CN111726143B - A wireless body area network communication system - Google Patents
A wireless body area network communication system Download PDFInfo
- Publication number
- CN111726143B CN111726143B CN201910202587.7A CN201910202587A CN111726143B CN 111726143 B CN111726143 B CN 111726143B CN 201910202587 A CN201910202587 A CN 201910202587A CN 111726143 B CN111726143 B CN 111726143B
- Authority
- CN
- China
- Prior art keywords
- compensation
- inductance
- reverse path
- path loss
- area network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 title claims abstract description 69
- 230000005284 excitation Effects 0.000 claims abstract description 22
- 238000010168 coupling process Methods 0.000 claims description 38
- 230000008878 coupling Effects 0.000 claims description 37
- 238000005859 coupling reaction Methods 0.000 claims description 37
- 238000004364 calculation method Methods 0.000 claims description 34
- 238000012937 correction Methods 0.000 claims description 3
- 230000008859 change Effects 0.000 abstract description 11
- 238000010586 diagram Methods 0.000 description 16
- 238000012360 testing method Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 210000001015 abdomen Anatomy 0.000 description 1
- 210000000617 arm Anatomy 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/20—Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
- H04B5/24—Inductive coupling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B13/00—Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
- H04B13/005—Transmission systems in which the medium consists of the human body
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Transceivers (AREA)
Abstract
本发明实施例提供一种无线体域网通信系统。该系统包括:发射端和接收端;接收端包括:负载电阻、数控电感阵列和补偿电感值计算器;负载电阻和数控电感阵列依次串联于信号电极和地电极间,补偿电感值计算器与负载电阻和数控电感阵列并联;负载电阻,用于根据发射端发射的激励信号,生成电压信号;补偿电感值计算器,用于根据电压信号,计算得到补偿电感值;数控电感阵列,用于根据补偿电感值,从数控电感阵列的多个电感中确定若干个电感作为补偿电感,并通过补偿电感对无线体域网通信系统中的反向路径损耗进行补偿。本发明实施例提供的系统,能够在人体姿态变化过程中动态且有效的对系统中的反向路径损耗进行补偿,使得系统的功耗大幅降低。
Embodiments of the present invention provide a wireless body area network communication system. The system includes: a transmitting end and a receiving end; the receiving end includes: a load resistance, a numerical control inductance array and a compensation inductance value calculator; the load resistance and the numerical control inductance array are connected in series between the signal electrode and the ground electrode in sequence, and the compensation inductance value calculator is connected to the load. The resistor is connected in parallel with the numerical control inductance array; the load resistance is used to generate a voltage signal according to the excitation signal emitted by the transmitter; the compensation inductance value calculator is used to calculate the compensation inductance value according to the voltage signal; the numerical control inductance array is used to calculate the compensation inductance value according to the compensation Inductance value, several inductances are determined from the multiple inductances of the numerically controlled inductance array as compensation inductances, and the reverse path loss in the wireless body area network communication system is compensated by the compensation inductances. The system provided by the embodiment of the present invention can dynamically and effectively compensate the reverse path loss in the system during the change of the human body posture, so that the power consumption of the system is greatly reduced.
Description
技术领域technical field
本发明实施例涉及无线体域网技术领域,尤其涉及一种无线体域网通信系统。Embodiments of the present invention relate to the technical field of wireless body area networks, and in particular, to a wireless body area network communication system.
背景技术Background technique
无线体域网(wireless body area networks,WBAN),是指建立在个人所携带的电子设备之间的信息网络。为了促进无线体域网的发展,无线体域网标准IEEE802.15.6于2012年正式确立。标准中规定了三类用以进行无线体域网通信的信号频段:窄带(narrowband,NB)、超宽带(ultra wideband,UWB)和人体通信(human bodycommunication,HBC)频段。其中,窄带和超宽带均属于射频通信的方式,而人体通信则是将人的身体视为导体,利用人体作为信道完成信号的传导,是一种非射频的通信方式。与射频通信的方式相比,人体通信由于利用人体低损耗的特性,且无需天线、线圈,有望真正实现无线体域网的低功耗和小型化。A wireless body area network (WBAN) refers to an information network established between electronic devices carried by individuals. In order to promote the development of wireless body area network, the wireless body area network standard IEEE802.15.6 was formally established in 2012. The standard specifies three types of signal frequency bands for wireless body area network communication: narrowband (narrowband, NB), ultra wideband (ultra wideband, UWB) and human body communication (human body communication, HBC) frequency bands. Among them, both narrowband and ultra-wideband are radio frequency communication methods, while human body communication is a non-radio frequency communication method, which regards the human body as a conductor and uses the human body as a channel to complete signal transmission. Compared with the way of radio frequency communication, human body communication is expected to realize the low power consumption and miniaturization of wireless body area network because it utilizes the characteristics of low loss of human body and does not need antennas and coils.
对于基于人体通信的无线体域网通信系统,依照耦合方式的不同,又可分为基于电容耦合的无线体域网通信系统和基于电流耦合的无线体域网通信系统。其中,基于电容耦合的无线体域网通信系统是通过发射端或接收端的两个电极分别与人体和空气进行电容耦合来确立通信回路,进而实现信号的传导。For the wireless body area network communication system based on human body communication, according to the different coupling methods, it can be divided into a wireless body area network communication system based on capacitive coupling and a wireless body area network communication system based on current coupling. Among them, the wireless body area network communication system based on capacitive coupling establishes a communication loop by capacitively coupling the two electrodes at the transmitting end or the receiving end with the human body and the air, thereby realizing signal conduction.
图1为现有技术中无线体域网通信系统的结构示意图,如图1所示,该系统为基于电容耦合的无线体域网通信系统,包括发射端和接收端,其中,发射端包括一个信号电极SEtx、一个交流信号源和一个地电极GEtx,接收端包括一个信号电极SErx和一个地电极GErx。其中,信号电极SEtx和信号电极SErx均贴于人体表面,此时,信号电极SEtx-人体-信号电极SErx间构成了前向路径,地电极GEtx-空气-地电极GErx间构成了反向路径。由于空气中的耦合电容的导电率远低于人体的导电率,从而使得反向路径损耗远高于前向路径损耗。FIG. 1 is a schematic structural diagram of a wireless body area network communication system in the prior art. As shown in FIG. 1 , the system is a wireless body area network communication system based on capacitive coupling, including a transmitter and a receiver, wherein the transmitter includes a The signal electrode SE tx , an AC signal source and a ground electrode GE tx , and the receiving end includes a signal electrode SE rx and a ground electrode GE rx . Among them, the signal electrode SE tx and the signal electrode SE rx are both attached to the surface of the human body. At this time, a forward path is formed between the signal electrode SE tx - the human body - the signal electrode SE rx , and the ground electrode GE tx - Air - ground electrode GE rx constitutes the reverse path. Since the conductivity of the coupling capacitor in the air is much lower than that of the human body, the reverse path loss is much higher than the forward path loss.
为了保持无线体域网通信系统的低功耗,需要对反向路径损耗进行补偿。图2为现有技术中具有补偿功能的无线体域网通信系统的结构示意图,如图2所示,通常通过在接收端的信号电极SErx和地电极GErx间串联一个固定电感,以实现对反向路径损耗进行补偿。但是,反向路径损耗随人体姿态的变化而变化,现有技术无法在人体姿态的动态变化过程中对反向路径损耗进行有效的补偿,因此,无法保持该系统的低功耗。因此,提出一种能够在人体姿态动态变化过程中对反向路径损耗进行有效补偿的无线体域网通信系统成为了亟待解决的问题。In order to keep the low power consumption of the wireless body area network communication system, the reverse path loss needs to be compensated. Fig. 2 is a schematic structural diagram of a wireless body area network communication system with compensation function in the prior art. As shown in Fig. 2, a fixed inductance is usually connected in series between the signal electrode SE rx and the ground electrode GE rx at the receiving end to realize the Reverse path loss is compensated. However, the reverse path loss varies with the change of the posture of the human body, and the prior art cannot effectively compensate the reverse path loss during the dynamic change of the human posture, so the low power consumption of the system cannot be maintained. Therefore, it is an urgent problem to propose a wireless body area network communication system that can effectively compensate the reverse path loss during the dynamic change of the human body posture.
发明内容SUMMARY OF THE INVENTION
针对现有技术中存在的技术问题,本发明实施例提供一种无线体域网通信系统。In view of the technical problems existing in the prior art, embodiments of the present invention provide a wireless body area network communication system.
第一方面,本发明实施例提供一种无线体域网通信系统,包括:发射端和接收端;其中,所述接收端包括:In a first aspect, an embodiment of the present invention provides a wireless body area network communication system, including: a transmitter and a receiver; wherein the receiver includes:
负载电阻、数控电感阵列和补偿电感值计算器;其中,Load resistors, digitally controlled inductor arrays, and compensated inductor value calculators; where,
所述负载电阻和所述数控电感阵列依次串联于信号电极和地电极间,所述补偿电感值计算器与所述负载电阻和所述数控电感阵列并联;The load resistor and the digitally controlled inductor array are connected in series between the signal electrode and the ground electrode in sequence, and the compensation inductance value calculator is connected in parallel with the load resistor and the digitally controlled inductor array;
所述负载电阻,用于根据所述发射端发射的激励信号,生成电压信号;The load resistor is used to generate a voltage signal according to the excitation signal emitted by the transmitting end;
所述补偿电感值计算器,用于根据所述电压信号,计算得到补偿电感值;the compensation inductance value calculator, used for calculating the compensation inductance value according to the voltage signal;
所述数控电感阵列,用于根据所述补偿电感值,从所述数控电感阵列的多个电感中确定若干个电感作为补偿电感,并通过所述补偿电感对无线体域网通信系统中的反向路径损耗进行补偿。The digitally controlled inductance array is configured to determine a number of inductances from a plurality of inductances of the digitally controlled inductance array as compensation inductances according to the compensation inductance value, and use the compensation inductance to counteract the feedback in the wireless body area network communication system. Compensate for path loss.
本发明实施例提供的一种无线体域网通信系统,通过在接收端的信号电极和地电极中串联负载电阻和数控电感阵列,并将补偿电感值计算器与负载电阻和数控电感阵列并联,使得负载电阻能够根据发射端的交流信号源发射的激励信号生成电压信号并传递至补偿电感值计算器,进一步使得补偿电感值计算器根据电压信号计算得到补偿电感值并传递至数控电感阵列,进一步使得数控电感阵列从自身所包括的多个电感中确定补偿电感,进而通过补偿电感对无线体域网通信系统中的反向路径损耗进行补偿。由于发射端的交流信号源能够在人体姿态变化过程中周期或非周期性地发射激励信号,因此,发射端每发射一个激励信号,接收端都能相应地生成一个电压信号,进而基于该电压信号在数控电感阵列中确定补偿电感,从而通过补偿电感对系统中的反向路径损耗进行补偿,从而能够在人体姿态变化过程中动态且有效的对系统中的反向路径损耗进行补偿,使得系统的功耗大幅降低。In a wireless body area network communication system provided by an embodiment of the present invention, a load resistance and a numerically controlled inductance array are connected in series between the signal electrode and the ground electrode at the receiving end, and a compensation inductance value calculator is connected in parallel with the load resistance and the numerically controlled inductance array, so that the The load resistor can generate a voltage signal according to the excitation signal emitted by the AC signal source at the transmitting end and transmit it to the compensation inductance value calculator, which further enables the compensation inductance value calculator to calculate the compensation inductance value according to the voltage signal and transmit it to the numerical control inductance array, further enabling the numerical control The inductance array determines the compensation inductance from the plurality of inductances included in itself, and then compensates the reverse path loss in the wireless body area network communication system through the compensation inductance. Since the AC signal source at the transmitting end can periodically or aperiodically transmit excitation signals during the change of the human body posture, each time the transmitting end transmits an excitation signal, the receiving end can generate a corresponding voltage signal, and then based on the voltage signal, the The compensation inductance is determined in the numerical control inductance array, so that the reverse path loss in the system can be compensated by the compensation inductance, so that the reverse path loss in the system can be dynamically and effectively compensated during the change of the human body posture, so that the power of the system can be compensated. consumption is greatly reduced.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1为现有技术中无线体域网通信系统的结构示意图;1 is a schematic structural diagram of a wireless body area network communication system in the prior art;
图2为现有技术中具有补偿功能的无线体域网通信系统的结构示意图;2 is a schematic structural diagram of a wireless body area network communication system with a compensation function in the prior art;
图3为本发明实施例提供的一种无线体域网通信系统的结构示意图;3 is a schematic structural diagram of a wireless body area network communication system according to an embodiment of the present invention;
图4为本发明一实施例提供的一种无线体域网通信系统的具体结构示意图;4 is a schematic diagram of a specific structure of a wireless body area network communication system according to an embodiment of the present invention;
图5为本发明另一实施例提供的一种无线体域网通信系统的具体结构示意图;5 is a schematic diagram of a specific structure of a wireless body area network communication system according to another embodiment of the present invention;
图6为本发明实施例提供的一种补偿电感值计算器的结构示意图;6 is a schematic structural diagram of a compensation inductance value calculator provided by an embodiment of the present invention;
图7为本发明实施例提供的一种测试系统的结构示意图。FIG. 7 is a schematic structural diagram of a testing system provided by an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
图3为本发明实施例提供的一种无线体域网通信系统的结构示意图,如图3所示,该系统包括:发射端31和接收端32;其中,所述接收端32包括:FIG. 3 is a schematic structural diagram of a wireless body area network communication system provided by an embodiment of the present invention. As shown in FIG. 3 , the system includes: a transmitting
负载电阻321、数控电感阵列322和补偿电感值计算器323;其中,
所述负载电阻321和所述数控电感阵列322依次串联于信号电极SErx和地电极GErx间,所述补偿电感值计算器323与所述负载电阻321和所述数控电感阵列322并联;The
所述负载电阻321,用于根据所述发射端31发射的激励信号,生成电压信号;The
所述补偿电感值计算器323,用于根据所述电压信号,计算得到补偿电感值;The compensation
所述数控电感阵列322,用于根据所述补偿电感值,从所述数控电感阵列322的多个电感中确定若干个电感作为补偿电感,并通过所述补偿电感对无线体域网通信系统中的反向路径损耗进行补偿。The digitally controlled
首先,结合图3对发射端31进行具体说明:First, the transmitting
发射端31包括:依次串联的信号电极SEtx、交流信号源311和地电极GEtx。其中,交流信号源311周期或非周期性的产生激励信号,该激励信号可以使得信号电极SEtx和地电极GEtx间产生交流电压,该交流电压通过人体和空气中的耦合电容传递到接收端32,使得接收端32的信号电极SErx和地电极GErx间产生交流电压,该交流电压使得负载电阻321生成电压信号。其中,负载电阻为通常在大型电源设备、医疗设备和电力仪器设备等产品中使用的用于吸收多余功率的大功率耗能电阻。The transmitting
其次,结合图3对接收端32进行具体说明:Next, the
接收端32包括:依次串联的信号电极SErx、负载电阻321、数控电感阵列322和地电极GErx,以及,与负载电阻321和数控电感阵列322并联的补偿电感值计算器323。The receiving
其中,补偿电感值计算器323的第一端电连接至信号电极SErx和负载电阻321间的导线处,用来获取负载电阻321生成的电压信号,以根据该电压信号计算得到补偿电感值,需要说明的是,补偿电感值为对无线体域网通信系统中的反向路径损耗进行补偿的电感的最优电感值,即,通过具有补偿电感值的电感对反向路径损耗进行补偿时,补偿效果最优;补偿电感值计算器323的第二端电连接至数控电感阵列322,以将该计算得到的补偿电感值发送至数控电感阵列322。The first end of the compensation
需要说明的是,数控电感阵列322包括一个电感控制器和多个电感,电感控制器可以根据接收到的补偿电感值,从这多个电感中确定部分电感或全部电感作为补偿电感,从而将补偿电感作为一个整体串联至地电极GErx和负载电阻321间,以实现对无线体域网通信系统中的反向路径损耗进行补偿。It should be noted that the digitally controlled
本发明实施例提供的系统,通过在接收端的信号电极和地电极中串联负载电阻和数控电感阵列,并将补偿电感值计算器与负载电阻和数控电感阵列并联,使得负载电阻能够根据发射端的交流信号源发射的激励信号生成电压信号并传递至补偿电感值计算器,进一步使得补偿电感值计算器根据电压信号计算得到补偿电感值并传递至数控电感阵列,进一步使得数控电感阵列根据补偿电感值从自身所包括的多个电感中确定补偿电感,进而通过补偿电感对无线体域网通信系统中的反向路径损耗进行补偿。由于发射端的交流信号源能够在人体姿态变化过程中周期或非周期性地发射激励信号,因此,发射端每发射一个激励信号,接收端都能相应地生成一个电压信号,进而基于该电压信号在数控电感阵列中确定补偿电感,从而通过补偿电感对系统中的反向路径损耗进行补偿,从而能够在人体姿态变化过程中动态且有效的对系统中的反向路径损耗进行补偿,使得系统的功耗大幅降低。In the system provided by the embodiment of the present invention, a load resistance and a numerically controlled inductance array are connected in series between the signal electrode and the ground electrode of the receiving end, and a compensation inductance value calculator is connected in parallel with the load resistance and the numerically controlled inductance array, so that the load resistance can be adjusted according to the AC voltage of the transmitting end. The excitation signal emitted by the signal source generates a voltage signal and transmits it to the compensation inductance value calculator, which further enables the compensation inductance value calculator to calculate the compensation inductance value according to the voltage signal and transmit it to the numerical control inductance array, further making the numerical control inductance array from the compensation inductance value from The compensation inductance is determined from the plurality of inductances included in the self, and the reverse path loss in the wireless body area network communication system is compensated by the compensation inductance. Since the AC signal source at the transmitting end can periodically or aperiodically transmit excitation signals during the change of the human body posture, each time the transmitting end transmits an excitation signal, the receiving end can generate a corresponding voltage signal, and then based on the voltage signal, the The compensation inductance is determined in the numerical control inductance array, so that the reverse path loss in the system can be compensated by the compensation inductance, so that the reverse path loss in the system can be dynamically and effectively compensated during the change of the human body posture, so that the power of the system can be compensated. consumption is greatly reduced.
在上述各实施例的基础上,本发明实施例结合图4,对上述实施例中的数控电感阵列322进行进一步说明,图4为本发明一实施例提供的一种无线体域网通信系统的具体结构示意图,如图4所示,该系统中的数控电感阵列322,包括:On the basis of the above embodiments, the embodiment of the present invention further describes the numerically controlled
第一补偿电感确定模块3221、多个电感和多个开关;其中,The first compensation
所述多个电感中的各电感并联,所述多个开关与所述多个电感一一对应,每一开关与对应的电感串联;Each of the multiple inductors is connected in parallel, the multiple switches are in one-to-one correspondence with the multiple inductors, and each switch is connected in series with the corresponding inductor;
所述第一补偿电感确定模块3221,与所述多个开关电连接,用于根据所述补偿电感值,从所述多个电感中确定若干个电感作为补偿电感,并根据所述补偿电感生成控制信号并发送至所述多个开关;The first compensation
所述多个开关,用于根据所述控制信号进行断开或闭合,以将处于闭合状态的开关所对应的电感作为补偿电感,以通过所述补偿电感对所述无线体域网通信系统中的反向路径损耗进行补偿。The plurality of switches are used for opening or closing according to the control signal, so as to use the inductance corresponding to the switch in the closed state as a compensation inductance, so that the compensation inductance can be used for the wireless body area network communication system. to compensate for the reverse path loss.
具体地,在上述实施例中已经提及,数控电感阵列322包括一个电感控制器和多个电感。在本发明实施例中,将电感控制器优选为一个第一补偿电感确定模块3221和多个开关,即,电感控制器包括一个第一补偿电感确定模块3221和多个开关。需要说明的是,这多个电感中的各电感均为并联关系,多个开关和多个电感一一对应,每一开关与对应的电感串联。Specifically, as mentioned in the above embodiments, the digitally controlled
第一补偿电感确定模块3221与多个开关电连接,用于根据接收到的补偿电感值,从这多个电感中确定部分电感或全部电感作为补偿电感,且基于所确定的补偿电感生成控制信号并发送至多个开关。这多个开关能够根据接收到的控制信号进行断开或闭合,以实现将处于闭合状态的开关对应的电感作为补偿电感,从而直接通过补偿电感对无线体域网通信系统中的反向路径损耗进行补偿。The first compensation
为了更清楚地说明本发明实施例,对多个电感进行说明:In order to explain the embodiments of the present invention more clearly, a plurality of inductors are described:
多个并联的电感的电感值依次增大,且相邻电感的电感值具有2倍或近似2倍的关系。The inductance values of a plurality of parallel inductors increase sequentially, and the inductance values of adjacent inductors have a relationship of 2 times or approximately 2 times.
可以理解的是,对于图4中的系统,若电感的个数N,则开关的个数也为N,若N为5,则电感的个数为5,开关的个数也为5,且,这5个电感的电感值从上至下依次增大。若按照从上至下的顺序,将这5个电感依次称为电感1、电感2、电感3、电感4和电感5,则,电感2的电感值为电感1的电感值的2倍或近似2倍,电感3的电感值为电感2的电感值的2倍或近似2倍,依次类推,此处不再赘述。It can be understood that, for the system in Figure 4, if the number of inductors is N, the number of switches is also N; if N is 5, the number of inductors is 5, the number of switches is also 5, and , the inductance values of these five inductors increase sequentially from top to bottom. If the five inductances are called inductance 1, inductance 2, inductance 3, inductance 4 and inductance 5 in order from top to bottom, then the inductance value of inductance 2 is twice or approximately the inductance value of inductance 1. 2 times, the inductance value of the inductance 3 is twice or approximately twice the inductance value of the inductance 2, and so on, and will not be repeated here.
对第一补偿电感确定模块进行说明:Describe the first compensation inductance determination module:
为了更好地说明第一补偿电感确定模块的功能,首先,作出如下定义:对于数控电感阵列322中的多个电感,将这多个电感中的任意一个或多个所并联形成组合称为电感子集,可以理解的是,这多个电感存在多个电感子集。例如,对于上述例子中的电感1、电感2、电感3、电感4和电感5,电感1可称为一个电感子集,电感1、电感2所并联形成的组合可称为一个电感子集,电感1、电感2、电感3、电感4和电感5所并联形成的组合也可称为一个电感子集,本发明实施例对电感子集的列举不再赘述。In order to better explain the function of the first compensation inductance determination module, first, the following definition is made: for the multiple inductors in the digitally controlled
第一补偿电感确定模块中已预先存储有每一电感子集的总电感值,当其接收到补偿电感值之后,会将每一电感子集的总电感值与补偿电感值进行大小对比,并将与补偿电感值的大小最接近的电感子集中的电感确定为补偿电感。The first compensation inductance determination module has pre-stored the total inductance value of each inductance subset, after receiving the compensation inductance value, it compares the total inductance value of each inductance subset with the compensation inductance value, and The inductance in the inductance subset whose magnitude is closest to the compensation inductance value is determined as the compensation inductance.
第一补偿电感确定模块确定了补偿电感后,生成控制信号并发送给多个开关。例如,对于上述例子,控制信号为5bit的二进制数字信号,例如10001、00111等,其中,1控制开关闭合,0控制开关断开。若第一补偿电感确定模块确定的补偿电感为电感1和电感5,则生成的控制信号为10001,其中,最高位1和最低位1分别用来控制电感1对应的开关和电感5对应的开关,中间位从左至右的三个0,分别用来控制电感2对应的开关、电感3对应的开关和电感4对应的开关。此时,电感1对应的开关和电感5对应的开关均闭合,电感2对应的开关、电感3对应的开关和电感4对应的开关均断开,此时,电感1和电感5并联所形成的组合作为补偿电感串联至地电极GErx和负载电阻间,对无线体域网通信系统中的反向路径损耗进行补偿。After the compensation inductance is determined by the first compensation inductance determination module, a control signal is generated and sent to a plurality of switches. For example, for the above example, the control signal is a 5-bit binary digital signal, such as 10001, 00111, etc., wherein 1 controls the switch to be closed, and 0 controls the switch to open. If the compensation inductances determined by the first compensation inductance determination module are inductance 1 and inductance 5, the generated control signal is 10001, wherein the highest bit 1 and the lowest bit 1 are respectively used to control the switch corresponding to inductance 1 and the switch corresponding to inductance 5 , the three 0s in the middle from left to right are used to control the switch corresponding to inductance 2, the switch corresponding to inductance 3, and the switch corresponding to inductance 4, respectively. At this time, the switch corresponding to inductance 1 and the switch corresponding to inductance 5 are closed, and the switch corresponding to inductance 2, the switch corresponding to inductance 3, and the switch corresponding to inductance 4 are all disconnected. The combination is connected in series between the ground electrode GE rx and the load resistance as a compensation inductance to compensate for the reverse path loss in the wireless body area network communication system.
在上述各实施例的基础上,本发明实施例结合图5,对上述实施例中的数控电感阵列进行进一步说明,图5为本发明另一实施例提供的一种无线体域网通信系统的具体结构示意图,如图5所示,该系统中的数控电感阵列322,包括:On the basis of the above embodiments, the embodiment of the present invention further describes the numerically controlled inductor array in the above embodiment with reference to FIG. 5 . FIG. 5 is a schematic diagram of a wireless body area network communication system provided by another embodiment of the present invention. A schematic diagram of the specific structure, as shown in FIG. 5 , the numerical
第二补偿电感确定模块3222、多个电感和多个开关;其中,A second compensation
所述多个电感中的各电感串联,所述多个开关与所述多个电感一一对应,每一开关与对应的电感并联;Each of the multiple inductors is connected in series, the multiple switches are in one-to-one correspondence with the multiple inductors, and each switch is connected in parallel with the corresponding inductor;
所述第二补偿电感确定模块3222,与所述多个开关电连接,用于根据所述补偿电感值,从所述多个电感中确定若干个电感作为补偿电感,并根据所述补偿电感生成控制信号并发送至所述多个开关;The second compensation
所述多个开关,用于根据所述控制信号进行断开或闭合,以将处于断开状态的开关所对应的电感作为补偿电感,以通过所述补偿电感对所述无线体域网通信系统中的反向路径损耗进行补偿。The plurality of switches are used for opening or closing according to the control signal, so as to use the inductance corresponding to the switch in the open state as a compensation inductance, so as to use the compensation inductance to control the wireless body area network communication system. to compensate for the reverse path loss in .
需要说明的是,本发明实施例中的数控电感阵列322为上述实施例中的数控电感阵列322的一种变形。本实施例的数控电感阵列322所包括的各部件与上述实施例中的数控电感阵列322所包括的各部件功能类似,此处不再赘述。It should be noted that the numerically controlled
在上述各实施例的基础上,本发明实施例对上述实施例中的补偿电感值计算器进行具体说明,即,所述补偿电感值计算器包括:On the basis of the foregoing embodiments, the embodiment of the present invention specifically describes the compensation inductance value calculator in the foregoing embodiments, that is, the compensation inductance value calculator includes:
反向路径损耗值计算模块,用于根据所述电压信号,计算得到所述无线体域网通信系统中的反向路径损耗值;a reverse path loss value calculation module, configured to calculate the reverse path loss value in the wireless body area network communication system according to the voltage signal;
反向路径距离计算模块,用于根据所述反向路径损耗值,计算得到所述无线体域网通信系统中的反向路径距离;a reverse path distance calculation module, configured to calculate the reverse path distance in the wireless body area network communication system according to the reverse path loss value;
反向耦合电容值计算模块,用于根据所述反向路径距离,计算得到所述无线体域网通信系统中的反向耦合电容值;a reverse coupling capacitance value calculation module, configured to calculate the reverse coupling capacitance value in the wireless body area network communication system according to the reverse path distance;
补偿电感值计算模块,用于根据所述反向耦合电容值,计算得到所述补偿电感值。The compensation inductance value calculation module is used for calculating the compensation inductance value according to the reverse coupling capacitance value.
具体地,结合图6对本发明实施例提供的补偿电感值计算器进行具体说明,图6为本发明实施例提供的一种补偿电感值计算器的结构示意图,如图6所示,补偿电感值计算器包括:依次电连接的反向路径损耗值计算模块3231、反向路径距离计算模块3232、反向耦合电容值计算模块3233和补偿电感值计算模块3234。Specifically, the compensation inductance value calculator provided by the embodiment of the present invention is described in detail with reference to FIG. 6 . FIG. 6 is a schematic structural diagram of the compensation inductance value calculator provided by the embodiment of the present invention. As shown in FIG. 6 , the compensation inductance value The calculator includes: a reverse path loss
其中,反向路径损耗值计算模块3231的输入端电连接至负载电阻与信号电极SErx间的导线处,用于获取负载电阻生成的电压信号,并根据获取到的电压信号,计算得到无线体域网通信系统中的反向路径损耗值并输出。Among them, the input end of the reverse path loss
反向路径距离计算模块3232的输入端电连接至反向路径损耗值计算模块3231的输出端,用于获取反向路径损耗值,并根据获取到的反向路径损耗值,计算得到无线体域网通信系统中的反向路径距离并输出。The input end of the reverse path
反向耦合电容值计算模块3233的输入端电连接至反向路径距离计算模块3232的输出端,用于获取反向路径距离,并根据获取到的反向路径距离,计算得到无线体域网通信系统中的反向耦合电容值并输出。The input end of the reverse coupling capacitance
补偿电感值计算模块3234的输入端电连接至反向耦合电容值计算模块3233的输出端,用于获取反向耦合电容值,并根据获取到的反向耦合电容值,计算得到补偿电感值。The input end of the compensation inductance
在上述各实施例的基础上,本发明实施例对上述实施例中的反向路径损耗值计算模块进行具体说明,即,所述反向路径损耗值计算模块,进一步用于:On the basis of the foregoing embodiments, the embodiment of the present invention specifically describes the reverse path loss value calculation module in the foregoing embodiments, that is, the reverse path loss value calculation module is further used for:
根据所述激励信号的强度和所述电压信号的强度,计算得到所述无线体域网通信系统中的总路径损耗值,并根据所述总路径损耗值和所述无线体域网通信系统中的前向路径损耗值,计算得到所述反向路径损耗值。According to the strength of the excitation signal and the strength of the voltage signal, the total path loss value in the wireless body area network communication system is calculated, and according to the total path loss value and the wireless body area network communication system The forward path loss value is calculated to obtain the reverse path loss value.
具体地,无线体域网通信系统中的总路径损耗包括前向路径损耗和反向路径损耗,为了计算得到反向路径损耗值,需要知晓无线体域网通信系统中的总路径损耗值和前向路径损耗值。Specifically, the total path loss in the wireless body area network communication system includes forward path loss and reverse path loss. In order to calculate the reverse path loss value, it is necessary to know the total path loss value and the forward path loss in the wireless body area network communication system. to the path loss value.
其中,计算总路径损耗值的方法为:获取发射端交流信号源发射的激励信号的强度,并获取接收端负载电阻生成的电压信号的强度,将激励信号的强度与电压信号的强度相减,即可得到无线体域网通信系统中的总路径损耗值。Among them, the method for calculating the total path loss value is: obtain the intensity of the excitation signal emitted by the AC signal source at the transmitting end, and obtain the intensity of the voltage signal generated by the load resistance at the receiving end, and subtract the intensity of the excitation signal and the intensity of the voltage signal, The total path loss value in the wireless body area network communication system can be obtained.
结合图4,说明获取前向路径损耗值的方法:将发射端的地电极GEtx和接收端的地电极GErx短路,短路之后,按照从上至下或从左至右的顺序依次关闭每一开关,每关闭一个开关,计算一次激励信号的强度与电压信号的强度的差值,将所有差值中的最小值作为前向路径损耗值。With reference to Fig. 4, the method of obtaining the forward path loss value is described: short-circuit the ground electrode GE tx at the transmitting end and the ground electrode GE rx at the receiving end. After the short circuit, turn off each switch in order from top to bottom or from left to right. , each time a switch is closed, the difference between the intensity of the excitation signal and the intensity of the voltage signal is calculated, and the minimum value of all the differences is taken as the forward path loss value.
例如,对于电感1、电感2、电感3、电感4、电感5,首先,将发射端的地电极GEtx和接收端的地电极GErx短路,短路之后,关闭电感1对应的开关,计算一次激励信号的强度与电压信号的强度的差值;然后,关闭电感2对应的开关,计算一次激励信号的强度与电压信号的强度的差值,依次类推,可以获得5个差值,将5个差值中的最小值作为前向路径损耗值。For example, for inductor 1, inductor 2, inductor 3, inductor 4, and inductor 5, first, short-circuit the ground electrode GE tx at the transmitting end and the ground electrode GE rx at the receiving end. After the short circuit, close the switch corresponding to inductor 1, and calculate an excitation signal. The difference between the intensity of the voltage signal and the intensity of the voltage signal; then, close the switch corresponding to the inductance 2, calculate the difference between the intensity of the excitation signal and the intensity of the voltage signal, and so on, you can get 5 difference values, the 5 difference values The minimum value in is taken as the forward path loss value.
需要说明的是,通常,前向路径损耗值在该系统投入使用之前就已计算得出。It should be noted that, usually, the forward path loss value is calculated before the system is put into use.
在上述各实施例的基础上,本发明实施例对上述实施例中的反向路径距离计算模块进行具体说明,即,所述反向路径距离计算模块,进一步用于:On the basis of the foregoing embodiments, the embodiment of the present invention specifically describes the reverse path distance calculation module in the foregoing embodiments, that is, the reverse path distance calculation module is further used for:
根据所述反向路径损耗值,并通过以下公式计算得到所述无线体域网通信系统中的反向路径距离:According to the reverse path loss value, the reverse path distance in the wireless body area network communication system is calculated by the following formula:
其中,DTR为反向路径距离,Pbl为反向路径损耗值,f为所述激励信号的频率。Wherein, D TR is the reverse path distance, P bl is the reverse path loss value, and f is the frequency of the excitation signal.
本发明实施例对上述公式的由来进行说明:The embodiment of the present invention describes the origin of the above formula:
由于反向路径损耗Pbl仅依赖于反向路径距离DTR的变化而变化,所以可以通过具体的测试来建立反向路径距离DTR和反向路径损耗值Pbl的关系。Since the reverse path loss P bl only depends on the change of the reverse path distance D TR , the relationship between the reverse path distance D TR and the reverse path loss value P bl can be established through specific tests.
测试步骤如下:The test steps are as follows:
首先,建立一测试系统,系统如图7所示,其中,图7为本发明实施例提供的一种测试系统的结构示意图,如图7所示,该测试系统包括:First, a test system is established. The system is shown in FIG. 7 , wherein FIG. 7 is a schematic structural diagram of a test system provided by an embodiment of the present invention. As shown in FIG. 7 , the test system includes:
信号电极SEtx、信号电极SErx、地电极GEtx、地电极GErx、第一巴伦71、第二巴伦72和矢量网络分析仪73。The signal electrode SE tx , the signal electrode SE rx , the ground electrode GE tx , the ground electrode GE rx , the
其中,第一巴伦71的第一端电连接至信号电极SEtx和地电极GEtx间的导线处,第一巴伦71的第二端电连接至矢量网络分析仪73。The first end of the
第二巴伦72的第一端电连接至信号电极SErx和地电极GErx间的导线处,第二巴伦72的第二端电连接至矢量网络分析仪73。The first end of the
第一巴伦71用于隔离地电极GEtx与矢量网络分析仪73的地,第二巴伦72用于隔离地电极GErx与矢量网络分析仪73的地。为了减少线缆间的耦合作用,第一巴伦71和第二巴伦72均直接连接到测试仪器上。The
然后,开始正式进行测试:Then, start the formal test:
将信号电极SEtx和信号电极SErx贴于人体表面;Attach the signal electrode SE tx and the signal electrode SE rx to the surface of the human body;
将地电极GEtx和地电极GErx直接相连,通过短路反向路径来获得前向路径损耗值。The ground electrode GE tx and the ground electrode GE rx are directly connected, and the forward path loss value is obtained by short-circuiting the reverse path.
改变地电极GEtx和地电极GErx间的距离,测试不同反向路径距离DTR下的总路径损耗值,这个总路径损耗值减去前向路径损耗值即可得到对应反向路径距离DTR下的反向路径损耗值。Change the distance between the ground electrode GE tx and the ground electrode GE rx , and test the total path loss value under different reverse path distances D TR . The corresponding reverse path distance D can be obtained by subtracting the forward path loss value from the total path loss value. Reverse path loss value at TR .
根据大量的测试结果,可得到反向路径损耗Pbl随反向路径距离DTR的变化规律,并基于最小二乘法,拟合得到反向路径损耗值Pbl与反向路径距离DTR以及之间的关系式:According to a large number of test results, the variation law of the reverse path loss P bl with the reverse path distance D TR can be obtained, and based on the least squares method, the reverse path loss value P bl and the reverse path distance D TR and the reverse path loss value P bl and the reverse path distance D TR and The relationship between:
在上述各实施例的基础上,本发明实施例对上述实施例中的反向耦合电容值计算模块进行具体说明,即,所述反向耦合电容值计算模块,进一步用于:On the basis of the foregoing embodiments, the embodiment of the present invention specifically describes the reverse coupling capacitance value calculation module in the foregoing embodiments, that is, the reverse coupling capacitance value calculation module is further used for:
根据所述反向路径距离,并通过以下公式计算得到所述无线体域网通信系统中的反向耦合电容值:According to the reverse path distance, the reverse coupling capacitance value in the wireless body area network communication system is calculated by the following formula:
其中,Cair为反向耦合电容值,DTR为反向路径距离,S为地电极的面积,l为地电极的周长,K为校正因子,ε0为真空中的介电常数,εr为人体组织的相对介电常数。Among them, C air is the reverse coupling capacitance value, D TR is the reverse path distance, S is the area of the ground electrode, l is the perimeter of the ground electrode, K is the correction factor, ε 0 is the dielectric constant in vacuum, ε r is the relative permittivity of human tissue.
具体地,通常的平行板电容的计算公式并不适用与反向耦合电容的计算。这是因为平行板电容的计算公式的只在平行板间距远小于平行板尺寸时适用,此时板上的电荷密度可以认为是均匀的,且边缘场可以忽略不计。但是在无线体域网通信系统中,两个地电极间的距离通常大于电极的尺寸,此时边缘场不能忽略,同时人体的存在也会对反向耦合电容带来影响。Specifically, the usual calculation formula of parallel plate capacitance is not applicable to the calculation of reverse coupling capacitance. This is because the calculation formula of the parallel plate capacitance is only applicable when the distance between the parallel plates is much smaller than the size of the parallel plates. At this time, the charge density on the plates can be considered to be uniform, and the fringe field can be ignored. However, in the wireless body area network communication system, the distance between the two ground electrodes is usually larger than the size of the electrodes. At this time, the fringe field cannot be ignored, and the existence of the human body will also affect the reverse coupling capacitance.
基于此,利用电磁仿真软件建立了一个反向耦合电容仿真平台,具体步骤为:首先在电磁仿真软件中建立一个人体模型,将人体划分为胳膊,腿,胸腔和腹部四个部分。每个部分包含多个组织层。建立人体模型后,将介电常数和导电率导入各组织层。测量不同人体的组织层厚度,并将其测量值导入模型中。在仿真软件中,建立两个铜片作为地电极,放在人体模型上方0.5cm,两个铜片间的距离即是反向路径距离DTR。Based on this, a reverse coupling capacitor simulation platform is established by using electromagnetic simulation software. The specific steps are: first, a human body model is established in the electromagnetic simulation software, and the human body is divided into four parts: arms, legs, chest cavity and abdomen. Each section contains multiple organizational layers. After building the human body model, the permittivity and conductivity were imported into each tissue layer. Measure the thickness of tissue layers in different human bodies and import their measurements into the model. In the simulation software, two copper sheets are established as ground electrodes, placed 0.5cm above the human body model, and the distance between the two copper sheets is the reverse path distance D TR .
改变两个铜片间的距离,仿真对应反向路径距离DTR下的反向耦合电容值,可以得到一系列的结果。同时,也可以研究反向耦合电容值随地电极的不同形状、尺寸的影响。根据这些仿真结果,可以计算得出反向路径距离DTR和反向耦合电容值Cair的关系:Change the distance between the two copper sheets and simulate the reverse coupling capacitance value corresponding to the reverse path distance D TR , and a series of results can be obtained. At the same time, it is also possible to study the influence of the reverse coupling capacitance value with the different shapes and sizes of the ground electrodes. Based on these simulation results, the relationship between the reverse path distance D TR and the reverse coupling capacitance value C air can be calculated:
其中,Cair为反向耦合电容值,DTR为反向路径距离,S为地电极的面积,l为地电极的周长,K为校正因子,ε0为真空中的介电常数,εr为人体组织的相对介电常数。在地形状为圆形、三角形、正方形和六边形时,参数K分别为0.89、0.95、1和1.03。Among them, C air is the reverse coupling capacitance value, D TR is the reverse path distance, S is the area of the ground electrode, l is the perimeter of the ground electrode, K is the correction factor, ε 0 is the dielectric constant in vacuum, ε r is the relative permittivity of human tissue. When the ground shapes are circle, triangle, square and hexagon, the parameter K is 0.89, 0.95, 1 and 1.03, respectively.
在上述各实施例的基础上,本发明实施例对上述实施例中的补偿电感值计算模块进行具体说明,即,所述补偿电感值计算模块,进一步用于:On the basis of the above embodiments, the embodiments of the present invention specifically describe the compensation inductance value calculation module in the above embodiments, that is, the compensation inductance value calculation module is further used for:
根据所述反向耦合电容值,并通过以下公式计算得到所述补偿电感值:According to the reverse coupling capacitance value, the compensation inductance value is calculated by the following formula:
其中,L为补偿电感值,Cair为反向耦合电容值,Cgd,TX为发射端的地电极对地的电容,Cgd,RX为接收端的地电极对地的电容,f为所述激励信号的频率。通常,Cgd,TX和Cgd,RX均为2pF。Among them, L is the compensation inductance value, C air is the reverse coupling capacitance value, C gd, TX is the capacitance of the ground electrode of the transmitting end to the ground, C gd, RX is the capacitance of the ground electrode of the receiving end to the ground, and f is the excitation the frequency of the signal. Typically, C gd,TX and C gd,RX are both 2pF.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that it can still be The technical solutions described in the foregoing embodiments are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910202587.7A CN111726143B (en) | 2019-03-18 | 2019-03-18 | A wireless body area network communication system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910202587.7A CN111726143B (en) | 2019-03-18 | 2019-03-18 | A wireless body area network communication system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111726143A CN111726143A (en) | 2020-09-29 |
CN111726143B true CN111726143B (en) | 2021-07-20 |
Family
ID=72563007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910202587.7A Active CN111726143B (en) | 2019-03-18 | 2019-03-18 | A wireless body area network communication system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111726143B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114759689B (en) * | 2022-06-13 | 2022-09-27 | 中国科学院自动化研究所 | wireless power supply |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105335564A (en) * | 2015-11-03 | 2016-02-17 | 福州大学 | Field-circuit combined wearable device current-type human body channel modeling method |
CN106416103A (en) * | 2014-06-18 | 2017-02-15 | 皇家飞利浦有限公司 | Body coupled communication device |
CN107528132A (en) * | 2017-08-01 | 2017-12-29 | 北京小米移动软件有限公司 | Inductor-adjustable apparatus, electronic equipment and the adjustable method of inductance |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8847652B2 (en) * | 2012-07-26 | 2014-09-30 | Taiwan Semiconductor Manufacturing Co., Ltd. | Reconfigurable and auto-reconfigurable resonant clock |
-
2019
- 2019-03-18 CN CN201910202587.7A patent/CN111726143B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106416103A (en) * | 2014-06-18 | 2017-02-15 | 皇家飞利浦有限公司 | Body coupled communication device |
CN105335564A (en) * | 2015-11-03 | 2016-02-17 | 福州大学 | Field-circuit combined wearable device current-type human body channel modeling method |
CN107528132A (en) * | 2017-08-01 | 2017-12-29 | 北京小米移动软件有限公司 | Inductor-adjustable apparatus, electronic equipment and the adjustable method of inductance |
Non-Patent Citations (1)
Title |
---|
《一种无线体域网发射机体偏置线性化技术》;柳扬,杨银堂,李迪,石佐辰;《电子与信息学报》;20170228;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111726143A (en) | 2020-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3417511B1 (en) | Closed loop aperture tunable antenna | |
US11038375B2 (en) | Power transmitting unit with adjustable field and methods for use therewith | |
US20090175378A1 (en) | System and Method for Impedance Mismatch Compensation in Digital Communications Systems | |
CN104682576B (en) | Add the resonance type wireless electric energy transmission system of adaptive both-end impedance transformer network | |
AU2013208016B2 (en) | System and method for a variable impedance transmitter path for charging wireless devices | |
US11569688B2 (en) | Wireless charger and control method | |
CN103326685A (en) | Radio-frequency antenna impedance self-adaption matching device and method with quantum algorithm applied | |
WO2017011904A1 (en) | Method and system for wireless and single conductor power transmission | |
CN111726143B (en) | A wireless body area network communication system | |
Kurup et al. | Path loss model for in-body communication in homogeneous human muscle tissue | |
US20150180266A1 (en) | Wireless charging optimization | |
CN105915189B (en) | A kind of rf power amplifier circuit | |
CN115693876A (en) | Charging device, wireless charging system, charging method and medium | |
US11289813B2 (en) | Compact antenna device | |
Nair et al. | Low power receiver using envelope detector using converters | |
US10186773B2 (en) | Electrically conductive resonator for communications | |
CN107565991A (en) | A kind of radio-frequency match module, the radio system for mobile terminal | |
CN108539874A (en) | Wireless charging adaptive impedance matching system and method for | |
CN114650084A (en) | Underwater magnetic induction communication omnidirectional receiving and transmitting antenna circuit and circuit parameter design method | |
Zhao et al. | Analysis and experiments on transmission characteristics of LCCL mobile wireless power transfer system | |
CN106558763A (en) | Antenna self-adaptive match circuit and the mobile communication terminal with the circuit | |
Bito et al. | A real-time electrically controlled active matching circuit utilizing genetic algorithms for biomedical WPT applications | |
Keshavarz et al. | Enabling Wireless Communications, Energy Harvesting, and Energy Saving by Using a Multimode Smart Nonlinear Circuit (MSNC) | |
KR102699489B1 (en) | Wireless charging system and method based on negative resistance converter capable of improving maximum input power | |
CN106571509B (en) | A kind of miniaturization bridge unit suitable for 10MHz 8GHz |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |