CN111724309B - Image processing method and device, neural network training method, storage medium - Google Patents
Image processing method and device, neural network training method, storage medium Download PDFInfo
- Publication number
- CN111724309B CN111724309B CN201910209662.2A CN201910209662A CN111724309B CN 111724309 B CN111724309 B CN 111724309B CN 201910209662 A CN201910209662 A CN 201910209662A CN 111724309 B CN111724309 B CN 111724309B
- Authority
- CN
- China
- Prior art keywords
- sampling
- output
- sampling process
- network
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/60—Image enhancement or restoration using machine learning, e.g. neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20016—Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本公开的实施例涉及一种图像处理方法、图像处理装置、神经网络的训练方法以及存储介质。Embodiments of the present disclosure relate to an image processing method, an image processing device, a neural network training method, and a storage medium.
背景技术Background technique
当前,基于人工神经网络的深度学习技术已经在诸如图像分类、图像捕获和搜索、面部识别、年龄和语音识别等领域取得了巨大进展。深度学习的优势在于可以利用通用的结构以相对类似的系统解决非常不同的技术问题。卷积神经网络(Convolutional NeuralNetwork,CNN)是近年发展起来并引起广泛重视的一种人工神经网络,CNN是一种特殊的图像识别方式,属于非常有效的带有前向反馈的网络。现在,CNN的应用范围已经不仅仅限于图像识别领域,也可以应用在人脸识别、文字识别、图像处理等应用方向。Currently, deep learning techniques based on artificial neural networks have made great progress in areas such as image classification, image capture and search, facial recognition, age, and speech recognition. The strength of deep learning is that it can take advantage of general structures to solve very different technical problems with relatively similar systems. Convolutional Neural Network (CNN) is an artificial neural network developed in recent years and has attracted widespread attention. CNN is a special image recognition method, which is a very effective network with forward feedback. Now, the application range of CNN is not limited to the field of image recognition, but can also be applied in face recognition, text recognition, image processing and other application directions.
发明内容Contents of the invention
本公开至少一个实施例提供一种图像处理方法,包括:接收第一特征图像;以及对所述第一特征图像进行至少一次多尺度循环采样处理;At least one embodiment of the present disclosure provides an image processing method, including: receiving a first feature image; and performing at least one multi-scale circular sampling process on the first feature image;
其中,所述多尺度循环采样处理包括嵌套的第一层级采样处理和第二层级采样处理,所述第一层级采样处理包括第一下采样处理、第一上采样处理和第一残差链接相加处理,其中,所述第一下采样处理基于第一层级采样处理的输入进行下采样处理得到第一下采样输出,所述第一上采样处理基于所述第一下采样输出进行上采样处理得到第一上采样输出,所述第一残差链接相加处理将所述第一层级采样处理的输入和所述第一上采样输出进行第一残差链接相加,然后将所述第一残差链接相加的结果作为第一层级采样处理的输出;所述第二层级采样处理嵌套在所述第一下采样处理和所述第一上采样处理之间,接收所述第一下采样输出作为第二层级采样处理的输入,提供第二层级采样处理的输出作为第一上采样处理的输入,以使得所述第一上采样处理基于所述第一下采样输出进行上采样处理;所述第二层级采样处理包括第二下采样处理、第二上采样处理和第二残差链接相加处理,其中,所述第二下采样处理基于所述第二层级采样处理的输入进行下采样处理得到第二下采样输出,所述第二上采样处理基于所述第二下采样输出进行上采样处理得到第二上采样输出,所述第二残差链接相加处理将所述第二层级采样处理的输入和所述第二上采样输出进行第二残差链接相加,然后将所述第二残差链接相加的结果作为所述第二层级采样处理的输出。Wherein, the multi-scale circular sampling processing includes nested first-level sampling processing and second-level sampling processing, and the first-level sampling processing includes first down-sampling processing, first up-sampling processing and first residual linking Addition processing, wherein the first down-sampling processing performs down-sampling processing based on the input of the first-level sampling processing to obtain a first down-sampling output, and the first up-sampling processing performs up-sampling based on the first down-sampling output processing to obtain a first up-sampling output, the first residual chain addition process performs first residual chain addition on the input of the first-level sampling process and the first up-sampling output, and then adds the first A residual chain addition result is used as the output of the first-level sampling process; the second-level sampling process is nested between the first down-sampling process and the first up-sampling process, receiving the first The down-sampling output is used as an input of the second-level sampling process, and the output of the second-level sampling process is provided as an input of the first up-sampling process, so that the first up-sampling process performs up-sampling processing based on the first down-sampling output ; The second-level sampling process includes a second down-sampling process, a second up-sampling process, and a second residual chain addition process, wherein the second down-sampling process is performed based on the input of the second-level sampling process The down-sampling process obtains a second down-sampling output, the second up-sampling process performs up-sampling processing based on the second down-sampling output to obtain a second up-sampling output, and the second residual chain addition process combines the first The input of the two-level sampling process and the output of the second upsampling are subjected to a second residual link addition, and then the result of the second residual link addition is used as an output of the second level sampling process.
例如,在本公开一实施例提供的图像处理方法中,所述第一上采样处理的输出的尺寸与所述第一下采样处理的输入的尺寸相同;所述第二上采样处理的输出的尺寸与所述第二下采样处理的输入的尺寸相同。For example, in the image processing method provided by an embodiment of the present disclosure, the size of the output of the first up-sampling process is the same as the size of the input of the first down-sampling process; the output of the second up-sampling process is The size is the same as that of the input to the second downsampling process.
例如,在本公开一实施例提供的图像处理方法中,所述多尺度循环采样处理还包括第三层级采样处理,所述第三层级采样处理嵌套在所述第二下采样处理和所述第二上采样处理之间,接收所述第二下采样输出作为第三层级采样处理的输入,提供第三层级采样处理的输出作为第二上采样处理的输入,以使得所述第二上采样处理基于所述第二下采样输出进行上采样处理;所述第三层级采样处理包括第三下采样处理、第三上采样处理和第三残差链接相加处理,其中,所述第三下采样处理基于所述第三层级采样处理的输入进行下采样处理得到第三下采样输出,所述第三上采样处理基于所述第三下采样输出进行上采样处理得到第三上采样输出,所述第三残差链接相加处理将所述第三层级采样处理的输入和所述第三上采样输出进行第三残差链接相加,然后将所述第三残差链接相加的结果作为所述第三层级采样处理的输出。For example, in the image processing method provided by an embodiment of the present disclosure, the multi-scale circular sampling process further includes a third-level sampling process, and the third-level sampling process is nested in the second down-sampling process and the Between the second up-sampling process, the second down-sampling output is received as the input of the third-level sampling process, and the output of the third-level sampling process is provided as the input of the second up-sampling process, so that the second up-sampling processing and performing upsampling processing based on the second downsampling output; the third level sampling processing includes third downsampling processing, third upsampling processing and third residual link addition processing, wherein the third downsampling The sampling process performs down-sampling processing based on the input of the third-level sampling processing to obtain a third down-sampling output, and the third up-sampling process performs up-sampling processing based on the third down-sampling output to obtain a third up-sampling output, so The third residual link addition process performs third residual link addition on the input of the third-level sampling process and the third upsampling output, and then uses the third residual link addition result as The output of the third-level sampling process.
例如,在本公开一实施例提供的图像处理方法中,所述多尺度循环采样处理包括多次依次执行的所述第二层级采样处理,第一次所述第二层级采样处理接收所述第一下采样输出作为第一次所述第二层级采样处理的输入,除第一次所述第二层级采样处理之外的每次所述第二层级采样处理接收前一次所述第二层级采样处理的输出作为本次所述第二层级采样处理的输入,最后一次所述第二层级采样处理的输出作为所述第一上采样处理的输入。For example, in the image processing method provided by an embodiment of the present disclosure, the multi-scale cyclic sampling process includes the second-level sampling process executed sequentially multiple times, and the first time the second-level sampling process receives the first The down-sampling output is used as the input of the second-level sampling process for the first time, and each second-level sampling process except the first-time second-level sampling process receives the previous second-level sampling process The output of the processing is used as the input of the second-level sampling process this time, and the output of the last second-level sampling process is used as the input of the first up-sampling process.
例如,在本公开一实施例提供的图像处理方法中,所述至少一次多尺度循环采样处理包括多次依次执行的所述多尺度循环采样处理,每次所述多尺度循环采样处理的输入作为本次所述多尺度循环采样处理中的所述第一层级采样处理的输入,每次所述多尺度循环采样处理中的所述第一层级采样处理的输出作为本次所述多尺度循环采样处理的输出;第一次所述多尺度循环采样处理接收所述第一特征图像作为第一次所述多尺度循环采样处理的输入,除第一次所述多尺度循环采样处理之外的每次所述多尺度循环采样处理接收前一次所述多尺度循环采样处理的输出作为本次所述多尺度循环采样处理的输入,最后一次所述多尺度循环采样处理的输出作为所述至少一次多尺度循环采样处理的输出。For example, in the image processing method provided by an embodiment of the present disclosure, the at least one multi-scale cyclic sampling process includes multiple sequential executions of the multi-scale cyclic sampling process, and the input of each multi-scale cyclic sampling process is taken as The input of the first-level sampling process in the multi-scale circular sampling process this time, the output of the first-level sampling process in the multi-scale circular sampling process each time is used as the multi-scale circular sampling process this time The output of the processing; the first multi-scale cyclic sampling process receives the first feature image as the input of the first multi-scale cyclic sampling process, and each process except the first multi-scale cyclic sampling process The multi-scale circular sampling process receives the output of the previous multi-scale circular sampling process as the input of the multi-scale circular sampling process this time, and the output of the last multi-scale circular sampling process is used as the at least one multi-scale circular sampling process. The output of the scaling cycle sampling process.
例如,在本公开一实施例提供的图像处理方法中,所述多尺度循环采样处理还包括:在所述第一下采样处理、所述第一上采样处理、所述第二下采样处理和所述第二上采样处理之后,分别对所述第一下采样输出、所述第一上采样输出、所述第二下采样输出和所述第二上采样输出进行实例标准化处理或层标准化处理。For example, in the image processing method provided in an embodiment of the present disclosure, the multi-scale circular sampling processing further includes: during the first down-sampling processing, the first up-sampling processing, the second down-sampling processing, and After the second upsampling process, perform instance normalization processing or layer normalization processing on the first downsampling output, the first upsampling output, the second downsampling output, and the second upsampling output respectively .
例如,本公开一实施例提供的图像处理方法还包括:使用第一卷积神经网络进行所述多尺度循环采样处理;其中,所述第一卷积神经网络包括:第一元网络,用于执行所述第一层级采样处理;第二元网络,用于执行所述第二层级采样处理。For example, the image processing method provided by an embodiment of the present disclosure further includes: using a first convolutional neural network to perform the multi-scale circular sampling process; wherein, the first convolutional neural network includes: a first meta-network for Executing the first-level sampling process; a second meta-network configured to perform the second-level sampling process.
例如,在本公开一实施例提供的图像处理方法中,所述第一元网络包括:第一子网络,用于执行所述第一下采样处理;第二子网络,用于执行所述第一上采样处理;所述第二元网络包括:第三子网络,用于执行所述第二下采样处理;第四子网络,用于执行所述第二上采样处理。For example, in the image processing method provided in an embodiment of the present disclosure, the first meta-network includes: a first sub-network configured to perform the first down-sampling process; a second sub-network configured to perform the first sub-network An up-sampling process; the second meta-network includes: a third sub-network configured to perform the second down-sampling process; a fourth sub-network configured to perform the second up-sampling process.
例如,在本公开一实施例提供的图像处理方法中,所述第一子网络、所述第二子网络、所述第三子网络和所述第四子网络中每一个包括卷积层、残差网络、密集网络之一。For example, in the image processing method provided in an embodiment of the present disclosure, each of the first subnetwork, the second subnetwork, the third subnetwork, and the fourth subnetwork includes a convolutional layer, One of residual network and dense network.
例如,在本公开一实施例提供的图像处理方法中,所述第一子网络、所述第二子网络、所述第三子网络和所述第四子网络中的每一个都包括实例标准化层或层标准化层,所述实例标准化层用于执行实例标准化处理,所述层标准化层用于执行层标准化处理。For example, in the image processing method provided by an embodiment of the present disclosure, each of the first sub-network, the second sub-network, the third sub-network and the fourth sub-network includes instance normalization A layer or a layer normalization layer for performing an instance normalization process, the layer normalization layer for performing a layer normalization process.
例如,本公开一实施例提供的图像处理方法还包括:获取输入图像;使用分析网络将输入图像转换为所述第一特征图像;以及使用合成网络将所述至少一次多尺度循环采样处理的输出转换为输出图像。For example, the image processing method provided by an embodiment of the present disclosure further includes: acquiring an input image; using an analysis network to convert the input image into the first feature image; and using a synthesis network to process the output of the at least one multi-scale cyclic sampling process Convert to output image.
本公开至少一个实施例还提供一种神经网络的训练方法,其中,所述神经网络包括:分析网络、第一子神经网络和合成网络,所述分析网络对输入图像进行处理以得到第一特征图像,所述第一子神经网络对所述第一特征图像进行至少一次多尺度循环采样处理以得到第二特征图像,所述合成网络对所述第二特征图像进行处理以得到输出图像;At least one embodiment of the present disclosure also provides a neural network training method, wherein the neural network includes: an analysis network, a first sub-neural network, and a synthesis network, and the analysis network processes an input image to obtain a first feature image, the first sub-neural network performs at least one multi-scale cyclic sampling process on the first feature image to obtain a second feature image, and the synthesis network processes the second feature image to obtain an output image;
所述训练方法包括:获取训练输入图像;使用所述分析网络对所述训练输入图像进行处理以提供第一训练特征图像;使用所述第一子神经网络对所述第一训练特征图像进行所述至少一次多尺度循环采样处理以得到第二训练特征图像;使用所述合成网络对所述第二训练特征图像进行处理以得到训练输出图像;基于所述训练输出图像,通过损失函数计算所述神经网络的损失值;以及根据所述损失值对所述神经网络的参数进行修正;The training method includes: obtaining a training input image; using the analysis network to process the training input image to provide a first training feature image; using the first sub-neural network to process the first training feature image. The at least one multi-scale cyclic sampling process to obtain a second training feature image; use the synthesis network to process the second training feature image to obtain a training output image; based on the training output image, calculate the A loss value of the neural network; and modifying parameters of the neural network according to the loss value;
其中,所述多尺度循环采样处理包括嵌套的第一层级采样处理和第二层级采样处理,所述第一层级采样处理包括依次执行的第一下采样处理、第一上采样处理和第一残差链接相加处理,其中,所述第一下采样处理基于第一层级采样处理的输入进行下采样处理得到第一下采样输出,所述第一上采样处理基于所述第一下采样输出进行上采样处理得到第一上采样输出,所述第一残差链接相加处理将所述第一层级采样处理的输入和所述第一上采样输出进行第一残差链接相加,然后将所述第一残差链接相加的结果作为第一层级采样处理的输出;所述第二层级采样处理嵌套在所述第一下采样处理和所述第一上采样处理之间,接收所述第一下采样输出作为第二层级采样处理的输入,提供第二层级采样处理的输出作为第一上采样处理的输入,以使得所述第一上采样处理基于所述第一下采样输出进行上采样处理;所述第二层级采样处理包括依次执行的第二下采样处理、第二上采样处理和第二残差链接相加处理,其中,所述第二下采样处理基于所述第二层级采样处理的输入进行下采样处理得到第二下采样输出,所述第二上采样处理基于所述第二下采样输出进行上采样处理得到第二上采样输出,所述第二残差链接相加处理将所述第二层级采样处理的输入和所述第二上采样输出进行所述第二残差链接相加,然后将所述第二残差链接相加的结果作为所述第二层级采样处理的输出。Wherein, the multi-scale circular sampling processing includes nested first-level sampling processing and second-level sampling processing, and the first-level sampling processing includes sequentially executed first down-sampling processing, first up-sampling processing, and first Residual link addition processing, wherein the first down-sampling processing is based on the input of the first-level sampling processing to perform down-sampling processing to obtain a first down-sampling output, and the first up-sampling processing is based on the first down-sampling output performing an upsampling process to obtain a first upsampling output, the first residual linking addition process performs a first residual linking addition on the input of the first level sampling process and the first upsampling output, and then The result of the first residual chain addition is used as the output of the first-level sampling process; the second-level sampling process is nested between the first down-sampling process and the first up-sampling process, receiving the The first down-sampling output is used as the input of the second-level sampling process, and the output of the second-level sampling process is provided as the input of the first up-sampling process, so that the first up-sampling process is performed based on the first down-sampling output Up-sampling processing; the second-level sampling processing includes second down-sampling processing, second up-sampling processing, and second residual chain addition processing performed in sequence, wherein the second down-sampling processing is based on the second The input of the hierarchical sampling process is subjected to down-sampling processing to obtain a second down-sampling output, and the second up-sampling processing is performed based on the second down-sampling output to perform up-sampling processing to obtain a second up-sampling output, and the second residual link is related to The addition process performs the second residual link addition on the input of the second level sampling process and the second upsampling output, and then uses the second residual link addition result as the second level The output of the sample processing.
例如,在本公开一实施例提供的训练方法中,所述第一上采样处理的输出的尺寸与所述第一下采样处理的输入的尺寸相同;所述第二上采样处理的输出的尺寸与所述第二下采样处理的输入的尺寸相同。For example, in the training method provided by an embodiment of the present disclosure, the size of the output of the first up-sampling process is the same as the size of the input of the first down-sampling process; the size of the output of the second up-sampling process is Same size as the input to the second downsampling process.
例如,在本公开一实施例提供的训练方法中,所述第一子神经网络包括:第一元网络,用于执行所述第一层级采样处理;第二元网络,用于执行所述第二层级采样处理。For example, in the training method provided in an embodiment of the present disclosure, the first sub-neural network includes: a first meta-network, configured to perform the first-level sampling process; a second meta-network, configured to perform the second Two-level sampling processing.
例如,在本公开一实施例提供的训练方法中,所述第一元网络包括:第一子网络,用于执行所述第一下采样处理;第二子网络,用于执行所述第一上采样处理;所述第二元网络包括:第三子网络,用于执行所述第二下采样处理;第四子网络,用于执行所述第二上采样处理。For example, in the training method provided in an embodiment of the present disclosure, the first meta-network includes: a first sub-network for performing the first down-sampling process; a second sub-network for performing the first Up-sampling processing; the second meta-network includes: a third sub-network configured to execute the second down-sampling processing; a fourth sub-network configured to execute the second up-sampling processing.
例如,在本公开一实施例提供的训练方法中,所述第一子网络、所述第二子网络、所述第三子网络和所述第四子网络中的每一个包括卷积层、残差网络、密集网络之一。For example, in the training method provided in an embodiment of the present disclosure, each of the first sub-network, the second sub-network, the third sub-network and the fourth sub-network includes a convolutional layer, One of residual network and dense network.
例如,在本公开一实施例提供的训练方法中,所述第一子网络、所述第二子网络、所述第三子网络和所述第四子网络中的每一个都包括实例标准化层或层标准化层,所述实例标准化层用于分别对所述第一下采样输出、所述第一上采样输出、所述第二下采样输出和所述第二上采样输出进行实例标准化处理,所述层标准化层用于分别对所述第一下采样输出、所述第一上采样输出、所述第二下采样输出和所述第二上采样输出进行层标准化处理。For example, in the training method provided by an embodiment of the present disclosure, each of the first sub-network, the second sub-network, the third sub-network and the fourth sub-network includes an instance normalization layer or a layer normalization layer, wherein the instance normalization layer is used to perform instance normalization on the first downsampled output, the first upsampled output, the second downsampled output, and the second upsampled output, respectively, The layer normalization layer is used to respectively perform layer normalization processing on the first downsampled output, the first upsampled output, the second downsampled output, and the second upsampled output.
本公开至少一个实施例还提供一种图像处理装置,包括:存储器,用于非暂时性存储计算机可读指令;以及处理器,用于运行所述计算机可读指令,所述计算机可读指令被所述处理器运行时执行本公开任一实施例提供的图像处理方法。At least one embodiment of the present disclosure further provides an image processing apparatus, including: a memory for non-transitory storage of computer-readable instructions; and a processor for executing the computer-readable instructions, the computer-readable instructions being The processor executes the image processing method provided by any embodiment of the present disclosure when running.
本公开至少一个实施例还提供一种存储介质,非暂时性地存储计算机可读指令,当所述计算机可读指令由计算机执行时可以执行本公开任一实施例提供的图像处理方法的指令。At least one embodiment of the present disclosure further provides a storage medium that stores computer-readable instructions in a non-transitory manner. When the computer-readable instructions are executed by a computer, the instructions of the image processing method provided by any embodiment of the present disclosure can be executed.
附图说明Description of drawings
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。In order to illustrate the technical solutions of the embodiments of the present disclosure more clearly, the accompanying drawings of the embodiments will be briefly introduced below. Obviously, the accompanying drawings in the following description only relate to some embodiments of the present disclosure, rather than limiting the present disclosure .
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。In order to illustrate the technical solutions of the embodiments of the present disclosure more clearly, the accompanying drawings of the embodiments will be briefly introduced below. Obviously, the accompanying drawings in the following description only relate to some embodiments of the present disclosure, rather than limiting the present disclosure .
图1为一种卷积神经网络的示意图;Fig. 1 is a schematic diagram of a convolutional neural network;
图2A为一种卷积神经网络的结构示意图;FIG. 2A is a schematic structural diagram of a convolutional neural network;
图2B为一种卷积神经网络的工作过程示意图;2B is a schematic diagram of a working process of a convolutional neural network;
图3为本公开一实施例提供的一种图像处理方法的流程图;FIG. 3 is a flowchart of an image processing method provided by an embodiment of the present disclosure;
图4A为本公开一实施例提供的一种对应于图3所示的图像处理方法中的多尺度循环采样处理的示意性流程框图;FIG. 4A is a schematic flowchart corresponding to multi-scale circular sampling processing in the image processing method shown in FIG. 3 provided by an embodiment of the present disclosure;
图4B为本公开另一实施例提供的一种对应于图3所示的图像处理方法中的多尺度循环采样处理的示意性流程框图;FIG. 4B is a schematic flowchart corresponding to multi-scale circular sampling processing in the image processing method shown in FIG. 3 provided by another embodiment of the present disclosure;
图4C为本公开再一实施例提供的一种对应于图3所示的图像处理方法中的多尺度循环采样处理的示意性流程框图;FIG. 4C is a schematic flowchart corresponding to multi-scale circular sampling processing in the image processing method shown in FIG. 3 provided by another embodiment of the present disclosure;
图4D为本公开又一实施例提供的一种对应于图3所示的图像处理方法中的多尺度循环采样处理的示意性流程框图;FIG. 4D is a schematic flowchart corresponding to multi-scale circular sampling processing in the image processing method shown in FIG. 3 provided by another embodiment of the present disclosure;
图5为本公开另一实施例提供的一种图像处理方法的流程图;FIG. 5 is a flowchart of an image processing method provided by another embodiment of the present disclosure;
图6A为一种输入图像的示意图;FIG. 6A is a schematic diagram of an input image;
图6B为根据本公开一实施例提供的一种图像处理方法对图6A所示的输入图像进行处理得到的输出图像的示意图;FIG. 6B is a schematic diagram of an output image obtained by processing the input image shown in FIG. 6A according to an image processing method provided by an embodiment of the present disclosure;
图7A为本公开一实施例提供的一种神经网络的结构示意图;FIG. 7A is a schematic structural diagram of a neural network provided by an embodiment of the present disclosure;
图7B为本公开一实施例提供的一种神经网络的训练方法的流程图;FIG. 7B is a flowchart of a neural network training method provided by an embodiment of the present disclosure;
图7C为本公开一实施例提供的一种对应于图7B中所示的训练方法训练图7A所示的神经网络的示意性架构框图;FIG. 7C is a schematic architectural block diagram of training the neural network shown in FIG. 7A corresponding to the training method shown in FIG. 7B provided by an embodiment of the present disclosure;
图8为本公开一实施例提供的一种图像处理装置的示意性框图;以及FIG. 8 is a schematic block diagram of an image processing device provided by an embodiment of the present disclosure; and
图9为本公开一实施例提供的一种存储介质的示意图。Fig. 9 is a schematic diagram of a storage medium provided by an embodiment of the present disclosure.
具体实施方式Detailed ways
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present disclosure clearer, the technical solutions of the embodiments of the present disclosure will be clearly and completely described below in conjunction with the accompanying drawings of the embodiments of the present disclosure. Apparently, the described embodiments are some of the embodiments of the present disclosure, not all of them. Based on the described embodiments of the present disclosure, all other embodiments obtained by persons of ordinary skill in the art without creative effort fall within the protection scope of the present disclosure.
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。Unless otherwise defined, the technical terms or scientific terms used in the present disclosure shall have the usual meanings understood by those skilled in the art to which the present disclosure belongs. "First", "second" and similar words used in the present disclosure do not indicate any order, quantity or importance, but are only used to distinguish different components. "Comprising" or "comprising" and similar words mean that the elements or items appearing before the word include the elements or items listed after the word and their equivalents, without excluding other elements or items. Words such as "connected" or "connected" are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect. "Up", "Down", "Left", "Right" and so on are only used to indicate the relative positional relationship. When the absolute position of the described object changes, the relative positional relationship may also change accordingly.
下面通过几个具体的实施例对本公开进行说明。为了保持本公开实施例的以下说明清楚且简明,可省略已知功能和已知部件的详细说明。当本公开实施例的任一部件在一个以上的附图中出现时,该部件在每个附图中由相同或类似的参考标号表示。The present disclosure is described below through several specific embodiments. To keep the following description of the embodiments of the present disclosure clear and concise, detailed descriptions of known functions and known components may be omitted. When any part of an embodiment of the present disclosure appears in more than one drawing, that part is represented by the same or similar reference numeral in each drawing.
图像增强是图像处理领域的研究热点之一。由于在图像采集过程中存在各种物理因素的限制(例如,手机相机的图像传感器尺寸太小以及其他软件、硬件的限制等)以及环境噪声的干扰,会导致图像质量大大降低。图像增强的目的是通过图像增强技术,改善图像的灰度直方图,提高图像的对比度,从而凸显图像细节信息,改善图像的视觉效果。Image enhancement is one of the research hotspots in the field of image processing. Due to the limitations of various physical factors in the image acquisition process (for example, the size of the image sensor of the mobile phone camera is too small and other software and hardware limitations, etc.) and the interference of environmental noise, the image quality will be greatly reduced. The purpose of image enhancement is to improve the gray histogram of the image and the contrast of the image through image enhancement technology, so as to highlight the details of the image and improve the visual effect of the image.
利用深度神经网络进行图像增强是随着深度学习技术的发展而新兴起来的技术。例如,基于卷积神经网络,可以对手机拍摄的低质量的照片(输入图像)进行处理以获得高质量的输出图像,该输出图像的质量可以接近于数码单镜反光相机(Digital Single LensReflex Camera,常简称为DSLR,也简称为数码单反相机)拍摄的照片的质量。例如,常用峰值信噪比(Peak Signal to Noise Ratio,PSNR)指标来表征图像质量,其中PSNR值越高表示图像越接近于真实的数码单镜反光相机拍摄的照片。Image enhancement using deep neural network is an emerging technology with the development of deep learning technology. For example, based on convolutional neural networks, low-quality photos (input images) taken by mobile phones can be processed to obtain high-quality output images, which can be close to the quality of digital single-lens reflex cameras (Digital Single LensReflex Camera, Often referred to as DSLR, also referred to as digital single-lens reflex camera) the quality of photos taken. For example, a peak signal to noise ratio (Peak Signal to Noise Ratio, PSNR) index is commonly used to characterize image quality, wherein a higher PSNR value indicates that the image is closer to a real photo taken by a digital single-lens reflex camera.
例如,Andrey Ignatov等人提出了一种卷积神经网络实现图像增强的方法,请参见文献,Andrey Ignatov,Nikolay Kobyshev,Kenneth Vanhoey,Radu Timofte,Luc VanGool,DSLR-Quality Photos on Mobile Devices with Deep ConvolutionalNetworks.arXiv:1704.02470v2[cs.CV],2017年9月5日。在此将该文献全文引用结合于此,以作为本申请的一部分。该方法主要是利用卷积层、批量标准化层及残差连接构建了一种单一尺度的卷积神经网络,利用该网络可以将输入的低质量图像(例如,对比度较低,图像曝光不足或曝光过度,整幅图像过暗或过亮等)处理成一张较高质量图像。利用颜色损失、纹理损失及内容损失作为训练中的损失函数,能够取得较好的处理效果。For example, Andrey Ignatov et al. proposed a convolutional neural network image enhancement method, see literature, Andrey Ignatov, Nikolay Kobyshev, Kenneth Vanhoey, Radu Timofte, Luc VanGool, DSLR-Quality Photos on Mobile Devices with Deep ConvolutionalNetworks. arXiv: 1704.02470v2[cs.CV], 5 September 2017. This document is hereby incorporated by reference in its entirety as part of this application. This method mainly uses convolutional layers, batch normalization layers and residual connections to construct a single-scale convolutional neural network, which can be used to convert input low-quality images (for example, low contrast, underexposed images or overexposed Excessive, the entire image is too dark or too bright, etc.) processed into a higher quality image. Using color loss, texture loss and content loss as the loss function in training can achieve better processing results.
本公开至少一个实施例提供一种图像处理方法、图像处理装置、神经网络的训练方法以及存储介质。该图像处理方法提出了一种基于卷积神经网络的多尺度循环采样方法,通过在多个尺度上反复采样以获取更高的图像保真度,可以大幅提升输出图像的质量,适用于对于图像质量要求较高的批处理等离线应用。At least one embodiment of the present disclosure provides an image processing method, an image processing device, a neural network training method, and a storage medium. This image processing method proposes a multi-scale cyclic sampling method based on convolutional neural network. By repeatedly sampling on multiple scales to obtain higher image fidelity, the quality of the output image can be greatly improved. It is suitable for image processing. Offline applications such as batch processing with high quality requirements.
最初,卷积神经网络(Convolutional Neural Network,CNN)主要用于识别二维形状,其对图像的平移、比例缩放、倾斜或其他形式的变形具有高度不变性。CNN主要通过局部感知野和权值共享来简化神经网络模型的复杂性、减少权重的数量。随着深度学习技术的发展,CNN的应用范围已经不仅仅限于图像识别领域,其也可以应用在人脸识别、文字识别、动物分类、图像处理等领域。Initially, Convolutional Neural Network (CNN) was mainly used to recognize two-dimensional shapes, which are highly invariant to translation, scaling, tilting or other forms of deformation of the image. CNN mainly simplifies the complexity of the neural network model and reduces the number of weights through local perceptual fields and weight sharing. With the development of deep learning technology, the scope of application of CNN is not limited to the field of image recognition, it can also be used in face recognition, text recognition, animal classification, image processing and other fields.
图1示出了一种卷积神经网络的示意图。例如,该卷积神经网络可以用于图像处理,其使用图像作为输入和输出,并通过卷积核替代标量的权重。图1中仅示出了具有3层结构的卷积神经网络,本公开的实施例对此不作限制。如图1所示,卷积神经网络包括输入层101、隐藏层102和输出层103。输入层101具有4个输入,隐藏层102具有3个输出,输出层103具有2个输出,最终该卷积神经网络最终输出2幅图像。Fig. 1 shows a schematic diagram of a convolutional neural network. For example, this convolutional neural network can be used for image processing, which uses images as input and output, and replaces scalar weights by convolution kernels. FIG. 1 only shows a convolutional neural network with a 3-layer structure, which is not limited by embodiments of the present disclosure. As shown in FIG. 1 , the convolutional neural network includes an
例如,输入层101的4个输入可以为4幅图像,或者1幅图像的四种特征图像。隐藏层102的3个输出可以为经过输入层101输入的图像的特征图像。For example, the four inputs of the
例如,如图1所示,卷积层具有权重和偏置/>权重/>表示卷积核,偏置/>是叠加到卷积层的输出的标量,其中,k是表示输入层101的标签,i和j分别是输入层101的单元和隐藏层102的单元的标签。例如,第一卷积层201包括第一组卷积核(图1中的/>)和第一组偏置(图1中的/>)。第二卷积层202包括第二组卷积核(图1中的/>)和第二组偏置(图1中的/>)。通常,每个卷积层包括数十个或数百个卷积核,若卷积神经网络为深度卷积神经网络,则其可以包括至少五层卷积层。For example, as shown in Figure 1, a convolutional layer has weights and bias /> Weight /> Indicates the convolution kernel, bias /> is a scalar superimposed to the output of the convolutional layer, where k is the label representing the
例如,如图1所示,该卷积神经网络还包括第一激活层203和第二激活层204。第一激活层203位于第一卷积层201之后,第二激活层204位于第二卷积层202之后。激活层(例如,第一激活层203和第二激活层204)包括激活函数,激活函数用于给卷积神经网络引入非线性因素,以使卷积神经网络可以更好地解决较为复杂的问题。激活函数可以包括线性修正单元(ReLU)函数、S型函数(Sigmoid函数)或双曲正切函数(tanh函数)等。ReLU函数为非饱和非线性函数,Sigmoid函数和tanh函数为饱和非线性函数。例如,激活层可以单独作为卷积神经网络的一层,或者激活层也可以被包含在卷积层(例如,第一卷积层201可以包括第一激活层203,第二卷积层202可以包括第二激活层204)中。For example, as shown in FIG. 1 , the convolutional neural network further includes a
例如,在第一卷积层201中,首先,对每个输入应用第一组卷积核中的若干卷积核和第一组偏置中的若干偏置/>以得到第一卷积层201的输出;然后,第一卷积层201的输出可以通过第一激活层203进行处理,以得到第一激活层203的输出。在第二卷积层202中,首先,对输入的第一激活层203的输出应用第二组卷积核中的若干卷积核/>和第二组偏置中的若干偏置/>以得到第二卷积层202的输出;然后,第二卷积层202的输出可以通过第二激活层204进行处理,以得到第二激活层204的输出。例如,第一卷积层201的输出可以为对其输入应用卷积核/>后再与偏置/>相加的结果,第二卷积层202的输出可以为对第一激活层203的输出应用卷积核/>后再与偏置/>相加的结果。For example, in the first
在利用卷积神经网络进行图像处理前,需要对卷积神经网络进行训练。经过训练之后,卷积神经网络的卷积核和偏置在图像处理期间保持不变。在训练过程中,各卷积核和偏置通过多组输入/输出示例图像以及优化算法进行调整,以获取优化后的卷积神经网络模型。Before using the convolutional neural network for image processing, the convolutional neural network needs to be trained. After training, the kernels and biases of a convolutional neural network remain constant during image processing. During the training process, each convolution kernel and bias are adjusted through multiple sets of input/output example images and an optimization algorithm to obtain an optimized convolutional neural network model.
图2A示出了一种卷积神经网络的结构示意图,图2B示出了一种卷积神经网络的工作过程示意图。例如,如图2A和2B所示,输入图像通过输入层输入到卷积神经网络后,依次经过若干个处理过程(如图2A中的每个层级)后输出类别标识。卷积神经网络的主要组成部分可以包括多个卷积层、多个下采样层和全连接层等。本公开中,应该理解的是,多个卷积层、多个下采样层和全连接层等这些层每个都指代对应的处理操作,即卷积处理、下采样处理、全连接处理等,所描述的神经网络也都指代对应的处理操作,以下将要描述的实例标准化层或层标准化层等也与此类似,这里不再重复说明。例如,一个完整的卷积神经网络可以由这三种层叠加组成。例如,图2A仅示出了一种卷积神经网络的三个层级,即第一层级、第二层级和第三层级。例如,每个层级可以包括一个卷积模块和一个下采样层。例如,每个卷积模块可以包括卷积层。由此,每个层级的处理过程可以包括:对输入图像进行卷积(convolution)以及下采样(sub-sampling/down-sampling)。例如,根据实际需要,每个卷积模块还可以包括实例标准化(instance normalization)层或层标准化(layernormalization)层,从而每个层级的处理过程还可以包括实例标准化处理或层标准化处理。FIG. 2A shows a schematic structural diagram of a convolutional neural network, and FIG. 2B shows a schematic diagram of a working process of a convolutional neural network. For example, as shown in FIGS. 2A and 2B , after the input image is input to the convolutional neural network through the input layer, it goes through several processing processes (each layer in FIG. 2A ) in turn to output a category identifier. The main components of a convolutional neural network can include multiple convolutional layers, multiple downsampling layers, and fully connected layers, among others. In this disclosure, it should be understood that each of these layers, such as multiple convolutional layers, multiple downsampling layers, and fully connected layers, refers to a corresponding processing operation, that is, convolution processing, downsampling processing, fully connected processing, etc. , the described neural network also refers to the corresponding processing operations, and the example normalization layer or layer normalization layer described below is also similar to this, and will not be repeated here. For example, a complete convolutional neural network can be composed of these three layer stacks. For example, FIG. 2A only shows three layers of a convolutional neural network, namely, the first layer, the second layer and the third layer. For example, each layer can include a convolutional block and a downsampling layer. For example, each convolutional module may include a convolutional layer. Thus, the processing at each level may include: performing convolution and down-sampling (sub-sampling/down-sampling) on the input image. For example, according to actual needs, each convolution module may also include an instance normalization layer or a layer normalization layer, so that the processing at each level may also include instance normalization or layer normalization.
例如,实例标准化层用于对卷积层输出的特征图像进行实例标准化处理,以使特征图像的像素的灰度值在预定范围内变化,从而简化图像生成过程,改善图像增强的效果。例如,预定范围可以为[-1,1]。实例标准化层根据每个特征图像自身的均值和方差,对该特征图像进行实例标准化处理。例如,实例标准化层还可用于对单幅图像进行实例标准化处理。For example, the instance normalization layer is used to perform instance normalization processing on the feature image output by the convolution layer, so that the gray value of the pixel of the feature image changes within a predetermined range, thereby simplifying the image generation process and improving the effect of image enhancement. For example, the predetermined range may be [-1, 1]. The instance normalization layer performs instance normalization on each feature image according to its own mean and variance. For example, an instance normalization layer can also be used to perform instance normalization on a single image.
例如,假设小批梯度下降法(mini-batch gradient decent)的尺寸为T,某一卷积层输出的特征图像的数量为C,且每个特征图像均为H行W列的矩阵,则特征图像的模型表示为(T,C,H,W)。从而,实例标准化层的实例标准化公式可以表示如下:For example, assuming that the size of the mini-batch gradient descent method (mini-batch gradient decent) is T, the number of feature images output by a certain convolutional layer is C, and each feature image is a matrix of H rows and W columns, then the feature The model of the image is denoted as (T,C,H,W). Thus, the instance normalization formula of the instance normalization layer can be expressed as follows:
其中,xtijk为该卷积层输出的特征图像集合中的第t个特征块(patch)、第i个特征图像、第j行、第k列的值。ytijk表示经过实例标准化层处理xtijk后得到的结果。e1为一个很小的整数,以避免分母为0。Among them, x tijk is the value of the t-th feature block (patch), the i-th feature image, the j-th row, and the k-th column in the feature image set output by the convolutional layer. y tijk represents the result obtained after processing x tijk by the instance normalization layer. e 1 is a very small integer to avoid the denominator being 0.
例如,层标准化层与实例标准化层类似,也用于对卷积层输出的特征图像进行层标准化处理,以使特征图像的像素的灰度值在预定范围内变化,从而简化图像生成过程,改善图像增强的效果。例如,预定范围可以为[-1,1]。与实例标准化层不同的是,层标准化层根据每个特征图像每一列的均值和方差,对该特征图像的每一列进行层标准化处理,从而实现对该特征图像的层标准化处理。例如,层标准化层也可用于对单幅图像进行层标准化处理。For example, the layer normalization layer is similar to the instance normalization layer, and it is also used to perform layer normalization processing on the feature image output by the convolution layer, so that the gray value of the pixel of the feature image changes within a predetermined range, thereby simplifying the image generation process and improving The effect of image enhancement. For example, the predetermined range may be [-1, 1]. Different from the example normalization layer, the layer normalization layer performs layer normalization processing on each column of each feature image according to the mean and variance of each column of each feature image, thereby realizing layer normalization processing on the feature image. For example, the layer normalization layer can also be used to perform layer normalization on a single image.
例如,仍然以上述小批梯度下降法(mini-batch gradient decent)为例,特征图像的模型表示为(T,C,H,W)。从而,层标准化层的层标准化公式可以表示如下:For example, still taking the above mini-batch gradient descent method as an example, the model of the feature image is expressed as (T, C, H, W). Thus, the layer normalization formula of the layer normalization layer can be expressed as follows:
其中,xtijk为该卷积层输出的特征图像集合中的第t个特征块(patch)、第i个特征图像、第j行、第k列的值。y′tijk表示经过层标准化层处理xtijk后得到的结果。e2为一个很小的整数,以避免分母为0。Among them, x tijk is the value of the t-th feature block (patch), the i-th feature image, the j-th row, and the k-th column in the feature image set output by the convolutional layer. y′ tijk represents the result obtained after processing x tijk by the layer normalization layer. e 2 is a small integer to avoid 0 in the denominator.
卷积层是卷积神经网络的核心层。在卷积神经网络的卷积层中,一个神经元只与部分相邻层的神经元连接。卷积层可以对输入图像应用若干个卷积核(也称为滤波器),以提取输入图像的多种类型的特征。每个卷积核可以提取一种类型的特征。卷积核一般以随机小数矩阵的形式初始化,在卷积神经网络的训练过程中卷积核将通过学习以得到合理的权值。对输入图像应用一个卷积核之后得到的结果被称为特征图像(feature map),特征图像的数目与卷积核的数目相等。每个特征图像由一些矩形排列的神经元组成,同一特征图像的神经元共享权值,这里共享的权值就是卷积核。一个层级的卷积层输出的特征图像可以被输入到相邻的下一个层级的卷积层并再次处理以得到新的特征图像。例如,如图2A所示,第一层级的卷积层可以输出第一层级特征图像,该第一层级特征图像被输入到第二层级的卷积层再次处理以得到第二层级特征图像。The convolutional layer is the core layer of the convolutional neural network. In the convolutional layers of a convolutional neural network, a neuron is only connected to some neurons in adjacent layers. A convolutional layer can apply several convolution kernels (also known as filters) to an input image to extract various types of features of the input image. Each convolution kernel can extract one type of feature. The convolution kernel is generally initialized in the form of a random decimal matrix. During the training process of the convolutional neural network, the convolution kernel will be learned to obtain reasonable weights. The result obtained after applying a convolution kernel to the input image is called a feature map, and the number of feature images is equal to the number of convolution kernels. Each feature image is composed of some rectangularly arranged neurons, and the neurons of the same feature image share weights, and the shared weights here are convolution kernels. The feature image output by one level of convolutional layer can be input to the adjacent next level of convolutional layer and processed again to obtain a new feature image. For example, as shown in FIG. 2A , the first-level convolutional layer may output the first-level feature image, which is input to the second-level convolutional layer for further processing to obtain the second-level feature image.
例如,如图2B所示,卷积层可以使用不同的卷积核对输入图像的某一个局部感受域的数据进行卷积,卷积结果被输入激活层,该激活层根据相应的激活函数进行计算以得到输入图像的特征信息。For example, as shown in Figure 2B, the convolution layer can use different convolution kernels to convolve the data of a certain local receptive field of the input image, and the convolution result is input into the activation layer, which is calculated according to the corresponding activation function To get the feature information of the input image.
例如,如图2A和2B所示,下采样层设置在相邻的卷积层之间,下采样层是下采样的一种形式。一方面,下采样层可以用于缩减输入图像的规模,简化计算的复杂度,在一定程度上减小过拟合的现象;另一方面,下采样层也可以进行特征压缩,提取输入图像的主要特征。下采样层能够减少特征图像的尺寸,但不改变特征图像的数量。例如,一个尺寸为12×12的输入图像,通过6×6的卷积核对其进行采样,那么可以得到2×2的输出图像,这意味着输入图像上的36个像素合并为输出图像中的1个像素。最后一个下采样层或卷积层可以连接到一个或多个全连接层,全连接层用于连接提取的所有特征。全连接层的输出为一个一维矩阵,也就是向量。For example, as shown in FIGS. 2A and 2B , a downsampling layer is disposed between adjacent convolutional layers, and the downsampling layer is a form of downsampling. On the one hand, the downsampling layer can be used to reduce the size of the input image, simplify the computational complexity, and reduce the phenomenon of overfitting to a certain extent; on the other hand, the downsampling layer can also perform feature compression to extract the input image. main features. Downsampling layers are able to reduce the size of feature images without changing the number of feature images. For example, an input image with a size of 12×12 is sampled by a 6×6 convolution kernel, then a 2×2 output image can be obtained, which means that 36 pixels on the input image are merged into 1 pixel. The last downsampling layer or convolutional layer can be connected to one or more fully connected layers, which are used to connect all the extracted features. The output of the fully connected layer is a one-dimensional matrix, that is, a vector.
下面结合附图对本公开的一些实施例及其示例进行详细说明。Some embodiments and examples of the present disclosure will be described in detail below with reference to the accompanying drawings.
图3为本公开一实施例提供的一种图像处理方法的流程图。例如,如图3所示,该图像处理方法包括:Fig. 3 is a flowchart of an image processing method provided by an embodiment of the present disclosure. For example, as shown in Figure 3, the image processing method includes:
步骤S110:接收第一特征图像;Step S110: receiving the first feature image;
步骤S120:对第一特征图像进行至少一次多尺度循环采样处理。Step S120: Perform at least one multi-scale circular sampling process on the first feature image.
例如,在步骤S110中,第一特征图像可以包括输入图像经过卷积层、残差网络、密集网络等之一处理后得到的特征图像(例如,可以参考图2B)。例如,残差网络通过例如残差连接相加的方式将其输入以一定的比例保持在其输出中。例如,密集网络包括瓶颈层(bottleneck layer)和卷积层,例如,在一些示例中,瓶颈层用于对数据进行降维以减少后续卷积操作中的参数数量,例如瓶颈层的卷积核为1x1卷积核,例如卷积层的卷积核为3x3卷积核;本公开包括但不限于此。例如,输入图像经过卷积、下采样等处理以得到第一特征图像。需要说明的是,本实施例对第一特征图像的获取方式不作限制。例如,第一特征图像可以包括多个特征图像,但不限于此。For example, in step S110, the first feature image may include a feature image obtained after the input image is processed by one of a convolutional layer, a residual network, and a dense network (for example, refer to FIG. 2B ). For example, a residual network keeps a certain proportion of its input in its output by means of, for example, the addition of residual connections. For example, a dense network includes a bottleneck layer and a convolutional layer. For example, in some examples, the bottleneck layer is used to reduce the dimensionality of the data to reduce the number of parameters in subsequent convolution operations, such as the convolution kernel of the bottleneck layer. is a 1x1 convolution kernel, for example, a convolution kernel of a convolution layer is a 3x3 convolution kernel; the present disclosure includes but is not limited thereto. For example, the input image is processed by convolution, down-sampling, etc. to obtain the first feature image. It should be noted that, in this embodiment, there is no limitation on the manner of acquiring the first feature image. For example, the first characteristic image may include a plurality of characteristic images, but is not limited thereto.
例如,在步骤S110中接收的第一特征图像作为步骤S120中的多尺度循环采样处理的输入。例如,多尺度循环采样处理可以具有多种形式,包括但不限于下文中将要说明的图4A-4C所示的三种形式。For example, the first feature image received in step S110 is used as the input of the multi-scale circular sampling process in step S120. For example, the multi-scale round-robin sampling process may have various forms, including but not limited to the three forms shown in FIGS. 4A-4C which will be described below.
图4A为本公开一实施例提供的一种对应于图3所示的图像处理方法中的多尺度循环采样处理的示意性流程框图。如图4A所示,多尺度循环采样处理包括嵌套的第一层级采样处理和第二层级采样处理。FIG. 4A is a schematic flowchart corresponding to multi-scale circular sampling processing in the image processing method shown in FIG. 3 provided by an embodiment of the present disclosure. As shown in FIG. 4A , multi-scale circular sampling processing includes nested first-level sampling processing and second-level sampling processing.
例如,如图4A所示,多尺度循环采样处理的输入作为第一层级采样处理的输入,第一层级采样处理的输出作为多尺度循环采样处理的输出。例如多尺度循环采样处理的输出称为第二特征图像,例如,第二特征图像的尺寸(像素阵列的行和列的数值)可以和第一特征图像的尺寸相同。For example, as shown in FIG. 4A , the input of the multi-scale circular sampling process is used as the input of the first-level sampling process, and the output of the first-level sampling process is used as the output of the multi-scale circular sampling process. For example, the output of the multi-scale cyclic sampling process is called the second feature image. For example, the size of the second feature image (values of rows and columns of the pixel array) may be the same as that of the first feature image.
例如,如图4A所示,第一层级采样处理包括依次执行的第一下采样处理、第一上采样处理和第一残差链接相加处理。第一下采样处理基于第一层级采样处理的输入进行下采样处理得到第一下采样输出,例如,第一下采样处理可以直接对第一层级采样处理的输入进行下采样以得到第一下采样输出。第一上采样处理基于第一下采样输出进行上采样处理得到第一上采样输出,例如,在第一下采样输出经过第二层级采样处理之后,再进行上采样处理以得到第一上采样输出,即第一上采样处理可以间接地对第一下采样输出进行上采样处理。第一残差链接相加处理将第一层级采样处理的输入和第一上采样输出进行第一残差链接相加,然后将第一残差链接相加的结果作为第一层级采样处理的输出。例如,第一上采样处理的输出(即第一上采样输出)的尺寸与第一层级采样处理的输入(即第一下采样处理的输入)的尺寸相同,从而经过第一残差链接相加后,第一层级采样处理的输出的尺寸与第一层级采样处理的输入的尺寸相同。For example, as shown in FIG. 4A , the first-level sampling processing includes a first down-sampling process, a first up-sampling process, and a first residual chained addition process performed in sequence. The first down-sampling process performs down-sampling processing based on the input of the first-level sampling process to obtain the first down-sampling output, for example, the first down-sampling process can directly down-sample the input of the first-level sampling process to obtain the first down-sampling output. The first up-sampling process performs up-sampling processing based on the first down-sampling output to obtain the first up-sampling output, for example, after the first down-sampling output undergoes second-level sampling processing, then performs up-sampling processing to obtain the first up-sampling output , that is, the first up-sampling process may indirectly perform up-sampling processing on the first down-sampling output. The first residual chain addition process performs the first residual chain addition on the input of the first-level sampling process and the first upsampling output, and then uses the result of the first residual chain addition as the output of the first-level sampling process . For example, the size of the output of the first upsampling process (that is, the first upsampling output) is the same as the size of the input of the first-level sampling process (that is, the input of the first downsampling process), so that they are added via the first residual link After that, the size of the output of the first-level sampling process is the same as the size of the input of the first-level sampling process.
例如,如图4A所示,第二层级采样处理嵌套在第一层级采样处理的第一下采样处理和第一上采样处理之间,接收第一下采样输出作为第二层级采样处理的输入,提供第二层级采样处理的输出作为第一上采样处理的输入,以使得第一上采样处理基于第一下采样输出进行上采样处理。For example, as shown in Figure 4A, the second-level sampling process is nested between the first down-sampling process and the first up-sampling process of the first-level sampling process, and receives the first down-sampling output as the input of the second-level sampling process , providing the output of the second-level sampling processing as an input of the first up-sampling processing, so that the first up-sampling processing performs up-sampling processing based on the first down-sampling output.
例如,如图4A所示,第二层级采样处理包括依次执行的第二下采样处理、第二上采样处理和第二残差链接相加处理。第二下采样处理基于第二层级采样处理的输入进行下采样处理得到第二下采样输出,例如,第二下采样处理可以直接对第二层级采样处理的输入进行下采样以得到第二下采样输出。第二上采样处理基于第二下采样输出进行上采样处理得到第二上采样输出,例如,第二上采样处理可以直接对第二下采样输出进行上采样以得到第二上采样输出。第二残差链接相加处理将第二层级采样处理的输入和第二上采样输出进行第二残差链接相加,然后将第二残差链接相加的结果作为第二层级采样处理的输出。例如,第二上采样处理的输出(即第二上采样输出)的尺寸与第二层级采样处理的输入(即第二下采样处理的输入)的尺寸相同,从而经过第二残差链接相加后,第二层级采样处理的输出的尺寸与第二层级采样处理的输入的尺寸相同。For example, as shown in FIG. 4A , the second-level sampling process includes a second down-sampling process, a second up-sampling process, and a second residual chained addition process performed in sequence. The second down-sampling process performs down-sampling processing based on the input of the second-level sampling process to obtain the second down-sampling output. For example, the second down-sampling process can directly down-sample the input of the second-level sampling process to obtain the second down-sampling output. The second up-sampling process performs up-sampling processing based on the second down-sampling output to obtain the second up-sampling output. For example, the second up-sampling process may directly perform up-sampling on the second down-sampling output to obtain the second up-sampling output. The second residual link addition process performs the second residual link addition on the input of the second-level sampling process and the second upsampling output, and then uses the result of the second residual link addition as the output of the second-level sampling process . For example, the size of the output of the second up-sampling process (ie, the second up-sampling output) is the same as the size of the input of the second-level sampling process (ie, the input of the second down-sampling process), so that they are added via the second residual link After that, the output of the second-level sampling process has the same size as the input to the second-level sampling process.
需要说明的是,在本公开的一些实施例(不限于本实施例)中,每个层级的采样处理(例如,第一层级采样处理、第二层级采样处理以及图4B所示实施例中将要介绍的第三层级采样处理等)的流程是相似的,均包括下采样处理、上采样处理和残差链接相加处理。另外,以特征图像为例,残差链接相加处理可以包括将两幅特征图像的矩阵的每一行、每一列的值对应相加,但不限于此。It should be noted that, in some embodiments of the present disclosure (not limited to this embodiment), each level of sampling processing (for example, the first level sampling processing, the second level sampling processing, and the embodiment shown in FIG. 4B will The processes of the third-level sampling processing, etc.) introduced are similar, including down-sampling processing, up-sampling processing, and residual link addition processing. In addition, taking the feature image as an example, the residual link addition process may include correspondingly adding the values of each row and each column of the matrix of the two feature images, but it is not limited thereto.
在本公开中,“嵌套”是指一个对象中包括与该对象相似或相同的另一个对象,所述对象包括但不限于流程或者网络结构等。In the present disclosure, "nesting" means that an object includes another object that is similar or identical to the object, and the object includes but not limited to a process or a network structure.
需要说明的是,在本公开的一些实施例中,每个层级的采样处理中的上采样处理的输出(例如,上采样处理的输出为特征图像)的尺寸与下采样处理的输入(例如,下采样处理的输入为特征图像)尺寸相同,从而经过残差链接相加后,每个层级的采样处理的输出(例如,每个层级的采样处理的输出可以为特征图像)的尺寸和每个层级的采样处理的输入(例如,每个层级的采样处理的输入可以为特征图像)的尺寸相同。It should be noted that, in some embodiments of the present disclosure, the size of the output of the up-sampling process (for example, the output of the up-sampling process is a feature image) in the sampling process of each level is the same as the size of the input of the down-sampling process (for example, The input of the downsampling process is the feature image) size is the same, so after the residual link is added, the output of the sampling process of each level (for example, the output of the sampling process of each level can be the feature image) size and each The input of the sampling process of the levels (for example, the input of the sampling process of each level may be a feature image) has the same size.
需要说明的是,在本公开的一些实施例中,多尺度循环采样处理可以通过卷积神经网络实现。例如,在本公开的一些实施例中,可以使用第一卷积神经网络进行多尺度循环采样处理。例如,在一些示例中,第一卷积神经网络可以包括嵌套的第一元网络和第二元网络,第一元网络用于执行第一层级采样处理,第二元网络用于执行第二层级采样处理。It should be noted that, in some embodiments of the present disclosure, multi-scale cyclic sampling processing may be implemented through a convolutional neural network. For example, in some embodiments of the present disclosure, the first convolutional neural network may be used to perform multi-scale cyclic sampling processing. For example, in some examples, the first convolutional neural network may include a nested first meta-network and a second meta-network, the first meta-network is used to perform a first-level sampling process, and the second meta-network is used to perform a second meta-network. Hierarchical sampling processing.
例如,在一些示例中,第一元网络可以包括第一子网络和第二子网络,第一子网络用于执行第一下采样处理,第二子网络用于执行第一上采样处理。第二元网络嵌套在第一元网络的第一子网络和第三子网络之间。例如,在一些示例中,第二元网络可以包括第三子网络和第四子网络,第三子网络用于执行第二下采样处理,第四子网络用于执行第二上采样处理。例如,第一元网络和第二元网络均类似于前述残差网络的形式。For example, in some examples, the first meta-network may include a first sub-network and a second sub-network, the first sub-network is used to perform the first down-sampling process, and the second sub-network is used to perform the first up-sampling process. The second meta-network is nested between the first sub-network and the third sub-network of the first meta-network. For example, in some examples, the second meta-network may include a third sub-network and a fourth sub-network, the third sub-network is used to perform the second down-sampling process, and the fourth sub-network is used to perform the second up-sampling process. For example, both the first meta-network and the second meta-network are similar to the form of the aforementioned residual network.
例如,一些示例中,第一子网络、第二子网络、第三子网络和第四子网络中的每一个都包括卷积层、残差网络、密集网络等之一。具体地,第一子网络和第三子网络可以包括具有下采样功能的卷积层(下采样层),也可以包括具有下采样功能的残差网络、密集网络等之一;第二子网络和第四子网络可以包括具有上采样功能的卷积层(上采样层),也可以包括具有上采样功能的残差网络、密集网络等之一。需要说明的是,第一子网络和第三子网络可以具有相同的结构,也可以具有不同的结构;第二子网络和第四子网络可以具有相同的结构,也可以具有不同的结构;本公开的实施例对此不作限制。For example, in some examples, each of the first sub-network, the second sub-network, the third sub-network and the fourth sub-network includes one of a convolutional layer, a residual network, a dense network, and the like. Specifically, the first sub-network and the third sub-network can include a convolutional layer (down-sampling layer) with a down-sampling function, and can also include one of a residual network and a dense network with a down-sampling function; the second sub-network and the fourth sub-network may include a convolutional layer (upsampling layer) with an upsampling function, and may also include one of a residual network, a dense network, etc. with an upsampling function. It should be noted that the first subnetwork and the third subnetwork may have the same structure or different structures; the second subnetwork and the fourth subnetwork may have the same structure or different structures; The disclosed embodiments are not limited in this regard.
下采样用于减小特征图像的尺寸,从而减少特征图像的数据量,例如可以通过下采样层进行下采样处理,但不限于此。例如,下采样层可以采用最大值合并(max pooling)、平均值合并(average pooling)、跨度卷积(strided convolution)、欠采样(decimation,例如选择固定的像素)、解复用输出(demuxout,将输入图像拆分为多个更小的图像)等下采样方法实现下采样处理。Downsampling is used to reduce the size of the feature image, thereby reducing the amount of data of the feature image. For example, downsampling may be performed through a downsampling layer, but not limited thereto. For example, the downsampling layer can use max pooling, average pooling, strided convolution, undersampling (decimation, such as selecting fixed pixels), demultiplexing output (demuxout, Downsampling methods such as splitting the input image into multiple smaller images) implement downsampling processing.
上采样用于增大特征图像的尺寸,从而增加特征图像的数据量,例如可以通过上采样层进行上采样处理,但不限于此。例如,上采样层可以采用跨度转置卷积(stridedtransposed convolution)、插值算法等上采样方法实现上采样处理。插值算法例如可以包括内插值、双线性插值、两次立方插值(Bicubic Interprolation)等算法。Upsampling is used to increase the size of the feature image, thereby increasing the data volume of the feature image. For example, an upsampling layer may be used to perform upsampling processing, but is not limited thereto. For example, the upsampling layer may implement upsampling processing by using upsampling methods such as strided transposed convolution and interpolation algorithms. The interpolation algorithm may include, for example, algorithms such as interpolation, bilinear interpolation, and bi-cubic interpolation (Bicubic Interprolation).
需要说明的是,在本公开的一些实施例中,同一层级的下采样处理的下采样因子与上采样处理的上采样因子对应,即:当该下采样处理的下采样因子为1/y时,则该上采样处理的上采样因子为y,其中y为正整数,且y通常大于2。从而,可以确保同一层级的上采样处理的输出和下采样处理的输入尺寸相同。It should be noted that, in some embodiments of the present disclosure, the downsampling factor of the downsampling process at the same level corresponds to the upsampling factor of the upsampling process, that is, when the downsampling factor of the downsampling process is 1/y , then the upsampling factor of the upsampling process is y, where y is a positive integer, and y is usually greater than 2. Therefore, it can be ensured that the output of the up-sampling process at the same level is the same as the input size of the down-sampling process.
需要说明的是,在本公开的一些实施例(不限于本实施例)中,不同层级的下采样处理的参数(即该下采样处理对应的网络的参数)可以相同,也可以不同;不同层级的上采样处理的参数(即该上采样处理对应的网络的参数)可以相同,也可以不同;不同层级的残差连接相加的参数可以相同,也可以不同。本公开对此不作限制。It should be noted that, in some embodiments of the present disclosure (not limited to this embodiment), the parameters of the downsampling process at different levels (that is, the parameters of the network corresponding to the downsampling process) may be the same or different; different levels The parameters of the upsampling processing (that is, the parameters of the network corresponding to the upsampling processing) can be the same or different; the parameters added by residual connections at different levels can be the same or different. This disclosure does not limit this.
例如,在本公开的一些实施例中(不限于本实施例),为了改善特征图像的亮度、对比度等全局特征,多尺度循环采样处理还可以包括:在第一下采样处理、第一上采样处理、第二下采样处理和第二上采样处理之后,分别对第一下采样输出、第一上采样输出、第二下采样输出和第二上采样输出进行实例标准化处理或层标准化处理。需要说明的是,第一下采样输出、第一上采样输出、第二下采样输出和第二上采样输出可以采用相同的标准化处理方法(实例标准化处理或层标准化处理),也可以采用不同的标准化处理方法,本公开对此不作限制。For example, in some embodiments of the present disclosure (not limited to this embodiment), in order to improve global features such as brightness and contrast of the feature image, the multi-scale circular sampling process may also include: in the first down-sampling process, the first up-sampling After processing, second downsampling and second upsampling, instance normalization or layer normalization is performed on the first downsampling output, first upsampling output, second downsampling output and second upsampling output respectively. It should be noted that, the first downsampling output, the first upsampling output, the second downsampling output and the second upsampling output may adopt the same normalization processing method (instance normalization processing or layer normalization processing), or different Standardized processing methods, which are not limited in the present disclosure.
相应地,第一子网络、第二子网络、第三子网络和第四子网络还分别包括实例标准化层或层标准化层,实例标准化层用于执行实例标准化处理,层标准化层用于执行层标准化处理。例如,实例标准化层可以根据前述实例标准化公式进行实例标准化处理,层标准化层可以根据前述层标准化公式进行层标准化处理,本公开对此不作限制。需要说明的是,第一子网络、第二子网络、第三子网络和第四子网络可以包括相同的标准化层(实例标准化层或层标准化层),也可以包括不同的标准化层,本公开对此亦不作限制。Correspondingly, the first sub-network, the second sub-network, the third sub-network and the fourth sub-network further include an instance normalization layer or a layer normalization layer respectively, the instance normalization layer is used to perform instance normalization processing, and the layer normalization layer is used to execute the layer Standardized processing. For example, the instance normalization layer may perform instance normalization processing according to the aforementioned instance normalization formula, and the layer normalization layer may perform layer normalization processing according to the aforementioned layer normalization formula, which is not limited in the present disclosure. It should be noted that the first sub-network, the second sub-network, the third sub-network and the fourth sub-network may include the same normalization layer (instance normalization layer or layer normalization layer), or may include different normalization layers. There is no restriction on this either.
图4B为本公开另一实施例提供的一种对应于图3所示的图像处理方法中的多尺度循环采样处理的示意性流程框图。如图4B所示,在图4A所示的多尺度循环采样处理的基础上,该多尺度循环采样处理还进一步包括第三层级采样处理。需要说明的是,图5所示的多尺度循环采样处理的其他流程与图4A所示的多尺度循环采样处理的流程基本相同,重复之处在此不再赘述。FIG. 4B is a schematic flowchart corresponding to multi-scale circular sampling processing in the image processing method shown in FIG. 3 provided by another embodiment of the present disclosure. As shown in FIG. 4B , on the basis of the multi-scale circular sampling process shown in FIG. 4A , the multi-scale circular sampling process further includes a third-level sampling process. It should be noted that other processes of the multi-scale cyclic sampling process shown in FIG. 5 are basically the same as the process of the multi-scale cyclic sampling process shown in FIG. 4A , and repeated descriptions will not be repeated here.
例如,如图4B所示,第三层级采样处理嵌套在第二层级采样处理的第二下采样处理和第二上采样处理之间,接收第二下采样输出作为第三层级采样处理的输入,提供第三层级采样处理的输出作为第二上采样处理的输入,以使得第二上采样处理基于所述第二下采样输出进行上采样处理。需要说明的是,此时,与第一上采样处理间接地对第一下采样输出进行上采样处理类似,第二上采样处理也间接地对第二下采样输出进行上采样处理。For example, as shown in FIG. 4B, the third-level sampling process is nested between the second down-sampling process and the second up-sampling process of the second-level sampling process, and receives the second down-sampling output as the input of the third-level sampling process. , providing the output of the third-level sampling processing as an input of the second up-sampling processing, so that the second up-sampling processing performs up-sampling processing based on the second down-sampling output. It should be noted that, at this time, similar to the first upsampling process that indirectly performs upsampling processing on the first downsampling output, the second upsampling process also indirectly performs upsampling processing on the second downsampling output.
第三层级采样处理包括依次执行的第三下采样处理、第三上采样处理和第三残差链接相加处理。第三下采样处理基于第三层级采样处理的输入进行下采样处理得到第三下采样输出,例如,第三下采样处理可以直接对第三层级采样处理的输入进行下采样以得到第三下采样输出。第三上采样处理基于第三下采样输出进行上采样处理得到第三上采样输出,例如,第三上采样处理可以直接对第三下采样输出进行上采样以得到第三上采样输出。第三残差链接相加处理将第三层级采样处理的输入和第三上采样输出进行第三残差链接相加,然后将第三残差链接相加的结果作为第三层级采样处理的输出。例如,第三上采样处理的输出(即第三上采样输出)的尺寸与第三层级采样处理的输入(即第三下采样处理的输入)的尺寸相同,从而经过第三残差链接相加后,第三层级采样处理的输出的尺寸与第三层级采样处理的输入的尺寸相同。The third-level sampling process includes a third down-sampling process, a third up-sampling process, and a third residual linking addition process performed in sequence. The third down-sampling process performs down-sampling processing based on the input of the third-level sampling process to obtain the third down-sampling output. For example, the third down-sampling process can directly down-sample the input of the third-level sampling process to obtain the third down-sampling process output. The third up-sampling process performs up-sampling processing based on the third down-sampling output to obtain a third up-sampling output. For example, the third up-sampling process may directly perform up-sampling on the third down-sampling output to obtain a third up-sampling output. The third residual link addition process performs the third residual link addition on the input of the third-level sampling process and the third upsampling output, and then uses the result of the third residual link addition as the output of the third-level sampling process . For example, the size of the output of the third up-sampling process (ie, the third up-sampling output) is the same as the size of the input of the third-level sampling process (ie, the input of the third down-sampling process), so that they are added via the third residual link After that, the output of the third-level sampling process has the same size as the input of the third-level sampling process.
需要说明的是第三层级采样处理的更多细节以及实现方式(即网络结构)可以参考图4A所示实施例中关于第一层级采样处理和第二层级采样处理的描述,本公开对此不再赘述。It should be noted that for more details and implementations (i.e., network structure) of the third-level sampling processing, reference may be made to the description of the first-level sampling processing and the second-level sampling processing in the embodiment shown in FIG. Let me repeat.
需要说明的是,基于本实施例,本领域的技术人员应当理解,多尺度循环采样处理还可以包括更多层级的采样处理,例如还可以包括嵌套在第三层级采样处理中的第四层级采样处理、嵌套在第四层级采样处理中的第五层级采样处理等,其嵌套方式与上面所述的第二层级采样处理、第三层级采样处理的方式向类似,本公开对此不作限制。It should be noted that, based on this embodiment, those skilled in the art should understand that the multi-scale cyclic sampling processing may also include more levels of sampling processing, for example, may also include a fourth level nested in the third level of sampling processing Sampling processing, fifth-level sampling processing nested in fourth-level sampling processing, etc., are nested in a similar manner to the above-mentioned second-level sampling processing and third-level sampling processing, and this disclosure does not make any limit.
图4C为本公开再一实施例提供的一种对应于图3所示的图像处理方法中的多尺度循环采样处理的示意性流程框图。如图4C所示,在图4A所示的多尺度循环采样处理的基础上,该多尺度循环采样处理包括多次依次执行的第二层级采样处理。需要说明的是,图5所示的多尺度循环采样处理的其他流程与图4A所示的多尺度循环采样处理的流程基本相同,重复之处在此不再赘述。还需要说明的是,图4C中包括两次第二层级采样处理是示例性的,在本公开的实施例中,多尺度循环采样处理可以包括两次或两次以上依次执行的第二层级采样处理。需要说明的是,在本公开的实施例中,第二层级采样处理的次数可以根据实际需要进行选择,本公开对此不作限制。例如,在一些示例中,本申请的发明人发现,相比于采用具有一次或三次第二层级采样处理的图像处理方法,采用具有两次第二层级采样处理的图像处理方法进行图像增强处理的效果更好,但这不应当被视为对本公开的限制。FIG. 4C is a schematic flowchart corresponding to multi-scale circular sampling processing in the image processing method shown in FIG. 3 provided by yet another embodiment of the present disclosure. As shown in FIG. 4C , on the basis of the multi-scale circular sampling process shown in FIG. 4A , the multi-scale circular sampling process includes multiple second-level sampling processes performed sequentially. It should be noted that other processes of the multi-scale cyclic sampling process shown in FIG. 5 are basically the same as the process of the multi-scale cyclic sampling process shown in FIG. 4A , and repeated descriptions will not be repeated here. It should also be noted that the inclusion of two second-level sampling processes in FIG. 4C is exemplary. In an embodiment of the present disclosure, the multi-scale circular sampling process may include two or more second-level sampling processes performed sequentially. deal with. It should be noted that, in the embodiments of the present disclosure, the number of sampling processes at the second level may be selected according to actual needs, which is not limited in the present disclosure. For example, in some examples, the inventors of the present application found that, compared with the image processing method with one or three second-level sampling processes, the image enhancement process using the image processing method with two second-level sampling processes The effect is better, but this should not be considered as a limitation of the present disclosure.
例如,第一次第二层级采样处理接收第一下采样输出作为第一次第二层级采样处理的输入,除第一次第二层级采样处理之外的每次第二层级采样处理接收前一次第二层级采样处理的输出作为本次第二层级采样处理的输入,最后一次第二层级采样处理的输出作为第一上采样处理的输入。For example, the first level 2 sampling process receives the first downsampled output as input to the first level 2 sampling process, and each level 2 sampling process other than the first level 2 sampling process receives the previous The output of the second-level sampling process is used as the input of the current second-level sampling process, and the output of the last second-level sampling process is used as the input of the first up-sampling process.
需要说明的是,每一次第二层级采样处理的更多细节以及实现方式可以参考图4A所示实施例中关于第二层级采样处理的描述,本公开对此不再赘述。It should be noted that, for more details and implementation manners of each second-level sampling process, reference may be made to the description about the second-level sampling process in the embodiment shown in FIG. 4A , which will not be repeated in this disclosure.
需要说明的是,在本公开的一些实施例(不限于本实施例)中,不同次序的相同层级的下采样处理的参数可以相同,也可以不同;不同次序的相同层级的上采样处理的参数可以相同,也可以不同;不同次序的相同层级的残差连接相加的参数可以相同,也可以不同。本公开对此不作限制。It should be noted that, in some embodiments of the present disclosure (not limited to this embodiment), the parameters of the downsampling process of the same level in different orders may be the same or different; the parameters of the upsampling process of the same level in different orders It can be the same or different; the parameters added by residual connections of the same level in different orders can be the same or different. This disclosure does not limit this.
需要说明的是,基于本实施例,本领域的技术人员应当理解,在多尺度循环采样处理中,第一层级采样处理可以嵌套多个依次执行的第二层级采样处理;进一步地,至少部分第二层级采样处理可以嵌套一个或多个依次执行的第三层级采样处理,且该至少部分第二层级采样处理嵌套的第三层级采样处理的数量可以相同,也可以不同;进一步地,第三层级采样处理可以嵌套第四层级采样处理,具体嵌套方式可以与第二层级采样处理嵌套第三层级采样处理的方式相同;之后以此类推。It should be noted that, based on this embodiment, those skilled in the art should understand that in the multi-scale cyclic sampling process, the first-level sampling process can nest multiple second-level sampling processes that are executed sequentially; further, at least partly The second-level sampling process can nest one or more third-level sampling processes that are executed sequentially, and the number of third-level sampling processes nested in at least part of the second-level sampling process can be the same or different; further, The third-level sampling process can be nested with the fourth-level sampling process, and the specific nesting method can be the same as that of the second-level sampling process nesting the third-level sampling process; and so on.
需要说明的是,图4A-4C示出的是本公开的实施例提供的图像处理方法包括一次多尺度循环采样处理的情形。在图4A-4C所示的实施例提供的图像处理方法中,至少一次多尺度循环采样处理包括一次多尺度循环采样处理。该多尺度循环采样处理接收第一特征图像作为多尺度循环采样处理的输入,多尺度循环采样处理的输入作为多尺度循环采样处理中的第一层级采样处理的输入,多尺度循环采样处理中的第一层级采样处理的输出作为多尺度循环采样处理的输出,多尺度循环采样处理的输出作为至少一次多尺度循环采样处理的输出。本公开包括但不限于此。It should be noted that FIGS. 4A-4C show a situation where the image processing method provided by the embodiment of the present disclosure includes one multi-scale circular sampling process. In the image processing method provided by the embodiment shown in FIGS. 4A-4C , at least one multi-scale circular sampling process includes one multi-scale circular sampling process. The multi-scale cyclic sampling process receives the first feature image as the input of the multi-scale cyclic sampling process, the input of the multi-scale cyclic sampling process is used as the input of the first level sampling process in the multi-scale cyclic sampling process, and the multi-scale cyclic sampling process in the multi-scale cyclic sampling process The output of the first-level sampling process is used as the output of the multi-scale circular sampling process, and the output of the multi-scale circular sampling process is used as the output of at least one multi-scale circular sampling process. This disclosure includes but is not limited to this.
图4D为本公开又一实施例提供的一种对应于图3所示的图像处理方法中的多尺度循环采样处理的示意性流程框图。如图4D所示,在本实施例提供的图像处理方法中,至少一次多尺度循环采样处理包括多次依次执行的多尺度循环采样处理,例如至少一次多尺度循环采样处理可以包括两次或三次依次执行的多尺度循环采样处理,但不限于此。需要说明的是,在本公开的实施例中,多尺度循环采样处理的次数可以根据实际需要进行选择,本公开对此不作限制。例如,在一些示例中,本申请的发明人发现,相比于采用具有一次或三次多尺度循环采样处理的图像处理方法,采用具有两次多尺度循环采样处理的图像处理方法进行图像增强处理的效果更好,但这不应当被视为对本公开的限制。FIG. 4D is a schematic flowchart corresponding to multi-scale circular sampling processing in the image processing method shown in FIG. 3 provided by another embodiment of the present disclosure. As shown in Figure 4D, in the image processing method provided in this embodiment, at least one multi-scale circular sampling process includes multiple sequentially executed multi-scale circular sampling processes, for example, at least one multi-scale circular sampling process may include two or three A multi-scale cyclic sampling process performed sequentially, but not limited thereto. It should be noted that, in the embodiments of the present disclosure, the number of multi-scale cyclic sampling processes may be selected according to actual needs, and the present disclosure does not limit this. For example, in some examples, the inventors of the present application found that, compared to the image processing method with one or three multi-scale cyclic sampling processes, the image enhancement process using the image processing method with two multi-scale cyclic sampling processes The effect is better, but this should not be considered as a limitation of the present disclosure.
例如,每次多尺度循环采样处理的输入作为本次多尺度循环采样处理中的第一层级采样处理的输入,每次多尺度循环采样处理中的第一层级采样处理的输出作为本次多尺度循环采样处理的输出。For example, the input of each multi-scale cyclic sampling process is used as the input of the first-level sampling process in this multi-scale cyclic sampling process, and the output of the first-level sampling process in each multi-scale cyclic sampling process is used as the current multi-scale cyclic sampling process. The output of the loop sampling process.
例如,如图4D所示,第一次多尺度循环采样处理接收第一特征图像作为第一次多尺度循环采样处理的输入,除第一次多尺度循环采样处理之外的每次多尺度循环采样处理接收前一次多尺度循环采样处理的输出作为本次多尺度循环采样处理的输入,最后一次多尺度循环采样处理的输出作为至少一次多尺度循环采样处理的输出。For example, as shown in Figure 4D, the first multi-scale round-robin sampling process receives the first feature image as the input of the first multi-scale round-robin sampling process, and each multi-scale round-robin sampling process except the first multi-scale round-robin sampling process The sampling process receives the output of the previous multi-scale cyclic sampling process as the input of this multi-scale cyclic sampling process, and the output of the last multi-scale cyclic sampling process as the output of at least one multi-scale cyclic sampling process.
需要说明的是,每次多尺度循环采样处理的更多细节和实现方式可以参考图4A-4C所示实施例中关于多尺度循环采样处理的描述,本公开对此不再赘述。还需要说明的是,不同次序的多尺度循环采样处理的实现方式(即网络结构)和参数等可以相同,也可以不同,本公开对此不作限制。It should be noted that, for more details and implementation manners of each multi-scale cyclic sampling process, reference may be made to the description of the multi-scale cyclic sampling process in the embodiment shown in FIGS. 4A-4C , which will not be repeated in this disclosure. It should also be noted that the implementation manners (that is, network structures) and parameters of the multi-scale cyclic sampling processing in different orders may be the same or different, which is not limited in the present disclosure.
图5为本公开另一实施例提供的一种图像处理方法的流程图。如图5所示,该图像处理方法包括步骤S210至步骤S250。需要说明的是,图5所示的图像处理方法的步骤S230至步骤S240与图3所示的图像处理方法的步骤S110至步骤S120对应相同,即图5所示的图像处理方法包括图3所示的图像处理方法,因此图5所示的图像处理方法的步骤S230至步骤S240可以参考前述关于图3所示的图像处理方法的步骤S110至步骤S120的描述,当然也可以参考如图4A~4D所示的实施例的方法等。以下,对图5所示的图像处理方法的步骤S210至步骤S250进行详细说明。Fig. 5 is a flowchart of an image processing method provided by another embodiment of the present disclosure. As shown in FIG. 5, the image processing method includes step S210 to step S250. It should be noted that steps S230 to S240 of the image processing method shown in FIG. 5 are correspondingly the same as steps S110 to S120 of the image processing method shown in FIG. 3 , that is, the image processing method shown in FIG. The image processing method shown in FIG. 5, therefore step S230 to step S240 of the image processing method shown in FIG. The method of the embodiment shown in 4D and the like. Hereinafter, step S210 to step S250 of the image processing method shown in FIG. 5 will be described in detail.
步骤S210:获取输入图像。Step S210: Obtain an input image.
例如,在步骤S210中,输入图像可以包括通过智能手机的摄像头、平板电脑的摄像头、个人计算机的摄像头、数码照相机的镜头、监控摄像头或者网络摄像头等拍摄采集的照片,其可以包括人物图像、动植物图像或风景图像等,本公开对此不作限制。例如,输入图像的质量低于真实的数码单镜反光相机拍摄的照片的质量,即输入图像为低质量图像。例如,在一些示例中,输入图像可以包括3个通道的RGB图像;在另一些示例中,输入图像可以包括3个通道的YUV图像。以下,以输入图像包括RGB图像为例进行说明,但是本公开的实施例不限于此。For example, in step S210, the input image may include photos collected by a camera of a smartphone, a camera of a tablet computer, a camera of a personal computer, a lens of a digital camera, a surveillance camera or a network camera, etc., which may include images of people, moving pictures, etc. Plant images or landscape images, etc., are not limited in this disclosure. For example, the quality of the input image is lower than that of a photo taken by a real digital SLR camera, that is, the input image is a low-quality image. For example, in some examples, the input image may include 3-channel RGB images; in other examples, the input image may include 3-channel YUV images. Hereinafter, the input image includes an RGB image as an example for description, but embodiments of the present disclosure are not limited thereto.
步骤S220:使用分析网络将输入图像转换为第一特征图像。Step S220: Using the analysis network to convert the input image into a first feature image.
例如,在步骤S220中,分析网络可以为包括卷积层、残差网络、密集网络等之一的卷积神经网络。例如,在一些示例中,分析网络可以将3个通道的RGB图像(即输入图像)转换为多个第一特征图像,例如64个第一特征图像,本公开包括但不限于此。For example, in step S220, the analysis network may be a convolutional neural network including one of a convolutional layer, a residual network, a dense network, and the like. For example, in some examples, the analysis network may convert the 3-channel RGB image (ie, the input image) into a plurality of first feature images, for example, 64 first feature images, which the present disclosure includes but is not limited to.
需要说明的是,本公开的实施例对分析网络的结构和参数不作限制,只要其能将输入图像转换到卷积特征维度(即转换为第一特征图像)即可。It should be noted that the embodiments of the present disclosure do not limit the structure and parameters of the analysis network, as long as it can convert the input image to the convolutional feature dimension (ie, convert it to the first feature image).
步骤S230:接收第一特征图像;Step S230: receiving the first feature image;
步骤S240:对第一特征图像进行至少一次多尺度循环采样处理。Step S240: Perform at least one multi-scale circular sampling process on the first feature image.
需要说明的是,步骤S230至步骤S240可以参考前述关于步骤S110至步骤S120的描述,本公开对此不再赘述。It should be noted that, for steps S230 to S240, reference may be made to the foregoing description of steps S110 to S120, which will not be repeated in this disclosure.
步骤S250:使用合成网络将至少一次多尺度循环采样处理的输出转换为输出图像。Step S250: Convert the output of at least one multi-scale cyclic sampling process into an output image using a synthesis network.
例如,在步骤S250中,合成网络可以为包括卷积层、残差网络、密集网络等之一的卷积神经网络。例如,可以将至少一次多尺度循环采样处理的输出称为第二特征图像。例如,第二特征图像的数量可以为多个,但不限于此。例如,在一些示例中,合成网络可以将多个第二特征图像转换为输出图像,例如,该输出图像可以包括3个通道的RGB图像,本公开包括但不限于此。For example, in step S250, the synthetic network may be a convolutional neural network including one of a convolutional layer, a residual network, a dense network, and the like. For example, the output of at least one multi-scale cyclic sampling process may be referred to as a second feature image. For example, the number of second feature images may be multiple, but not limited thereto. For example, in some examples, the synthesis network may convert a plurality of second feature images into an output image, for example, the output image may include a 3-channel RGB image, the present disclosure includes but is not limited thereto.
图6A为一种输入图像的示意图,图6B为根据本公开一实施例提供的一种图像处理方法(例如,图5所示的图像处理方法)对图6A所示的输入图像进行处理得到的输出图像的示意图。Fig. 6A is a schematic diagram of an input image, and Fig. 6B is obtained by processing the input image shown in Fig. 6A according to an image processing method provided by an embodiment of the present disclosure (for example, the image processing method shown in Fig. 5 ). Schematic of the output image.
例如,如图6A和图6B所示,输出图像保留了输入图像的内容,但是提高了图像的对比度,改善了输入图像过暗的问题,从而,与输入图像相比,输出图像的质量可以接近于真实的数码单镜反光相机拍摄的照片的质量,即输出图像为高质量图像。For example, as shown in Figure 6A and Figure 6B, the output image retains the content of the input image, but improves the contrast of the image and improves the problem of the input image being too dark, so that compared with the input image, the quality of the output image can be close to Based on the quality of photos taken by a real DSLR camera, the output image is a high-quality image.
需要说明的是,本公开的实施例对合成网络的结构和参数不作限制,只要其能将卷积特征维度(即第二特征图像)转换为输出图像即可。It should be noted that the embodiments of the present disclosure do not limit the structure and parameters of the synthesis network, as long as it can convert the convolutional feature dimension (ie, the second feature image) into an output image.
本公开的实施例提供的图像处理方法,可以对低质量的输入图像进行图像增强处理,通过在多个尺度上反复采样以获取更高的图像保真度,可以大幅提升输出图像的质量,适用于对于图像质量要求较高的批处理等离线应用。具体地,Andrey Ignatov等人的文献中提出的图像增强方法输出的图像的PSNR为20.08,而基于本公开的图4C所示实施例提供的图像处理方法获得的输出图像的PSNR可以达到23.35,即本公开的实施例提供的图像处理方法获得的图像可以更接近于真实的数码单镜反光相机拍摄的照片。The image processing method provided by the embodiments of the present disclosure can perform image enhancement processing on low-quality input images, and obtain higher image fidelity through repeated sampling on multiple scales, which can greatly improve the quality of output images. Suitable for offline applications such as batch processing that require high image quality. Specifically, the PSNR of the image output by the image enhancement method proposed in the literature of Andrey Ignatov et al. is 20.08, while the PSNR of the output image obtained based on the image processing method shown in the embodiment shown in FIG. 4C of the present disclosure can reach 23.35, that is The image obtained by the image processing method provided by the embodiments of the present disclosure can be closer to the photo taken by a real digital single-lens reflex camera.
本公开至少一实施例还提供一种神经网络的训练方法。图7A为本公开一实施例提供的一种神经网络的结构示意图,图7B为本公开一实施例提供的一种神经网络的训练方法的流程图,图7C为本公开一实施例提供的一种对应于图7B中所示的训练方法训练图7A所示的神经网络的示意性架构框图。At least one embodiment of the present disclosure also provides a neural network training method. Fig. 7A is a schematic structural diagram of a neural network provided by an embodiment of the present disclosure, Fig. 7B is a flowchart of a training method of a neural network provided by an embodiment of the present disclosure, and Fig. 7C is a schematic diagram of a neural network provided by an embodiment of the present disclosure A schematic architectural block diagram of training the neural network shown in FIG. 7A corresponding to the training method shown in FIG. 7B.
例如,如图7A所示,该神经网络300包括分析网络310、第一子神经网络320和合成网络330。例如,分析网络310对输入图像进行处理以得到第一特征图像,第一子神经网络320对第一特征图像进行至少一次多尺度循环采样处理以得到第二特征图像,合成网络330对第二特征图像进行处理以得到输出图像。For example, as shown in FIG. 7A , the neural network 300 includes an
例如,分析网络310的结构可以参考前述步骤S220中关于分析网络的描述,本公开对此不作限制;第一子神经网络320的结构可以参考前述步骤S120(也即步骤S240)中关于多尺度循环采样处理的实现方式的描述,例如,第一子神经网络可以包括但不限于前述第一卷积神经网络,本公开对此不作限制;例如,合成网络330可以参考前述步骤S250中关于合成网络的描述,本公开对此不作限制。For example, the structure of the
例如,输入图像和输出图像也可以参考前述实施例提供的图像处理方法中关于输入图像和输出图像的描述,本公开对此不再赘述。For example, for the input image and the output image, reference may also be made to the description about the input image and the output image in the image processing method provided in the foregoing embodiments, which will not be repeated in this disclosure.
例如,结合图7B和图7C所示,该神经网络的训练方法包括步骤S410至步骤S460。For example, as shown in FIG. 7B and FIG. 7C , the neural network training method includes steps S410 to S460.
步骤S410:获取训练输入图像。Step S410: Obtain training input images.
例如,与前述步骤S210中的输入图像类似,训练输入图像也可以包括通过智能手机的摄像头、平板电脑的摄像头、个人计算机的摄像头、数码照相机的镜头、监控摄像头或者网络摄像头等拍摄采集的照片,其可以包括人物图像、动植物图像或风景图像等,本公开对此不作限制。例如,训练输入图像的质量低于真实的数码单镜反光相机拍摄的照片的质量,即训练输入图像为低质量图像。例如,在一些示例中,训练输入图像可以包括3个通道的RGB图像。For example, similar to the input image in the aforementioned step S210, the training input image may also include photos collected by a camera of a smartphone, a camera of a tablet computer, a camera of a personal computer, a lens of a digital camera, a monitoring camera or a network camera, etc. It may include images of people, images of animals and plants, or images of landscapes, etc., which are not limited in the present disclosure. For example, the quality of training input images is lower than the quality of photos taken by real digital SLR cameras, that is, the training input images are low-quality images. For example, in some examples, the training input images may include 3-channel RGB images.
步骤S420:使用分析网络对训练输入图像进行处理以提供第一训练特征图像。Step S420: Use the analysis network to process the training input image to provide a first training feature image.
例如,与前述步骤S220中的分析网络类似,分析网络310可以为包括卷积层、残差网络、密集网络等之一的卷积神经网络。例如,在一些示例中,分析网络可以将3个通道的RGB图像(即训练输入图像)转换为多个第一训练特征图像,例如64个第一训练特征图像,本公开包括但不限于此。For example, similar to the analysis network in the aforementioned step S220, the
步骤S430:使用第一子神经网络对第一训练特征图像进行至少一次多尺度循环采样处理以得到第二训练特征图像。Step S430: Use the first sub-neural network to perform at least one multi-scale circular sampling process on the first training feature image to obtain a second training feature image.
例如,在步骤S430中,多尺度循环采样处理可以实现为图4A-4D任一所示的实施例中的多尺度循环采样处理,但不限于此。以下,以步骤S430中的多尺度循环采样处理实现为图4A所示的多尺度循环采样处理为例进行说明。For example, in step S430, the multi-scale circular sampling process may be implemented as the multi-scale circular sampling process in any of the embodiments shown in FIGS. 4A-4D , but is not limited thereto. Hereinafter, the multi-scale circular sampling process in step S430 is implemented as the multi-scale circular sampling process shown in FIG. 4A as an example for illustration.
例如,如图4A所示,多尺度循环采样处理嵌套的第一层级采样处理和第二层级采样处理。For example, as shown in FIG. 4A , the multi-scale circular sampling process nests the first-level sampling process and the second-level sampling process.
例如,如图4A所示,多尺度循环采样处理的输入(即第一训练特征图像)作为第一层级采样处理的输入,第一层级采样处理的输出作为多尺度循环采样处理的输出(即第二训练特征图像)。例如,第二训练特征图像的尺寸可以和第一训练特征图像的尺寸相同。For example, as shown in Figure 4A, the input of the multi-scale circular sampling process (ie, the first training feature image) is used as the input of the first-level sampling process, and the output of the first-level sampling process is used as the output of the multi-scale circular sampling process (ie, the first 2 training feature images). For example, the size of the second training feature image may be the same as the size of the first training feature image.
例如,如图4A所示,第一层级采样处理包括依次执行的第一下采样处理、第一上采样处理和第一残差链接相加处理。第一下采样处理基于第一层级采样处理的输入进行下采样处理得到第一下采样输出,例如,第一下采样处理可以直接对第一层级采样处理的输入进行下采样以得到第一下采样输出。第一上采样处理基于第一下采样输出进行上采样处理得到第一上采样输出,例如,在第一下采样输出经过第二层级采样处理之后,再进行上采样处理以得到第一上采样输出,即第一上采样处理可以间接地对第一下采样输出进行上采样处理。第一残差链接相加处理将第一层级采样处理的输入和第一上采样输出进行第一残差链接相加,然后将第一残差链接相加的结果作为第一层级采样处理的输出。例如,第一上采样处理的输出(即第一上采样输出)的尺寸与第一层级采样处理的输入(即第一下采样处理的输入)的尺寸相同,从而经过第一残差链接相加后,第一层级采样处理的输出的尺寸与第一层级采样处理的输入的尺寸相同。For example, as shown in FIG. 4A , the first-level sampling processing includes a first down-sampling process, a first up-sampling process, and a first residual chained addition process performed in sequence. The first down-sampling process performs down-sampling processing based on the input of the first-level sampling process to obtain the first down-sampling output, for example, the first down-sampling process can directly down-sample the input of the first-level sampling process to obtain the first down-sampling output. The first up-sampling process performs up-sampling processing based on the first down-sampling output to obtain the first up-sampling output, for example, after the first down-sampling output undergoes second-level sampling processing, then performs up-sampling processing to obtain the first up-sampling output , that is, the first up-sampling process may indirectly perform up-sampling processing on the first down-sampling output. The first residual chain addition process performs the first residual chain addition on the input of the first-level sampling process and the first upsampling output, and then uses the result of the first residual chain addition as the output of the first-level sampling process . For example, the size of the output of the first upsampling process (that is, the first upsampling output) is the same as the size of the input of the first-level sampling process (that is, the input of the first downsampling process), so that they are added via the first residual link After that, the size of the output of the first-level sampling process is the same as the size of the input of the first-level sampling process.
例如,如图4A所示,第二层级采样处理嵌套在第一层级采样处理的第一下采样处理和第一上采样处理之间,接收第一下采样输出作为第二层级采样处理的输入,提供第二层级采样处理的输出作为第一上采样处理的输入,以使得第一上采样处理基于第一下采样输出进行上采样处理。For example, as shown in Figure 4A, the second-level sampling process is nested between the first down-sampling process and the first up-sampling process of the first-level sampling process, and receives the first down-sampling output as the input of the second-level sampling process , providing the output of the second-level sampling processing as an input of the first up-sampling processing, so that the first up-sampling processing performs up-sampling processing based on the first down-sampling output.
例如,如图4A所示,第二层级采样处理包括依次执行的第二下采样处理、第二上采样处理和第二残差链接相加处理。第二下采样处理基于第二层级采样处理的输入进行下采样处理得到第二下采样输出,例如,第二下采样处理可以直接对第二层级采样处理的输入进行下采样以得到第二下采样输出。第二上采样处理基于第二下采样输出进行上采样处理得到第二上采样输出,例如,第二上采样处理可以直接对第二下采样输出进行上采样以得到第二上采样输出。第二残差链接相加处理将第二层级采样处理的输入和第二上采样输出进行第二残差链接相加,然后将第二残差链接相加的结果作为第二层级采样处理的输出。例如,第二上采样处理的输出(即第二上采样输出)的尺寸与第二层级采样处理的输入(即第二下采样处理的输入)的尺寸相同,从而经过第二残差链接相加后,第二层级采样处理的输出的尺寸与第二层级采样处理的输入的尺寸相同。For example, as shown in FIG. 4A , the second-level sampling process includes a second down-sampling process, a second up-sampling process, and a second residual chained addition process performed in sequence. The second down-sampling process performs down-sampling processing based on the input of the second-level sampling process to obtain the second down-sampling output. For example, the second down-sampling process can directly down-sample the input of the second-level sampling process to obtain the second down-sampling output. The second up-sampling process performs up-sampling processing based on the second down-sampling output to obtain the second up-sampling output. For example, the second up-sampling process may directly perform up-sampling on the second down-sampling output to obtain the second up-sampling output. The second residual link addition process performs the second residual link addition on the input of the second-level sampling process and the second upsampling output, and then uses the result of the second residual link addition as the output of the second-level sampling process . For example, the size of the output of the second up-sampling process (ie, the second up-sampling output) is the same as the size of the input of the second-level sampling process (ie, the input of the second down-sampling process), so that they are added via the second residual link After that, the output of the second-level sampling process has the same size as the input to the second-level sampling process.
例如,相应地,第一子神经网络320可以实现为前述第一卷积神经网络。例如,第一子神经网络320可以包括嵌套的第一元网络和第二元网络,第一元网络用于执行第一层级采样处理,第二元网络用于执行第二层级采样处理。For example, correspondingly, the first
例如,第一元网络可以包括第一子网络和第二子网络,第一子网络用于执行第一下采样处理,第二子网络用于执行第一上采样处理。第二元网络嵌套在第一元网络的第一子网络和第三子网络之间。例如,第二元网络可以包括第三子网络和第四子网络,第三子网络用于执行第二下采样处理,第四子网络用于执行第二上采样处理。For example, the first meta-network may include a first sub-network and a second sub-network, the first sub-network is used to perform the first down-sampling process, and the second sub-network is used to perform the first up-sampling process. The second meta-network is nested between the first sub-network and the third sub-network of the first meta-network. For example, the second meta-network may include a third sub-network and a fourth sub-network, the third sub-network is used to perform the second down-sampling process, and the fourth sub-network is used to perform the second up-sampling process.
例如,第一子网络、第二子网络、第三子网络和第四子网络中的每一个都包括卷积层、残差网络、密集网络等之一。具体地,第一子网络和第三子网络可以包括具有下采样功能的卷积层(下采样层)、残差网络、密集网络等之一;第二子网络和第四子网络可以包括具有上采样功能的卷积层(上采样层)、残差网络、密集网络等之一。需要说明的是,第一子网络和第三子网络可以具有相同的结构,也可以具有不同的结构;第二子网络和第四子网络可以具有相同的结构,也可以具有不同的结构;本公开对此不作限制。For example, each of the first sub-network, the second sub-network, the third sub-network and the fourth sub-network includes one of a convolutional layer, a residual network, a dense network, and the like. Specifically, the first sub-network and the third sub-network can include one of a convolutional layer (down-sampling layer), a residual network, a dense network, etc. with a down-sampling function; the second sub-network and the fourth sub-network can include a One of the convolutional layer (upsampling layer), residual network, dense network, etc. of the upsampling function. It should be noted that the first subnetwork and the third subnetwork may have the same structure or different structures; the second subnetwork and the fourth subnetwork may have the same structure or different structures; There is no limit to this publicly.
例如,在本公开的实施例中,为了改善特征图像的亮度、对比度等全局特征,多尺度循环采样处理还可以包括:在第一下采样处理、第一上采样处理、第二下采样处理和第二上采样处理之后,分别对第一下采样输出、第一上采样输出、第二下采样输出和第二上采样输出进行实例标准化处理或层标准化处理。需要说明的是,第一下采样输出、第一上采样输出、第二下采样输出和第二上采样输出可以采用相同的标准化处理方法(实例标准化处理或层标准化处理),也可以采用不同的标准化处理方法,本公开对此不作限制。For example, in an embodiment of the present disclosure, in order to improve global features such as brightness and contrast of the feature image, the multi-scale circular sampling process may also include: the first down-sampling process, the first up-sampling process, the second down-sampling process and After the second upsampling process, instance normalization processing or layer normalization processing is performed on the first downsampling output, the first upsampling output, the second downsampling output, and the second upsampling output respectively. It should be noted that, the first downsampling output, the first upsampling output, the second downsampling output and the second upsampling output may adopt the same normalization processing method (instance normalization processing or layer normalization processing), or different Standardized processing methods, which are not limited in the present disclosure.
相应地,第一子网络、第二子网络、第三子网络和第四子网络还分别包括实例标准化层或层标准化层,实例标准化层用于执行实例标准化处理,层标准化层用于执行层标准化处理。例如,实例标准化层可以根据前述实例标准化公式进行实例标准化处理,层标准化层可以根据前述层标准化公式进行层标准化处理,本公开对此不作限制。需要说明的是,第一子网络、第二子网络、第三子网络和第四子网络可以包括相同的标准化层(实例标准化层或层标准化层),也可以包括不同的标准化层,本公开对此亦不作限制。Correspondingly, the first sub-network, the second sub-network, the third sub-network and the fourth sub-network further include an instance normalization layer or a layer normalization layer respectively, the instance normalization layer is used to perform instance normalization processing, and the layer normalization layer is used to execute the layer Standardized processing. For example, the instance normalization layer may perform instance normalization processing according to the aforementioned instance normalization formula, and the layer normalization layer may perform layer normalization processing according to the aforementioned layer normalization formula, which is not limited in the present disclosure. It should be noted that the first sub-network, the second sub-network, the third sub-network and the fourth sub-network may include the same normalization layer (instance normalization layer or layer normalization layer), or may include different normalization layers. There is no restriction on this either.
需要说明的是,步骤S430中的多尺度循环采样处理的更多实现方式以及更多细节可以参考前述步骤S120(即步骤S240)以及图4A-4D所示的实施例中关于多尺度循环采样处理的描述,本公开对此不再赘述。还需要说明的是,当步骤S430中的多尺度循环采样处理实现为其他形式时,第一子神经网络320应当作相应变化,以实现其他形式的多尺度循环采样处理,本公开对此不再赘述。It should be noted that, for more implementation methods and more details of the multi-scale circular sampling processing in step S430, please refer to the above-mentioned step S120 (that is, step S240) and the multi-scale circular sampling processing in the embodiment shown in FIGS. 4A-4D description, which will not be repeated in this disclosure. It should also be noted that when the multi-scale cyclic sampling processing in step S430 is implemented in other forms, the first
例如,在步骤S430中,第二训练特征图像的数量可以为多个,但不限于此。For example, in step S430, the number of second training feature images may be multiple, but not limited thereto.
步骤S440:使用合成网络对第二训练特征图像进行处理以得到训练输出图像。Step S440: Use the synthesis network to process the second training feature image to obtain a training output image.
例如,与前述步骤S250中的合成网络类似,合成网络330可以为包括卷积层、残差网络、密集网络等之一的卷积神经网络。例如,在一些示例中,合成网络可以将多个第二训练特征图像转换为训练输出图像,例如,该训练输出图像可以包括3个通道的RGB图像,本公开包括但不限于此。For example, similar to the synthesis network in the aforementioned step S250, the
步骤S450:基于训练输出图像,通过损失函数计算神经网络的损失值。Step S450: Based on the training output image, calculate the loss value of the neural network through a loss function.
例如,神经网络300的参数包括分析网络310的参数、第一子神经网络320的参数和合成网络330的参数。例如,神经网络300的初始参数可以为随机数,例如随机数符合高斯分布,本公开的实施例对此不作限制。For example, the parameters of the neural network 300 include parameters of the
例如,本实施例的损失函数可以参考Andrey Ignatov等人提供的文献中的损失函数。例如,与该文献中的损失函数类似,该损失函数可以包括颜色损失函数、纹理损失函数及内容损失函数;相应地,通过损失函数计算神经网络300的参数的损失值的具体过程也可以参考该文献中的描述。需要说明的是,本公开的实施例对损失函数的具体形式不作限制,即包括但不限于上述文献中的损失函数的形式。For example, the loss function in this embodiment may refer to the loss function in the literature provided by Andrey Ignatov et al. For example, similar to the loss function in this document, the loss function can include a color loss function, a texture loss function, and a content loss function; correspondingly, the specific process of calculating the loss value of the parameters of the neural network 300 through the loss function can also refer to this description in the literature. It should be noted that the embodiment of the present disclosure does not limit the specific form of the loss function, which includes but not limited to the form of the loss function in the above-mentioned documents.
步骤S460:根据损失值对神经网络的参数进行修正。Step S460: Correct the parameters of the neural network according to the loss value.
例如,在神经网络300的训练过程中还可以包括优化函数(图7C中未示出),优化函数可以根据损失函数计算得到的损失值计算神经网络300的参数的误差值,并根据该误差值对神经网络300的参数进行修正。例如,优化函数可以采用随机梯度下降(stochasticgradient descent,SGD)算法、批量梯度下降(batch gradient descent,BGD)算法等计算神经网络300的参数的误差值。For example, an optimization function (not shown in FIG. 7C ) may also be included in the training process of the neural network 300. The optimization function may calculate the error value of the parameters of the neural network 300 according to the loss value calculated by the loss function, and based on the error value The parameters of the neural network 300 are modified. For example, the optimization function may use a stochastic gradient descent (SGD) algorithm, a batch gradient descent (BGD) algorithm, etc. to calculate error values of parameters of the neural network 300 .
例如,神经网络的训练方法还可以包括:判断神经网络的训练是否满足预定条件,若不满足预定条件,则重复执行上述训练过程(即步骤S410至步骤S460);若满足预定条件,则停止上述训练过程,得到训练好的神经网络。例如,在一个示例中,上述预定条件为连续两幅(或更多幅)训练输出图像对应的损失值不再显著减小。例如,在另一个示例中,上述预定条件为神经网络的训练次数或训练周期达到预定数目。本公开对此不作限制。For example, the training method of the neural network may also include: judging whether the training of the neural network satisfies the predetermined condition, if the predetermined condition is not satisfied, then repeatedly execute the above training process (ie step S410 to step S460); if the predetermined condition is satisfied, then stop the above-mentioned During the training process, the trained neural network is obtained. For example, in one example, the aforementioned predetermined condition is that the loss values corresponding to two consecutive (or more) training output images no longer decrease significantly. For example, in another example, the aforementioned predetermined condition is that the training times or training cycles of the neural network reach a predetermined number. This disclosure does not limit this.
例如,训练好的神经网络300输出的训练输出图像保留了训练输入图像的内容,但是,训练输出图像的质量可以接近于真实的数码单镜反光相机拍摄的照片的质量,即训练输出图像为高质量图像。For example, the training output image output by the trained neural network 300 retains the content of the training input image, but the quality of the training output image can be close to the quality of a photo taken by a real digital single-lens reflex camera, that is, the training output image is high quality image.
需要说明的是,上述实施例仅是示意性说明神经网络的训练过程。本领域技术人员应当知道,在训练阶段,需要利用大量样本图像对神经网络进行训练;同时,在每一幅样本图像训练过程中,都可以包括多次反复迭代以对神经网络的参数进行修正。又例如,训练阶段还包括对神经网络的参数进行微调(fine-tune),以获取更优化的参数。It should be noted that, the foregoing embodiments are only schematically illustrating the training process of the neural network. Those skilled in the art should know that in the training phase, a large number of sample images need to be used to train the neural network; at the same time, in the training process of each sample image, multiple iterations may be included to correct the parameters of the neural network. For another example, the training phase also includes fine-tuning the parameters of the neural network to obtain more optimized parameters.
本公开的实施例提供的神经网络的训练方法,可以对本公开实施例的图像处理方法中采用的神经网络进行训练,通过该训练方法训练好的神经网络,可以对低质量的输入图像进行图像增强处理,通过在多个尺度上反复采样以获取更高的图像保真度,可以大幅提升输出图像的质量,适用于对于图像质量要求较高的批处理等离线应用。The neural network training method provided by the embodiment of the present disclosure can train the neural network used in the image processing method of the embodiment of the present disclosure, and the neural network trained by the training method can perform image enhancement on the low-quality input image Processing, through repeated sampling on multiple scales to obtain higher image fidelity, can greatly improve the quality of the output image, suitable for offline applications such as batch processing that require high image quality.
本公开至少一实施例还提供一种图像处理装置。图8为本公开一实施例提供的一种图像处理装置的示意性框图。例如,如图8所示,该图像处理装置500包括存储器510和处理器520。例如,存储器510用于非暂时性存储计算机可读指令,处理器520用于运行该计算机可读指令,该计算机可读指令被处理器520运行时执行本公开的实施例提供的图像处理方法。At least one embodiment of the present disclosure further provides an image processing device. Fig. 8 is a schematic block diagram of an image processing device provided by an embodiment of the present disclosure. For example, as shown in FIG. 8 , the image processing device 500 includes a memory 510 and a processor 520 . For example, the memory 510 is used for non-transitory storage of computer-readable instructions, and the processor 520 is used for running the computer-readable instructions. When the computer-readable instructions are executed by the processor 520, the image processing method provided by the embodiments of the present disclosure is executed.
例如,存储器510和处理器520之间可以直接或间接地互相通信。例如,存储器510和处理器520等组件之间可以通过网络连接进行通信。网络可以包括无线网络、有线网络、和/或无线网络和有线网络的任意组合。网络可以包括局域网、互联网、电信网、基于互联网和/或电信网的物联网(Internet of Things)、和/或以上网络的任意组合等。有线网络例如可以采用双绞线、同轴电缆或光纤传输等方式进行通信,无线网络例如可以采用3G/4G/5G移动通信网络、蓝牙、Zigbee或者WiFi等通信方式。本公开对网络的类型和功能在此不作限制。For example, the memory 510 and the processor 520 may directly or indirectly communicate with each other. For example, components such as the memory 510 and the processor 520 may communicate through a network connection. A network may include a wireless network, a wired network, and/or any combination of a wireless network and a wired network. The network may include a local area network, the Internet, a telecommunication network, an Internet of Things (Internet of Things) based on the Internet and/or a telecommunication network, and/or any combination of the above networks. The wired network can use twisted pair, coaxial cable or optical fiber transmission for example to communicate, and the wireless network can use 3G/4G/5G mobile communication network, Bluetooth, Zigbee or WiFi and other communication methods. The present disclosure does not limit the type and function of the network here.
例如,处理器520可以控制图像处理装置中的其它组件以执行期望的功能。处理器520可以是中央处理单元(CPU)、张量处理器(TPU)或者图形处理器GPU等具有数据处理能力和/或程序执行能力的器件。中央处理器(CPU)可以为X86或ARM架构等。GPU可以单独地直接集成到主板上,或者内置于主板的北桥芯片中。GPU也可以内置于中央处理器(CPU)上。For example, the processor 520 may control other components in the image processing apparatus to perform desired functions. The processor 520 may be a device with data processing capabilities and/or program execution capabilities, such as a central processing unit (CPU), a tensor processing unit (TPU), or a graphics processing unit (GPU). The central processing unit (CPU) may be an X86 or ARM architecture or the like. The GPU can be integrated directly on the motherboard alone, or built into the north bridge chip of the motherboard. A GPU can also be built into a central processing unit (CPU).
例如,存储器510可以包括一个或多个计算机程序产品的任意组合,计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。非易失性存储器例如可以包括只读存储器(ROM)、硬盘、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、闪存等。For example, memory 510 may include any combination of one or more computer program products, which may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory. The volatile memory may include random access memory (RAM) and/or cache memory (cache), etc., for example. Non-volatile memory may include, for example, read only memory (ROM), hard disks, erasable programmable read only memory (EPROM), compact disc read only memory (CD-ROM), USB memory, flash memory, and the like.
例如,在存储器510上可以存储一个或多个计算机指令,处理器520可以运行所述计算机指令,以实现各种功能。在计算机可读存储介质中还可以存储各种应用程序和各种数据,例如训练输入图像、以及应用程序使用和/或产生的各种数据等。For example, one or more computer instructions may be stored on memory 510 and executed by processor 520 to implement various functions. Various application programs and various data may also be stored in the computer-readable storage medium, such as training input images, and various data used and/or generated by the application programs.
例如,存储器510存储的一些计算机指令被处理器520执行时可以执行根据上文所述的图像处理方法中的一个或多个步骤。又例如,存储器510存储的另一些计算机指令被处理器520执行时可以执行根据上文所述的神经网络的训练方法中的一个或多个步骤。For example, when some computer instructions stored in the memory 510 are executed by the processor 520, one or more steps in the image processing method described above may be performed. For another example, when other computer instructions stored in the memory 510 are executed by the processor 520, one or more steps in the above-mentioned neural network training method may be executed.
例如,关于图像处理方法的处理过程的详细说明可以参考上述图像处理方法的实施例中的相关描述,关于神经网络的训练方法的处理过程的详细说明可以参考上述神经网络的训练方法的实施例中的相关描述,重复之处不再赘述。For example, for a detailed description of the processing process of the image processing method, refer to the relevant descriptions in the above-mentioned embodiment of the image processing method, and for a detailed description of the processing process of the neural network training method, refer to the above-mentioned embodiment of the neural network training method. Relevant descriptions will not be repeated here.
需要说明的是,本公开的上述实施例提供的图像处理装置是示例性的,而非限制性的,根据实际应用需要,该图像处理装置还可以包括其他常规部件或结构,例如,为实现图像处理装置的必要功能,本领域技术人员可以根据具体应用场景设置其他的常规部件或结构,本公开的实施例对此不作限制。It should be noted that the image processing device provided by the above-mentioned embodiments of the present disclosure is exemplary rather than limiting. According to actual application requirements, the image processing device may also include other conventional components or structures, for example, to realize image For the necessary functions of the processing device, those skilled in the art may configure other conventional components or structures according to specific application scenarios, which are not limited by the embodiments of the present disclosure.
本公开的上述实施例提供的图像处理装置的技术效果可以参考上述实施例中关于图像处理方法以及神经网络的训练方法的相应描述,在此不再赘述。For the technical effects of the image processing device provided by the above embodiments of the present disclosure, reference may be made to the corresponding descriptions about the image processing method and the training method of the neural network in the above embodiments, which will not be repeated here.
本公开至少一实施例还提供一种存储介质。图9为本公开一实施例提供的一种存储介质的示意图。例如,如图9所示,该存储介质600非暂时性地存储计算机可读指令601,当非暂时性计算机可读指令601由计算机(包括处理器)执行时可以执行本公开任一实施例提供的图像处理方法的指令。At least one embodiment of the present disclosure further provides a storage medium. Fig. 9 is a schematic diagram of a storage medium provided by an embodiment of the present disclosure. For example, as shown in FIG. 9 , the
例如,在存储介质600上可以存储一个或多个计算机指令。存储介质600上存储的一些计算机指令可以是例如用于实现上述图像处理方法中的一个或多个步骤的指令。存储介质上存储的另一些计算机指令可以是例如用于实现上述神经网络的训练方法中的一个或多个步骤的指令。For example, one or more computer instructions may be stored on
例如,存储介质可以包括平板电脑的存储部件、个人计算机的硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、光盘只读存储器(CD-ROM)、闪存、或者上述存储介质的任意组合,也可以为其他适用的存储介质。For example, the storage medium may include a memory component of a tablet computer, a hard disk of a personal computer, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM), compact disc read only memory (CD -ROM), flash memory, or any combination of the above-mentioned storage media, or other applicable storage media.
本公开的实施例提供的存储介质的技术效果可以参考上述实施例中关于图像处理方法以及神经网络的训练方法的相应描述,在此不再赘述。For the technical effect of the storage medium provided by the embodiments of the present disclosure, reference may be made to the corresponding descriptions about the image processing method and the training method of the neural network in the foregoing embodiments, and details are not repeated here.
对于本公开,有以下几点需要说明:For this disclosure, the following points need to be explained:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。(1) In the drawings of the embodiments of the present disclosure, only the structures related to the embodiments of the present disclosure are involved, and other structures may refer to general designs.
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。(2) In the case of no conflict, features in the same embodiment and different embodiments of the present disclosure can be combined with each other.
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。The above is only a specific embodiment of the present disclosure, but the scope of protection of the present disclosure is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope of the present disclosure, and should cover all within the protection scope of the present disclosure. Therefore, the protection scope of the present disclosure should be determined by the protection scope of the claims.
Claims (15)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910209662.2A CN111724309B (en) | 2019-03-19 | 2019-03-19 | Image processing method and device, neural network training method, storage medium |
PCT/CN2020/077763 WO2020187029A1 (en) | 2019-03-19 | 2020-03-04 | Image processing method and device, neural network training method, and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910209662.2A CN111724309B (en) | 2019-03-19 | 2019-03-19 | Image processing method and device, neural network training method, storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111724309A CN111724309A (en) | 2020-09-29 |
CN111724309B true CN111724309B (en) | 2023-07-14 |
Family
ID=72519587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910209662.2A Active CN111724309B (en) | 2019-03-19 | 2019-03-19 | Image processing method and device, neural network training method, storage medium |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111724309B (en) |
WO (1) | WO2020187029A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11699222B2 (en) * | 2021-02-19 | 2023-07-11 | Novatek Microelectronics Corp. | Image processing device and a method for image enhancement |
CN115335848A (en) * | 2021-03-01 | 2022-11-11 | 京东方科技集团股份有限公司 | Video block processing method and device, neural network training method and storage medium |
CN113538287B (en) * | 2021-07-29 | 2024-03-29 | 广州安思创信息技术有限公司 | Video enhancement network training method, video enhancement method and related devices |
CN114501012B (en) * | 2021-12-31 | 2024-06-11 | 浙江大华技术股份有限公司 | Image filtering, encoding and decoding methods and related equipment |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10303977B2 (en) * | 2016-06-28 | 2019-05-28 | Conduent Business Services, Llc | System and method for expanding and training convolutional neural networks for large size input images |
EP3549099B1 (en) * | 2016-12-01 | 2024-08-21 | Bruker Cellular Analysis, Inc. | Automated detection and repositioning of micro-objects in microfluidic devices |
CN107730474B (en) * | 2017-11-09 | 2022-02-22 | 京东方科技集团股份有限公司 | Image processing method, processing device and processing equipment |
CN107767408B (en) * | 2017-11-09 | 2021-03-12 | 京东方科技集团股份有限公司 | Image processing method, processing device and processing equipment |
CN109360151B (en) * | 2018-09-30 | 2021-03-05 | 京东方科技集团股份有限公司 | Image processing method and system, resolution improving method and readable storage medium |
-
2019
- 2019-03-19 CN CN201910209662.2A patent/CN111724309B/en active Active
-
2020
- 2020-03-04 WO PCT/CN2020/077763 patent/WO2020187029A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2020187029A1 (en) | 2020-09-24 |
CN111724309A (en) | 2020-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11954822B2 (en) | Image processing method and device, training method of neural network, image processing method based on combined neural network model, constructing method of combined neural network model, neural network processor, and storage medium | |
US11908102B2 (en) | Image processing method and device, training method of neural network, and storage medium | |
CN110532871B (en) | Image processing method and device | |
CN111767979B (en) | Training method, image processing method and image processing device for neural network | |
US11461639B2 (en) | Image processing method, image processing device, and training method of neural network | |
CN109949255B (en) | Image reconstruction method and device | |
CN111914997B (en) | Methods for training neural networks, image processing methods and devices | |
WO2021018163A1 (en) | Neural network search method and apparatus | |
CN113011562B (en) | Model training method and device | |
US12062158B2 (en) | Image denoising method and apparatus | |
CN111724309B (en) | Image processing method and device, neural network training method, storage medium | |
CN111797983A (en) | A kind of neural network construction method and device | |
WO2022022288A1 (en) | Image processing method and apparatus | |
CN112598597A (en) | Training method of noise reduction model and related device | |
CN113284055B (en) | Image processing method and device | |
CN113095470A (en) | Neural network training method, image processing method and device, and storage medium | |
CN113066018B (en) | Image enhancement method and related device | |
CN113096023A (en) | Neural network training method, image processing method and device, and storage medium | |
WO2025051116A1 (en) | Data processing method and apparatus | |
CN113076966B (en) | Image processing method and device, training method of neural network and storage medium | |
WO2023029559A1 (en) | Data processing method and apparatus | |
WO2022183325A1 (en) | Video block processing method and apparatus, neural network training method, and storage medium | |
WO2023028866A1 (en) | Image processing method and apparatus, and vehicle | |
WO2024245216A1 (en) | Image processing method and related apparatus therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |