CN111709397B - 一种基于多头自注意力机制的无人机变尺寸目标检测方法 - Google Patents
一种基于多头自注意力机制的无人机变尺寸目标检测方法 Download PDFInfo
- Publication number
- CN111709397B CN111709397B CN202010659641.3A CN202010659641A CN111709397B CN 111709397 B CN111709397 B CN 111709397B CN 202010659641 A CN202010659641 A CN 202010659641A CN 111709397 B CN111709397 B CN 111709397B
- Authority
- CN
- China
- Prior art keywords
- attention
- self
- head
- network
- target detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 79
- 230000007246 mechanism Effects 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 25
- 238000012549 training Methods 0.000 claims abstract description 18
- 238000007781 pre-processing Methods 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims description 11
- 238000004364 calculation method Methods 0.000 claims description 8
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- -1 hydrogen Chemical class 0.000 claims 1
- 239000001257 hydrogen Substances 0.000 claims 1
- 238000012545 processing Methods 0.000 claims 1
- 238000012163 sequencing technique Methods 0.000 claims 1
- 238000004422 calculation algorithm Methods 0.000 abstract description 5
- 210000003128 head Anatomy 0.000 description 27
- 238000013527 convolutional neural network Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/13—Satellite images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/70—Denoising; Smoothing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V2201/00—Indexing scheme relating to image or video recognition or understanding
- G06V2201/07—Target detection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Probability & Statistics with Applications (AREA)
- Astronomy & Astrophysics (AREA)
- Remote Sensing (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
Abstract
一种基于多头自注意力机制的无人机变尺寸目标检测方法,属于目标检测技术领域,本发明为解决现有无人机目标检测算法对于小目标检测性能差的问题。本发明包括:建立数据集;建立网络结构:采用多头自注意力机制建立多头自注意力目标检测头网络,所述多头自注意力目标检测头网络的后端采用Faster Rcnn基本框架,在多头自注意力目标检测头网络的回归层再次引入自注意力机制;分步骤进行网络训练;对目标物体进行检测:对图像进行预处理后输入多头自注意力目标检测头网络,多头自注意力目标检测头网络输出检测结果。本发明用于对大小变化目标无人机的目标检测。
Description
技术领域
本发明涉及一种基于多头自注意力机制的无人机变尺寸目标检测方法,属于目标检测技术领域。
背景技术
随着无人机技术的迅速成熟和发展,消费级无人机价格不断降低,操作智能性和便利性不断提升,无人机的使用门槛不断降低,在包括军事用途、城市管理、地理测绘、日常出行等众多领域取得了大量的应用和进步,因此,无人机在日常生活中的使用逐渐增多。
随着无人机数量和使用的不断增加,通过无人机机载摄像头拍摄的图片和视频数量也在逐步提升,通过无人机,能够快速获得大量包括地理信息、车辆行人信息、城市建设情况等多种信息的数据样本。但由于无人机图像的覆盖区域大,信息一般难以被有效提取,传统的统计方式需要依靠大量的人工手动计数,严重影响了无人机影像的应用。
近年来,深度学习技术的突破发展提出了大量目标检测网络,一定程度上解决了图像视频目标检测与跟踪的任务。诸如:Yolo V3、SSD、Faster RCNN、Retina Net等网络在已有公开数据集和实际引用中均取得了较好的性能,广泛应用于监控影像等近平视高度图像的目标检测中。但由于受到飞行高度、俯视角度、物体小而密集、背景干扰大、物体大小变化等因素的影响,这些算法在无人机图像中效果并不理想。
注意力机制最早在自然语言处理领域中被提出,用于解决语言翻译、对话生成问题等中的连接权重分配问题,近两年开始用于图像领域,通过在特定层的使用,提高网络对区域信息的判断和使用,取得了一定的效果。但是,大量采用注意力机制代替卷积网络的应用仍较少。
发明内容
本发明目的是为了解决现有无人机目标检测算法对于小目标检测性能差的问题,提供了一种基于多头自注意力机制的无人机变尺寸目标检测方法。
本发明所述一种基于多头自注意力机制的无人机变尺寸目标检测方法,它包括:
S1、建立数据集:
采用无人机的机载摄像头采集一组包含目标物体的图片,获取一组数据,结合开源数据集制作标签,建立数据集;
S2、建立网络结构:
根据S1获取的数据集,采用多头自注意力机制建立多头自注意力目标检测头网络,所述多头自注意力目标检测头网络的后端采用Faster Rcnn基本框架,在多头自注意力目标检测头网络的回归层再次引入自注意力机制;
S3、分步骤进行网络训练,获得训练好的多头自注意力目标检测头网络;
S4、对目标物体进行检测:
无人机的机载摄像头采集目标物体的图像,对图像进行预处理后输入S3获取的多头自注意力目标检测头网络,多头自注意力目标检测头网络输出检测结果。
优选的,S1所述采集一组包含目标物体的图片获取一组数据集的过程包括:
对图片进行去噪、数据归一化和图片数据降采样。
优选的,S2所述建立多头自注意力目标检测头网络的方法包括:
S2-1、将数据集依次输入两个标准残差块中,数据在每个标准残差块中依次经过卷积层、合并层和激活层,然后向高维度特征空间映射,获得上层网络计算结果;
S2-2、将上层网络计算结果输入自注意力层,获得自注意力层的输出结果;
S2-3、将自注意力层的输出结果输入回归层,选择目标物体候选框与特征图合并,作为多头自注意力目标检测头网络的输出结果;
S2-4、将多头自注意力目标检测头网络的输出结果输入到后端Faster Rcnn基本框架的分类检测网络中,获得目标物体的最终位置和所属 类别。
优选的,S3所述进行网络训练的具体方法包括:
S3-1、在ImageNet数据集上对S2建立的多头自注意力目标检测头网络和回归层进行预训练,将训练好的模型合并到多头自注意力目标检测头网络中;
S3-2、将S1获取的数据集划分为训练集和测试集两部分;
S3-3、利用S1获取的数据集对多头自注意力目标检测头网络进行端到端的训练,同时利用测试集进行性能检测;
S3-4、根据性能检测调整训练结果,返回执行S3-3,直至获取最终训练好的多头自注意力目标检测头网络。
优选的,S4所述对图像进行预处理包括:
空间域滤波图像去噪和数据标准化处理。
本发明的优点:本发明提出的一种基于多头自注意力机制的无人机变尺寸目标检测方法解决了当前无人机目标检测算法存在的对于小目标物体检测性能差的问题,解决了由于网络层数不断增加小目标在特征图上小的问题。采用多头自注意力网络代替部分卷积层,并减少了神经网络的使用,能够在保证精度的情况下提高运行效率。对于大小变化的物体具有较好的鲁棒性和适应性,可以应对无人机在不同飞行高度下同一物体在图像上大小变化过大的问题。
附图说明
图1是一种基于多头自注意力机制的无人机变尺寸目标检测方法的流程框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
具体实施方式一:下面结合图1说明本实施方式,本实施方式所述一种基于多头自注意力机制的无人机变尺寸目标检测方法,它包括:
S1、建立数据集:
采用无人机的机载摄像头采集一组包含目标物体的图片,获取一组数据,结合开源数据集制作标签,建立数据集;
S2、建立网络结构:
根据S1获取的数据集,采用多头自注意力机制建立多头自注意力目标检测头网络,所述多头自注意力目标检测头网络的后端采用Faster Rcnn基本框架,在多头自注意力目标检测头网络的回归层再次引入自注意力机制;
S3、分步骤进行网络训练,获得训练好的多头自注意力目标检测头网络;
S4、对目标物体进行检测:
无人机的机载摄像头采集目标物体的图像,对图像进行预处理后输入S3获取的多头自注意力目标检测头网络,多头自注意力目标检测头网络输出检测结果。
本实施方式中,S1所述一组数据集结合开源数据集采用数据集制作软件Labelme制作标签。
进一步的,S1所述采集一组包含目标物体的图片获取一组数据集的过程包括:
对图片进行去噪、数据归一化和图片数据降采样。
本实施方式中,获得的数据集为符合网络输入格式的数据[3,Win,Hin]。
再进一步的,S3所述进行网络训练的具体方法包括:
S3-1、在ImageNet数据集上对S2建立的多头自注意力目标检测头网络和回归层进行预训练,将训练好的模型合并到多头自注意力目标检测头网络中;
S3-2、将S1获取的数据集划分为训练集和测试集两部分;
S3-3、利用S1获取的数据集对多头自注意力目标检测头网络进行端到端的训练,同时利用测试集进行性能检测;
S3-4、根据性能检测调整训练结果,返回执行S3-3,直至获取最终训练好的多头自注意力目标检测头网络。
再进一步的,S4所述对图像进行预处理包括:
空间域滤波图像去噪和数据标准化处理。
具体实施方式二:本实施方式对具体实施方式一作进一步说明,S2所述建立多头自注意力目标检测头网络的方法包括:
S2-1、将数据集依次输入两个标准残差块中,数据在每个标准残差块中依次经过卷积层、合并层和激活层,然后向高维度特征空间映射,获得上层网络计算结果;
S2-2、将上层网络计算结果输入自注意力层;
S2-3、自注意力层的输出结果输入回归层,选择目标物体候选框与特征图合并,作为多头自注意力目标检测头网络的输出结果;
S2-4、将多头自注意力目标检测头网络的输出结果输入到后端Faster Rcnn基本框架的分类检测网络中,获得目标物体的最终位置和所属 类别。
本实施方式中,对于S2-3的输出结果,根据默认候选框的评价分数,对输出结果的特征图进行注意力网络权重平衡:
α=softmax(fatt(x));
本实施方式中,将S2-4获得的结果进行存储,并将回归框标记在图片中,便于工作人员查看检测情况。
具体实施方式三:本实施方式对具体实施方式二作进一步说明,S2-2所述自注意力层的输出结果的计算方法包括:
将注意力分数A:转化为自注意力权重,获得输出结果:
Self-Attention(X):=softmax(A:)XWval。
进一步的,S2-3所述多头自注意力目标检测头网络的输出结果的获取方法包括:
提取自注意力层的输出结果的特征信息,通过映射矩阵Wout和偏置Bout与各层结果合并,获得最终输出:
其中:Nh表示多头自注意力目标检测头网络的特征空间,h表示Nh中的特征层。
位置信息向量P中,位置编码包括绝对位置编码和相对位置编码。
进一步的,位置信息向量P采用绝对位置编码,能够覆盖全局空间信息。
采用绝对位置编码,给每个像素赋予固定的一个位置向量Pp,自注意力分数A:转化为:
再进一步的,位置信息向量P采用相对位置编码,能够反应输入序列信息与目标图片中心位置的映射关系。
采用相对位置编码,自注意力分数A:转化为:
基于本发明提出的一种基于多头自注意力机制的无人机变尺寸目标检测方法,在VHR-10、RSOD和VisDrone2019航拍图像数据集上进行模型训练和检测,并将本专利方法和其他常用的目标检测算法精度进行比较,其结果如表1所示:
表1
RetinaNet | SSD | Faster R-CNN | Mask R-CNN | AttFasterR-CNN | |
VHR-10 | 0.869 | 0.848 | 0.865 | 0.884 | 0.893 |
RSOD | 0.947 | 0.922 | 0.963 | 0.977 | 0.979 |
VisDrone | 0.235 | 0.203 | 0.262 | 0.281 | 0.279 |
由表1实验数据显示,本发明提出的方法在VHR-10和RSOD数据集上都取得了更好的效果,在VisDrone上相比FasterR-CNN有较大的提升。
虽然在本文中参照了特定的实施方式来描述本发明,但是应该理解的是,这些实施例仅仅是本发明的原理和应用的示例。因此应该理解的是,可以对示例性的实施例进行许多修改,并且可以设计出其他的布置,只要不偏离所附权利要求所限定的本发明的精神和范围。应该理解的是,可以通过不同于原始权利要求所描述的方式来结合不同的从属权利要求和本文中所述的特征。还可以理解的是,结合单独实施例所描述的特征可以使用在其他所述实施例中。
Claims (4)
1.一种基于多头自注意力机制的无人机变尺寸目标检测方法,其特征在于,它包括:
S1、建立数据集:
采用无人机的机载摄像头采集一组包含目标物体的图片,获取一组数据,结合开源数据集制作标签,建立数据集;
S2、建立网络结构:
根据S1获取的数据集,采用多头自注意力机制建立多头自注意力目标检测头网络,所述多头自注意力目标检测头网络的后端采用Faster Rcnn基本框架,在多头自注意力目标检测头网络的回归层再次引入自注意力机制;
S3、分步骤进行网络训练,获得训练好的多头自注意力目标检测头网络;
S4、对目标物体进行检测:
无人机的机载摄像头采集目标物体的图像,对图像进行预处理后输入S3获取的多头自注意力目标检测头网络,多头自注意力目标检测头网络输出检测结果;
S2所述建立多头自注意力目标检测头网络的方法包括:
S2-1、将数据集依次输入两个标准残差块中,数据在每个标准残差块中依次经过卷积层、合并层和激活层,然后向高维度特征空间映射,获得上层网络计算结果;
S2-2、将上层网络计算结果输入自注意力层,获得自注意力层的输出结果;
S2-3、将自注意力层的输出结果输入回归层,选择目标物体候选框与特征图合并,作为多头自注意力目标检测头网络的输出结果;
S2-4、将多头自注意力目标检测头网络的输出结果输入到后端Faster Rcnn基本框架的分类检测网络中,获得目标物体的最终位置和所属 类别;
S2-2所述自注意力层的输出结果的计算方法包括:
将注意力分数A:转化为自注意力权重,获得输出结果:
Self-Attention(X):=softmax(A:)XWval;
S2-3所述多头自注意力目标检测头网络的输出结果的获取方法包括:
提取自注意力层的输出结果的特征信息,通过映射矩阵Wout和偏置Bout与各层结果合并,获得最终输出:
其中:Nh表示多头自注意力目标检测头网络的特征空间,h表示Nh中的特征层;
位置信息向量P中,位置编码包括绝对位置编码和相对位置编码。
2.根据权利要求1所述的一种基于多头自注意力机制的无人机变尺寸目标检测方法,其特征在于,S1所述采集一组包含目标物体的图片获取一组数据集的过程包括:
对图片进行去噪、数据归一化和图片数据降采样。
3.根据权利要求1所述的一种基于多头自注意力机制的无人机变尺寸目标检测方法,其特征在于,S3所述进行网络训练的具体方法包括:
S3-1、在ImageNet数据集上对S2建立的多头自注意力目标检测头网络和回归层进行预训练,将训练好的模型合并到多头自注意力目标检测头网络中;
S3-2、将S1获取的数据集划分为训练集和测试集两部分;
S3-3、利用S1获取的数据集对多头自注意力目标检测头网络进行端到端的训练,同时利用测试集进行性能检测;
S3-4、根据性能检测调整训练结果,返回执行S3-3,直至获取最终训练好的多头自注意力目标检测头网络。
4.根据权利要求1-3中任一项所述的一种基于多头自注意力机制的无人机变尺寸目标检测方法,其特征在于,S4所述对图像进行预处理包括:
空间域滤波图像去噪和数据标准化处理。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010659641.3A CN111709397B (zh) | 2020-07-08 | 2020-07-08 | 一种基于多头自注意力机制的无人机变尺寸目标检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010659641.3A CN111709397B (zh) | 2020-07-08 | 2020-07-08 | 一种基于多头自注意力机制的无人机变尺寸目标检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111709397A CN111709397A (zh) | 2020-09-25 |
CN111709397B true CN111709397B (zh) | 2022-07-05 |
Family
ID=72545143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010659641.3A Active CN111709397B (zh) | 2020-07-08 | 2020-07-08 | 一种基于多头自注意力机制的无人机变尺寸目标检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111709397B (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113283475A (zh) * | 2021-04-27 | 2021-08-20 | 南方电网数字电网研究院有限公司 | 目标检测方法、装置、设备和存储介质 |
CN113298789B (zh) * | 2021-05-28 | 2024-08-30 | 国网陕西省电力有限公司电力科学研究院 | 绝缘子缺陷检测方法、系统、电子设备及可读存储介质 |
CN113326845A (zh) * | 2021-06-30 | 2021-08-31 | 上海云从汇临人工智能科技有限公司 | 基于自注意力机制的目标检测方法、系统和存储介质 |
CN113744310A (zh) * | 2021-08-24 | 2021-12-03 | 北京百度网讯科技有限公司 | 目标跟踪方法、装置、电子设备及可读存储介质 |
CN113554125B (zh) * | 2021-09-18 | 2021-12-17 | 四川翼飞视科技有限公司 | 结合全局与局部特征的目标检测装置、方法和存储介质 |
CN114417847A (zh) * | 2021-12-24 | 2022-04-29 | 中国科学院计算技术研究所 | 一种相对位置编码方法及系统 |
CN115546617A (zh) * | 2022-10-13 | 2022-12-30 | 哈尔滨市科佳通用机电股份有限公司 | 基于改进fct网络的车门锁闭装置配件丢失检测方法及装置 |
CN116645523B (zh) * | 2023-07-24 | 2023-12-01 | 江西蓝瑞存储科技有限公司 | 一种基于改进RetinaNet的快速目标检测方法 |
CN117911744A (zh) * | 2023-12-14 | 2024-04-19 | 国网湖北省电力有限公司武汉供电公司 | 一种基于改进Faster R-CNN的电缆隧道积水图像识别方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110084299A (zh) * | 2019-04-24 | 2019-08-02 | 中国人民解放军国防科技大学 | 基于多头融合注意力的目标检测方法和装置 |
CN110827251A (zh) * | 2019-10-30 | 2020-02-21 | 江苏方天电力技术有限公司 | 一种基于航拍图像的输电线路锁紧销缺陷检测方法 |
CN111160343A (zh) * | 2019-12-31 | 2020-05-15 | 华南理工大学 | 一种基于Self-Attention的离线数学公式符号识别方法 |
CN111178213A (zh) * | 2019-12-23 | 2020-05-19 | 大连理工大学 | 一种基于深度学习的航拍车辆检测方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109829893B (zh) * | 2019-01-03 | 2021-05-25 | 武汉精测电子集团股份有限公司 | 一种基于注意力机制的缺陷目标检测方法 |
-
2020
- 2020-07-08 CN CN202010659641.3A patent/CN111709397B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110084299A (zh) * | 2019-04-24 | 2019-08-02 | 中国人民解放军国防科技大学 | 基于多头融合注意力的目标检测方法和装置 |
CN110827251A (zh) * | 2019-10-30 | 2020-02-21 | 江苏方天电力技术有限公司 | 一种基于航拍图像的输电线路锁紧销缺陷检测方法 |
CN111178213A (zh) * | 2019-12-23 | 2020-05-19 | 大连理工大学 | 一种基于深度学习的航拍车辆检测方法 |
CN111160343A (zh) * | 2019-12-31 | 2020-05-15 | 华南理工大学 | 一种基于Self-Attention的离线数学公式符号识别方法 |
Non-Patent Citations (2)
Title |
---|
Cascade R-CNN: High Quality Object Detection;Zhaowei Cai等;《arXiv》;20190624;第1-14页 * |
ON THE RELATIONSHIP BETWEEN SELF-ATTENTION AND CONVOLUTIONAL LAYERS;Jean-Baptiste Cordonnier等;《arXiv》;20191108;第1-13页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111709397A (zh) | 2020-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111709397B (zh) | 一种基于多头自注意力机制的无人机变尺寸目标检测方法 | |
CN110929607B (zh) | 一种城市建筑物施工进度的遥感识别方法和系统 | |
CN104992223B (zh) | 基于深度学习的密集人数估计方法 | |
CN110070091B (zh) | 用于街景理解的基于动态插值重建的语义分割方法及系统 | |
CN108416266A (zh) | 一种利用光流提取运动目标的视频行为快速识别方法 | |
CN109840560A (zh) | 基于胶囊网络中融入聚类的图像分类方法 | |
CN107590427B (zh) | 基于时空兴趣点降噪的监控视频异常事件检测方法 | |
CN109886159B (zh) | 一种非限定条件下的人脸检测方法 | |
CN109635726B (zh) | 一种基于对称式深度网络结合多尺度池化的滑坡识别方法 | |
CN114863348A (zh) | 基于自监督的视频目标分割方法 | |
CN110135354A (zh) | 一种基于实景三维模型的变化检测方法 | |
CN108062575A (zh) | 一种高相似度图像识别与分类方法 | |
CN107977661A (zh) | 基于全卷积神经网络与低秩稀疏分解的感兴趣区域检测方法 | |
CN113505640B (zh) | 一种基于多尺度特征融合的小尺度行人检测方法 | |
CN108734200B (zh) | 基于bing特征的人体目标视觉检测方法和装置 | |
CN114332473A (zh) | 目标检测方法、装置、计算机设备、存储介质及程序产品 | |
CN108446627A (zh) | 一种基于局部深度哈希的航拍图像匹配方法 | |
CN114743022A (zh) | 一种基于Transformer神经网络的图像分类方法 | |
Wang et al. | Video background/foreground separation model based on non-convex rank approximation RPCA and superpixel motion detection | |
CN110175548A (zh) | 基于注意力机制和通道信息的遥感图像建筑物提取方法 | |
CN105930793A (zh) | 一种基于sae特征可视化学习的人体检测方法 | |
CN114463340A (zh) | 一种边缘信息引导的敏捷型遥感图像语义分割方法 | |
CN115170985A (zh) | 一种基于阈值注意力的遥感图像语义分割网络及分割方法 | |
CN115100406A (zh) | 一种基于超像素处理的权重信息熵模糊c均值聚类方法 | |
CN112668662B (zh) | 基于改进YOLOv3网络的野外山林环境目标检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |