CN111707253A - Lawn mower system and mowing method based on fixed artificial ultraviolet polarized light positioning - Google Patents
Lawn mower system and mowing method based on fixed artificial ultraviolet polarized light positioning Download PDFInfo
- Publication number
- CN111707253A CN111707253A CN202010650926.0A CN202010650926A CN111707253A CN 111707253 A CN111707253 A CN 111707253A CN 202010650926 A CN202010650926 A CN 202010650926A CN 111707253 A CN111707253 A CN 111707253A
- Authority
- CN
- China
- Prior art keywords
- lawn mower
- polarized light
- positioning
- controller
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/005—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D34/00—Mowers; Mowing apparatus of harvesters
- A01D34/006—Control or measuring arrangements
- A01D34/008—Control or measuring arrangements for automated or remotely controlled operation
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01M—CATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
- A01M1/00—Stationary means for catching or killing insects
- A01M1/22—Killing insects by electric means
- A01M1/226—Killing insects by electric means by using waves, fields or rays, e.g. sound waves, microwaves, electric waves, magnetic fields, light rays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Automation & Control Theory (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Insects & Arthropods (AREA)
- Harvester Elements (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本发明公开了基于固定人造紫外偏振光定位的割草机系统,包括割草机和人造光源,割草机上设有车轮驱动机构、紫外偏振光定位模块和控制器,车轮驱动机构、紫外偏振光定位模块分别与控制器电连接,紫外偏振光定位模块用于采集在割草机坐标系下人造光源的偏振光数据和割草机与地理北向的夹角信息,控制器用于接收紫外偏振光定位模块采集的信息对割草机的行走路径进行规划,并控制割草机按照规划的路径在工作区域内进行割草操作。利用紫外偏振光的稳定性,通过获取割草机在运动过程中紫外偏振光角度的变化和割草机与地理北向的夹角信息,确定割草机的实时位置,对割草机的割草路径进行规划,白天和夜间获取的位置数据稳定可靠,可应用于割草机的定位。
The invention discloses a lawn mower system based on fixed artificial ultraviolet polarized light positioning, comprising a lawn mower and an artificial light source. The lawn mower is provided with a wheel driving mechanism, an ultraviolet polarized light positioning module and a controller. The positioning modules are respectively electrically connected with the controller. The ultraviolet polarized light positioning module is used to collect the polarized light data of the artificial light source in the coordinate system of the lawn mower and the angle information between the lawn mower and the geographic north direction, and the controller is used to receive the ultraviolet polarized light for positioning. The information collected by the module plans the walking path of the lawn mower, and controls the lawn mower to cut grass in the work area according to the planned path. Using the stability of ultraviolet polarized light, by obtaining the change of the angle of ultraviolet polarized light during the movement of the lawn mower and the angle information between the lawn mower and the geographic north direction, the real-time position of the lawn mower is determined, and the mowing of the lawn mower is determined. The path is planned, and the position data obtained during the day and night is stable and reliable, which can be applied to the positioning of lawn mowers.
Description
技术领域technical field
本发明涉及割草机技术领域,尤其涉及基于固定人造紫外偏振光定位的割草机系统及割 草方法。The invention relates to the technical field of lawn mowers, in particular to a lawn mower system and a lawn mowing method based on fixed artificial ultraviolet polarized light positioning.
背景技术Background technique
割草机的定位即时性,要求具有稳定和精度高的数据来源。Immediate positioning of lawn mowers requires a stable and accurate data source.
现有的割草机大多采用电线通电感应的方式进行定位,在割草前,沿草坪边界敷设绝缘 导线,接入电源后电流通过导线形成磁场,割草机器人遇到导线时,感应到磁场信号,割草 机器人通过程序控制转向以达到不越过边界的目的。其能确定割草范围,但不具备定位精度, 割草前需敷设导线,费时费力,且割草工作时需要一直通电。Most of the existing lawn mowers are positioned by means of electric wire induction. Before mowing, an insulated wire is laid along the border of the lawn. After the power is connected, the current passes through the wire to form a magnetic field. When the lawn mower encounters the wire, it senses the magnetic field signal. , the lawn mower robot is programmed to control steering to achieve the purpose of not crossing the boundary. It can determine the mowing range, but does not have positioning accuracy. Before mowing, a wire needs to be laid, which is time-consuming and labor-intensive, and needs to be powered on all the time during mowing.
而部分采用无线标签定位技术的割草机,其能精准地确定割草范围,无需在割草区域周 围放置电子围栏,但是当定位标签被遮挡时,会影响割草机的定位精度,对于控制系统的性 能要求也较高。Some lawn mowers using wireless tag positioning technology can accurately determine the mowing range without placing an electronic fence around the mowing area. However, when the positioning tag is blocked, it will affect the positioning accuracy of the lawn mower. The performance requirements of the system are also higher.
发明内容SUMMARY OF THE INVENTION
为解决上述技术缺陷,本发明采用的技术方案在于,提供基于固定人造紫外偏振光定位 的割草机系统,包括割草机和用于提供固定紫外偏振光的人造光源,所述割草机上设有车轮 驱动机构、紫外偏振光定位模块和控制器,所述车轮驱动机构、紫外偏振光定位模块分别与 控制器电连接,所述紫外偏振光定位模块用于采集在割草机坐标系下人造光源的偏振光数据 和割草机与地理北向的夹角信息,所述控制器用于接收紫外偏振光定位模块采集的信息对割 草机的行走路径进行规划,并控制割草机按照规划的路径在工作区域内进行割草操作。In order to solve the above-mentioned technical defects, the technical solution adopted in the present invention is to provide a lawn mower system based on fixed artificial ultraviolet polarized light positioning, including a lawn mower and an artificial light source for providing fixed ultraviolet polarized light, and the lawn mower is provided with an artificial light source. A wheel drive mechanism, an ultraviolet polarized light positioning module and a controller are provided. The wheel drive mechanism and the ultraviolet polarized light positioning module are respectively electrically connected to the controller. The ultraviolet polarized light positioning module is used to collect artificial The polarized light data of the light source and the angle information between the lawn mower and the geographic north direction, the controller is used to receive the information collected by the ultraviolet polarized light positioning module to plan the walking path of the lawn mower, and control the lawn mower to follow the planned path Mowing operations in the work area.
进一步地,所述紫外偏振光定位模块包括至少两个偏振光传感器,水平传感器以及惯性 传感器,所述偏振光传感器用于采集割草机在不同位置人造光源的紫外偏振光信息并输出偏 振方位角,所述水平传感器用于调整偏振光传感器至水平状态,所述惯性传感器用于采集割 草机与地理北向的夹角信息和姿态信息,所述控制器接收并对偏振光传感器、水平传感器及 惯性传感器采集的数据进行处理以输出割草机的经纬度坐标信息;所述偏振光传感器、水平 传感器及惯性传感器分别与控制器电连接。Further, the ultraviolet polarized light positioning module includes at least two polarized light sensors, a level sensor and an inertial sensor, and the polarized light sensor is used to collect the ultraviolet polarized light information of the artificial light source of the lawn mower at different positions and output the polarization azimuth angle. , the level sensor is used to adjust the polarized light sensor to a horizontal state, the inertial sensor is used to collect the angle information and attitude information between the lawnmower and the geographic north direction, the controller receives and analyzes the polarized light sensor, the level sensor and the The data collected by the inertial sensor is processed to output the latitude and longitude coordinate information of the lawn mower; the polarized light sensor, the level sensor and the inertial sensor are respectively electrically connected to the controller.
进一步地,还包括用于采集割草机的实时速度信息的速度传感器,所述速度传感器设置 在割草机上,所述速度传感器与控制器电连接,所述控制器接收并对速度传感器、惯性传感 器采集的数据进行分析以对割草机的速度及姿态误差进行修正。Further, it also includes a speed sensor for collecting real-time speed information of the lawn mower, the speed sensor is arranged on the lawn mower, the speed sensor is electrically connected with the controller, and the controller receives and analyzes the speed sensor, inertial The data collected by the sensors is analyzed to correct for speed and attitude errors of the mower.
进一步地,还包括辅助定位组件,所述辅助定位组件包括定位杆和图像采集模块,所述 图像采集模块设于定位杆或割草机上,所述图像采集模块与控制器电连接,所述图像采集模 块用于采集割草机或定位杆的实时图像信息,所述控制器接收并对图像采集模块采集的数据 进行分析以输出割草机的实时坐标信息。Further, it also includes an auxiliary positioning assembly, the auxiliary positioning assembly includes a positioning rod and an image acquisition module, the image acquisition module is set on the positioning rod or the lawn mower, the image acquisition module is electrically connected to the controller, and the image acquisition module is electrically connected to the controller. The collection module is used to collect real-time image information of the lawn mower or the positioning rod, and the controller receives and analyzes the data collected by the image collection module to output real-time coordinate information of the lawn mower.
进一步地,还包括无线通讯模块和上位机,所述无限通讯模块分别与控制器、上位机连 接,所述无限通讯模块用于将割草机的工作状态实时传输给上位机。Further, it also includes a wireless communication module and a host computer, the wireless communication module is respectively connected with the controller and the host computer, and the wireless communication module is used to transmit the working state of the lawn mower to the host computer in real time.
进一步地,所述人造光源为紫外线杀菌灯。Further, the artificial light source is an ultraviolet germicidal lamp.
进一步地,所述紫外线杀菌灯位于工作区域的上方,所述紫外线杀菌灯设置的高度为 1m-4m。Further, the ultraviolet germicidal lamp is located above the working area, and the height of the ultraviolet germicidal lamp is 1m-4m.
本发明还提供一种基于固定人造紫外偏振光定位的割草方法,包括以下步骤:The present invention also provides a mowing method based on fixed artificial ultraviolet polarized light positioning, comprising the following steps:
通过水平传感器调整偏振光传感器至水平,人工控制割草机沿草坪的区域边界匀速行驶 一圈,紫外偏振光定位模块采集所述割草机移动过程中人造光源的紫外偏振光数据和割草机 与地理北向的夹角信息、姿态信息,控制器根据采集的以上信息,计算得到割草机测试过程 中各点的位置坐标,并通过连续折线或曲线将位置坐标依次连接生成割草工作区域的虚拟边 界;Adjust the polarized light sensor to the level through the level sensor, and manually control the lawn mower to drive around the lawn at a constant speed. The ultraviolet polarized light positioning module collects the ultraviolet polarized light data of the artificial light source during the movement of the lawn mower and the lawn mower. With the angle information and attitude information of the geographic north direction, the controller calculates the position coordinates of each point in the lawn mower test process according to the above information collected, and connects the position coordinates in turn through continuous polylines or curves to generate the mowing work area. virtual border;
根据设定的虚拟边界,控制割草机在割草工作区域内进行割草操作,获取割草机实时位 置的经纬度坐标信息,控制器根据获得的割草机的坐标信息及地理北向的夹角信息、姿态信 息进行数据拟合,对割草机规划行走路径,并采用射线法判断割草机当前位置是否在割草工 作区域内。According to the set virtual boundary, the lawn mower is controlled to perform mowing operations in the mowing work area, and the latitude and longitude coordinate information of the real-time position of the lawn mower is obtained. The controller obtains the coordinate information of the lawn mower and the angle between the geographic north direction Information and attitude information are used for data fitting, the walking path of the lawn mower is planned, and the ray method is used to determine whether the current position of the lawn mower is within the mowing work area.
进一步地,还包括如下步骤:Further, it also includes the following steps:
获取割草机所在位置的速度信息和姿态信息,根据控制器存储的割草机的测试速度和姿 态信息,对割草机的速度及姿态误差进行修正。Acquire the speed information and attitude information of the location of the lawn mower, and correct the speed and attitude errors of the lawn mower according to the test speed and attitude information of the lawn mower stored by the controller.
进一步地,还包括如下步骤:Further, it also includes the following steps:
在草坪工作区域内或草坪工作区域外设置定位杆,控制器获取割草机与定位杆的相对距 离及角度信息并分析得到割草机所在位置的坐标信息,对割草机进行规划辅助行走路径。A positioning rod is set in the lawn working area or outside the lawn working area. The controller obtains the relative distance and angle information between the lawn mower and the positioning rod, analyzes and obtains the coordinate information of the position of the lawn mower, and plans the auxiliary walking path for the lawn mower. .
与现有技术比较本发明技术方案的有益效果为:Compared with the prior art, the beneficial effects of the technical solution of the present invention are:
1、本发明提供的基于固定人造紫外偏振光定位的割草机系统,利用紫外偏振光的稳定性, 通过获取割草机在运动过程中紫外偏振光角度的变化和与地理北向的夹角信息,确定割草机 的实时位置,对割草机的割草路径进行规划,白天和夜间获取的位置数据稳定可靠,不用考 虑光线因时间的变化,可应用于割草机的定位。1. The lawnmower system based on the fixed artificial ultraviolet polarized light positioning provided by the present invention utilizes the stability of the ultraviolet polarized light to obtain the change of the angle of the ultraviolet polarized light and the angle information with the geographic north direction during the movement of the lawnmower. , determine the real-time position of the lawn mower, and plan the mowing path of the lawn mower. The position data obtained during the day and at night is stable and reliable, and it can be applied to the positioning of the lawn mower without considering the change of light due to time.
2、采用偏振光传感器获取人造光源的紫外偏振信息,不但具有即时定位功能,能固定数 据,且无需测量加速度定位不会积累误差,具有稳定的定位能力,能为割草机提供稳定的工 作区域控制能力,解决割草精度和控制复杂度的问题。2. The polarized light sensor is used to obtain the ultraviolet polarization information of the artificial light source, which not only has the function of instant positioning, but also can fix the data, and does not need to measure the acceleration positioning without accumulating errors. It has stable positioning ability and can provide a stable working area for the lawn mower. Control capability to address mowing accuracy and control complexity.
3、设置速度传感器和惯性传感器对割草机的速度及姿态误差进行补偿,以提高实时定位 的精度和应对不同环境适应的需要。3. Set the speed sensor and inertial sensor to compensate the speed and attitude error of the lawn mower to improve the accuracy of real-time positioning and meet the needs of adapting to different environments.
4、设置定位杆和图形采集模块,通过定位杆或割草机在不同距离上像素点的大小变化, 得到定位杆与割草机的相对距离和位置,结合人造紫外偏振光定位的方式,以提高割草机系 统的定位精度和效率。4. Set the positioning rod and the graphic acquisition module, and obtain the relative distance and position of the positioning rod and the lawn mower by changing the pixel size of the positioning rod or the lawn mower at different distances. Combined with the artificial ultraviolet polarized light positioning method, Improve the positioning accuracy and efficiency of your lawnmower system.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附 图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域 普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1是本发明实施例提供的基于固定人造紫外偏振光定位的割草系统的结构原理图;1 is a schematic structural diagram of a mowing system based on fixed artificial ultraviolet polarized light positioning provided by an embodiment of the present invention;
图2是本发明实施例提供的基于固定人造紫外偏振光定位的割草方法中天空中某一点的 偏振方向分布模型图;Fig. 2 is the polarization direction distribution model diagram of a certain point in the sky in the mowing method based on fixed artificial ultraviolet polarized light positioning provided by the embodiment of the present invention;
图3是本发明实施例提供的基于固定人造紫外偏振光定位的割草方法的流程图。FIG. 3 is a flowchart of a lawn mowing method based on fixed artificial ultraviolet polarized light positioning provided by an embodiment of the present invention.
其中,附图标记为:Among them, the reference numerals are:
1、割草机,2、人造光源,3、车轮驱动机构,4、控制器,5、偏振光传感器,6、水平 传感器,7、惯性传感器,8、速度传感器,9、图形采集模块,10、无线通讯模块,11、上位 机,12、光强信息采集模块,13、A/D转换模块。1. Lawn mower, 2. Artificial light source, 3. Wheel drive mechanism, 4. Controller, 5. Polarized light sensor, 6. Level sensor, 7. Inertial sensor, 8. Speed sensor, 9. Graphic acquisition module, 10 , wireless communication module, 11, upper computer, 12, light intensity information acquisition module, 13, A/D conversion module.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步说明。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.
实施例1Example 1
请参阅图1-3所示,本发明提供基于固定人造紫外偏振光定位的割草机系统,包括割草 机1和用于提供固定紫外偏振光的人造光源2,割草机1上设有车轮驱动机构3、紫外偏振光 定位模块和控制器4,车轮驱动机构3、紫外偏振光定位模块分别与控制器4电连接,紫外偏 振光定位模块用于采集在割草机1坐标系下人造光源2的偏振光数据和割草机1与地理北向 的夹角信息,控制器4用于接收紫外偏振光定位模块采集的信息对割草机1的行走路径进行 规划,并控制割草机1按照规划的路径在工作区域内进行割草操作。其中,控制器2为STM32 芯片。1-3, the present invention provides a lawn mower system based on fixed artificial ultraviolet polarized light positioning, including a lawn mower 1 and an artificial light source 2 for providing fixed ultraviolet polarized light, the lawn mower 1 is provided with The
利用紫外偏振光的稳定性,通过获取割草机1在运动过程中紫外偏振光角度的变化和割 草机1与地理北向的夹角信息,确定割草机1的实时位置,对割草机1的割草路径进行规划, 白天和夜间获取的位置数据稳定可靠,不用考虑光线因时间的变化,可应用于割草机1的精 准定位。Using the stability of the ultraviolet polarized light, by obtaining the change of the angle of the ultraviolet polarized light during the movement of the lawn mower 1 and the angle information between the lawn mower 1 and the geographic north direction, the real-time position of the lawn mower 1 is determined, and the information on the lawn mower 1 is determined. The mowing path of 1 is planned, and the position data obtained during the day and night is stable and reliable, regardless of the change of light due to time, which can be applied to the precise positioning of lawn mower 1.
具体的,人造光源2为紫外线杀菌灯。紫外线杀菌灯不但能提供固定的人造紫外偏振光, 还能杀灭蚊虫,但是对眼睛和皮肤都有伤害,因此割草机1适合在远离人群的割草工作区域 进行操作。Specifically, the artificial light source 2 is an ultraviolet germicidal lamp. The ultraviolet germicidal lamp can not only provide fixed artificial ultraviolet polarized light, but also kill mosquitoes, but it is harmful to the eyes and skin, so the lawn mower 1 is suitable for operation in the lawn mowing work area away from the crowd.
为尽量减少不必要的伤害,紫外线杀菌灯位于割草工作区域的上方,紫外线杀菌灯设置 的高度为1m-4m。In order to minimize unnecessary damage, the ultraviolet germicidal lamp is located above the mowing work area, and the height of the ultraviolet germicidal lamp is set at 1m-4m.
优选地,紫外偏振光定位模块包括至少两个偏振光传感器5,水平传感器6以及惯性传 感器7,偏振光传感器5用于采集割草机1在不同位置人造光源3的紫外偏振光信息并输出 偏振方位角,水平传感器6用于调整偏振光传感器5至水平状态,惯性传感器7用于采集割 草机1与地理北向的夹角信息和姿态信息,控制器4接收并对偏振光传感器5、水平传感器6 及惯性传感器7采集的数据进行处理以输出割草机1的经纬度坐标信息;偏振光传感器5、 水平传感器6及惯性传感器7分别与控制器4电连接。Preferably, the ultraviolet polarized light positioning module includes at least two
采用偏振光传感器5获取人造光源3的紫外偏振信息,不但具有即时定位功能,能固定 数据,且无需测量加速度定位不会积累误差,具有稳定的定位能力,能为割草机1提供稳定 的工作区域控制能力,解决割草精度和控制复杂度的问题。Using the
具体的,偏振光传感器5、水平传感器6及惯性传感器7均设置在割草机1上,惯性传感器7为电子罗盘。偏振光传感器优选3个,控制器4同步采集多个偏振方位角数据,即使 某一方向的偏振度为0或者偏振方向矢量平行或某一采集方向受到干扰,割草机系统也能正常工作,多方向的同时测量可以提高偏振光实时定位系统的稳定性。Specifically, the
具体地,紫外偏振光定位模块还包括太多个光强信息采集模块12和A/D转换模块13, 光强信息采集模块12与A/D转换模块13电连接,A/D转换模块13与控制器4电连接,光强信息采集模块12用于采集不同位置太阳光强信息并输出电流信号,A/D转换模块13用于接收太阳信息采集模块12传输的电流信号并转换成电压信号,控制器2接收并对A/D转换模块13传输的电压信号值进行处理以判断太阳方向矢量的方向。Specifically, the ultraviolet polarized light positioning module further includes a plurality of light intensity
根据输出的电压的正负值可以对太阳位置所在坐标系的区间进行判别,代替人眼对太阳 方向矢量的方向进行判断,可以提高割草机系统偏振光定位的实时性。According to the positive and negative values of the output voltage, the interval of the coordinate system where the sun position is located can be judged, and the direction of the sun direction vector can be judged instead of the human eye, which can improve the real-time performance of the polarized light positioning of the lawn mower system.
具体的,紫外偏振光定位模块设置在割草机1上。Specifically, the ultraviolet polarized light positioning module is arranged on the lawn mower 1 .
优选地,还包括用于采集割草机1的实时速度信息的速度传感器8,速度传感器8设置 在割草机1上,速度传感器8与控制器4电连接,控制器4接收并对速度传感器8、惯性传感器7采集的数据进行分析以对割草机1的速度及姿态误差进行修正。例如补偿割草机1在斜坡上进行航向调整时的运动速度。Preferably, it also includes a
设置速度传感器8和惯性传感器7对割草机1的速度及姿态误差进行补偿,以提高实时 定位的精度和应对不同环境适应的需要。A
优选地,还包括辅助定位组件,辅助定位组件包括定位杆和图像采集模块9,图像采集 模块9设于定位杆或割草机1上,图像采集模块9与控制器4电连接,图像采集模块9用于 采集割草机1或定位杆的实时图像信息,控制器4接收并对图像采集模块9采集的数据进行 分析以输出割草机1的实时坐标信息。其中,定位杆位于割草工作区域内或者割草工作区域 外,图像采集模块12优选设置在割草机1上。Preferably, an auxiliary positioning assembly is also included. The auxiliary positioning assembly includes a positioning rod and an
通过定位杆或割草机1在不同距离上像素点的大小变化,得到定位杆与割草机1的相对 距离和位置,结合人造紫外偏振光定位的方式,以提高割草机系统的定位精度和效率。The relative distance and position of the positioning rod and the lawn mower 1 can be obtained by changing the size of the pixel points of the positioning rod or the lawn mower 1 at different distances. Combined with the positioning method of artificial ultraviolet polarized light, the positioning accuracy of the lawn mower system can be improved. and efficiency.
优选地,还包括无线通讯模块10和上位机11,无限通讯模块10分别与控制器4、上位 机11连接,无限通讯模块10用于将割草机1的工作状态实时传输给上位机11,上位机11对割草机1进行实时监测和远程控制。Preferably, the
本发明还提供基于固定人造紫外偏振光定位的割草方法,包括以下步骤:The present invention also provides a mowing method based on fixed artificial ultraviolet polarized light positioning, comprising the following steps:
S1:通过水平传感器6调整偏振光传感器5至水平,在割草机1上建立水平坐标系,人 工控制割草机1沿草坪的区域边界匀速行驶一圈,紫外偏振光定位模块采集割草机1移动过 程中人造光源3的紫外偏振光数据和割草机1与地理北向的夹角信息、姿态信息,控制器4 根据采集的以上信息,计算得到割草机1测试过程中各点的位置坐标,并通过连续折线或曲 线将位置坐标依次连接生成割草工作区域的虚拟边界;S1: Adjust the
其中,根据采集的太阳的偏振光数据和割草机1与地理北向的夹角信息,计算割草机1 移动过程中各点的位置坐标原理如下:Among them, according to the collected polarized light data of the sun and the angle information between the lawnmower 1 and the geographic north direction, the principle of calculating the position coordinates of each point during the movement of the lawnmower 1 is as follows:
天空中某一点的偏振方向分布模型如图2所示,图中W点表示被观测点、O点表示地球 上的观测点、S点表示某一时刻太阳所在的位置、Z点表示天顶点,W点观测点的偏振方向平行于由太阳的位置、地球上的观测点和被观测点构成平面WOS的法向量。The polarization direction distribution model of a certain point in the sky is shown in Figure 2. In the figure, point W represents the observed point, point O represents the observation point on the earth, point S represents the position of the sun at a certain moment, and point Z represents the zenith. The polarization direction of the observation point at point W is parallel to the normal vector of the plane WOS formed by the position of the sun, the observation point on the earth and the observed point.
偏振方向矢量P表示为:The polarization direction vector P is expressed as:
P=k(cosθ,sinθ,0);(1)P=k(cosθ, sinθ, 0); (1)
其中,θ为偏振光传感器5测得的偏振方位角,k取值为1或-1,由A/D转换模块13输出的电压值判断得出。Wherein, θ is the polarization azimuth angle measured by the
由于天空中分布的偏振光存在一定的规律,即偏振光的分布在某一时刻某一地点是稳定 的,因此,理论上可以由两个不平行的偏振方向矢量P1、P2叉乘求出太阳的方向矢量S0, 太阳的方向矢量S0的方向由太阳方向矢量判断组件8进行判断。Since the polarized light distributed in the sky has a certain law, that is, the distribution of polarized light is stable at a certain time and place, so theoretically, it can be calculated by the cross product of two non-parallel polarization direction vectors P 1 and P 2 . The direction vector S 0 of the sun emerges, and the direction of the sun direction vector S 0 is judged by the sun direction
采用偏振光传感器5采集T1、T2时刻割草机1与太阳子午线的夹角,即偏振方位角θ1、 θ2,采用电子罗盘采集割草机1与地理北向的夹角,即割草机1的航向角H;The
在水平坐标系中,对应的偏振方向矢量为P1、P2,S0可以表示为:In the horizontal coordinate system, the corresponding polarization direction vectors are P 1 , P 2 , and S 0 can be expressed as:
S0=(Sx Sy Sz)T=k(P1×P2)T: (2)S 0 =(S x S y S z ) T =k(P 1 ×P 2 ) T : (2)
其中,Sx、Sy、Sz分别表示太阳的方向矢量在水平坐标系的X轴、Y轴、Z轴的坐标 值;P1、P2表示天空中两个被观测点W1、W2的偏振方向矢量。Among them, S x , S y , and S z represent the coordinate values of the direction vector of the sun on the X-axis, Y-axis, and Z-axis of the horizontal coordinate system, respectively; P 1 , P 2 represent the two observed points W1, W2 in the sky. Polarization direction vector.
定义太阳的高度角为hs,太阳的方向矢量在水平坐标系中的投影与水平坐标系中X轴之 间的夹角为太阳伪方位角As′,顺时针方向表示角度的正方向,太阳的方向矢量在水平坐标系 中的投影与正北之间的夹角为太阳的方位角As;Define the height angle of the sun as h s , the angle between the projection of the sun's direction vector in the horizontal coordinate system and the X-axis in the horizontal coordinate system is the pseudo-azimuth angle of the sun A s ', and the clockwise direction represents the positive direction of the angle, The angle between the projection of the direction vector of the sun in the horizontal coordinate system and true north is the azimuth angle A s of the sun;
在水平坐标系中,由太阳的方向矢量得到如下公式:In the horizontal coordinate system, the following formula is obtained from the direction vector of the sun:
其中,当k取1时,由公式(3)求得的太阳的高度角和伪方位角分别为hs和As′;当k取-1时,由公式(3)求得的太阳的高度角和伪方位角分别为-hs和180+As′。Among them, when k is 1, the altitude and pseudo azimuth of the sun obtained by formula (3) are h s and A s ′ respectively; when k is -1, the sun's altitude obtained by formula (3) The elevation and pseudo-azimuth angles are -h s and 180+ As ', respectively.
由天文三角形中得到:Obtained from the astronomical triangle:
其中,δ为太阳赤纬,为地理纬度,ω为太阳时角。where δ is the declination of the sun, is the geographic latitude, and ω is the solar hour angle.
太阳视角ω表示为:The solar angle ω is expressed as:
ω=η+15(UT1+E)-180; (5)ω=η+15(UT1+E)-180; (5)
其中,η为地理经度,UT1为世界时(是指格林尼治所在地的标准时间),E为时差。Among them, η is the geographic longitude, UT1 is the universal time (referring to the standard time of the location of Greenwich), and E is the time difference.
世界时和协调世界时UTC之间的偏差在0.9s以内,0.9s转换成以小时为单位时数值很 小,对后续的计算影响很小,因此UTC替代UT1,故公式(4)表示为:The deviation between Universal Time and Coordinated Universal Time UTC is within 0.9s. The conversion of 0.9s into hours is very small and has little impact on subsequent calculations. Therefore, UTC replaces UT1, so formula (4) is expressed as:
ω=η+15(UTC+E)-180: (6)ω=η+15(UTC+E)-180: (6)
在平面坐标系中,As表示为:In the plane coordinate system, A s is expressed as:
As=As+H+D; (7) As = As +H+D; (7)
其中,H为地磁北极与电子罗盘体轴之间的夹角,D为被测地点的磁偏角,根据地理经 度η和地理维度查表得到,这三个参数的关系表示为:Among them, H is the angle between the geomagnetic north pole and the axis of the electronic compass body, D is the magnetic declination angle of the measured location, according to the geographic longitude η and geographic latitude Looking up the table, the relationship between these three parameters is expressed as:
由公式(4)、(6)、(7)、(8)可得:From formulas (4), (6), (7), (8), we can get:
其中,太阳赤纬δ和时差E可以通过查找星历表获取,协调世界时由上位机11提供,H 由电子罗盘采集获得,As′和hs由太阳的方向矢量求出。Among them, the solar declination δ and the time difference E can be obtained by looking up the ephemeris, the UTC is provided by the
经纬度坐标及磁偏角结合即可实现割草机的定位目的,割草机1与真北方向的夹角为α北, 其中,α北=H+D,实现定向的目的。The combination of latitude and longitude coordinates and magnetic declination can achieve the purpose of positioning the lawn mower. The angle between the lawn mower 1 and the true north direction is α North , where α North = H+D, to achieve the purpose of orientation.
S2:根据设定的虚拟边界,控制割草机1在割草工作区域内进行割草操作,获取割草机 1实时位置的经纬度坐标信息,采用射线法判断割草机1当前位置是否在割草工作区域内, 控制器4根据获得的割草机1的坐标信息及航向角信息进行数据拟合,对割草机1规划行走 路线。S2: According to the set virtual boundary, control the lawn mower 1 to perform the mowing operation in the mowing work area, obtain the latitude and longitude coordinate information of the real-time position of the lawn mower 1, and use the ray method to determine whether the current position of the lawn mower 1 is mowing In the grass working area, the
其中,采用射线法判断割草机1当前位置是否在割草工作区域内,通过观察射线与多变 形的交点个数,如果交点个数为奇数,则该点在多边形内,如果为偶数则在多边形外。计算 公式如下:Among them, the ray method is used to judge whether the current position of the lawn mower 1 is in the mowing work area. By observing the number of intersections between the ray and the polymorph, if the number of intersections is an odd number, the point is in the polygon, and if it is an even number, it is in the polygon. outside the polygon. Calculated as follows:
x=(y0-p1.y)*(p2.x-p1.x)/(p2.y-p1.y)+x0; (10)x=(y0-p1.y)*(p2.x-p1.x)/(p2.y-p1.y)+x0; (10)
其中,P为割草机1所处的位置,x0为P点的横坐标,y0为P点的纵坐标,P1、P2 表示多边形中相邻的两条边。Wherein, P is the position of the lawn mower 1, x0 is the abscissa of point P, y0 is the ordinate of point P, and P1 and P2 represent two adjacent sides in the polygon.
S3:获取割草机1所在位置的速度信息和姿态信息,根据控制器4存储的割草机1的测 试速度和姿态信息,采用最小均方根误差算法对割草机1的速度及姿态误差进行修正。S3: Acquire the speed information and attitude information of the position where the lawn mower 1 is located, and according to the test speed and attitude information of the lawn mower 1 stored by the
割草机1在割草的过程中预设为匀速运动,但在实际运动的过程中可能会有不同的速度, 比如在斜坡上进行航向调整时的运动速度,故需要对割草机1运动过程中的速度及姿态误差 进行补偿,以适应不同的户外环境。The lawnmower 1 is preset to move at a constant speed during the mowing process, but it may have different speeds during the actual movement, such as the speed of the course adjustment on a slope, so the lawnmower 1 needs to be moved. The speed and attitude errors in the process are compensated to adapt to different outdoor environments.
其中,均方根误差用于描述惯性传感器7的速度、航向角、姿态角的精度,记为RMS,在测量次数有限的情况下,均方根误差由以下公式可得:Among them, the root mean square error is used to describe the accuracy of the speed, heading angle, and attitude angle of the
其中,n为有效试验次数;mi为第i次试验的采样点数;j为第i次试验的第j个采样时刻;xij为第i次试验的第j个采样时刻的测量值;x0ij为第i次试验的第j个采样时的的 真值。Among them, n is the number of valid trials; m i is the number of sampling points of the i-th trial; j is the j-th sampling moment of the i-th trial; x ij is the measured value of the j-th sampling moment of the i-th trial; x 0ij is the true value at the jth sampling of the ith trial.
S4:在割草工作区域内或割草工作区域外设置定位杆,控制器2获取割草机1与定位杆 的相对距离及角度信息并分析得到割草机1所在位置的坐标信息,对割草机1辅助规划行走 路线。S4: A positioning rod is set in the mowing work area or outside the mowing work area. The controller 2 obtains the relative distance and angle information between the lawn mower 1 and the positioning rod, and analyzes the coordinate information of the position of the lawn mower 1. The lawn mower 1 assists in planning the walking route.
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造 性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本 发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案, 皆应在由权利要求书所确定的保护范围内。The preferred embodiments of the present invention have been described in detail above. It should be understood that those skilled in the art can make numerous modifications and changes based on the concept of the present invention without creative effort. Therefore, any technical solutions that can be obtained by those skilled in the art through logical analysis, reasoning or limited experiments on the basis of the prior art according to the concept of the present invention shall fall within the protection scope determined by the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010650926.0A CN111707253A (en) | 2020-07-08 | 2020-07-08 | Lawn mower system and mowing method based on fixed artificial ultraviolet polarized light positioning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010650926.0A CN111707253A (en) | 2020-07-08 | 2020-07-08 | Lawn mower system and mowing method based on fixed artificial ultraviolet polarized light positioning |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111707253A true CN111707253A (en) | 2020-09-25 |
Family
ID=72546080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010650926.0A Pending CN111707253A (en) | 2020-07-08 | 2020-07-08 | Lawn mower system and mowing method based on fixed artificial ultraviolet polarized light positioning |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111707253A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112379399A (en) * | 2020-10-27 | 2021-02-19 | 衡阳市智谷科技发展有限公司 | Polarized light navigation positioning method based on multi-configuration fisheye camera |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103822629A (en) * | 2014-03-11 | 2014-05-28 | 大连理工大学 | Positioning system and its positioning method based on multi-directional polarized light navigation sensor |
CN104034330A (en) * | 2014-06-10 | 2014-09-10 | 西安电子科技大学 | Indoor navigation system and method based on polarized light |
US20150006015A1 (en) * | 2006-03-17 | 2015-01-01 | Irobot Corporation | Robot Confinement |
CN106651951A (en) * | 2016-12-20 | 2017-05-10 | 南京理工大学 | Atmospheric polarization mode detection and course calculation system and method |
CN106679645A (en) * | 2016-08-24 | 2017-05-17 | 大连理工大学 | Real-time navigation device based on multi-directional polarized light |
CN106851567A (en) * | 2017-01-16 | 2017-06-13 | 深圳拓邦股份有限公司 | A kind of localization method, apparatus and system |
US20170242172A1 (en) * | 2014-10-15 | 2017-08-24 | Sunpartner Technologies | Polarising photovoltaic module built into the screen of an electronic display device |
CN108286966A (en) * | 2018-01-24 | 2018-07-17 | 北京航空航天大学 | A kind of adaptively multispectral polarization navigation sensor and its orientation method |
CN109668567A (en) * | 2019-01-02 | 2019-04-23 | 中国人民解放军国防科技大学 | A method of polarized light orientation for UAV under cloudy conditions |
CN110754204A (en) * | 2019-09-27 | 2020-02-07 | 西安交通大学 | A lawn three-dimensional pattern trimming robot system and method |
-
2020
- 2020-07-08 CN CN202010650926.0A patent/CN111707253A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150006015A1 (en) * | 2006-03-17 | 2015-01-01 | Irobot Corporation | Robot Confinement |
CN103822629A (en) * | 2014-03-11 | 2014-05-28 | 大连理工大学 | Positioning system and its positioning method based on multi-directional polarized light navigation sensor |
CN104034330A (en) * | 2014-06-10 | 2014-09-10 | 西安电子科技大学 | Indoor navigation system and method based on polarized light |
US20170242172A1 (en) * | 2014-10-15 | 2017-08-24 | Sunpartner Technologies | Polarising photovoltaic module built into the screen of an electronic display device |
CN106679645A (en) * | 2016-08-24 | 2017-05-17 | 大连理工大学 | Real-time navigation device based on multi-directional polarized light |
CN106651951A (en) * | 2016-12-20 | 2017-05-10 | 南京理工大学 | Atmospheric polarization mode detection and course calculation system and method |
CN106851567A (en) * | 2017-01-16 | 2017-06-13 | 深圳拓邦股份有限公司 | A kind of localization method, apparatus and system |
CN108286966A (en) * | 2018-01-24 | 2018-07-17 | 北京航空航天大学 | A kind of adaptively multispectral polarization navigation sensor and its orientation method |
CN109668567A (en) * | 2019-01-02 | 2019-04-23 | 中国人民解放军国防科技大学 | A method of polarized light orientation for UAV under cloudy conditions |
CN110754204A (en) * | 2019-09-27 | 2020-02-07 | 西安交通大学 | A lawn three-dimensional pattern trimming robot system and method |
Non-Patent Citations (2)
Title |
---|
夏征农 等: "《大辞海》", 31 December 2015, 上海辞书出版社 * |
褚金奎 等: "基于偏振光传感器的移动机器人导航实验", 《光学精密工程》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112379399A (en) * | 2020-10-27 | 2021-02-19 | 衡阳市智谷科技发展有限公司 | Polarized light navigation positioning method based on multi-configuration fisheye camera |
CN112379399B (en) * | 2020-10-27 | 2023-12-26 | 衡阳市智谷科技发展有限公司 | Polarized light navigation positioning method based on multi-configuration fisheye camera |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108306217B (en) | Intelligent autonomous overhead high-voltage line wire flying inspection system and method | |
JP6424200B2 (en) | Autonomous mobile work system including variable reflection base station | |
CN107515621B (en) | Flight trajectory control method of line patrol UAV based on electromagnetic perception of transmission line | |
WO2019096264A1 (en) | Smart lawn mowing system | |
CN106679645B (en) | Real-time navigation device based on multi-directional polarized light | |
CN109901580A (en) | A cooperative path and obstacle avoidance system and method for unmanned aerial vehicle and unmanned ground robot | |
CN108227704A (en) | From mobile equipment and its moving method, storage medium and server | |
KR101153857B1 (en) | Weed control robot with young seeding detecting apparatus | |
CN109773788A (en) | A fruit and vegetable picking robot and its control method | |
CN108536145A (en) | A kind of robot system intelligently followed using machine vision and operation method | |
ES2963141T3 (en) | Lawnmower robot and its control method | |
CN203275971U (en) | Outdoor ground swarm-robot control system | |
CN109782770A (en) | A method of autonomously charging a lawn mower | |
CN108901366B (en) | A kind of citrus picking method integrating heaven and earth | |
CN112113565A (en) | Robot positioning system for agricultural greenhouse environment | |
CN208027170U (en) | A kind of power-line patrolling unmanned plane and system | |
CN111670675A (en) | A lawn mower system and lawn mowing method based on solar polarized light positioning | |
CN116117807A (en) | A chili picking robot and its control method | |
CN111707253A (en) | Lawn mower system and mowing method based on fixed artificial ultraviolet polarized light positioning | |
CN107255446B (en) | A system and method for constructing a three-dimensional map of a dwarf densely planted fruit tree canopy | |
CN106802669B (en) | A trajectory planning algorithm based on velocity vector synthesis and its aircraft | |
CN118542162A (en) | Automatic fruit tree pruning system based on machine vision | |
CN112734168A (en) | Unmanned aerial vehicle-based overhead transmission line channel inspection system and hidden danger analysis method | |
CN109258059B (en) | A method and device for determining the position of a lawn mower | |
CN117990699A (en) | Ground surface multi-mode detection robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200925 |
|
RJ01 | Rejection of invention patent application after publication |