CN111732122A - A lithium ion battery based on MIL-125 (Ti) lithium titanate negative electrode material and preparation method thereof - Google Patents
A lithium ion battery based on MIL-125 (Ti) lithium titanate negative electrode material and preparation method thereof Download PDFInfo
- Publication number
- CN111732122A CN111732122A CN202010634951.XA CN202010634951A CN111732122A CN 111732122 A CN111732122 A CN 111732122A CN 202010634951 A CN202010634951 A CN 202010634951A CN 111732122 A CN111732122 A CN 111732122A
- Authority
- CN
- China
- Prior art keywords
- lithium
- lithium titanate
- mil
- negative electrode
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 89
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 87
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 74
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 27
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims description 8
- 238000004729 solvothermal method Methods 0.000 claims abstract description 16
- 239000002243 precursor Substances 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 11
- 239000012621 metal-organic framework Substances 0.000 claims abstract description 6
- 239000010936 titanium Substances 0.000 claims description 42
- 239000000843 powder Substances 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 13
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 10
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 8
- 238000005119 centrifugation Methods 0.000 claims description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 8
- 238000001354 calcination Methods 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- 238000000197 pyrolysis Methods 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 4
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 claims description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 238000005303 weighing Methods 0.000 claims description 2
- KEQXNNJHMWSZHK-UHFFFAOYSA-L 1,3,2,4$l^{2}-dioxathiaplumbetane 2,2-dioxide Chemical compound [Pb+2].[O-]S([O-])(=O)=O KEQXNNJHMWSZHK-UHFFFAOYSA-L 0.000 claims 1
- 229910010034 Ti8O8(OH)4 Inorganic materials 0.000 claims 1
- 239000010406 cathode material Substances 0.000 claims 1
- 229910010413 TiO 2 Inorganic materials 0.000 abstract description 10
- 239000010405 anode material Substances 0.000 abstract description 10
- 239000003792 electrolyte Substances 0.000 abstract description 4
- 238000003860 storage Methods 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- -1 Isopropyl ester Chemical class 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- CUTSCJHLMGPBEJ-UHFFFAOYSA-N [N].CN(C)C=O Chemical compound [N].CN(C)C=O CUTSCJHLMGPBEJ-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 229910002986 Li4Ti5O12 Inorganic materials 0.000 description 1
- 239000002194 amorphous carbon material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/003—Titanates
- C01G23/005—Alkali titanates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种锂离子电池基于MIL‑125(Ti)的钛酸锂负极材料。该负极材料首先将金属‑有机框架MIL‑125(Ti)作为最初模板热解为圆盘形TiO2,再将该圆盘形TiO2与锂源通过溶剂热反应得到钛酸锂前驱体,最后再将钛酸锂前驱体煅烧得到钛酸锂负极材料。本发明通过引入金属‑有机框架为最初模板,获得的圆盘形钛酸锂负极材料具有大的比表面积,使钛酸锂更好地与电解液结合,增加钛酸锂中锂离子的传输通道和储锂位点,以提高电子电导率和离子电导率,提高电池的输出功率密度,而且还可以提高钛酸锂材料的结构稳定性,从而得到循环性较好、容量较高、能量密度较大的钛酸锂负极材料。
The invention discloses a lithium titanate negative electrode material based on MIL-125 (Ti) for a lithium ion battery. In the negative electrode material, the metal-organic framework MIL-125(Ti) is firstly pyrolyzed into disc-shaped TiO 2 as an initial template, and then the disc-shaped TiO 2 is reacted with a lithium source to obtain a lithium titanate precursor through solvothermal reaction. The lithium titanate precursor is then calcined to obtain a lithium titanate negative electrode material. In the present invention, by introducing the metal-organic framework as the initial template, the obtained disc-shaped lithium titanate negative electrode material has a large specific surface area, so that the lithium titanate can be better combined with the electrolyte, and the transmission channel of lithium ions in the lithium titanate is increased. and lithium storage sites to improve the electronic conductivity and ionic conductivity, improve the output power density of the battery, and also improve the structural stability of the lithium titanate material, resulting in better cyclability, higher capacity and higher energy density. Large lithium titanate anode material.
Description
技术领域technical field
本发明属于电池材料技术领域,尤其涉及一种锂离子电池基于MIL-125(Ti)的钛酸锂负极材料及其制备方法。The invention belongs to the technical field of battery materials, and in particular relates to a lithium titanate negative electrode material based on MIL-125 (Ti) for lithium ion batteries and a preparation method thereof.
背景技术Background technique
锂离子电池在20世纪初由日本的SONY公司率先研制成功并实现了商业化,经过了一个多世纪的探索和开发,现在的锂离子电池质量比能量可达到100-150W·h·kg-1,体积比能量可达到240-253W·h·L-1,比传统的镉镍电池、氢镍电池要高,而且平均工作电压高达3.6V,因而锂离子电池被认为是未来最具有发展潜力的电池之一。目前商业化锂离子电池负极材料主要采用碳材料,包括石墨类碳材料和无定形碳材料。虽然碳负极材料已经成功应用于锂离子电池,但是它首次库伦效率低,体积变化大,且有机溶剂会随锂离子共同嵌入石墨片层,导致石墨材料逐渐被剥离。为克服碳材料的缺陷,人们开始研究各种新型负极材料来取代碳材料,其中钛酸锂是最受瞩目的锂离子电池负极材料之一,值得深入研究和探讨。钛酸锂负极材料结构稳定,充放电过程中几乎不发生体积变化,被称为“零应变”材料,所以循环性能非常好,使用寿命长,且放电平台稳定,库伦效率高。但同时它也存在比容量低,导电性差,倍率性能不佳等缺点。Lithium-ion batteries were successfully developed and commercialized by SONY in Japan at the beginning of the 20th century. After more than a century of exploration and development, the current lithium-ion batteries can reach 100-150W·h·kg -1 mass specific energy. , the volume specific energy can reach 240-253W·h·L -1 , which is higher than the traditional nickel-cadmium batteries and nickel-hydrogen batteries, and the average working voltage is as high as 3.6V, so lithium-ion batteries are considered to be the most promising in the future. one of the batteries. At present, commercial lithium-ion battery anode materials mainly use carbon materials, including graphite-like carbon materials and amorphous carbon materials. Although carbon anode materials have been successfully used in lithium-ion batteries, for the first time, they have low coulombic efficiency and large volume changes, and organic solvents will co-embedded graphite sheets along with lithium ions, resulting in the gradual exfoliation of graphite materials. In order to overcome the defects of carbon materials, people have begun to study various new anode materials to replace carbon materials. Among them, lithium titanate is one of the most attractive anode materials for lithium-ion batteries, which is worthy of in-depth research and discussion. The lithium titanate anode material has a stable structure and almost no volume change during charging and discharging. It is called a "zero-strain" material, so the cycle performance is very good, the service life is long, and the discharge platform is stable and the Coulombic efficiency is high. But at the same time, it also has disadvantages such as low specific capacity, poor conductivity, and poor rate performance.
目前钛酸锂的合成方法主要有高温固相法、溶胶-凝胶法、微波合成法以及水热/溶剂热法等。钛酸锂材料的研究集中在复合改性和制备工艺的改进上。At present, the synthesis methods of lithium titanate mainly include high-temperature solid-phase method, sol-gel method, microwave synthesis method, and hydrothermal/solvothermal method. The research of lithium titanate materials focuses on the improvement of composite modification and preparation process.
钛酸锂负极材料主要具有以下优点:(1)安全性好:钛酸锂的电势高于金属锂的电势,在充/放电过程中不会产生锂枝晶;(2)正常温度下可适用:在零下30℃—60℃下可以安全的完成充/放电;(3)循环性能好:具有“零应变”的特点,在电池充/放电的过程中不会有钝化反应(生成SEI膜)发生,在经历上万次充放电循环容量保持率仍然很高;(4)能够保证电池的快速充/放电:钛酸锂相对于石墨电极而言,其电池运作的离子迁移率要高很多。但同时它也存在较低的电导率和倍率性能不佳等缺点。Lithium titanate anode material mainly has the following advantages: (1) good safety: the potential of lithium titanate is higher than that of metal lithium, and no lithium dendrites will be generated during the charging/discharging process; (2) it is applicable at normal temperature : The charge/discharge can be safely completed at minus 30℃-60℃; (3) Good cycle performance: It has the characteristics of "zero strain", and there will be no passivation reaction during the battery charge/discharge process (the formation of SEI film) ) occurs, and the capacity retention rate is still very high after tens of thousands of charge-discharge cycles; (4) It can ensure the rapid charge/discharge of the battery: compared with graphite electrodes, lithium titanate has a much higher ion mobility for battery operation. . However, it also has disadvantages such as low electrical conductivity and poor rate performance.
发明内容SUMMARY OF THE INVENTION
本发明针对钛酸锂负极材料的重复性差和倍率性能,提供一种工艺过程简单、安全性高、稳定性好的锂离子电池基于MIL-125(Ti)的钛酸锂负极材料及其制备方法。Aiming at the poor repeatability and rate performance of the lithium titanate negative electrode material, the invention provides a lithium titanate negative electrode material based on MIL-125 (Ti) for a lithium ion battery with simple process, high safety and good stability, and a preparation method thereof. .
为了实现上述目的,本发明提供如下技术方案:In order to achieve the above object, the present invention provides the following technical solutions:
一种锂离子电池基于MIL-125(Ti)的钛酸锂负极材料,将金属-有机框架MIL-125(Ti)作为最初模板热解为圆盘形TiO2,再将该圆盘形TiO2与锂源通过溶剂热法反应得到钛酸锂前驱体,最后再将钛酸锂前驱体煅烧得到钛酸锂负极材料。A lithium titanate anode material based on MIL-125(Ti) for lithium ion batteries, the metal-organic framework MIL-125(Ti) is used as an initial template to pyrolyze into disc-shaped TiO 2 , and then the disc-shaped TiO 2 The lithium titanate precursor is obtained by reacting with a lithium source through a solvothermal method, and finally the lithium titanate precursor is calcined to obtain a lithium titanate negative electrode material.
一种锂离子电池基于MIL-125(Ti)的钛酸锂负极材料的制备方法,包括以下步骤:A preparation method of a lithium ion battery based on MIL-125 (Ti) lithium titanate negative electrode material, comprising the following steps:
(1)首先分别称取对苯二甲酸和量取N,N-二甲基甲酰胺、甲醇以及钛酸四异丙酯于烧杯中,搅拌混合均匀后将其置于反应釜中进行溶剂热反应;然后对其进行离心、洗涤、干燥,得到白色粉末MIL-125(Ti);随后将其白色粉末MIL-125(Ti)在电阻炉中热解得到白色TiO2粉末;(1) at first respectively take by weighing terephthalic acid and measure N, N-dimethylformamide, methanol and tetraisopropyl titanate in a beaker, after stirring and mixing, it is placed in a reactor to carry out solvothermal reaction; then centrifuge, wash, and dry to obtain white powder MIL-125(Ti); then pyrolyze the white powder MIL-125(Ti) in a resistance furnace to obtain white TiO 2 powder;
(2)将锂源和步骤(1)制备的白色TiO2粉末置于乙醇中进行搅拌,待溶液搅拌呈乳白色时将其转移至反应釜中并放入烘箱进行溶剂热反应,冷却后离心、洗涤、干燥得到钛酸锂前驱体材料;(2) The lithium source and the white TiO powder prepared in step (1) are placed in ethanol and stirred, and when the solution is stirred to be milky white, it is transferred to a reactor and placed in an oven for solvothermal reaction, and after cooling, centrifugation, washing and drying to obtain a lithium titanate precursor material;
(3)将步骤(2)制备的钛酸锂前驱体材料置于电阻炉中煅烧得到圆盘形钛酸锂负极材料。(3) The lithium titanate precursor material prepared in step (2) is calcined in a resistance furnace to obtain a disc-shaped lithium titanate negative electrode material.
优选地,步骤(1)中MIL-125(Ti)为含钛的金属-有机框架化合物Ti8O8(OH)4(O2C-C6H4-CO2)6。Preferably, in step (1), the MIL-125(Ti) is a titanium-containing metal-organic framework compound Ti 8 O 8 (OH) 4 (O 2 CC 6 H 4 -CO 2 ) 6 .
优选地,步骤(1)中溶剂热反应的温度为140-160℃,反应时间为23-25小时,干燥温度为65-75℃,干燥时间为8-12小时,热解的温度为370-390℃,热解时间为4.5-5.5小时。Preferably, in step (1), the temperature of the solvothermal reaction is 140-160° C., the reaction time is 23-25 hours, the drying temperature is 65-75° C., the drying time is 8-12 hours, and the temperature of pyrolysis is 370-120° C. 390℃, the pyrolysis time is 4.5-5.5 hours.
优选地,步骤(1)中离心条件为在转速为7000-8000转/5分钟下离心3-4次。Preferably, the centrifugation conditions in step (1) are 3-4 times of centrifugation at a rotational speed of 7000-8000 rpm/5 minutes.
优选地,步骤(2)中锂源为硝酸锂、乙酸锂、碳酸锂、氢氧化锂中的一种或几种。Preferably, the lithium source in step (2) is one or more of lithium nitrate, lithium acetate, lithium carbonate and lithium hydroxide.
优选地,步骤(2)中锂源及白色TiO2粉末中锂/钛摩尔比为0.84-0.92。Preferably, the molar ratio of lithium/titanium in the lithium source and the white TiO 2 powder in step (2) is 0.84-0.92.
优选地,步骤(2)中溶剂热反应的温度为175-185℃,时间为17-19小时。Preferably, the temperature of the solvothermal reaction in step (2) is 175-185° C., and the time is 17-19 hours.
优选地,步骤(2)中离心条件为在转速为7000-8000转/5分钟下离心次数为4-6次,干燥条件为55-65℃下干燥5-8小时。Preferably, in step (2), the centrifugation conditions are 4-6 times of centrifugation at a rotational speed of 7000-8000 rpm/5 minutes, and the drying conditions are drying at 55-65° C. for 5-8 hours.
优选地,步骤(3)中钛酸锂前驱体材料煅烧温度为650-750℃,煅烧时间为6-10小时。Preferably, in step (3), the calcination temperature of the lithium titanate precursor material is 650-750° C., and the calcination time is 6-10 hours.
与现有技术相比,本发明的优点是:Compared with the prior art, the advantages of the present invention are:
1、本发明基于MIL-125(Ti)的钛酸锂负极材料是一种具有更好循环性能、更好倍率性能的圆盘形钛酸锂负极材料。1. The lithium titanate negative electrode material based on MIL-125 (Ti) of the present invention is a disc-shaped lithium titanate negative electrode material with better cycle performance and better rate performance.
2、本发明简单易行,生产效率高,减少了生产工序,节省了生产成本与没有进行改性的材料相比,在电池容量、倍率性能和循环性能上得到了很大的提高。2. The present invention is simple and easy to implement, has high production efficiency, reduces production steps, and saves production costs. Compared with materials without modification, the battery capacity, rate performance and cycle performance are greatly improved.
3、溶剂热法得到的圆盘形钛酸锂负极材料具有更好的颗粒分布与形貌特征。同时具有更大的比表面积,能够更好地与电解液结合,增加钛酸锂的传输通道和储锂位点,从而可以提高锂离子电池的循环性能和倍率性能。3. The disc-shaped lithium titanate anode material obtained by solvothermal method has better particle distribution and morphology characteristics. At the same time, it has a larger specific surface area, can better combine with the electrolyte, and increase the transport channels and lithium storage sites of lithium titanate, thereby improving the cycle performance and rate performance of lithium ion batteries.
附图说明Description of drawings
图1所示为圆盘形钛酸锂合成示意图Figure 1 shows a schematic diagram of the synthesis of disc-shaped lithium titanate
图2所示为钛酸锂(Li4Ti5O12)的XRD图谱。FIG. 2 shows the XRD pattern of lithium titanate (Li 4 Ti 5 O 12 ).
图3所示为(a)MIL-125(Ti)、(b)TiO2、(c)钛酸锂前驱体以及(d)钛酸锂的微观形貌图。Figure 3 shows the microscopic topography of (a) MIL-125(Ti), (b) TiO 2 , (c) lithium titanate precursor and (d) lithium titanate.
图4所示为圆盘形钛酸锂0.2C下水热和溶剂热下首次充放电曲线。Figure 4 shows the first charge-discharge curves of disk-shaped lithium titanate under hydrothermal and solvothermal conditions at 0.2C.
图5所示为水热法和溶剂热法合成的钛酸锂负极材料的循环性能图。Figure 5 shows the cycle performance diagrams of the lithium titanate anode materials synthesized by the hydrothermal method and the solvothermal method.
具体实施方式Detailed ways
为了进一步了解本发明的内容特点和有益效果,下面通过具体的实例并结合附图对本发明作进一步详细的描述。In order to further understand the content features and beneficial effects of the present invention, the present invention will be described in further detail below through specific examples and in conjunction with the accompanying drawings.
实施例1Example 1
本实施例中锂离子电池基于MIL-125(Ti)的钛酸锂负极材料的水热法制备方法,包括以下步骤:In this embodiment, the hydrothermal preparation method of the lithium ion battery based on the MIL-125 (Ti) lithium titanate negative electrode material includes the following steps:
(1)首先称取1.5g对苯二甲酸和27mlDMF(氮,氮-二甲基甲酰胺),3ml甲醇置于烧杯中,搅拌混合均匀后用微量移液器向其中加入0.78ml钛酸四异丙酯,随后将以上混合溶液移入50ml反应釜中,在150℃下保温24小时;然后放在离心管中7000转/5分钟离心3次,最后在真空干燥箱中70℃干燥10小时得到MIL-125(Ti)白色粉末;(1) First weigh 1.5g of terephthalic acid and 27ml of DMF (nitrogen, nitrogen-dimethylformamide), 3ml of methanol is placed in a beaker, stir and mix well, add 0.78ml of tetratitanate to it with a micropipette Isopropyl ester, then the above mixed solution was transferred into a 50ml reaction kettle, kept at 150 ° C for 24 hours; then placed in a centrifuge tube for 3 times at 7000 rpm/5 minutes, and finally dried at 70 ° C in a vacuum drying box for 10 hours to obtain MIL-125(Ti) white powder;
(2)将MIL-125(Ti)在电阻炉中380℃下热解5小时得到TiO2白色粉末;(2) pyrolyze MIL-125(Ti) in a resistance furnace at 380°C for 5 hours to obtain TiO2 white powder;
随后按照锂/钛的摩尔比为Li:Ti=0.88分别称取充分热解得到的TiO2和LiOH·H2O;然后放入聚四氟乙烯反应釜中,加入适量的乙醇和水(乙醇:水=1:1)作为溶剂,充分搅拌均匀后放入烘箱中溶剂热180℃下18小时,然后将得到的水合钛酸锂8000r/3min离心4次,烘干后电阻炉700℃高温煅烧8小时得到最终圆盘形钛酸锂白色粉末;Subsequently, according to the molar ratio of lithium/titanium, Li:Ti=0.88, respectively weigh TiO 2 and LiOH·H 2 O obtained by sufficient pyrolysis; : water = 1: 1) as a solvent, stir well and put it in an oven for 18 hours under solvothermal heat at 180°C, then centrifuge the obtained hydrated lithium titanate at 8000r/3min for 4 times, and calcinate at a high temperature of 700°C in a resistance furnace after drying 8 hours to obtain the final disc-shaped lithium titanate white powder;
将制得的圆盘形钛酸锂与乙炔黑和聚偏氟乙烯(PVDF)按8:1:1的质量比混合均匀,碾压成厚120μm的膜,在120℃真空干燥10h后,作为实验半电池的负极;采用1mol/LLiPF6/碳酸乙烯酯(EC)-二甲基碳酸酯(DMC)(EC与DMC的体积比1:1)电解液,在干燥的充满氩气的手套箱中,以金属锂片作为负极、组装成电池。以本实施例所制备的钛酸锂为正极,以锂片为负极的扣式电池,在1-2.5V电压范围,以0.2C倍率下恒流-恒压充电,0.2C倍率下恒流放电时首次放电比容量为172.035mAhg-1,但经过20次循环后容量为165.811mAhg-1。The prepared disc-shaped lithium titanate was uniformly mixed with acetylene black and polyvinylidene fluoride (PVDF) in a mass ratio of 8:1:1, rolled into a film with a thickness of 120 μm, and dried in vacuum at 120 °C for 10 h. Negative electrode of the experimental half-cell; using 1 mol/LLiPF 6 /ethylene carbonate (EC)-dimethyl carbonate (DMC) (volume ratio of EC to DMC 1:1) electrolyte, in a dry argon-filled glove box In , the lithium metal sheet is used as the negative electrode to assemble the battery. The button battery with the lithium titanate prepared in this example as the positive electrode and the lithium sheet as the negative electrode, in the voltage range of 1-2.5V, is charged at a constant current-constant voltage at a rate of 0.2C, and discharged at a constant current at a rate of 0.2C. The first discharge specific capacity was 172.035mAhg -1 , but after 20 cycles the capacity was 165.811mAhg -1 .
实施例2Example 2
本实施例中锂离子电池基于MIL-125(Ti)的钛酸锂负极材料的溶剂热法制备方法,钛酸锂合成示意图如图1,包括以下步骤:In this embodiment, the solvothermal preparation method of the lithium ion battery based on the MIL-125(Ti) lithium titanate negative electrode material, the synthesis schematic diagram of lithium titanate is shown in Figure 1, including the following steps:
(1)首先称取1.5g对苯二甲酸和27mlDMF(氮,氮-二甲基甲酰胺),3ml甲醇置于烧杯中,搅拌混合均匀后用微量移液器向其中加入0.78ml钛酸四异丙酯,随后将以上混合溶液移入50ml反应釜中,在150℃下保温24小时;然后放在离心管中7000转/5分钟离心3次,最后在真空干燥箱中70℃干燥10小时得到MIL-125(Ti)白色粉末;(1) First weigh 1.5g of terephthalic acid and 27ml of DMF (nitrogen, nitrogen-dimethylformamide), 3ml of methanol is placed in a beaker, stir and mix well, add 0.78ml of tetratitanate to it with a micropipette Isopropyl ester, then the above mixed solution was transferred into a 50ml reaction kettle, kept at 150 ° C for 24 hours; then placed in a centrifuge tube for 3 times at 7000 rpm/5 minutes, and finally dried at 70 ° C in a vacuum drying box for 10 hours to obtain MIL-125(Ti) white powder;
(2)将MIL-125(Ti)在电阻炉中380℃下热解5小时得到TiO2白色粉末;(2) pyrolyze MIL-125(Ti) in a resistance furnace at 380°C for 5 hours to obtain TiO2 white powder;
随后按照锂/钛的摩尔比为Li:Ti=0.88分别称取充分热解得到的TiO2和LiOH·H2O;然后放入聚四氟乙烯反应釜中,加入适量的乙醇作为溶剂,充分搅拌均匀后放入烘箱中溶剂热180℃下18小时,然后将得到的水合钛酸锂8000r/3min离心4次,烘干后电阻炉700℃高温煅烧8小时得到最终圆盘形钛酸锂白色粉末;Subsequently, according to the molar ratio of lithium/titanium, Li:Ti=0.88, respectively weigh TiO 2 and LiOH·H 2 O obtained by sufficient pyrolysis; After stirring evenly, put it into an oven under solvothermal heat at 180°C for 18 hours, then centrifuge the obtained hydrated lithium titanate at 8000 r/3min for 4 times, and calcinate at a high temperature of 700°C for 8 hours in a resistance furnace after drying to obtain the final disc-shaped lithium titanate white powder;
将实验制备得到的圆盘形钛酸锂的X-射线衍射谱图见图2中。从图2中可以看出样品结晶度良好,所有的衍射峰均符合尖晶石Li4Ti5O12(JCPDS卡号49-0207)。煅烧后的结晶度很好,基本上没有非均相存在。TiO2与LiOH·H2O的结合性能优异,在烧结驱动下具有良好的结晶性。通过在空气中煅烧溶剂热产物,在Li4Ti5O12样品中未检测到碳和TiO2的峰值。因此,用该方法可以得到纯的Li4Ti5O12。The X-ray diffraction pattern of the disc-shaped lithium titanate prepared in the experiment is shown in FIG. 2 . It can be seen from Figure 2 that the crystallinity of the sample is good, and all diffraction peaks are consistent with spinel Li 4 Ti 5 O 12 (JCPDS card number 49-0207). The crystallinity after calcination is very good, and substantially no heterogeneity exists. The combination of TiO 2 and LiOH·H 2 O is excellent, and it has good crystallinity driven by sintering. By calcining the solvothermal product in air, no peaks for carbon and TiO2 were detected in the Li4Ti5O12 sample . Therefore, pure Li 4 Ti 5 O 12 can be obtained by this method.
将制得的圆盘形钛酸锂与乙炔黑和聚偏氟乙烯(PVDF)按8:1:1的质量比混合均匀,碾压成厚120μm的膜,在120℃真空干燥10h后,作为实验半电池的负极;采用1mol/LLiPF6/碳酸乙烯酯(EC)-二甲基碳酸酯(DMC)(EC与DMC的体积比1:1)电解液,在干燥的充满氩气的手套箱中,以金属锂片作为负极、组装成电池。以本实施例所制备的钛酸锂为正极,以锂片为负极的扣式电池,在1-2.5V电压范围,以0.2C倍率下恒流-恒压充电,0.2C倍率下恒流放电时首次放电比容量为179.112mAhg-1,但经过20次循环后容量为175.408mAhg-1。相较于实施例1,溶剂热法在相同倍率下获得了更高的首次冲放电比容量,见图4。并且从图5中可以看出溶剂热法合成的产品拥有更优异的循环性能。The prepared disc-shaped lithium titanate was uniformly mixed with acetylene black and polyvinylidene fluoride (PVDF) in a mass ratio of 8:1:1, rolled into a film with a thickness of 120 μm, and dried in vacuum at 120 °C for 10 h. Negative electrode of the experimental half-cell; using 1 mol/LLiPF 6 /ethylene carbonate (EC)-dimethyl carbonate (DMC) (volume ratio of EC to DMC 1:1) electrolyte, in a dry argon-filled glove box In , the lithium metal sheet is used as the negative electrode to assemble the battery. The button battery with the lithium titanate prepared in this example as the positive electrode and the lithium sheet as the negative electrode, in the voltage range of 1-2.5V, is charged at a constant current-constant voltage at a rate of 0.2C, and discharged at a constant current at a rate of 0.2C. The first discharge specific capacity was 179.112mAhg -1 , but after 20 cycles the capacity was 175.408mAhg -1 . Compared with Example 1, the solvothermal method obtained a higher specific capacity for the first charge at the same rate, as shown in Figure 4. And it can be seen from Figure 5 that the products synthesized by the solvothermal method have better cycle performance.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010634951.XA CN111732122A (en) | 2020-07-03 | 2020-07-03 | A lithium ion battery based on MIL-125 (Ti) lithium titanate negative electrode material and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010634951.XA CN111732122A (en) | 2020-07-03 | 2020-07-03 | A lithium ion battery based on MIL-125 (Ti) lithium titanate negative electrode material and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111732122A true CN111732122A (en) | 2020-10-02 |
Family
ID=72653130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010634951.XA Pending CN111732122A (en) | 2020-07-03 | 2020-07-03 | A lithium ion battery based on MIL-125 (Ti) lithium titanate negative electrode material and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111732122A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112591790A (en) * | 2020-12-16 | 2021-04-02 | 青岛科技大学 | Modulation of MOF-derived TiO2Preparation method and application of @ C morphology particle size |
CN113023778A (en) * | 2021-03-04 | 2021-06-25 | 青岛科技大学 | Molybdenum disulfide nanosheet coated titanium-based MOF (Metal organic framework) derived titanium dioxide composite material, and preparation method and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101847717A (en) * | 2010-05-27 | 2010-09-29 | 合肥工业大学 | Preparation method of lithium titanate composite negative electrode materials used by lithium ion batteries |
US20110104553A1 (en) * | 2009-10-29 | 2011-05-05 | Uchicago Argonne, Llc | Autogenic pressure reactions for battery materials manufacture |
CN102832382A (en) * | 2012-09-13 | 2012-12-19 | 龙能科技(苏州)有限公司 | Method for preparing nano-lithium titanate cathode material |
CN107359314A (en) * | 2016-05-10 | 2017-11-17 | 北京化工大学 | A kind of synthetic method of negative electrode of lithium ion battery lithium titanate/carbon composite |
CN109286015A (en) * | 2018-09-30 | 2019-01-29 | 西北有色金属研究院 | A kind of preparation method and application of hollow porous TiO2 nano-cube material |
CN109546102A (en) * | 2018-10-18 | 2019-03-29 | 北京航空航天大学 | A kind of lithium titanate anode material and preparation method thereof |
CN110854375A (en) * | 2019-11-26 | 2020-02-28 | 石家庄昭文新能源科技有限公司 | Preparation method and application of Ti-MOF metal organic framework material, lithium titanate and carbon-coated lithium titanate |
-
2020
- 2020-07-03 CN CN202010634951.XA patent/CN111732122A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110104553A1 (en) * | 2009-10-29 | 2011-05-05 | Uchicago Argonne, Llc | Autogenic pressure reactions for battery materials manufacture |
CN101847717A (en) * | 2010-05-27 | 2010-09-29 | 合肥工业大学 | Preparation method of lithium titanate composite negative electrode materials used by lithium ion batteries |
CN102832382A (en) * | 2012-09-13 | 2012-12-19 | 龙能科技(苏州)有限公司 | Method for preparing nano-lithium titanate cathode material |
CN107359314A (en) * | 2016-05-10 | 2017-11-17 | 北京化工大学 | A kind of synthetic method of negative electrode of lithium ion battery lithium titanate/carbon composite |
CN109286015A (en) * | 2018-09-30 | 2019-01-29 | 西北有色金属研究院 | A kind of preparation method and application of hollow porous TiO2 nano-cube material |
CN109546102A (en) * | 2018-10-18 | 2019-03-29 | 北京航空航天大学 | A kind of lithium titanate anode material and preparation method thereof |
CN110854375A (en) * | 2019-11-26 | 2020-02-28 | 石家庄昭文新能源科技有限公司 | Preparation method and application of Ti-MOF metal organic framework material, lithium titanate and carbon-coated lithium titanate |
Non-Patent Citations (2)
Title |
---|
ZIQI WANG ET AL.: ""Porous anatase TiO2 constructed from a metal- organic framework for advanced lithium-ion battery anodes"", 《JOURNAL OF MATERIALS CHEMISTRY A 》 * |
王杰: ""负极材料钛酸锂的液相制备及性能研究"", 《中国优秀硕士学位论文全文库 工程科技I辑》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112591790A (en) * | 2020-12-16 | 2021-04-02 | 青岛科技大学 | Modulation of MOF-derived TiO2Preparation method and application of @ C morphology particle size |
CN113023778A (en) * | 2021-03-04 | 2021-06-25 | 青岛科技大学 | Molybdenum disulfide nanosheet coated titanium-based MOF (Metal organic framework) derived titanium dioxide composite material, and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111244422B (en) | Organic ion doped vanadium oxide positive electrode material for water-based zinc ion battery and preparation method and application thereof | |
CN108321366B (en) | Coating method for improving electrochemical performance of high-nickel ternary nickel-cobalt-manganese positive electrode material | |
CN103022462B (en) | Preparation method for high-conductivity lithium titanate cathode material of lithium battery | |
CN110589791B (en) | A kind of preparation method of tin-doped titanium pyrophosphate | |
CN109873140B (en) | Graphene composite ternary cathode material of lithium ion battery and preparation method of graphene composite ternary cathode material | |
CN104241626A (en) | Sol-gel preparation method of lithium vanadate negative electrode material of lithium ion battery | |
CN108039472A (en) | A kind of preparation method and application of the hollow micron cube composite material of carbon coating zinc metastannate | |
CN103066265A (en) | Sodium ion battery negative pole active substance and preparation method and application thereof | |
CN114400307B (en) | Tin-carbon composite material and preparation method and application thereof | |
CN105789615A (en) | Modified lithium nickel cobalt manganese cathode material and preparation method thereof | |
CN101704681B (en) | Method for preparing lithium titanate with spinel structure | |
CN109888247B (en) | A kind of preparation method of lithium zinc titanate/carbon nanocomposite negative electrode material for lithium ion battery | |
CN110615480A (en) | Method for preparing layered lithium manganate material by dynamic hydrothermal method | |
CN108281620B (en) | A kind of preparation method of sodium ion battery anode material titanium dioxide | |
CN111732122A (en) | A lithium ion battery based on MIL-125 (Ti) lithium titanate negative electrode material and preparation method thereof | |
WO2024055521A1 (en) | Preparation method and use of bismuth-based cathode material | |
CN108899541A (en) | A kind of lithium magnesium silicate coating modification zinc titanate lithium titanate cathode material and preparation method thereof | |
CN113830827B (en) | A kind of chlorine, nitrogen co-doped nano titanium oxide electrode material and preparation method thereof | |
CN111430703A (en) | Lithium-rich manganese-based positive electrode material for lithium ion battery and preparation method thereof, positive electrode sheet, lithium ion battery and electric vehicle | |
CN103147043B (en) | Preparation method of lithium secondary battery positive-pole thin film | |
CN114188521A (en) | A kind of light-weight coating layer on the surface of graphite positive electrode material of dual-ion battery and preparation method | |
CN113582253A (en) | Quaternary positive electrode material and preparation method and application thereof | |
CN114249351A (en) | A kind of tetragonal niobium pentoxide material and its synthesis and application | |
CN112038628A (en) | A layered cobalt-based sodium-ion battery cathode material, preparation method and application thereof | |
CN114613949B (en) | Surface modified titanium nitride chloride electrode material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201002 |
|
RJ01 | Rejection of invention patent application after publication |