[go: up one dir, main page]

CN111709897B - Domain transformation-based positron emission tomography image reconstruction method - Google Patents

Domain transformation-based positron emission tomography image reconstruction method Download PDF

Info

Publication number
CN111709897B
CN111709897B CN202010560840.9A CN202010560840A CN111709897B CN 111709897 B CN111709897 B CN 111709897B CN 202010560840 A CN202010560840 A CN 202010560840A CN 111709897 B CN111709897 B CN 111709897B
Authority
CN
China
Prior art keywords
image
reconstructed image
positron emission
reconstructed
emission tomography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010560840.9A
Other languages
Chinese (zh)
Other versions
CN111709897A (en
Inventor
郑海荣
胡战利
杨永峰
刘新
梁栋
朱珊珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN202010560840.9A priority Critical patent/CN111709897B/en
Publication of CN111709897A publication Critical patent/CN111709897A/en
Application granted granted Critical
Publication of CN111709897B publication Critical patent/CN111709897B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10104Positron emission tomography [PET]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Nuclear Medicine (AREA)

Abstract

本发明公开了一种基于域变换的正电子发射断层图像的重建方法。该方法包括:对正电子发射断层图像进行重构,获得第一重建图像,该第一重建图像是未经去噪处理的图像;将正电子发射断层图像进行域变换后经滤波处理,对经滤波处理的图像进行重构,获得第二重建图像;以所述第二重建图像作为先验信息,对所述第一重建图像进行引导滤波,进而获得融合的重建图像。本发明通过引导滤波能够有效消除噪声并很好地保留图像细节,从而提升了低剂量图像重建的质量。

The invention discloses a reconstruction method of positron emission tomography images based on domain transformation. The method includes: reconstructing the positron emission tomography image to obtain a first reconstructed image, which is an image without denoising processing; performing domain transformation on the positron emission tomography image and then filtering the processed image. The filtered image is reconstructed to obtain a second reconstructed image; using the second reconstructed image as prior information, guided filtering is performed on the first reconstructed image to obtain a fused reconstructed image. The present invention can effectively eliminate noise and well retain image details through guided filtering, thereby improving the quality of low-dose image reconstruction.

Description

一种基于域变换的正电子发射断层图像的重建方法A reconstruction method of positron emission tomography images based on domain transformation

技术领域Technical field

本发明涉及医学图像处理技术领域,更具体地,涉及一种基于域变换的正电子发射断层图像的重建方法。The present invention relates to the technical field of medical image processing, and more specifically, to a reconstruction method of positron emission tomography images based on domain transformation.

背景技术Background technique

正电子发射断层成像(PET)是一种功能成像模型,是核医学领域较为先进的临床成像技术。PET可通过特异性注射放射性示踪剂检测组织内分子水平的活性,广泛应用于肿瘤、神经学、心脏病学等领域。Positron emission tomography (PET) is a functional imaging model and a relatively advanced clinical imaging technology in the field of nuclear medicine. PET can detect activity at the molecular level within tissues through specific injection of radioactive tracers, and is widely used in oncology, neurology, cardiology and other fields.

然而,注射正常的示踪剂剂量会对患者造成潜在的辐射风险,因为伽玛射线会导致有机分子电离,对患者的身体造成损害。但是注射剂量的限制和采集时间的限制,将致使正电子发射成像的空间分辨率相对较差,噪声水平较高,使得PET图像的定量解释比较困难。PET图像的高噪声水平会掩盖微小但重要的病变,使器官边缘变得模糊,从而进一步导致诊断和定量错误。此外,由于采集的数据量较大,导致图像重建速度慢,并且由于扫描时间长,导致病人可能的运动所引起的伪影。However, injecting normal tracer doses poses a potential radiation risk to the patient, as gamma rays can cause ionization of organic molecules, causing damage to the patient's body. However, limitations in injection dose and acquisition time will result in relatively poor spatial resolution and high noise levels in positron emission imaging, making quantitative interpretation of PET images difficult. High noise levels in PET images can mask small but important lesions and blur organ edges, further leading to diagnostic and quantitative errors. In addition, image reconstruction is slow due to the large amount of data collected, and artifacts caused by possible patient movement occur due to long scanning times.

因此,研究和开发新的低剂量PET成像方法,既能保证PET成像质量又减少有害的辐射剂量,对于医疗诊断领域具有重要的科学意义和应用前景。Therefore, research and development of new low-dose PET imaging methods can not only ensure the quality of PET imaging but also reduce harmful radiation doses, which has important scientific significance and application prospects in the field of medical diagnosis.

发明内容Contents of the invention

本发明的目的是克服上述现有技术的缺陷,提供一种基于域变换的正电子发射断层成像的重建方法,基于注射低剂量示踪剂采样完成图像重建,能够得到更清晰的重建图像。The purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art and provide a reconstruction method of positron emission tomography based on domain transformation, which can complete image reconstruction based on injection of low-dose tracer sampling and obtain a clearer reconstructed image.

本发明提供一种基于域变换的正电子发射断层图像的重建方法,包括以下步骤:The present invention provides a method for reconstructing positron emission tomography images based on domain transformation, which includes the following steps:

对正电子发射断层图像进行重构,获得第一重建图像,该第一重建图像是未经去噪处理的图像;Reconstruct the positron emission tomography image to obtain a first reconstructed image, where the first reconstructed image is an image without denoising processing;

将正电子发射断层图像进行域变换后经滤波处理,对经滤波处理的图像进行重构,获得第二重建图像;The positron emission tomography image is subjected to domain transformation and filtering processing, and the filtered image is reconstructed to obtain a second reconstructed image;

以所述第二重建图像作为先验信息,对所述第一重建图像进行引导滤波,进而获得融合的重建图像。Using the second reconstructed image as prior information, guided filtering is performed on the first reconstructed image to obtain a fused reconstructed image.

在一个实施例中,根据以下步骤获得所述第一重建图像:In one embodiment, the first reconstructed image is obtained according to the following steps:

对正电子发射断层图像经衰减校正处理,获得经校正的投影数据;Perform attenuation correction processing on the positron emission tomography image to obtain corrected projection data;

对所述经校正的投影数据通过期望最大法进行重构,获得所述第一重建图像。The corrected projection data is reconstructed by the expectation maximum method to obtain the first reconstructed image.

在一个实施例中,根据以下步骤获得所述第二重建图像:In one embodiment, the second reconstructed image is obtained according to the following steps:

对正电子发射断层图像经衰减校正,获得经校正的投影数据;The positron emission tomography image is attenuated and corrected to obtain corrected projection data;

对所述经校正的投影数据进行Anscombe变换,并对变换后的投影数据进行滤波,以消除高斯分布噪声;Perform Anscombe transformation on the corrected projection data, and filter the transformed projection data to eliminate Gaussian distribution noise;

对过滤后的数据进行Anscombe反变换得到所述第二重建图像。Perform Anscombe inverse transform on the filtered data to obtain the second reconstructed image.

在一个实施例中,采用非局部均值法对所述变换后的投影数据进行滤波。In one embodiment, a non-local mean method is used to filter the transformed projection data.

在一个实施例中,Anscombe变换过程表示为:In one embodiment, the Anscombe transformation process is expressed as:

其中,y表示经校正的投影数据。where y represents the corrected projection data.

在一个实施例中,以所述第二重建图像作为先验信息,对所述第一重建图像进行引导滤波,进而获得融合的重建图像,包括:In one embodiment, using the second reconstructed image as prior information, guided filtering is performed on the first reconstructed image to obtain a fused reconstructed image, including:

对于所述第二重建图像的每个像素,找到多个相似的近邻,并对矩阵进行归一化,得到归一化的核矩阵;For each pixel of the second reconstructed image, find multiple similar neighbors and normalize the matrix to obtain a normalized kernel matrix;

以所述归一化的核矩阵引导所述第一重建图像滤波,获得所述融合的重建图像。The normalized kernel matrix is used to guide the first reconstructed image filtering to obtain the fused reconstructed image.

在一个实施例中,采用K近邻法为所述第二重建图像的每个像素寻找k个相似的近邻。In one embodiment, a K nearest neighbor method is used to find k similar neighbors for each pixel of the second reconstructed image.

在一个实施例中,所述融合的重建图像表示为:In one embodiment, the fused reconstructed image is expressed as:

x=K·xEM x=K· xEM

xEM表示第一重建图像,K表示核矩阵。x EM represents the first reconstructed image, and K represents the kernel matrix.

与现有技术相比,本发明的优点在于,对具有稳定方差的噪声投影数据进行了变换,并对其进行了NLM(非局部均值滤波)滤波。然后,使用ML-EM(Maximum likelihood-expectation maximization)算法对其进行重构。将本步骤得到的图像作为先验信息,通过GK滤波对普通电磁重构后的图像进行引导。最终得到的恢复图像不仅抑制了噪声,而且保留了图像细节。该框架包括PET图像的完整重建和恢复。本发明解决了低剂量图像质量提升的技术问题。Compared with the prior art, the advantage of the present invention is that the noise projection data with stable variance is transformed and NLM (non-local mean filtering) filtered. Then, use the ML-EM (Maximum likelihood-expectation maximization) algorithm to reconstruct it. The image obtained in this step is used as prior information, and the image after ordinary electromagnetic reconstruction is guided through GK filtering. The resulting restored image not only suppresses noise but also preserves image details. The framework includes complete reconstruction and restoration of PET images. The invention solves the technical problem of improving low-dose image quality.

通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。Other features of the invention and its advantages will become apparent from the following detailed description of exemplary embodiments of the invention with reference to the accompanying drawings.

附图说明Description of the drawings

被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention.

图1是根据本发明一个实施例的基于域变换的正电子发射断层成像的重建方法的流程图;Figure 1 is a flow chart of a reconstruction method for positron emission tomography based on domain transformation according to an embodiment of the present invention;

图2是根据本发明一个实施例的基于域变换的正电子发射断层成像的重建方法的示例过程。Figure 2 is an example process of a reconstruction method for domain transformation-based positron emission tomography according to one embodiment of the present invention.

具体实施方式Detailed ways

现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。Various exemplary embodiments of the present invention will now be described in detail with reference to the accompanying drawings. It should be noted that the relative arrangement of components and steps, numerical expressions and numerical values set forth in these examples do not limit the scope of the invention unless otherwise specifically stated.

以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。The following description of at least one exemplary embodiment is merely illustrative in nature and is in no way intended to limit the invention, its application or uses.

对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。Techniques, methods and devices known to those of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, such techniques, methods and devices should be considered a part of the specification.

在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。In all examples shown and discussed herein, any specific values are to be construed as illustrative only and not as limiting. Accordingly, other examples of the exemplary embodiments may have different values.

应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。It should be noted that similar reference numerals and letters refer to similar items in the following figures, so that once an item is defined in one figure, it does not need further discussion in subsequent figures.

本发明实施例提供一种基于域变换的PET图像重建方法,可用于低剂量PET图像重建,结合图1和图2所示,该方法具体包括以下步骤:Embodiments of the present invention provide a PET image reconstruction method based on domain transformation, which can be used for low-dose PET image reconstruction. As shown in Figure 1 and Figure 2, the method specifically includes the following steps:

步骤S110,对PET图像进行重建,获得包含噪声的第一重建图像。Step S110: Reconstruct the PET image to obtain a first reconstructed image containing noise.

例如,对仅经衰减校正(图2中ai表示衰减系数)的投影数据利用ML-EM(期望最大化)算法重建,得到xEM,重建过程表示为:For example, the projection data that has only been attenuated corrected (ai represents the attenuation coefficient in Figure 2) is reconstructed using the ML-EM (expectation maximization) algorithm to obtain x EM , and the reconstruction process is expressed as:

其中,y表示测得的PET数据(也称为获得的sinogram数据),可以被认为是一个独立的泊松随机变量的集合;P是系统矩阵;r表示背景事件,如随机噪声和散射;n是图像中像素的总数。Among them, y represents the measured PET data (also called the obtained sinogram data), which can be considered as a collection of independent Poisson random variables; P is the system matrix; r represents background events, such as random noise and scattering; n is the total number of pixels in the image.

该步骤获得的重建图像在图2中标记为x0。通过这种方式获得的重建图像包含了相当大的噪声,但是它也包含了PET图像的大部分结构信息。The reconstructed image obtained in this step is labeled x0 in Figure 2. The reconstructed image obtained in this way contains considerable noise, but it also contains most of the structural information of the PET image.

步骤S120,对PET图像在变换域进行滤波后进行重建,获得去噪的第二重建图像。Step S120: Filter the PET image in the transform domain and then reconstruct it to obtain a denoised second reconstructed image.

具体地,对于服从独立的泊松分布的PET探测器投影数据y,首先通过Anscombe变换后将较难处理的泊松噪声转化为高斯噪声。转化后的信号可表示为:Specifically, for the PET detector projection data y that obeys an independent Poisson distribution, the more difficult to process Poisson noise is first converted into Gaussian noise through Anscombe transformation. The converted signal can be expressed as:

然后,对变换后的投影数据进行NLM滤波,以去除高斯噪声。Then, NLM filtering is performed on the transformed projection data to remove Gaussian noise.

接下来,对滤波后的数据进行Anscombe反变换,得到y',表示为:Next, perform Anscombe inverse transformation on the filtered data to obtain y', which is expressed as:

最后,采用传统的ML-EM算法对处理后的投影数据进行重建,得到xTD,表示为:Finally, the traditional ML-EM algorithm is used to reconstruct the processed projection data, and x TD is obtained, expressed as:

该步骤获得的重建图像在图2中标记为x1,其为下一步的导滤波提供引导,可以实现抑制噪声的目的。The reconstructed image obtained in this step is marked as x1 in Figure 2, which provides guidance for the next step of guided filtering, which can achieve the purpose of suppressing noise.

应理解的是,也可采用除NLM滤波之外的其他类型的滤波方式,或采用其他的变换方式实现域变换。It should be understood that other types of filtering methods other than NLM filtering can also be used, or other transformation methods can be used to implement domain transformation.

步骤S130,以第二重建图像为先验信息,对第一重建图像进行引导滤波,进而获得融合的重建图像。Step S130: Using the second reconstructed image as prior information, perform guided filtering on the first reconstructed image to obtain a fused reconstructed image.

该步骤实现引导核滤波,例如,可采用k近邻算法(KNN)来构造稀疏矩阵。KNN为每个像素找到k个相似的近邻,并对矩阵进行归一化,得到归一化的核矩阵K。然后在第二重构图像的引导下进行GK滤波,得到最终融合的重建图像x,表示为:This step implements guided kernel filtering. For example, the k-nearest neighbor algorithm (KNN) can be used to construct a sparse matrix. KNN finds k similar neighbors for each pixel and normalizes the matrix to obtain the normalized kernel matrix K. Then GK filtering is performed under the guidance of the second reconstructed image to obtain the final fused reconstructed image x, expressed as:

x=K·xEM (5)x=K· xEM (5)

需说明的是,也可采用其他的聚类算法,为每个像素相似的近邻,例如k-means算法等。此外,图像重构方式也不限于ML-EM方式。It should be noted that other clustering algorithms can also be used to identify similar neighbors for each pixel, such as the k-means algorithm. In addition, the image reconstruction method is not limited to the ML-EM method.

综上,本发明解决了低剂量图像质量提升的技术问题,通过对具有稳定方差的噪声投影数据进行变换,并对其进行滤波后重构,进而将得到的重构图像作为先验信息,通过GK滤波对普通电磁重构后的图像进行引导。最终得到的恢复图像不仅抑制了噪声,而且保留了图像细节。In summary, the present invention solves the technical problem of improving low-dose image quality by transforming the noise projection data with stable variance and reconstructing it after filtering, and then uses the obtained reconstructed image as prior information, through GK filter guides the image after ordinary electromagnetic reconstruction. The resulting restored image not only suppresses noise but also preserves image details.

与现有技术相比,本发明提出的图像重建方法包含两个关键元素。第一个元素是基于投影数据去噪的变换域。这种方式考虑了投影数据的统计特性,将服从泊松分布的数据转化为服从高斯分布的数据,从而将服从泊松分布的原始噪声可以很容易地去除。另一个元素是重构后的导频滤波。投影域滤波虽然能更有效地去除噪声,但也会丢失一些细节,造成重建图像中细节的丢失。因此,通过引导滤波方法来恢复丢失的结构信息,使得去噪后的图像很好地保留了图像细节,结构更加清晰。Compared with the existing technology, the image reconstruction method proposed by the present invention contains two key elements. The first element is a transform domain based on projection data denoising. This method takes into account the statistical characteristics of the projection data and transforms the data that obeys the Poisson distribution into the data that obeys the Gaussian distribution, so that the original noise that obeys the Poisson distribution can be easily removed. Another element is reconstructed pilot filtering. Although projection domain filtering can remove noise more effectively, it will also lose some details, resulting in the loss of details in the reconstructed image. Therefore, the lost structural information is restored through the guided filtering method, so that the denoised image retains the image details well and the structure is clearer.

本发明可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本发明的各个方面的计算机可读程序指令。The invention may be a system, method and/or computer program product. A computer program product may include a computer-readable storage medium having computer-readable program instructions thereon for causing a processor to implement various aspects of the invention.

计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。Computer-readable storage media may be tangible devices that can retain and store instructions for use by an instruction execution device. The computer-readable storage medium may be, for example, but not limited to, an electrical storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the above. More specific examples (non-exhaustive list) of computer-readable storage media include: portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) or Flash memory), Static Random Access Memory (SRAM), Compact Disk Read Only Memory (CD-ROM), Digital Versatile Disk (DVD), Memory Stick, Floppy Disk, Mechanical Coding Device, such as a printer with instructions stored on it. Protruding structures in hole cards or grooves, and any suitable combination of the above. As used herein, computer-readable storage media are not to be construed as transient signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (e.g., light pulses through fiber optic cables), or through electrical wires. transmitted electrical signals.

这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。Computer-readable program instructions described herein may be downloaded from a computer-readable storage medium to various computing/processing devices, or to an external computer or external storage device over a network, such as the Internet, a local area network, a wide area network, and/or a wireless network. The network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer-readable program instructions from the network and forwards the computer-readable program instructions for storage on a computer-readable storage medium in the respective computing/processing device .

用于执行本发明操作的计算机程序指令可以是汇编指令、指令集架构(ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如Smalltalk、C++等,以及常规的过程式编程语言—诸如“C”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本发明的各个方面。Computer program instructions for performing operations of the present invention may be assembly instructions, instruction set architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or instructions in one or more programming languages. Source code or object code written in any combination of object-oriented programming languages - such as Smalltalk, C++, etc., and conventional procedural programming languages - such as the "C" language or similar programming languages. The computer-readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server implement. In situations involving remote computers, the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as an Internet service provider through the Internet). connect). In some embodiments, by utilizing state information of computer-readable program instructions to personalize an electronic circuit, such as a programmable logic circuit, a field programmable gate array (FPGA), or a programmable logic array (PLA), the electronic circuit can Computer readable program instructions are executed to implement various aspects of the invention.

这里参照根据本发明实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本发明的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer-readable program instructions.

这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。These computer-readable program instructions may be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing apparatus, thereby producing a machine that, when executed by the processor of the computer or other programmable data processing apparatus, , resulting in an apparatus that implements the functions/actions specified in one or more blocks in the flowchart and/or block diagram. These computer-readable program instructions can also be stored in a computer-readable storage medium. These instructions cause the computer, programmable data processing device and/or other equipment to work in a specific manner. Therefore, the computer-readable medium storing the instructions includes An article of manufacture that includes instructions that implement aspects of the functions/acts specified in one or more blocks of the flowcharts and/or block diagrams.

也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。Computer-readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other equipment, causing a series of operating steps to be performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , thereby causing instructions executed on a computer, other programmable data processing apparatus, or other equipment to implement the functions/actions specified in one or more blocks in the flowcharts and/or block diagrams.

附图中的流程图和框图显示了根据本发明的多个实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。对于本领域技术人员来说公知的是,通过硬件方式实现、通过软件方式实现以及通过软件和硬件结合的方式实现都是等价的。The flowcharts and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions that embody one or more elements for implementing the specified logical function(s). Executable instructions. In some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two consecutive blocks may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved. It will also be noted that each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts. , or can be implemented using a combination of specialized hardware and computer instructions. It is well known to those skilled in the art that implementation through hardware, implementation through software, and implementation through a combination of software and hardware are all equivalent.

以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。本发明的范围由所附权利要求来限定。The embodiments of the present invention have been described above. The above description is illustrative, not exhaustive, and is not limited to the disclosed embodiments. Many modifications and variations will be apparent to those skilled in the art without departing from the scope and spirit of the described embodiments. The terminology used herein is chosen to best explain the principles, practical applications, or technical improvements in the market of the embodiments, or to enable other persons of ordinary skill in the art to understand the embodiments disclosed herein. The scope of the invention is defined by the appended claims.

Claims (5)

1.一种基于域变换的正电子发射断层图像的重建方法,包括以下步骤:1. A reconstruction method of positron emission tomography images based on domain transformation, including the following steps: 对正电子发射断层图像进行重构,获得第一重建图像,该第一重建图像是未经去噪处理的图像;Reconstruct the positron emission tomography image to obtain a first reconstructed image, where the first reconstructed image is an image without denoising processing; 将正电子发射断层图像进行域变换后经滤波处理,对经滤波处理的图像进行重构,获得第二重建图像;The positron emission tomography image is subjected to domain transformation and filtering processing, and the filtered image is reconstructed to obtain a second reconstructed image; 以所述第二重建图像作为先验信息,对所述第一重建图像进行引导滤波,进而获得融合的重建图像;Using the second reconstructed image as a priori information, perform guided filtering on the first reconstructed image to obtain a fused reconstructed image; 其中,根据以下步骤获得所述第二重建图像:Wherein, the second reconstructed image is obtained according to the following steps: 对正电子发射断层图像经衰减校正,获得经校正的投影数据;The positron emission tomography image is attenuated and corrected to obtain corrected projection data; 对所述经校正的投影数据进行Anscombe变换,并对变换后的投影数据进行滤波,以消除高斯分布噪声;Perform Anscombe transformation on the corrected projection data, and filter the transformed projection data to eliminate Gaussian distribution noise; 对过滤后的数据进行Anscombe反变换得到所述第二重建图像;Perform an Anscombe inverse transform on the filtered data to obtain the second reconstructed image; 其中,以所述第二重建图像作为先验信息,对所述第一重建图像进行引导滤波,进而获得融合的重建图像,包括:Wherein, using the second reconstructed image as a priori information, guided filtering is performed on the first reconstructed image to obtain a fused reconstructed image, including: 对于所述第二重建图像的每个像素,找到多个相似的近邻,并对矩阵进行归一化,得到归一化的核矩阵;For each pixel of the second reconstructed image, find multiple similar neighbors and normalize the matrix to obtain a normalized kernel matrix; 以所述归一化的核矩阵引导所述第一重建图像滤波,获得所述融合的重建图像;Use the normalized kernel matrix to guide the first reconstructed image filtering to obtain the fused reconstructed image; 其中,所述融合的重建图像表示为:Wherein, the fused reconstructed image is expressed as: x=K·xEM x=K· xEM xEM表示第一重建图像,K表示核矩阵;x EM represents the first reconstructed image, K represents the kernel matrix; 其中,根据以下步骤获得所述第一重建图像:Wherein, the first reconstructed image is obtained according to the following steps: 对正电子发射断层图像经衰减校正处理,获得经校正的投影数据;Perform attenuation correction processing on the positron emission tomography image to obtain corrected projection data; 对所述经校正的投影数据通过期望最大法进行重构,获得所述第一重建图像,重建过程表示为:The corrected projection data is reconstructed through the expectation maximum method to obtain the first reconstructed image. The reconstruction process is expressed as: 其中,y表示获得的正电子发射断层成像数据,是独立的泊松随机变量的集合;P是系统矩阵;r表示背景事件,用于标识随机噪声和散射;n是图像中像素的总数。Among them, y represents the obtained positron emission tomography imaging data, which is a collection of independent Poisson random variables; P is the system matrix; r represents the background event, used to identify random noise and scattering; n is the total number of pixels in the image. 2.根据权利要求1所述的方法,其中,采用非局部均值法对所述变换后的投影数据进行滤波。2. The method of claim 1, wherein the transformed projection data is filtered using a non-local mean method. 3.根据权利要求1所述的方法,其中,Anscombe变换过程表示为:3. The method according to claim 1, wherein the Anscombe transformation process is expressed as: 其中,y表示经校正的投影数据。where y represents the corrected projection data. 4.一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现根据权利要求1所述的方法的步骤。4. A computer-readable storage medium having a computer program stored thereon, wherein the steps of the method according to claim 1 are implemented when the program is executed by a processor. 5.一种计算机设备,包括存储器和处理器,在所述存储器上存储有能够在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现权利要求1所述的方法的步骤。5. A computer device, comprising a memory and a processor, and a computer program capable of running on the processor is stored on the memory, characterized in that when the processor executes the program, the method of claim 1 is implemented Method steps.
CN202010560840.9A 2020-06-18 2020-06-18 Domain transformation-based positron emission tomography image reconstruction method Active CN111709897B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010560840.9A CN111709897B (en) 2020-06-18 2020-06-18 Domain transformation-based positron emission tomography image reconstruction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010560840.9A CN111709897B (en) 2020-06-18 2020-06-18 Domain transformation-based positron emission tomography image reconstruction method

Publications (2)

Publication Number Publication Date
CN111709897A CN111709897A (en) 2020-09-25
CN111709897B true CN111709897B (en) 2023-10-24

Family

ID=72542021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010560840.9A Active CN111709897B (en) 2020-06-18 2020-06-18 Domain transformation-based positron emission tomography image reconstruction method

Country Status (1)

Country Link
CN (1) CN111709897B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112489153B (en) * 2020-11-26 2024-06-21 深圳先进技术研究院 Image reconstruction method and application
WO2022116143A1 (en) * 2020-12-04 2022-06-09 深圳先进技术研究院 Pet imaging method, apparatus, and device
CN112652029A (en) * 2020-12-04 2021-04-13 深圳先进技术研究院 PET imaging method, device and equipment
CN112488952B (en) * 2020-12-07 2024-09-13 深圳先进技术研究院 Reconstruction method of PET image, reconstruction terminal and computer readable storage medium
CN113052933B (en) * 2021-03-15 2024-06-28 深圳高性能医疗器械国家研究院有限公司 Parameter imaging method and system
CN113837961B (en) * 2021-09-22 2023-10-20 中国科学院深圳先进技术研究院 Method and system suitable for long-time endogenous imaging of living body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018127507A1 (en) * 2017-01-06 2018-07-12 Koninklijke Philips N.V. Standardized uptake value (suv) guided reconstruction control for improved outcome robustness in positron emission tomography (pet) imaging
CN108537755A (en) * 2018-04-16 2018-09-14 广东工业大学 A kind of method and system of the PET image enhancing based on geometry constraint
CN109584324A (en) * 2018-10-24 2019-04-05 南昌大学 A kind of positron e mission computed tomography (PET) method for reconstructing based on autocoder network
CN110268447A (en) * 2017-01-06 2019-09-20 皇家飞利浦有限公司 The misalignment in PET/CT imaging is detected and corrected using the flight time
CN111047523A (en) * 2019-11-11 2020-04-21 苏州锐一仪器科技有限公司 Method and device for processing PET image and computer storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7187794B2 (en) * 2001-10-18 2007-03-06 Research Foundation Of State University Of New York Noise treatment of low-dose computed tomography projections and images
CN110249365B (en) * 2017-11-10 2023-05-30 上海联影医疗科技股份有限公司 System and method for image reconstruction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018127507A1 (en) * 2017-01-06 2018-07-12 Koninklijke Philips N.V. Standardized uptake value (suv) guided reconstruction control for improved outcome robustness in positron emission tomography (pet) imaging
CN110268447A (en) * 2017-01-06 2019-09-20 皇家飞利浦有限公司 The misalignment in PET/CT imaging is detected and corrected using the flight time
CN108537755A (en) * 2018-04-16 2018-09-14 广东工业大学 A kind of method and system of the PET image enhancing based on geometry constraint
CN109584324A (en) * 2018-10-24 2019-04-05 南昌大学 A kind of positron e mission computed tomography (PET) method for reconstructing based on autocoder network
CN111047523A (en) * 2019-11-11 2020-04-21 苏州锐一仪器科技有限公司 Method and device for processing PET image and computer storage medium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘祎等.一种基于指数型先验分布的正电子发射断层图像重建算法.中国组织工程研究与临床康复.2010,第14卷(第52期),第9760-9763页. *
边兆英等.投影数据恢复导引的PET图像滤波.计算机工程与应用.2011,第47卷(第17期),第196- 199页. *

Also Published As

Publication number Publication date
CN111709897A (en) 2020-09-25

Similar Documents

Publication Publication Date Title
CN111709897B (en) Domain transformation-based positron emission tomography image reconstruction method
US12118649B2 (en) Deep learning based three-dimensional reconstruction method for low-dose PET imaging
CN111627082B (en) PET image reconstruction method based on filtering back projection algorithm and neural network
Wu et al. Computationally efficient deep neural network for computed tomography image reconstruction
US12039637B2 (en) Low dose Sinogram denoising and PET image reconstruction method based on teacher-student generator
Pan et al. Iterative residual optimization network for limited-angle tomographic reconstruction
CN107705261B (en) Image reconstruction method and device
CN104657950B (en) Dynamic PET (positron emission tomography) image reconstruction method based on Poisson TV
Hashemi et al. Adaptively tuned iterative low dose CT image denoising
Gong et al. The evolution of image reconstruction in PET: from filtered back-projection to artificial intelligence
Zhu et al. STEDNet: Swin transformer‐based encoder–decoder network for noise reduction in low‐dose CT
CN114387236B (en) Low-dose Sinogram denoising and PET image reconstruction method based on convolutional neural network
CN113870138A (en) Low-dose CT image denoising method and system based on three-dimensional U-net
CN106056644A (en) Data processing method and data processing device for CT scanning
CN109741254A (en) Dictionary training and image super-resolution reconstruction method, system, device and storage medium
CN111340903A (en) Method and system for generating synthetic PET-CT images based on non-attenuation-corrected PET images
CN110874855B (en) Collaborative imaging method and device, storage medium and collaborative imaging equipment
Lyu et al. Iterative reconstruction for low dose CT using Plug-and-Play alternating direction method of multipliers (ADMM) framework
Zhang et al. Nonsmooth nonconvex LDCT image reconstruction via learned descent algorithm
Liao et al. Noise Estimation for Single‐Slice Sinogram of Low‐Dose X‐Ray Computed Tomography Using Homogenous Patch
WO2021253326A1 (en) Domain transform-based method for reconstructing positron emission tomography image
Zhang et al. CT image reconstruction algorithms: A comprehensive survey
WO2023279316A1 (en) Pet reconstruction method based on denoising score matching network
Du et al. DRGAN: a deep residual generative adversarial network for PET image reconstruction
WO2021159236A1 (en) Method and system for generating composite pet-ct image on basis of non-attenuation-corrected pet image

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant