DON. It was found that the leaves of mutant ala1-12 were chlorotic, yellow, or even albino and dead after 50 μg/mL DON treatment for 5 days, while the overexpressed Most of the leaves of lines 25 and 15 were still green (Fig. 8A, B); after treatment 9d, the leaves of the mutant ala1-12 were shrunken, chlorotic and yellow, and the lower leaves were albino and dead, while the overexpression line 25 had a few The leaves were yellowed, but most of the leaves were still green and stretched without shrinking, and some plants even bolted and bloomed (Fig. 8C), indicating that overexpression of AtALA1 improved tolerance to DON.

6.2 DON含量检测6.2 Detection of DON content

6.2.1样品准备6.2.1 Sample preparation

将根长2cm左右的野生型(Col-0),突变体ala1及AtALA1转基因拟南芥,转移至含100μg/mL DON的1/2MS固体培养基中处理7d,取样并立即用液氮冷冻,保存于-80℃冰箱用于DON含量检测。The wild-type (Col-0), mutant ala1 and AtALA1 transgenic Arabidopsis with a root length of about 2 cm were transferred to 1/2 MS solid medium containing 100 μg/mL DON for 7 days, samples were taken and immediately frozen with liquid nitrogen, Store in -80°C refrigerator for DON content detection.

6.2.2 DON提取方法6.2.2 DON extraction method

严格按照ELISA试剂盒(北京华安麦科科技有限公司)中方法进行DON含量检测,具体方法如下:Strictly follow the method in the ELISA kit (Beijing Huaan Maike Technology Co., Ltd.) to detect the DON content. The specific method is as follows:

(1)将所需试剂从冷藏环境中取出置于室温(20~25℃)平衡1h以上,注意每种液体试剂使用前均须摇匀;(1) Take the required reagents out of the refrigerated environment and place them at room temperature (20-25°C) to equilibrate for more than 1 hour. Note that each liquid reagent must be shaken well before use;

(2)取出需要数量的微孔板,将不用的微孔放进原锡箔袋中并且与提供的干燥剂一起重新密封,保存于2~8℃,切勿冷冻;(2) Take out the required number of microwell plates, put the unused microwells into the original tin foil bag and reseal it together with the provided desiccant, store at 2-8°C, do not freeze;

(3)洗涤工作液在使用前也需回温;(3) The washing working solution also needs to be warmed up before use;

(4)请注意反应温度不宜过高,控制温度在20~25℃;(4) Please note that the reaction temperature should not be too high, and the temperature should be controlled at 20-25°C;

(5)编号:将样本和标准品对应微孔按序编号,每个样本和标准品做2孔平行,并记录标准孔和样本孔所在的位置;(5) Numbering: Number the microwells corresponding to the samples and standards in sequence, make 2 parallel holes for each sample and standard, and record the positions of the standard holes and sample holes;

(6)加标准品/样本:加标准品/样本50μL到对应的微孔中,加酶标物50μL/孔,再加入抗试剂50μL/孔轻轻振荡混匀,用盖板膜盖板后置25℃环境中避光反应15min;(6) Add standard/sample: Add 50 μL of standard/sample to the corresponding microwell, add 50 μL/well of enzyme marker, then add 50 μL/well of anti-reagent and shake gently to mix, cover the plate with cover film Put it in the environment of 25℃ and avoid light for 15min;

(7)洗板:小心揭开盖板膜,将孔内液体甩干,用洗涤液250μL/孔,充分洗涤4-5次,每次间隔10s,在吸水纸上拍干(拍干后未被清除的气泡可用未使用过的枪头戳破);(7) Plate washing: Carefully uncover the cover plate membrane, dry the liquid in the well, wash 4-5 times with washing solution 250 μL/well, with an interval of 10 s between each time, and pat dry on absorbent paper (not dry after pat dry). Removed air bubbles can be punctured with an unused pipette tip);

(8)显色:加入底物液100μL/孔,用盖板膜盖板后置25℃环境中避光反应5min;(8) Color development: Add 100 μL/well of the substrate solution, cover the plate with a cover film, and place it in a dark environment at 25°C for 5 minutes;

(9)测定:加入终止液50μL/孔,轻轻振荡混匀,设定酶标仪于450nm处(建议用双波长450/630nm检测,请在5min内读完数据),测定每孔OD值。(9) Determination: Add 50 μL/well of stop solution, shake and mix gently, set the microplate reader at 450nm (dual wavelength 450/630nm is recommended for detection, please read the data within 5min), measure the OD value of each well .

6.2.3定量分析6.2.3 Quantitative analysis

(1)百分吸光率的计算,标准品或样本的百分吸光率等于标准品或样本的百分吸光度值的平均值(双孔)除以第一个标准(0标准)的吸光度值,再乘以100%即(1) Calculation of the percent absorbance, the percent absorbance of the standard or sample is equal to the average (double hole) of the percent absorbance of the standard or sample divided by the absorbance of the first standard (0 standard), then multiply by 100% that is

Figure BDA0002579505340000141
Figure BDA0002579505340000141

B—标准品或样本溶液的平均吸光度值;B—the average absorbance value of the standard or sample solution;

B0—0(μg/kg)标准品的平均吸光度值。The average absorbance value of B0—0 (μg/kg) standard.

(2)标准曲线的绘制与计算(2) Drawing and calculation of standard curve

以标准品百分吸光率为纵坐标,以呕吐毒素标准品浓度(μg/kg)的对数为横坐标,绘制标准曲线图。将样本的百分吸光率代入标准曲线中,从标准曲线上读出样本所对应的浓度,乘以其对应的稀释倍数即为样本中呕吐毒素的实际量。Draw the standard curve with the percent absorbance of the standard substance as the vertical axis and the logarithm of the concentration of the standard substance of vomitoxin (μg/kg) as the horizontal axis. Substitute the percent absorbance of the sample into the standard curve, read the corresponding concentration of the sample from the standard curve, and multiply it by the corresponding dilution factor to get the actual amount of vomitoxin in the sample.

根据以上方法检测拟南芥不同植株中DON含量,发现DON在缺失突变体ala1中的含量高于对照;而超表达AtALA1植株中DON含量均低于对照(图9),且在检测的超表达AtALA1植株中,表达量最高的15号植株其DON含量最低(图7,图9),说明毒素含量的降低与该基因的表达水平正相关。According to the above method to detect DON content in different plants of Arabidopsis thaliana, it was found that the content of DON in the deletion mutant ala1 was higher than that of the control; while the content of DON in the overexpression AtALA1 plants was lower than that of the control (Figure 9), and in the detected overexpression Among AtALA1 plants, plant No. 15 with the highest expression level had the lowest DON content (Fig. 7, Fig. 9), indicating that the reduction of toxin content was positively correlated with the expression level of this gene.

7、单子叶植物表达载体pCambia-Ubi1-AtALA1-Nos的构建及农杆菌转化7. Construction of monocot expression vector pCambia-Ubi1-AtALA1-Nos and Agrobacterium transformation

7.1单子叶组成型启动子Ubi1与AtALA1基因融合片段的获得7.1 Obtaining the Fusion Fragment of Monocot Constitutive Promoter Ubi1 and AtALA1 Gene

分别用以下引物扩增Ubi1与AtALA1,并通过融合PCR获得Ubi1-AtALA1融合片段。Use the following primers to amplify Ubi1 and AtALA1 respectively, and obtain the Ubi1-AtALA1 fusion fragment by fusion PCR.

扩增Ubi1上游引物:5’-AAGCTTGCATGCCTGCAGGTCGACTCGCAGTGCAGCGTGACCCG-3’(SalI)(SEQ ID NO.8)Amplify Ubi1 upstream primer: 5'-AAGCTTGCATGCCTGCAG GTCGAC TCGCAGTGCAGCGTGACCCG-3'(SalI) (SEQ ID NO.8)

下游引物:5’-ATTGATTTCCTGGGATCCATAAGGCCTTTGCAGAAGTAACACCAA-3’(SEQ IDNO.9)Downstream primer: 5'-ATTGATTTCCTGGGATCCATAAGGCCTTTGCAGAAGTAACACCAA-3' (SEQ ID NO.9)

AtALA1上游引物:5’-TTGGTGTTACTTCTGCAAAGGCCTTATGGATCCCAGGAAATCAATTG-3’(StuI)(SEQ ID NO.10)AtALA1 upstream primer: 5'-TTGGTGTTACTTCTGCA AAGGCC TTATGGATCCCAGGAAATCAATTG-3' (StuI) (SEQ ID NO.10)

AtALA1下游引物:5’-TCGGGGAAATTCGAGCTCGGTACCTCATCTCCGTGGAGGATCCTG-3’(KpnI)(SEQ ID NO.11)AtALA1 downstream primer: 5'-TCGGGGAAATTCGAGCTC GGTACC TCATCTCCGTGGAGGATCCTG-3'(KpnI) (SEQ ID NO.11)

PCR扩增体系为:10×PCR Buffer 5μL,2mM dNTPs 5μL,25mM MgSO4 3μL,10μM上下游引物各2μL,模板(50μg/μL)4μL,KOD-Plus-Neo 1μL(1U/μL),加水至50μL。扩增程序为94℃2min;98℃10s,68℃4min,循环40次。对扩增产物经1%琼脂糖凝胶电泳检测,回收正确的片段用于融合PCR。PCR amplification system: 5 μL of 10×PCR Buffer, 5 μL of 2mM dNTPs, 3 μL of 25mM MgSO 4 , 2 μL of 10 μM upstream and downstream primers, 4 μL of template (50 μg/μL), 1 μL of KOD-Plus-Neo (1U/μL), add water to 50 μL. The amplification program was 2 min at 94°C; 10 s at 98°C, 4 min at 68°C, 40 cycles. The amplified product was detected by 1% agarose gel electrophoresis, and the correct fragment was recovered for fusion PCR.

融合PCR扩增体系:Ubi1回收片段2μL,AtALA1回收片段2μL,10×PCR Buffer 5μL,2mM dNTPs 5μL,25mM MgSO4 3μL,KOD-Plus-Neo 1μL(1U/μL),加水至46μL,按以下程序扩增15次循环:94℃2min;98℃10s,68℃4min。在以上扩增体系中加入扩增Ubi1上游引物2μL,AtALA1下游引物2μL,按以下PCR扩增程序:94℃2min;98℃10s,68℃6min,循环30次。扩增产物经1%琼脂糖凝胶电泳检测,回收正确的Ubi1-AtALA1融合片段。Fusion PCR amplification system: 2 μL of Ubi1 recovered fragment, 2 μL of AtALA1 recovered fragment, 5 μL of 10×PCR Buffer, 5 μL of 2mM dNTPs, 3 μL of 25mM MgSO 4 , 1 μL of KOD-Plus-Neo (1U/μL), add water to 46 μL, follow the procedure below 15 cycles of amplification: 94°C for 2min; 98°C for 10s, 68°C for 4min. Add 2 μL of Ubi1 upstream primer and 2 μL of AtALA1 downstream primer to the above amplification system, and follow the following PCR amplification program: 94°C for 2 min; 98°C for 10 s, 68°C for 6 min, and cycle 30 times. The amplified product was detected by 1% agarose gel electrophoresis, and the correct Ubi1-AtALA1 fusion fragment was recovered.

7.2 pCambia-Ubi1-AtALA1-Nos单子叶植物表达载体的构建7.2 Construction of pCambia-Ubi1-AtALA1-Nos monocot plant expression vector

pCambia2300-GUS为本实验室保存。其T-DNA区段(RB和LB之间区域)包含一个报告基因GUS和一个2×CaMV35S控制的NPTII标记基因。pCambia2300-GUS is preserved in our laboratory. Its T-DNA segment (the region between RB and LB) contains a reporter gene GUS and a NPTII marker gene controlled by 2×CaMV35S.

将pCambia2300-GUS载体质粒经SalI/KpnI双酶切并回收大片段,与上述实施实例7.1获得的片段经同源重组的方法进行连接,通过热激转化大肠杆菌DH5α,筛选阳性克隆并进行SalI/KpnI双酶切验证(如图11所示),结果表明,已成功将Ubi1-AtALA1片段连接入pCambia2300-GUS载体。测序结果与公布的Ubi1及AtALA1序列一致,AtALA1具体序列见SEQID NO.14,Ubi1具体序列见SEQ ID NO.15。将测序正确的单子叶植物表达载体pCambia-Ubi1-AtALA1-Nos单克隆于-80℃保存备用,载体具有图10所示的结构。The pCambia2300-GUS vector plasmid was digested by SalI/KpnI double enzymes and the large fragment was recovered, connected with the fragment obtained in the above embodiment 7.1 by homologous recombination, transformed into Escherichia coli DH5α by heat shock, screened positive clones and carried out SalI/KpnI KpnI double enzyme digestion verification (as shown in Figure 11), the results show that the Ubi1-AtALA1 fragment has been successfully ligated into the pCambia2300-GUS vector. The sequencing results are consistent with the published sequences of Ubi1 and AtALA1. The specific sequence of AtALA1 is shown in SEQ ID NO.14, and the specific sequence of Ubi1 is shown in SEQ ID NO.15. The monocot expression vector pCambia-Ubi1-AtALA1-Nos with correct sequencing was stored at -80°C for future use. The vector has the structure shown in FIG. 10 .

7.3单子叶植物表达载体pCambia-Ubi1-AtALA1-Nos重组农杆菌的获得7.3 Acquisition of monocot expression vector pCambia-Ubi1-AtALA1-Nos recombinant Agrobacterium

利用电转化法,将步骤7.2获得的pCambia-Ubi1-AtALA1-Nos植物表达载体转入农杆菌EHA105感受态细胞,利用卡那霉素与利福平作为筛选标记基因进行抗性筛选,获得阳性克隆,再提取农杆菌质粒并用SalI/KpnI双酶切验证,经1%的琼脂糖凝胶进行电泳,酶切结果与图11酶切结果相同,表明获得了含有pCambia-Ubi1-AtALA1-Nos植物表达载体的重组农杆菌。Using the electroporation method, transfer the pCambia-Ubi1-AtALA1-Nos plant expression vector obtained in step 7.2 into Agrobacterium EHA105 competent cells, and use kanamycin and rifampicin as selection marker genes for resistance screening to obtain positive clones , and then extract the Agrobacterium plasmid and verify it with SalI/KpnI double enzyme digestion, and perform electrophoresis on 1% agarose gel. The enzyme digestion result is the same as that in Figure 11, indicating that the plant expression vector of recombinant Agrobacterium.

8、玉米的遗传转化8. Genetic transformation of maize

8.1玉米转化用培养基8.1 Medium for Maize Transformation

N6E(愈伤诱导培养基):N6盐+N6有机+2,4-D(2mg/L)+蔗糖30g/L+100mg/L肌醇+脯氨酸2.76g/L+水解酪蛋白100mg/L+Gelrite 2.5g/L,pH 5.8,高温高压灭菌后加入AgNO31ml/L(母液25mM)。N6E (callus induction medium): N6 salt + N6 organic + 2,4-D (2mg/L) + sucrose 30g/L + 100mg/L inositol + proline 2.76g/L + hydrolyzed casein 100mg/L +Gelrite 2.5g/L, pH 5.8, add AgNO 3 1ml/L (mother solution 25mM) after high temperature and high pressure sterilization.

N6OSM(渗透培养基):N6盐+N6有机+2,4-D(2mg/L)+蔗糖30g/L+脯氨酸0.69g/L+水解酪蛋白100mg/L+山梨醇36.4g/L+甘露醇36.4g/L+Gelrite 2.5g/L,pH 5.8,高温高压灭菌后加入AgNO3 1ml/L(母液25mM)。N6OSM (osmotic medium): N6 salt + N6 organic + 2,4-D (2mg/L) + sucrose 30g/L + proline 0.69g/L + hydrolyzed casein 100mg/L + sorbitol 36.4g/L + mannitol 36.4 g/L+Gelrite 2.5g/L, pH 5.8, add AgNO 3 1ml/L (mother solution 25mM) after high temperature and high pressure sterilization.

N6S(筛选培养基):N6盐+N6有机+2,4-D(2mg/L)+100mg/L肌醇+蔗糖30g/L+Gelrite 2.5g/L,pH 5.8,高温高压灭菌后加入AgNO30.2 ml/L(母液25mM)以及筛选所需试剂。N6S (screening medium): N6 salt + N6 organic + 2,4-D (2mg/L) + 100mg/L inositol + sucrose 30g/L + Gelrite 2.5g/L, pH 5.8, added after high temperature and high pressure sterilization AgNO 3 0.2 ml/L (mother solution 25mM) and reagents required for screening.

25D1B(过渡培养基):MS盐+MS有机+肌醇100mg/L+2,4-D(0.25mg/L)+蔗糖30g/L+Gelrite 2.5g/L,pH 5.8,高温高压灭菌后加筛选所需试剂。25D1B (transition medium): MS salt + MS organic + inositol 100mg/L + 2,4-D (0.25mg/L) + sucrose 30g/L + Gelrite 2.5g/L, pH 5.8, after high temperature and high pressure sterilization Add reagents required for screening.

Reg1(再生培养基1):MS盐+MS有机+肌醇100mg/L+蔗糖60g/L+Gelrite3g/L,pH5.8,高温高压灭菌后加入筛选所需试剂。Reg1 (regeneration medium 1): MS salt + MS organic + inositol 100mg/L + sucrose 60g/L + Gelrite 3g/L, pH5.8, add the reagents required for screening after high temperature and high pressure sterilization.

Reg2(再生培养基2):MS盐+MS有机+肌醇100mg/L+蔗糖30g/L+Gelrite3g/L,pH5.8,高温高压灭菌后加入筛选所需试剂。Reg2 (regeneration medium 2): MS salt + MS organic + inositol 100mg/L + sucrose 30g/L + Gelrite 3g/L, pH5.8, add the reagents required for screening after high temperature and high pressure sterilization.

8.2玉米转化材料的灭菌以及幼胚的获得8.2 Sterilization of corn transformation materials and acquisition of immature embryos

玉米栽种至试验地,选择授粉后7-10d的玉米幼胚进行愈伤诱导,但是自然条件下玉米在抽穗后1-4d都可以自动授粉,很难准确计算玉米授粉具体时间,因此在玉米抽穗当天光照较好时段进行人工授粉,从人工授粉开始计算授粉的天数,授粉后7-15d的玉米幼胚都能够诱导出需要的愈伤,但天数越久的玉米种子灭菌越不彻底。Corn is planted in the test field, and the young corn embryos 7-10 days after pollination are selected for callus induction. However, under natural conditions, corn can be automatically pollinated 1-4 days after earing, and it is difficult to accurately calculate the specific time of corn pollination. Artificial pollination is carried out during the day when the light is good. The number of days of pollination is calculated from the artificial pollination. The corn immature embryos 7-15 days after pollination can induce the required callus, but the longer the days, the less thorough the sterilization of corn seeds.

玉米幼胚的分离步骤:Separation steps of corn immature embryos:

(1)将整个玉米穗头部和尾部各2cm长的部分横向切除,只用玉米果穗中间部分的玉米籽粒剥取幼胚;(1) the whole corn cob head and tail are respectively 2 cm long parts transversely cut off, and only the corn kernels in the middle part of the corn cob are used to peel off the immature embryo;

(2)果穗中间部分分成若干段,放入实验室组织培养常用的广口瓶中,加入75%酒精,灭菌2min后倒出酒精;(2) The middle part of the fruit ear is divided into several sections, put into a jar commonly used for laboratory tissue culture, add 75% alcohol, and pour out the alcohol after sterilizing for 2 minutes;

(3)用无菌水清洗果穗段至少两次;(3) Clean the ear segment at least twice with sterile water;

(4)加入0.1%升汞溶液灭菌6-8min,然后用水洗至少六次;(4) add 0.1% mercuric chloride solution to sterilize for 6-8 minutes, and then wash with water at least six times;

(5)用镊子和解剖刀将完整玉米粒剥离到灭菌好的培养皿中,用镊子夹住玉米粒胚乳丰富的尾部,然后用小刀轻轻从玉米头部挑出玉米幼胚,并将其放入N6E培养基中28℃暗培养3d。(5) Use tweezers and a scalpel to peel off the complete corn kernels into a sterilized petri dish, clamp the endosperm-rich tail of the corn kernels with tweezers, then gently pick out the young corn embryos from the corn head with a knife, and place It was placed in N6E medium and cultured in the dark at 28°C for 3 days.

注意事项:N6E培养基诱导的健康愈伤一般呈浅黄色块状硬性颗粒,颗粒一般簇拥成块状,少有散成单独颗粒生长;在25D1B培养基中生长时,将愈伤分成约3-5cm直径的小团,一个广口瓶中摆放5个左右的小团即可;同样,在Reg1培养基中生长时也采用此方法。Note: The healthy callus induced by N6E medium is generally in the form of light yellow massive hard granules, and the granules are generally clustered into lumps, and rarely grow into individual granules; when growing in 25D1B medium, divide the callus into about 3- For small groups with a diameter of 5 cm, about 5 small groups can be placed in a jar; similarly, this method is also used when growing in Reg1 medium.

8.3基因枪转化用试剂配制8.3 Preparation of reagents for gene gun transformation

8.3.1金粉的制备8.3.1 Preparation of gold powder

(1)称取60mg金粉(Bio-Rad M-10),加入1.5mL EP管中;(1) Weigh 60mg of gold powder (Bio-Rad M-10) and add it to a 1.5mL EP tube;

(2)加入70%的乙醇(新鲜配制);(2) Add 70% ethanol (freshly prepared);

(3)剧烈振荡(vortex)3-5min,静置15min;(3) Vigorously oscillate (vortex) for 3-5 minutes and let stand for 15 minutes;

(4)离心沉淀微粒(12000g,1min),弃上清;(4) Centrifuge to precipitate particles (12000g, 1min), discard the supernatant;

(5)加入1mL ddH2O,震荡涡旋1min,静置1min;(5) Add 1mL ddH 2 O, shake and vortex for 1min, and let stand for 1min;

(6)离心沉淀微粒(12000g,1min),弃上清;(6) Centrifuge to precipitate particles (12000g, 1min), discard the supernatant;

(7)重复6-9步骤2次,共清洗3次;(7) Repeat steps 6-9 twice for a total of 3 washes;

(8)加入50%甘油1mL,充分涡旋震荡,50μL分装,-20℃保存备用。(8) Add 1 mL of 50% glycerol, vortex fully, aliquot into 50 μL, and store at -20°C for later use.

8.3.2微粒与DNA的包裹8.3.2 Encapsulation of microparticles and DNA

(1)涡旋已配好的金粉5min,使其尽量分散;(1) Vortex the prepared gold powder for 5 minutes to disperse it as much as possible;

(2)取50μL分装金粉,剧烈震荡2min,按照顺序加入:(2) Take 50 μL of gold powder, shake vigorously for 2 minutes, and add in order:

质粒DNA10μL;氯化钙(2.5M)35μL;亚精胺(0.1M)15μL;Plasmid DNA 10 μL; Calcium chloride (2.5M) 35 μL; Spermidine (0.1M) 15 μL;

(3)涡旋震荡2min,静置5min,1000rpm离心3-5s;(3) Vortex for 2 minutes, let stand for 5 minutes, and centrifuge at 1000rpm for 3-5s;

(4)吸取上清液,余留10μL,枪头吸打或涡旋混匀;(4) Aspirate the supernatant, leaving 10 μL, pipette or vortex to mix;

(5)取2μL混合均匀的样品于载体膜(macrocarrier)上,每个载体膜上点两滴(对照和待测样各一),对准双枪的枪孔;(5) Take 2 μL of uniformly mixed sample on the carrier membrane (macrocarrier), put two drops on each carrier membrane (one for the control and one for the sample to be tested), and align it with the gun holes of the double gun;

(6)终止屏(Stopping screen)到目标架(target shelf)的距离设置为6cm,破裂膜(rupture disk)到载体膜的距离为1cm,破裂膜的压力为650psi,真空度为28psi,其它均为默认设置;(6) The distance from the stopping screen to the target shelf is 6cm, the distance from the rupture disk to the carrier film is 1cm, the pressure of the rupture disk is 650psi, and the vacuum is 28psi. is the default setting;

(7)每轰击完一次,用70%的酒精将双枪枪头擦干净,自然风干;(7) After each bombardment, wipe the tip of the double gun with 70% alcohol and let it dry naturally;

8.4玉米幼胚愈伤的基因枪转化8.4 Biolistic transformation of corn immature embryo callus

(1)将要转化的玉米幼胚放入垫有滤纸的N6OSM培养基中,28℃暗培养4h后用于转化;(1) Put the immature corn embryos to be transformed into N6OSM medium with filter paper, and cultivate them in dark at 28°C for 4 hours for transformation;

(2)转化时,将约10个左右的幼胚放在培养皿中间,愈伤起始萌发的部位朝上放置,距离载膜6cm;(2) When transforming, put about 10 immature embryos in the middle of the petri dish, and put the callus initiation germination upwards, 6 cm away from the carrier membrane;

(3)破裂膜的压力为650psi;(3) The pressure of the ruptured membrane is 650psi;

(4)基因枪使用方法严格按照参照基因枪使用说明(Bio-Rad He/1000 particledelivery system);(4) The method of using the gene gun is strictly in accordance with the instruction of the reference gene gun (Bio-Rad He/1000 particledelivery system);

(5)转化后的材料及时取出,在垫有滤纸的N6OSM培养基中28℃暗培养16-20h;(5) The transformed material was taken out in time, and cultured in dark at 28°C for 16-20h in N6OSM medium lined with filter paper;

(6)最后将材料转入N6E培养基中暗培养。(6) Finally, the material was transferred to N6E medium for dark culture.

注意事项:基因枪转化效率较高,但是污染比较严重,所以基因枪使用前内部灭菌一定要仔细;在转化时,在培养皿中央最好放置湿润滤纸,将材料放于其上,可以防止材料置放太久失水;在培养基上放置材料时一定注意将愈伤起始部位朝上摆放。Note: The transformation efficiency of the gene gun is relatively high, but the pollution is serious, so the internal sterilization of the gene gun must be careful before use; when transforming, it is best to place a wet filter paper in the center of the petri dish, and put the material on it to prevent The material is left for too long to lose water; when placing the material on the medium, be sure to place the callus initiation site upwards.

8.5玉米材料转化后的组织培养8.5 Tissue culture after transformation of maize material

(1)在N6E培养基中诱导培养10-14d的玉米幼胚已经有部分的愈伤长出,此时可以将材料移至N6S培养基中继续暗培养;(1) The corn immature embryos that have been induced and cultured in N6E medium for 10-14 days have part of the callus growing out, and at this time, the material can be moved to N6S medium to continue dark culture;

(2)在N6S培养基中暗培养的组织材料一般15-20d继代一次,约6至8周以后就长出具有筛选抗性的愈伤;(2) The tissue material cultured in dark in N6S medium is generally subcultured once every 15-20 days, and a callus with selection resistance will grow after about 6 to 8 weeks;

(3)如果产生的愈伤较少,在转入Reg1培养基以前,可以放入25D1B培养基暗培养3周左右,这样可以帮助产生比较多的健康愈伤用于植株再生培养;(3) If the callus produced is less, before transferring to Reg1 medium, it can be put into 25D1B medium for dark culture for about 3 weeks, which can help produce more healthy callus for plant regeneration culture;

(4)玉米在Reg1培养基暗培养2到3周,就可以发现有比较多的白色体胚长出;(4) When corn is cultured in dark on Reg1 medium for 2 to 3 weeks, it can be found that more white somatic embryos grow;

(5)将白色体胚放入Reg2培养基中光培养3周左右,就可以得到再生幼苗。(5) Put the white somatic embryos into the Reg2 medium for light culture for about 3 weeks, and then the regenerated seedlings can be obtained.

8.6AtALA1转基因玉米的分子验证8.6 Molecular verification of AtALA1 transgenic maize

8.6.1 PCR扩增验证8.6.1 PCR amplification verification

通过基因枪进行玉米遗传转化,获得T0代转基因玉米植株,共23株独立转化子。利用植物Aidlab公司的新型植物基因组DNA快速提取试剂盒提取DNA,提取AtALA1转基因玉米DNA,用1%的琼脂糖凝胶电泳检测DNA的质量。以提取的玉米DNA为模板,以检测转基因玉米中是否整合了AtALA1基因。Maize genetic transformation was carried out by gene gun, and T 0 generation transgenic maize plants were obtained, with a total of 23 independent transformants. The DNA was extracted by using the new plant genome DNA rapid extraction kit of Plant Aidlab Company, the AtALA1 transgenic maize DNA was extracted, and the quality of the DNA was detected by 1% agarose gel electrophoresis. The extracted maize DNA was used as a template to detect whether the AtALA1 gene was integrated in the transgenic maize.

PCR扩增引物为:PCR amplification primers are:

上游引物:5’-ATGGATCCCAGGAAATCAATTG-3’(SEQ ID NO.12);Upstream primer: 5'-ATGGATCCCAGGAAATCAATTG-3' (SEQ ID NO.12);

下游引物:5’-AGCCAACCTATTGTTCTCAACTCTA-3’(SEQ ID NO.13)。Downstream primer: 5'-AGCCAACCTATTGTTCTCAACTCTA-3' (SEQ ID NO.13).

10μL扩增体系包括:2×TaqMaster mix 5μL;模板DNA,1μL;5μmol/L上游引物0.5μL;5μmol/L下游引物0.5μL;ddH2O 3μL。The 10 μL amplification system includes: 2×TaqMaster mix 5 μL; template DNA, 1 μL; 5 μmol/L upstream primer 0.5 μL; 5 μmol/L downstream primer 0.5 μL; ddH 2 O 3 μL.

PCR温度循环参数:94℃,5min;94℃30s,56℃30s,72℃30s,30个循环;72℃,10min。最后扩增产物用1%的琼脂糖凝胶电泳检测。PCR temperature cycle parameters: 94°C, 5min; 94°C for 30s, 56°C for 30s, 72°C for 30s, 30 cycles; 72°C, 10min. Finally, the amplified products were detected by 1% agarose gel electrophoresis.

PCR结果显示阳性对照和选取的16个转化子均能扩增出目的条带(图12),野生型不能扩增出目的条带,表明在玉米中成功表达了AtALA1基因。PCR results showed that the positive control and the selected 16 transformants could amplify the target band ( FIG. 12 ), but the wild type could not amplify the target band, indicating that the AtALA1 gene was successfully expressed in maize.

8.6.2 AtALA1转基因玉米的转录水平检测8.6.2 Transcript level detection of AtALA1 transgenic maize

利用Real-time PCR方法检测植株内转基因的表达水平。为均一化cDNA浓度,以玉米EF1a基因为内标。Real-time PCR method was used to detect the expression level of the transgene in the plants. To normalize the cDNA concentration, the maize EF1a gene was used as an internal standard.

10μL反应体系包括:cDNA 1μL,上下游引物各0.5μL,2×iQ SYBR Green Supermix5μL,用无RNA酶的双蒸水补足10μL。The 10 μL reaction system includes: 1 μL of cDNA, 0.5 μL of upstream and downstream primers, 5 μL of 2×iQ SYBR Green Supermix, and make up 10 μL with RNase-free double distilled water.

扩增程序为:95℃预扩增3min;94℃10s,56℃30s,72℃30s,共扩增40个循环。扩增完成后利用Gene Study软件分析基因的相对表达量。结果显示,AtALA1基因得到不同程度的表达,其中表达水平较高有4号和13-3号转化子(图13)。The amplification program was: 95°C pre-amplification for 3 minutes; 94°C for 10s, 56°C for 30s, 72°C for 30s, a total of 40 cycles of amplification. After the amplification was completed, the relative expression of the gene was analyzed using Gene Study software. The results showed that the AtALA1 gene was expressed in different degrees, and the transformants No. 4 and No. 13-3 had higher expression levels ( FIG. 13 ).

9、AtALA1转基因玉米对禾谷镰刀菌及其毒素的抗性9. Resistance of AtALA1 transgenic maize to Fusarium graminearum and its toxin

9.1 AtALA1转基因玉米对禾谷镰刀菌毒素DON与T-2的抗性9.1 Resistance of AtALA1 transgenic maize to Fusarium graminearum toxins DON and T-2

9.1.1AtALA1转基因玉米对禾谷镰刀菌毒素DON的抗性9.1.1 Resistance of AtALA1 transgenic maize to Fusarium graminearum toxin DON

选择萌发至0.2cm左右的AtALA1转基因和野生型玉米籽粒,用30μM DON处理2d,蒸馏水洗去DON后恢复正常培养,3d后发现转基因玉米仍能正常生长,出现较长的根与茎;而野生型及阴性对照中根的生长受到明显抑制,部分籽粒出现不同程度的腐烂现象(图14A)。根长统计结果显示(图14B)野生型玉米根长为0.3cm,与处理前相比没有明显的增长;13-3转化子与15-2转化子的根长都明显比野生型长,其中表达量较高的13-3长度达到1.7cm,比野生型长1.3cm;表达量次之的15-2号转化子根长达到1.4cm,比野生型长1cm,表明表达AtALA1缓解了DON对玉米根长的抑制作用。DON含量检测结果显示表达量较高的13-3号转化子中DON含量分别比野生型和对照组低105,110ppb;表达量次之的15-2号转化子DON含量分别比野生型和对照组低95,100ppb(图14C),表明表达AtALA1降低了DON在玉米籽粒中的累积,提高了对其抗性。AtALA1 transgenic and wild-type corn kernels that germinated to about 0.2 cm were selected, treated with 30 μM DON for 2 days, washed with distilled water and then normal culture was resumed. After 3 days, it was found that the transgenic corn could still grow normally, with longer roots and stems; The growth of roots in the type and the negative control was significantly inhibited, and some grains were rotten to varying degrees (Fig. 14A). The statistical results of root length showed (Fig. 14B) that the root length of wild-type maize was 0.3 cm, which was not significantly increased compared with that before treatment; the root length of 13-3 transformant and 15-2 transformant were significantly longer than that of wild type, of which The length of 13-3 with higher expression reached 1.7 cm, which was 1.3 cm longer than that of the wild type; the root length of the 15-2 transformant with the second highest expression reached 1.4 cm, which was 1 cm longer than that of the wild type, indicating that the expression of AtALA1 alleviated the effect of DON on DON. Inhibition of maize root length. The results of DON content detection showed that the DON content of No. 13-3 transformant with higher expression level was 105, 110ppb lower than that of wild type and control group respectively; The group was lower by 95, 100 ppb ( FIG. 14C ), indicating that expression of AtALA1 reduced DON accumulation in maize kernels and increased resistance to it.

9.1.2AtALA1转基因玉米对禾谷镰刀菌T-2毒素的抗性9.1.2 Resistance of AtALA1 transgenic maize to Fusarium graminearum T-2 toxin

观察AtALA1转基因玉米对禾谷镰刀菌的A类毒素T-2毒素是否也具有耐受性。同样用30μM T-2毒素处理萌发后的籽粒2d后恢复正常培养。结果发现(图15A)野生型籽粒的根长与处理前相比无明显变化,而表达量较高的13-3号转化子根长达到0.58cm,比野生型长了93%左右,表达量次之的15-2号转化子根长为0.6cm左右,比野生型和对照长100%(图15B),表明表达AtALA1提高了玉米对T-2毒素对的抗性。To observe whether AtALA1 transgenic maize is also tolerant to the A toxoid T-2 toxin of Fusarium graminearum. The germinated grains were also treated with 30 μM T-2 toxin for 2 days, and normal culture was resumed. As a result, it was found (Fig. 15A) that the root length of wild-type grains had no significant change compared with that before treatment, while the root length of No. 13-3 transformants with higher expression levels reached 0.58cm, which was about 93% longer than that of wild-type. The root length of the next transformant No. 15-2 was about 0.6 cm, which was 100% longer than that of the wild type and the control ( FIG. 15B ), indicating that the expression of AtALA1 improved the resistance of maize to the T-2 toxin pair.

9.2 AtALA1转基因玉米对禾谷镰刀的抗性9.2 Resistance of AtALA1 transgenic maize to cereal sickle

选取授粉后18-20d的野生型及AtALA1转基因玉米籽粒,分别用注射法和浸泡法接种玉米籽粒进行抗病性分析。注射法接种禾谷镰刀菌7d,发现野生型玉米籽粒的接种部位明显变黑,布满大量白色菌丝,且病斑较大;而13-3与15-2转基因籽粒接种部位的禾谷镰刀菌菌丝量较野生型明显较少(图16),统计病斑面积(图16B),结果显示野生型籽粒接种后发病面积为15mm2,13-3号转化子病斑面积为6mm2,比野生型减少了60%;15-2号转化子病斑面积为11mm2,比野生型减少了27%;统计籽粒上的孢子数量(图16C),结果显示野生型籽粒上的孢子数量为1.0×106个/mL,13-3号转化子为1.3×105个/mL,比野生型减少了87%;15-2号转化子为2.4×105个/mL,比野生型减少76%。上述结果表明表达AtALA1提高了玉米对禾谷镰刀菌的抗性。Wild-type and AtALA1 transgenic corn kernels were selected 18-20 days after pollination, and the corn kernels were inoculated by injection and soaking methods, respectively, for disease resistance analysis. After inoculating Fusarium graminearum for 7 days by injection, it was found that the inoculation site of wild-type corn kernels was obviously blackened, covered with a large number of white hyphae, and the lesions were larger; while the inoculation sites of 13-3 and 15-2 transgenic The amount of fungal hyphae was significantly less than that of the wild type (Figure 16), and the lesion area was counted (Figure 16B). The results showed that the diseased area of the wild type was 15mm 2 after inoculation, and the lesion area of the No. 13-3 transformant was 6mm 2 , Reduced by 60% compared with the wild type; No. 15-2 transformant lesion area was 11mm 2 , which was reduced by 27% compared with the wild type; counting the number of spores on the grain (Fig. 16C), the results showed that the number of spores on the grain of the wild type was 1.0×10 6 cells/mL, No. 13-3 transformant was 1.3×10 5 cells/mL, 87% less than wild type; No. 15-2 transformant was 2.4×105 cells/mL, 76% less than wild type %. The above results indicated that the expression of AtALA1 enhanced the resistance of maize to Fusarium graminearum.

用浸泡法接种禾谷镰刀菌于幼嫩的玉米籽粒,发现13-3与15-2转基因玉米籽粒的黄色表皮大部分可见,仅有少量白色菌丝,而野生型玉米籽粒表面布满白色菌丝,几乎看不到玉米的黄色表皮(图17A);孢子数统计结果显示(图17B),13-3和15-2号转化子孢子数为1×105个/mL,显著低于野生型(1.5×106个/mL),表明表达AtALA1抑制了禾谷镰刀菌对玉米的侵染能力。The young corn kernels were inoculated with Fusarium graminearum by soaking method, and it was found that the yellow epidermis of 13-3 and 15-2 transgenic corn kernels was mostly visible, with only a small amount of white hyphae, while the surface of wild-type corn kernels was covered with white bacteria silk, and the yellow skin of corn can hardly be seen (Fig. 17A); the statistics of spore counts (Fig. 17B) showed that the spore counts of No. type (1.5×10 6 cells/mL), indicating that the expression of AtALA1 inhibited the ability of Fusarium graminearum to infect maize.

参考文献references

1.Alexandre Perochon.,Jia Jianguang.,Amal Kahla.,ChanemougasoundharamArunachalam.,Steven R.Scofield.,Sarah Bowden.,Emma Wallington.,FionaM.Doohan.TaFROG encodes a Pooideae orphan protein that interacts with SnRK1and enhances resistance to the mycotoxigenic fungus Fusariumgraminearum.Plant physiology,2015,169(4):2895-2906.1. Alexandre Perochon., Jia Jiangguang., Amal Kahla., Chanemougasoundharam Arunachalam., Steven R. Scofield., Sarah Bowden., Emma Wallington., Fiona M. Doohan. TaFROG encodes a Pooideae orphan protein that interacts with SnRK1 and enhances resistance to the mycotoxigenic fungus Fusarium graminearum. Plant physiology, 2015, 169(4): 2895-2906.

2.Audenaert K.,Vanheule A.,

Figure BDA0002579505340000201
M.,Haesaert G.Deoxynivalenol:a majorplayer in the multifaceted response of Fusarium to its environment.Toxins(Basel),2013,6(1):1-19.2. Audenaert K., Vanheule A.,
Figure BDA0002579505340000201
M., Haesaert G. Deoxynivalenol: a major player in the multifaceted response of Fusarium to its environment. Toxins(Basel), 2013,6(1):1-19.

3.De Walle JV.,Sergent T.,Piront N.,Toussaint O.,Schneider YJ.,Larondelle Y.Deoxynivalenol affects in vitro intestinal epithelial cellbarrier integrity through inhibition of protein synthesis.Toxicology andApplied Pharmacology,2010,(245):291–298.3. De Walle JV., Sergent T., Piront N., Toussaint O., Schneider YJ., Larondelle Y. Deoxynivalenol affects in vitro intestinal epithelial cellbarrier integrity through inhibition of protein synthesis. Toxicology and Applied Pharmacology, 2010, (245): 291–298.

4.Ebarb,S M.,Fowler,C M.,Xue,P.,Williams,S B.,Peters,J C.,Giesting,DW.The Impact of a Sulfur-Containing Preservative Blend on Growth Performanceof Growing Pigs(30-100kg)Fed Diets Containing Deoxynivalenol(DON).Journal ofAnimal Science,2018,96:24.4. Ebarb, S M., Fowler, C M., Xue, P., Williams, S B., Peters, J C., Giesting, DW. The Impact of a Sulfur-Containing Preservative Blend on Growth Performance of Growing Pigs ( 30-100kg) Fed Diets Containing Deoxynivalenol (DON). Journal of Animal Science, 2018, 96:24.

5.Gardiner S A.,Boddu Jayanand.,Franz Berthiller.,ChristianHametner.,Stupar R M.,Gerhard Adam.,Muehlbauer G J.Transcriptome Analysis ofthe Barley–Deoxynivalenol Interaction:Evidence for a Role of Glutathione inDeoxynivalenol Detoxification.Molecular Plant-Microbe Interactions,2010,23(7):962–976.5. Gardiner S A., Boddu Jayanand., Franz Berthiller., ChristianHametner., Stupar R M., Gerhard Adam., Muehlbauer G J. Transcriptome Analysis of the Barley–Deoxynivalenol Interaction: Evidence for a Role of Glutathione in Deoxynivalenol Detoxification. Molecular Plant -Microbe Interactions,2010,23(7):962–976.

6.Goyarts,T.,

Figure BDA0002579505340000202
S.,Valenta,H.,&
Figure BDA0002579505340000203
K.H.Carry-over ofFusarium toxins(deoxynivalenol and zearalenone)from naturally contaminatedwheat to pigs.Food additives and contaminants,2007,24(4):369-380.6. Goyarts, T.,
Figure BDA0002579505340000202
S., Valenta, H., &
Figure BDA0002579505340000203
KHCarry-over of Fusarium toxins (deoxynivalenol and zearalenone) from naturally contaminated wheat to pigs. Food additives and contaminants, 2007,24(4):369-380.

7.Gunupuru,L.R.,Arunachalam,C.,Malla,K.B.,Kahla,A.,Perochon,A.,Jia,J.,Doohan,F.M.A wheat cytochrome P450 enhances both resistance todeoxynivalenol and grain yield.PloS one,2018,13(10):e0204992.7. Gunupuru, L.R., Arunachalam, C., Malla, K.B., Kahla, A., Perochon, A., Jia, J., Doohan, F.M.A wheat cytochrome P450 enhances both resistance todeoxynivalenol and grain yield. PloS one, 2018, 13 (10):e0204992.

8.Kimura,M.,Tokai,T.,Takahashi-Ando,N.,Ohsato,S.ang Fujimura,M.Molecular and genetic studies of Fusarium tichothecene biosynthesis:pathways,genes,and evolution.Bioscience,biotechnology,and biochemistry,2007,71(9):2105-2123.8. Kimura, M., Tokai, T., Takahashi-Ando, N., Ohsato, S. ang Fujimura, M. Molecular and genetic studies of Fusarium tichothecene biosynthesis: pathways, genes, and evolution. Bioscience, biotechnology, and biochemistry , 2007, 71(9): 2105-2123.

9.MandalàGiulia.,Tundo Silvio.,Francesconi Sara.,Gevi Federica.,ZollaLello.,Ceoloni Carla.,D'Ovidio Renato.Deoxynivalenol detoxification intransgenic wheat confers resistance to Fusarium Head Blight and Crown Rotdiseases.Molecular plant-microbe interaction,2019,32(5):583-592.9.MandalàGiulia.,Tundo Silvio.,Francesconi Sara.,Gevi Federica.,ZollaLello.,Ceoloni Carla.,D'Ovidio Renato.Deoxynivalenol detoxification intransgenic wheat confers resistance to Fusarium Head Blight and Crown Rotdiseases.Molecular plant-microbe interaction, , 32(5):583-592.

10.Morooka,N.,Uratsuji,N.,Yoshizawa,T.,&Yamamoto,H.Studies on thetoxic substances in barley infected with Fusarium spp.Food Hygiene and SafetyScience(Shokuhin Eiseigaku Zasshi,1972,13(5):368-375.10.Morooka,N.,Uratsuji,N.,Yoshizawa,T.,&Yamamoto,H.Studies on thetoxic substances in barley infected with Fusarium spp.Food Hygiene and SafetyScience(Shokuhin Eiseigaku Zasshi,1972,13(5):368- 375.

11.Niessen M L and Vogel R F.Group specific PCR-detential ofpotential tichothecene-producing Fusarium-species in pure cultures and cerealsamples.Systematic and Applied Microbiology,1998,21(4):618-631.11. Niessen M L and Vogel R F. Group specific PCR-detential of potential tichothecene-producing Fusarium-species in pure cultures and cereal samples. Systematic and Applied Microbiology, 1998, 21(4):618-631.

12.Pasquet JC.,Changenet V.,MacadréC.,Boex-Fontvieille E.,Soulhat C.,Bouchabké-Coussa O.,Dalmais M.,Atanasova-Pénichon V.,Bendahmane A.,SaindrenanP.,Dufresne M.A Brachypodium UDP-Glycosyltransferase Confers Root Toleranceto Deoxynivalenol and Resistance to Fusarium Infection.Plant Physiology,2016,172(1):559–574.12. Pasquet JC., Changenet V., Macadré C., Boex-Fontvieille E., Soulhat C., Bouchabké-Coussa O., Dalmais M., Atanasova-Pénichon V., Bendahmane A., Saindrenan P., Dufresne M.A Brachypodium UDP -Glycosyltransferase Confers Root Toleranceto Deoxynivalenol and Resistance to Fusarium Infection.Plant Physiology,2016,172(1):559–574.

13.Pestka.,Zhou Hui-Ren.,Moon Y.,Chung YJ.Cellular and molecularmechanisms for immune modulation by deoxynivalenol and other trichothecenes:unraveling a paradox.Toxicology Letters,2004,153(1):61–73.13. Pestka., Zhou Hui-Ren., Moon Y., Chung YJ. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicology Letters, 2004, 153(1): 61–73.

14.Sasaki,K.,Kuwabara,C.,Umeki,N.,Fujioka,M.,Saburi,W.,Matsui,H.,Imai,R.The cold-induced defensin TAD1 confers resistance against snow moldand Fusarium head blight in transgenic wheat.Journal of biotechnology,2016,228:3-7.14. Sasaki, K., Kuwabara, C., Umeki, N., Fujioka, M., Saburi, W., Matsui, H., Imai, R. The cold-induced defensesin TAD1 confers resistance against snow mold and Fusarium head blight in transgenic wheat. Journal of biotechnology, 2016, 228:3-7.

15.Sayyari,A.,

Figure BDA0002579505340000211
C.K.,Hansen,U.,Uhlig,S.,Framstad,T.,Schatzmayr,D.,&Sivertsen,T.Effects and biotransformation of the mycotoxin deoxynivalenolin growing pigs fed with naturally contaminated pelleted grains with andwithout the addition of Coriobacteriaceum DSM 11798.Food Additives&Contaminants:Part A,2018,1:16.15. Sayyari, A.,
Figure BDA0002579505340000211
CK, Hansen, U., Uhlig, S., Framstad, T., Schatzmayr, D., & Sivertsen, T. Effects and biotransformation of the mycotoxin deoxynivalenolin growing pigs fed with naturally contaminated pelleted grains with and without the addition of Coriobacteriaceum DSM 11798. Food Additives & Contaminants: Part A, 2018, 1:16.

16.Schweiger,W.,Pasquet,J.C.,Nussbaumer,T.,Paris,M.P.K.,Wiesenberger,G.,Macadre,C.,Ametz,C.,Berthiller,F.,Lemmens,M.,Saindrenan,P.,Mewes HW.,MayerKF.,Dufresne M.,Adam G.Functional characterization of two clusters ofBrachypodium distachyon UDP-glycosyltransferases encoding putativedeoxynivalenol detoxification genes.Mol.Plant-Microbe Interact,2013,26(7):781–792.16. Schweiger, W., Pasquet, J.C., Nussbaumer, T., Paris, M.P.K., Wiesenberger, G., Macadre, C., Ametz, C., Berthiller, F., Lemmens, M., Saindrenan, P., Mewes HW., Mayer KF., Dufresne M., Adam G. Functional characterization of two clusters of Brachypodium distachyon UDP-glycosyltransferases encoding putativedeoxynivalenol detoxification genes. Mol. Plant-Microbe Interact, 2013,26(7):781–792.

17.Seeling K.,Danicke S.,Valenta H.,Lebzien P.,Flachowsky G.Effectsof Fusarium toxin-contaminated wheat and feed intake level on thebiotransformation and carry-over of deoxynivalenol in dairy cows.FoodAdditives and Contaminants,2005,23(10):847-855.17. Seeling K., Danicke S., Valenta H., Lebzien P., Flachowsky G. Effects of Fusarium toxin-contaminated wheat and feed intake level on thebiotransformation and carry-over of deoxynivalenol in dairy cows. Food Additives and Contaminants, 2005, 23 (10):847-855.

18.Song,X.S.,Xing,S.,Li,H.P.,Zhang,J.B.,Qu,B.,Jiang,J.H.,Fan,C.,Yang,P.,Liu,J.L.,Hu,Z.Q.,Xue,S.,Liao,Y.C.An antibody that confers plant diseaseresistance targets a membrane-bound glyoxal oxidase in Fusarium.NewPhytologist,2016,210(3):997-1010.18. Song, X.S., Xing, S., Li, H.P., Zhang, J.B., Qu, B., Jiang, J.H., Fan, C., Yang, P., Liu, J.L., Hu, Z.Q., Xue, S. ,Liao,Y.C.An antibody that confers plant disease resistance targets a membrane-bound glyoxal oxidase in Fusarium.New Phytologist,2016,210(3):997-1010.

19.TanjaGoyarts.,SvenDanicke.,HanaValenta.,Karl-Heinz

Figure BDA0002579505340000221
Carry-over of Fusarium toxins(deoxynivalenol and zearalenone)from naturallycontaminated wheat to pigs.Food Additives and Contaminants,2007,24(4):369-380.19. Tanja Goyarts., Sven Danicke., Hana Valenta., Karl-Heinz
Figure BDA0002579505340000221
Carry-over of Fusarium toxins (deoxynivalenol and zearalenone) from naturally contaminated wheat to pigs. Food Additives and Contaminants, 2007,24(4):369-380.

20.Valenta H.,Danicke S.Study on the transmission of deoxynivalenoland deepoxy-deoxynivalenol into eggs of laying hens using a highperformanceliquid chromatography-ultraviolet method with clean-up by immunoaffinitycolumns.Molecular Nutrition and Food Research,2005,49(8):779-785.20. Valenta H., Danicke S. Study on the transmission of deoxynivalenoland deepoxy-deoxynivalenol into eggs of laying hens using a high performance liquid chromatography-ultraviolet method with clean-up by immunoaffinity columns. Molecular Nutrition and Food Research, 9(20805): 779-785.

21.Vidal,A.,Sanchis,V.,Ramos,AJ,Marin,S.The fate of deoxynivalenolthrough wheat processing to food products.Current Opinion in Food Science,2016,11(9):34-39.21. Vidal, A., Sanchis, V., Ramos, AJ, Marin, S. The fate of deoxynivalenolthrough wheat processing to food products. Current Opinion in Food Science, 2016, 11(9): 34-39.

22.Walter S.,Kahla A.,Arunachalam C.,Perochon A.,Khan MR.,ScofieldSR.,Doohan FM.A wheat ABC transporter contributes to both grain formation andmycotoxin tolerance.Journal of Experimental Botany,2015,66(9):2583-2593.22. Walter S., Kahla A., Arunachalam C., Perochon A., Khan MR., Scofield SR., Doohan FM. A wheat ABC transporter contributes to both grain formation and mycotoxin tolerance. Journal of Experimental Botany, 2015, 66 (9 ):2583-2593.

23.Zhensheng K.Current status and development strategy for researchon plant fungal diseases in China.Plant Protection,2010,3:3.23. Zhensheng K. Current status and development strategy for research on plant fungal diseases in China. Plant Protection, 2010, 3:3.

SEQUENCE LISTINGSEQUENCE LISTING

<110> 西南大学<110> Southwest University

<120> 利用AtALA1基因提高植物对禾谷镰刀菌抗性的方法<120> Method for Improving Plant Resistance to Fusarium graminearum Using AtALA1 Gene

<130> CQ302-20P150108<130> CQ302-20P150108

<160> 15<160> 15

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400> 1<400> 1

gccattggtg atggtaatga c 21gccattggtg atggtaatga c 21

<210> 2<210> 2

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400> 2<400> 2

accagaacat ccatgtcttg c 21accagaacat ccatgtcttg c 21

<210> 3<210> 3

<211> 19<211> 19

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400> 3<400> 3

attttgccga tttcggaac 19attttgccga tttcggaac 19

<210> 4<210> 4

<211> 31<211> 31

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400> 4<400> 4

tcccccggga tggatcccag gaaatcaatt g 31tcccccggga tggatccccag gaaatcaatt g 31

<210> 5<210> 5

<211> 32<211> 32

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400> 5<400> 5

acgcgtcgac tcatctccgt ggaggatcct ga 32acgcgtcgac tcatctccgt ggaggatcct ga 32

<210> 6<210> 6

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400> 6<400> 6

aacaggccga taatgcgcta 20aacaggccga taatgcgcta 20

<210> 7<210> 7

<211> 20<211> 20

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400> 7<400> 7

gtctcgggaa gtccttgctt 20gtctcgggaa gtccttgctt 20

<210> 8<210> 8

<211> 44<211> 44

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400> 8<400> 8

aagcttgcat gcctgcaggt cgactcgcag tgcagcgtga cccg 44aagcttgcat gcctgcaggt cgactcgcag tgcagcgtga cccg 44

<210> 9<210> 9

<211> 45<211> 45

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400> 9<400> 9

attgatttcc tgggatccat aaggcctttg cagaagtaac accaa 45attgatttcc tgggatccat aaggcctttg cagaagtaac accaa 45

<210> 10<210> 10

<211> 47<211> 47

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400> 10<400> 10

ttggtgttac ttctgcaaag gccttatgga tcccaggaaa tcaattg 47ttggtgttac ttctgcaaag gccttatgga tcccaggaaa tcaattg 47

<210> 11<210> 11

<211> 45<211> 45

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400> 11<400> 11

tcggggaaat tcgagctcgg tacctcatct ccgtggagga tcctg 45tcggggaaat tcgagctcgg tacctcatct ccgtggagga tcctg 45

<210> 12<210> 12

<211> 22<211> 22

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400> 12<400> 12

atggatccca ggaaatcaat tg 22atggatccca ggaaatcaat tg 22

<210> 13<210> 13

<211> 25<211> 25

<212> DNA<212>DNA

<213> 人工序列<213> Artificial sequence

<400> 13<400> 13

agccaaccta ttgttctcaa ctcta 25agccaaccta ttgttctcaa ctcta 25

<210> 14<210> 14

<211> 3477<211> 3477

<212> DNA<212>DNA

<213> Arabidopsis thaliala (L.) Heynh<213> Arabidopsis thaliala (L.) Heynh

<400> 14<400> 14

atggatccca ggaaatcaat tgataagccg cctcatcacg atccaattct gggtgtatct 60atggatccca ggaaatcaat tgataagccg cctcatcacg atccaattct gggtgtatct 60

tcaagatgga gcgtttcttc taaagacaac aaagaagtta ctttcggtga tttgggatct 120tcaagatgga gcgtttcttc taaagacaac aaagaagtta ctttcggtga tttgggatct 120

aagcgtatcc gtcatggttc agctggagct gattctgaga tgctaagcat gtctcagaaa 180aagcgtatcc gtcatggttc agctggagct gattctgaga tgctaagcat gtctcagaaa 180

gagatcaaag acgaagatgc tcgtttgatt tatattaacg atcctgacag aactaacgaa 240gagatcaaag acgaagatgc tcgtttgatt tatattaacg atcctgacag aactaacgaa 240

cggtttgagt tcactgggaa ttctatcaag actgctaaat actctgtctt caccttcttg 300cggtttgagt tcactgggaa ttctatcaag actgctaaat actctgtctt caccttcttg 300

cctaggaact tgtttgaaca gttccataga gttgcttaca tttacttcct tgttatcgct 360cctaggaact tgtttgaaca gttccataga gttgcttaca tttacttcct tgttatcgct 360

gttctcaatc agcttcctca gcttgcagtt tttggcagag gtgcatccat catgcccctt 420gttctcaatc agcttccctca gcttgcagtt tttggcagag gtgcatccat catgcccctt 420

gcctttgttc tcttggtctc tgctatcaaa gatgcttacg aggatttccg gagacatagg 480gcctttgttc tcttggtctc tgctatcaaa gatgcttacg aggatttccg gagacatagg 480

tcagatagag ttgagaacaa taggttggct ttagtctttg aggatcatca gtttcgagag 540tcagatagag ttgagaacaa taggttggct ttagtctttg aggatcatca gtttcgagag 540

aagaagtgga agcatatccg ggttggggaa gtcattaaag tccaatccaa tcagactctt 600aagaagtgga agcatatccg ggttggggaa gtcattaaag tccaatccaa tcagactctt 600

ccctgtgaca tggtgctctt ggctactagt gatcctactg gggttgtcta cgtgcagacg 660ccctgtgaca tggtgctctt ggctactagt gatcctactg gggttgtcta cgtgcagacg 660

actaatttgg atggtgagtc gaatttgaag accaggtatg ccaagcagga aactcttctg 720actaatttgg atggtgagtc gaatttgaag accaggtatg ccaagcagga aactcttctg 720

aaagctgctg atatggagtc gtttaatgga tttatcaagt gtgagaaacc taacaggaac 780aaagctgctg atatggagtc gtttaatgga tttatcaagt gtgagaaacc taacaggaac 780

atttatgggt ttcaagccaa catggagatt gatggtagaa ggctctccct tggaccttct 840atttatgggt ttcaagccaa catggagatt gatggtagaa ggctctccct tggaccttct 840

aatattattc taagagggtg tgagcttaag aacactgctt gggctttagg ggttgttgtg 900aatattattc taagagggtg tgagcttaag aacactgctt gggctttagg ggttgttgtg 900

tatgctggtg gtgagacgaa agctatgctc aacaactctg gagcaccatc aaagaggagt 960tatgctggtg gtgagacgaa agctatgctc aacaactctg gagcaccatc aaagaggagt 960

aggctagaga ctcgaatgaa tttggagatc attctactct ctttgtttct gatcgtcttg 1020aggctagaga ctcgaatgaa tttggagatc attctactct ctttgtttct gatcgtcttg 1020

tgtacaatcg cagccgcgac cgctgctgtg tggttgagaa cgcacaggga tgacttggac 1080tgtacaatcg cagccgcgac cgctgctgtg tggttgagaa cgcacaggga tgacttggac 1080

actattctct tttatagaag aaaggactac tctgagaggc caggagggaa gaactataaa 1140actattctct tttatagaag aaaggactac tctgagaggc caggagggaa gaactataaa 1140

tactatggtt gggggtggga gatattcttc accttcttta tggcagtcat tgtgtaccag 1200tactatggtt gggggtggga gatattcttc accttcttta tggcagtcat tgtgtaccag 1200

atcatgatac ccatttctct ctacatatcg atggagctcg tccgtattgg tcaagcatac 1260atcatgatac ccatttctct ctacatatcg atggagctcg tccgtattgg tcaagcatac 1260

ttcatgacca atgatgatca gatgtatgac gagtcttcag attcaagttt tcaatgcagg 1320ttcatgacca atgatgatca gatgtatgac gagtcttcag attcaagttt tcaatgcagg 1320

gctttaaata taaatgaaga tttagggcag attaagtatt tattctctga taagacgggt 1380gctttaaata taaatgaaga tttagggcag attaagtatt tattctctga taagacgggt 1380

acactcacgg acaacaagat ggagtttcaa tgtgcctgca tcgaaggcgt agattactct 1440acactcacgg acaacaagat ggagtttcaa tgtgcctgca tcgaaggcgt agattactct 1440

gacagggaac ctgctgatag cgagcatcct ggatactcca ttgaagttga tggaattatt 1500gacagggaac ctgctgatag cgagcatcct ggatactcca ttgaagttga tggaattatt 1500

ttgaagccaa agatgagggt gagagttgat cctgtgcttc ttcagttaac gaaaactggc 1560ttgaagccaa agatgagggt gagagttgat cctgtgcttc ttcagttaac gaaaactggc 1560

aaggcaacag aagaagcaaa acgtgcaaat gagtttttcc tctcactggc agcttgcaat 1620aaggcaacag aagaagcaaa acgtgcaaat gagtttttcc tctcactggc agcttgcaat 1620

acaattgtgc caattgttag caatacatct gatcccaatg tgaaactggt agattatcaa 1680acaattgtgc caattgttag caatacatct gatcccaatg tgaaactggt agattatcaa 1680

ggggagtccc ctgatgaaca agcattggtc tatgcagcag ctgcatatgg tttcttgctc 1740ggggagtccc ctgatgaaca agcattggtc tatgcagcag ctgcatatgg tttcttgctc 1740

atagagagaa cctctggtca tatagttatt aatgtgcgag gagaaacgca aagatttaat 1800atagagagaa cctctggtca tatagttat aatgtgcgag gagaaacgca aagatttaat 1800

gttttgggat tgcatgagtt cgatagtgac cgaaaaagaa tgtcagtgat actgggatgc 1860gttttgggat tgcatgagtt cgatagtgac cgaaaaagaa tgtcagtgat actgggatgc 1860

cccgacatgt cggtgaaact ctttgtaaaa ggtgcagact catccatgtt tggtgtcatg 1920cccgacatgt cggtgaaact ctttgtaaaa ggtgcagact catccatgtt tggtgtcatg 1920

gatgaatcct acggtggcgt catacatgag accaagatac aacttcatgc ttactcatct 1980gatgaatcct acggtggcgt catacatgag accaagatac aacttcatgc ttactcatct 1980

gatggtttga gaacacttgt tgttgggatg agagagctga acgattcaga gtttgagcaa 2040gatggtttga gaacacttgt tgttgggatg agagagctga acgattcaga gtttgagcaa 2040

tggcattctt catttgaggc ggcaagcacc gccttgattg gtcgggctgg attgctaaga 2100tggcattctt catttgaggc ggcaagcacc gccttgattg gtcgggctgg attgctaaga 2100

aaagttgctg gaaacattga gactaacctt aggatagtag gagccaccgc aattgaagac 2160aaagttgctg gaaacattga gactaacctt aggatagtag gagccaccgc aattgaagac 2160

aaattgcagc gtggtgtccc tgaagcaata gaatctttga ggattgcagg gataaaagtc 2220aaattgcagc gtggtgtccc tgaagcaata gaatctttga ggattgcagg gataaaagtc 2220

tgggtcttga ctggtgacaa gcaagaaact gccatatcca ttggcttctc atcgaggctt 2280tgggtcttga ctggtgacaa gcaagaaact gccatatcca ttggcttctc atcgaggctt 2280

ctgacaagaa acatgaggca aattgtaata aatagcaact cgttggattc atgtcggagg 2340ctgacaagaa acatgaggca aattgtaata aatagcaact cgttggattc atgtcggagg 2340

agcttagaag aagcaaatgc cagtattgca agtaatgacg aaagtgataa tgtggccttg 2400agcttagaag aagcaaatgc cagtattgca agtaatgacg aaagtgataa tgtggccttg 2400

attattgacg gtaccagcct catatatgta ctcgacaatg atcttgaaga tgtgctgttc 2460attattgacg gtaccagcct catatatgta ctcgacaatg atcttgaaga tgtgctgttc 2460

caggtggcat gtaagtgctc tgcgatactc tgctgccggg ttgctccttt ccagaaagct 2520caggtggcat gtaagtgctc tgcgatactc tgctgccggg ttgctccttt ccagaaagct 2520

ggaatcgttg cacttgtaaa gaaccggact tctgacatga ctcttgccat tggtgatggt 2580ggaatcgttg cacttgtaaa gaaccggact tctgacatga ctcttgccat tggtgatggt 2580

gccaatgatg tctccatgat tcaaatggct gatgttgggg tagggataag cggacaagaa 2640gccaatgatg tctccatgat tcaaatggct gatgttgggg tagggataag cggacaagaa 2640

ggtcgccaag ctgtgatggc atctgatttc gcaatgggac agttcagatt tttagttccg 2700ggtcgccaag ctgtgatggc atctgatttc gcaatgggac agttcagatt tttagttccg 2700

ttattgctcg tccatggaca ctggaattac caaaggatgg gttacatgat actatataat 2760ttattgctcg tccatggaca ctggaattac caaaggatgg gttacatgat actatataat 2760

ttctatagaa atgcagtttt tgttctaatt ttattttggt acgttttgtt tacttgctac 2820ttctatagaa atgcagtttt tgttctaatt ttattttggt acgttttgtt tacttgctac 2820

accttgacaa ctgccatcac agaatggagc agtgttttgt actcagtcat atacacagca 2880accttgacaa ctgccatcac agaatggagc agtgttttgt actcagtcat atacacagca 2880

atccctacaa taattatcgg tattcttgac aaagaccttg gaaggcagac tcttcttgat 2940atccctacaa taattatcgg tattcttgac aaagaccttg gaaggcagac tcttcttgat 2940

catcctcagc tctacggtgt tggccagagg gcagagggat attccactac gctcttctgg 3000catcctcagc tctacggtgt tggccagagg gcagagggat attccactac gctcttctgg 3000

tatacaatga ttgacacaat ctggcaaagt gcagccatct tcttcattcc tatgtttgct 3060tatacaatga ttgacacaat ctggcaaagt gcagccatct tcttcattcc tatgtttgct 3060

tattggggca gtacaattga cacgtcgagc ctaggagacc tatggacgat agctgcagtt 3120tatggggca gtacaattga cacgtcgagc ctaggagacc tatggacgat agctgcagtt 3120

gtggtggtta atcttcactt ggccatggat gtgatcagat ggaactggat cacacacgcc 3180gtggtggtta atcttcactt ggccatggat gtgatcagat ggaactggat caacacacgcc 3180

gccatatggg gatccattgt tgcagcttgt atatgtgtca ttgtgattga tgttataccc 3240gccatatggg gatccattgt tgcagcttgt atatgtgtca ttgtgattga tgttataccc 3240

acactccctg gttactgggc aattttccaa gtgggcaaga catggatgtt ctggttctgc 3300acactccctg gttactgggc aattttccaa gtgggcaaga catggatgtt ctggttctgc 3300

ttgctagcaa tagttgtgac atcattgctt cctagattcg ccatcaagtt tctagtggag 3360ttgctagcaa tagttgtgac atcattgctt cctagattcg ccatcaagtt tctagtggag 3360

tattacagac cttccgatgt tcggatagct agggaggctg aaaagcttgg aactttcaga 3420tattacagac cttccgatgt tcggatagct agggaggctg aaaagcttgg aactttcaga 3420

gaatcccaac ccgtgggagt tgaaatgaac ctgattcagg atcctccacg gagatga 3477gaatcccaac ccgtgggagt tgaaatgaac ctgattcagg atcctccacg gagatga 3477

<210> 15<210> 15

<211> 1504<211> 1504

<212> DNA<212>DNA

<213> Zea mays L.<213> Zea mays L.

<400> 15<400> 15

gcagtgcagc gtgacccggt cgtgcccctc tctagagata atgagcattg catgtctaag 60gcagtgcagc gtgacccggt cgtgcccctc tctagagata atgagcattg catgtctaag 60

ttataaaaaa ttaccacata ttttttttgt cacacttgtt tgaagtgcag tttatctatc 120ttataaaaaa ttaccacata ttttttttgt cacacttgtt tgaagtgcag tttatctatc 120

tttatacata tatttaaact ttactctacg aataatataa tctatagtac tacaataata 180tttatacata tattaaact ttactctacg aataatataa tctatagtac tacaataata 180

tcagtgtttt agagaatcat ataaatgaac agttagacat ggtctaaagg acaattgagt 240tcagtgtttt agagaatcat ataaatgaac agttagacat ggtctaaagg acaattgagt 240

attttgacaa caggactcta cagttttatc tttttagtgt gcatgtgttc tccttttttt 300attttgacaa caggactcta cagttttatc tttttagtgtgcatgtgttc tccttttttt 300

ttgcaaatag cttcacctat ataatacttc atccatttta ttagtacatc catttagggt 360ttgcaaatag cttcacctat ataatacttc atccattta ttagtacatc catttagggt 360

ttagggttaa tggtttttat agactaattt ttttagtaca tctattttat tctattttag 420ttagggttaa tggtttttat agactaattt ttttagtaca tctattttat tctattttag 420

cctctaaatt aagaaaacta aaactctatt ttagtttttt tatttaataa tttagatata 480cctctaaatt aagaaaacta aaactctatt ttagtttttt tattataataa tttagatata 480

aaatagaata aaataaagtg actaaaaatt aaacaaatac cctttaagaa attaaaaaaa 540aaatagaata aaataaagtg actaaaaatt aaacaaatac cctttaagaa attaaaaaaa 540

ctaaggaaac atttttcttg tttcgagtag ataatgccag cctgttaaac gccgtcgatc 600ctaaggaaac atttttcttg tttcgagtag ataatgccag cctgttaaac gccgtcgatc 600

gacgagtcta acggacacca accagcgaac cagcagcgtc gcgtcgggcc aagcgaagca 660gacgagtcta acggaccacca accagcgaac cagcagcgtc gcgtcgggcc aagcgaagca 660

gacggcacgg catctctgtc gctgcctctg gacccctctc gagagttccg ctccaccgtt 720gacggcacgg catctctgtc gctgcctctg gacccctctc gagagttccg ctccaccgtt 720

ggacttgctc cgctgtcggc atccagaaat tgcgtggcgg agcggcagac gtgagccggc 780ggacttgctc cgctgtcggc atccagaaat tgcgtggcgg agcggcagac gtgagccggc 780

acggcaggcg gcctcctcct cctctcacgg caccggcagc tacgggggat tcctttccca 840acggcaggcg gcctcctcct cctctcacgg caccggcagc tacgggggat tcctttccca 840

ccgctccttc gctttccctt cctcgcccgc cgtaataaat agacaccccc tccacaccct 900ccgctccttc gctttccctt cctcgcccgc cgtaataaat agacacccccc tccacaccct 900

ctttccccaa cctcgtgttg ttcggagcgc acacacacac aaccagatct cccccaaatc 960ctttccccaa cctcgtgttg ttcggagcgc aacacacacac aaccagatct cccccaaatc 960

cacccgtcgg cacctccgct tcaaggtacg ccgctcgtcc tccccccccc cccctctcta 1020cacccgtcgg cacctccgct tcaaggtacg ccgctcgtcc tccccccccc cccctctcta 1020

ccttctctag atcggcgttc cggtccatgg ttagggcccg gtagttctac ttctgttcat 1080ccttctctag atcggcgttc cggtccatgg ttagggcccg gtagttctac ttctgttcat 1080

gtttgtgtta gatccgtgtt tgtgttagat ccgtgctgct agcgttcgta cacggatgcg 1140gtttgtgtta gatccgtgtt tgtgttagat ccgtgctgct agcgttcgta cacggatgcg 1140

acctgtacgt cagacacgtt ctgattgcta acttgccagt gtttctcttt ggggaatcct 1200acctgtacgt cagacacgtt ctgattgcta acttgccagt gtttctcttt ggggaatcct 1200

gggatggctc tagccgttcc gcagacggga tcgatctagg ataggtatac atgttgatgt 1260gggatggctc tagccgttcc gcagacggga tcgatctagg ataggtatac atgttgatgt 1260

gggttttact gatgcatata catgatggca tatgcagcat ctattcatat gctctaacct 1320gggttttact gatgcatata catgatggca tatgcagcat ctattcatat gctctaacct 1320

tgagtaccta tctattataa taaacaagta tgttttataa ttattttgat cttgatatac 1380tgagtaccta tctattataa taaacaagta tgttttataa ttattttgat cttgatatac 1380

ttggatgatg gcatatgcag cagctatatg tggatttttt tagccctgcc ttcatacgct 1440ttggatgatg gcatatgcag cagctatatg tggatttttt tagccctgcc ttcatacgct 1440

atttatttgc ttggtactgt ttcttttgtc gatgctcacc ctgttgtttg gtgttacttc 1500atttatttgc ttggtactgt ttcttttgtc gatgctcacc ctgttgtttg gtgttacttc 1500

tgca 1504tgca 1504

Claims (8)

1. A method for improving the resistance of plants to fusarium graminearum is implemented, wherein the resistance of the plants to the fusarium graminearum is improved by integrating an AtALA1 gene into a target plant and expressing the AtALA1 gene in the target plant so as to reduce the content of fusarium graminearum toxin, and the nucleotide sequence of the AtALA1 gene is shown as SEQ ID No.14.
2. The method of claim 1, comprising the steps of:
1) Constructing a recombinant plant expression vector containing the AtALA1 gene;
2) Introducing the recombinant plant expression vector into a target plant to make AtALA1 gene expressed in the target plant in a constitutive mode; and
3) Transgenic plants resistant to fusarium graminearum are obtained.
3. The method according to any one of claims 1 to 2, wherein the target plant is Arabidopsis thaliana.
4. The method according to any one of claims 1 to 2, wherein the target plant is a cereal plant.
5. The method of claim 4, wherein the target plant is maize.
6. A preparation method of a transgenic plant resisting fusarium graminearum comprises the following steps:
i) Obtaining an AtALA1 gene, operably inserting the AtALA1 gene into a plant expression vector, and constructing the plant expression vector;
ii) transforming a host with the plant expression vector obtained in step i) to obtain a transformant;
iii) Transforming a plant with the transformant obtained in step ii) to obtain a transgenic plant;
the nucleotide sequence of the AtALA1 gene is shown as SEQ ID NO.14.
7. The method of claim 6, comprising the steps of:
a) Obtaining a plant AtALA1 gene: introducing SmaI and SalI enzyme cutting site design primers, and then carrying out PCR amplification by taking the cDNA of the plant as a template to obtain an amplification product, namely an AtALA1 gene sequence added with the enzyme cutting site;
b) Constructing a plant expression vector for constitutive expression of the AtALA1 gene: respectively inserting the amplified AtALA1 gene sequence into a dicotyledonous plant expression vector pLGN-35S-Nos and a monocotyledonous plant expression vector pCambia2300-Ubi1-Nos, and constructing two new plant expression vectors which are respectively named as pLGN-35S-AtALA1-Nos and pCambia2300-Ubi1-AtALA1-Nos;
c) Genetic transformation of plants: integrating the pLGN-35S-AtALA1-Nos or pCambia2300-Ubi1-AtALA1-Nos plant expression vector obtained in the step b) into a plant genome by utilizing an agrobacterium tumefaciens flower soaking method and a gene gun transformation method, realizing the constitutive expression of the AtALA1 gene in a transgenic plant, reducing the content of fusarium graminearum toxin and improving the resistance of the transgenic plant to fusarium graminearum;
d) Obtaining of low-toxin-content anti-fusarium graminearum AtALA1 transgenic plants: and (c) further carrying out propagation, molecular identification and disease resistance identification on the transgenic plant obtained in the step c) to obtain the low-toxin-content fusarium graminearum resistant AtALA1 transgenic plant.
The application of the AtALA1 gene in reducing fusarium graminearum toxins and improving the fusarium graminearum resistance of plants is realized, wherein the AtALA1 gene is integrated into a target plant to obtain a transgenic plant, and is expressed in the plant body, so that the content of the fusarium graminearum toxins in the plants is reduced, and the fusarium graminearum resistance of the target plant is improved, and the nucleotide sequence of the AtALA1 gene is shown as SEQ ID NO.14.
CN202010663567.2A 2020-07-10 2020-07-10 Method for improving plant resistance to Fusarium graminearum by using AtALA1 gene Expired - Fee Related CN111733182B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010663567.2A CN111733182B (en) 2020-07-10 2020-07-10 Method for improving plant resistance to Fusarium graminearum by using AtALA1 gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010663567.2A CN111733182B (en) 2020-07-10 2020-07-10 Method for improving plant resistance to Fusarium graminearum by using AtALA1 gene

Publications (2)

Publication Number Publication Date
CN111733182A CN111733182A (en) 2020-10-02
CN111733182B true CN111733182B (en) 2022-11-25

Family

ID=72654205

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010663567.2A Expired - Fee Related CN111733182B (en) 2020-07-10 2020-07-10 Method for improving plant resistance to Fusarium graminearum by using AtALA1 gene

Country Status (1)

Country Link
CN (1) CN111733182B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108587981B (en) * 2018-05-30 2021-10-08 西南大学 Streptomyces amritsarensis and its application
CN113151351B (en) * 2021-03-29 2023-04-18 西南大学 Method for improving quality and oil content of cotton seeds
CN116508834B (en) * 2022-01-20 2024-12-27 中国科学院上海营养与健康研究所 Method for inhibiting the conversion of deoxynivalenol-3-glucoside into deoxynivalenol
CN116794180B (en) * 2023-06-20 2025-04-25 扬州大学 Method for evaluating DON toxin transport capacity of wheat ear tissues and application of method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105543269A (en) * 2015-11-03 2016-05-04 西南大学 Method for improving verticillium wilt resistance of plants by using Beauveria bassiana BbP4-ATPase gene
CN105543268A (en) * 2015-11-03 2016-05-04 西南大学 Method for improving verticillium wilt resistance of plants by using Verticillium dahlia VdP4-ATPase gene
US9506081B1 (en) * 2013-01-31 2016-11-29 The United States Of America, As Represented By The Secretary Of Agriculture Transgene construct to improve Fusarium head blight resistance in wheat and barley
CN106834337A (en) * 2015-12-03 2017-06-13 华中农业大学 The DON tolerances and FHB resistances of arabidopsis are improved using wheat cdna

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9428758B2 (en) * 2011-12-02 2016-08-30 Rutgers, The State University Of New Jersey Plant genes that confer resistance to trichothecene mycotoxins and fusarium head blight

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9506081B1 (en) * 2013-01-31 2016-11-29 The United States Of America, As Represented By The Secretary Of Agriculture Transgene construct to improve Fusarium head blight resistance in wheat and barley
CN105543269A (en) * 2015-11-03 2016-05-04 西南大学 Method for improving verticillium wilt resistance of plants by using Beauveria bassiana BbP4-ATPase gene
CN105543268A (en) * 2015-11-03 2016-05-04 西南大学 Method for improving verticillium wilt resistance of plants by using Verticillium dahlia VdP4-ATPase gene
CN106834337A (en) * 2015-12-03 2017-06-13 华中农业大学 The DON tolerances and FHB resistances of arabidopsis are improved using wheat cdna

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Arabidopsis thaliana aminophospholipid ATPase 1(ALA1), mRNA;无;《NCBI Reference Sequence: NM_120575.3》;20190214;核苷酸序列 *
玉米抗禾谷镰刀菌的转录组分析;刘永杰等;《作物学报》;20160530(第08期);1122-1133 *

Also Published As

Publication number Publication date
CN111733182A (en) 2020-10-02

Similar Documents

Publication Publication Date Title
CN111733182B (en) Method for improving plant resistance to Fusarium graminearum by using AtALA1 gene
JP5323044B2 (en) Method for enhancing stress tolerance in plants and method
CN110819607B (en) Application of CsLYK gene and coding protein thereof in improving citrus canker resistance
Vanjildorj et al. Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin
CN101358190B (en) Artificially synthetic high gene sequence expressing high virulence protein for lepidoptera pest and use thereof
WO2017076306A1 (en) Method for improving plant resistance to verticillium wilt using verticillium-wilt bacteria vdp4-atpase gene
CN107090464B (en) Insect-resistant herbicide-resistant corn transformation event and creation method and detection method thereof
CN105624188A (en) Application of SPL18 gene in enhancing plant yield
CN110467658A (en) Application in cucumber CsGL2-LIKE gene and its participation regulation male flower part abortion
CN108467868A (en) The application of soybean sucrose transporter important gene GmSWEET6
CN114703198B (en) Cloning and Application of a Tomato Transporter SlZIF1
CN111944829A (en) A peach chloroplast development gene PpGLK1 and its application
CN113355333B (en) Cloning method, application and application method of maize gene ZmNAC7
CN112159821B (en) Application of corn elicitor peptide gene ZmPep1 in improving verticillium wilt resistance of plants
CN116410988B (en) Method for improving citrus yellow dragon disease resistance by utilizing citrus RUB2 to regulate citrus ubiquitination pathway
CN114480416B (en) Application of tsaoko AtDRM2 gene in improving cold resistance of plants
CN113832170B (en) Corn ZmHSMT3 gene and application thereof in reducing cadmium accumulation in rice grains
CN106520723B (en) Protein VvMas, coding gene and application of protein VvMas in improving salt tolerance of plants
CN101665803B (en) There is plant and the production method thereof of the growth characteristics of change
WO2011002126A1 (en) Transgenic chinese cabbage with enhanced tolerance to soft rot disease and production method thereof
CN110452896A (en) A kind of plant insect resistance-related proteins OsPAL6 and OsPAL8 and their encoding genes and applications
CN113403321B (en) Application of OsAKR4C10 in creating non-transgenic glyphosate-resistant rice germplasm resources
CN115896140B (en) Beta-1,6-glucanase gene, detection primer and application
CN116789785B (en) FarL1, a high-yield and high-light-efficiency gene of long-stamen wild rice, and its application
CN111471707B (en) A carrier for delaying the senescence of forest strawberry leaves and its preparation method and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221125