CN111702767A - A Manipulator Impedance Control Method Based on Inversion Fuzzy Adaptive - Google Patents
A Manipulator Impedance Control Method Based on Inversion Fuzzy Adaptive Download PDFInfo
- Publication number
- CN111702767A CN111702767A CN202010675488.3A CN202010675488A CN111702767A CN 111702767 A CN111702767 A CN 111702767A CN 202010675488 A CN202010675488 A CN 202010675488A CN 111702767 A CN111702767 A CN 111702767A
- Authority
- CN
- China
- Prior art keywords
- manipulator
- control
- impedance
- force
- self
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 26
- 230000008859 change Effects 0.000 claims abstract description 8
- 239000013598 vector Substances 0.000 claims description 39
- 238000006073 displacement reaction Methods 0.000 claims description 22
- 238000013461 design Methods 0.000 claims description 12
- 238000011217 control strategy Methods 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 11
- 230000006978 adaptation Effects 0.000 claims description 8
- 230000001133 acceleration Effects 0.000 claims description 6
- 238000013016 damping Methods 0.000 claims description 6
- 230000007613 environmental effect Effects 0.000 claims description 5
- 230000004043 responsiveness Effects 0.000 claims description 2
- 230000005484 gravity Effects 0.000 claims 1
- 230000004044 response Effects 0.000 abstract description 7
- 238000004088 simulation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004387 environmental modeling Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Feedback Control In General (AREA)
Abstract
本发明涉及一种基于反演模糊自适应的机械手阻抗控制方法,属于自动化领域。通过采用引入改进力补偿的反演模糊自适应算法完成目标阻抗参数自整定,避免机械手不能快速的跟踪接触力变化及系统不确定性的问题,实现机械手的主动柔顺控制。建立了机械手与未知环境的抓取模型作为阻抗控制的依据;设计了基于位置阻抗控制的自适应控制系统;改进了原阻抗控制方程以提高系统力跟踪的快速响应能力;根据力误差设计了自适应控制律及模糊控制系统完成目标阻抗参数的自整定。本发明能够提高系统力/位的跟踪性能以及完成目标阻抗参数的自整定,实现了无需依赖信息模型的力/位控制,系统的鲁棒性较好。
The invention relates to a manipulator impedance control method based on inversion fuzzy self-adaptation, and belongs to the field of automation. The self-tuning of target impedance parameters is completed by adopting the inversion fuzzy adaptive algorithm with improved force compensation, which avoids the problem that the manipulator cannot quickly track the change of contact force and system uncertainty, and realizes the active compliance control of the manipulator. The grasping model of the manipulator and unknown environment is established as the basis for impedance control; an adaptive control system based on position impedance control is designed; the original impedance control equation is improved to improve the fast response capability of the system force tracking; according to the force error, an automatic control system is designed. The adaptive control law and fuzzy control system complete the self-tuning of target impedance parameters. The invention can improve the tracking performance of the system force/position and complete the self-tuning of the target impedance parameter, realize the force/position control without relying on the information model, and the system has better robustness.
Description
技术领域technical field
本发明属于自动化领域,涉及一种基于反演模糊自适应的机械手阻抗控制方法。The invention belongs to the field of automation, and relates to a manipulator impedance control method based on inversion fuzzy self-adaptation.
背景技术Background technique
随着工业机械手的广泛使用以及机械手高精度工作行业需求的急剧增加,如:按摩机械手、采摘机械手、表面涂覆机械手等,现有机械手控制方法面临巨大的挑战。为了确保任务作业的安全性以及保持自由和受限运动的期望性能,考虑到机械手与环境之间存在着相互作用力,需要利用阻抗控制实现力和位置统一控制。由于外界环境模型的未知或无法精确的被构建,且机械手本身是一个时变、强耦合、非线性的系统,单一的阻抗控制无法解决各种工程中的实际问题。阻抗控制旨在建立接触力与位置间的动态关系,而不是单独控制力或位置。通过指定接触力和位置之间的关系,它能够确保机械手在受限制的环境中进行位置控制,同时保持适当的接触力。此外,阻抗控制对一些不确定因素和外界干扰具有较强的鲁棒性,又在实施时具有较少的计算量。因此,研究机械手阻抗控制具有广泛的应用前景。With the wide use of industrial manipulators and the sharp increase in the demand for high-precision work of manipulators, such as massage manipulators, picking manipulators, surface coating manipulators, etc., the existing manipulator control methods face huge challenges. In order to ensure the safety of the task operation and maintain the desired performance of free and restricted motion, considering the interaction force between the manipulator and the environment, it is necessary to use impedance control to achieve unified control of force and position. Because the external environment model is unknown or cannot be accurately constructed, and the manipulator itself is a time-varying, strongly coupled, nonlinear system, a single impedance control cannot solve practical problems in various projects. Impedance control aims to establish a dynamic relationship between contact force and position, rather than controlling force or position individually. By specifying the relationship between contact force and position, it enables position control of the manipulator in a constrained environment while maintaining proper contact force. In addition, impedance control has strong robustness to some uncertain factors and external disturbances, and has less computational complexity in implementation. Therefore, research on impedance control of manipulators has broad application prospects.
目前针对机械手的阻抗控制方法的研究,大概从基于力阻抗控制和基于位置阻抗控制角度,融合自适应、模糊控制、神经网络等来克服单一阻抗控制存在的问题。在基于力的阻抗控制方法中,机械手是通过控制关节力矩来实现对末端接触力和位移的调整,必须知道机械手精确的动力学模型,以实现期望的阻抗模型和接触力精度控制,因此较少使用此种方法;基于位置的阻抗控制由两部分组成,分别是位置控制内环和阻抗控制外环,位置控制内环对期望位置、位置补偿和实际位置三个数据进行处理,使机械手的实际位置跟踪上期望位置;阻抗控制外环是处理期望力和实际力的差值,得到位置修正量,然后通过位置控制器控制机械手的位置进行实现力控制。因此,相对理想的控制方式是基于位置阻抗控制融合一些自适应算法,问题在于根据力误差和位置误差如何选择或改进合适的自适应算法,来实现机械手无需信息模型的主动柔顺控制。At present, the research on the impedance control method for the manipulator is probably from the perspective of force-based impedance control and position-based impedance control, integrating adaptive, fuzzy control, neural network, etc. to overcome the problems existing in single impedance control. In the force-based impedance control method, the manipulator realizes the adjustment of the end contact force and displacement by controlling the joint torque. The precise dynamic model of the manipulator must be known to achieve the desired impedance model and contact force precision control, so less Using this method; the position-based impedance control consists of two parts, namely the position control inner loop and the impedance control outer loop. The position control inner loop processes the three data of desired position, position compensation and actual position, so that the actual position of the manipulator can be improved. The desired position is tracked by the position; the outer impedance control loop is to process the difference between the desired force and the actual force, obtain the position correction value, and then control the position of the manipulator through the position controller to realize the force control. Therefore, the relatively ideal control method is to integrate some adaptive algorithms based on the position impedance control. The problem is how to select or improve the appropriate adaptive algorithm according to the force error and position error, so as to realize the active compliance control of the manipulator without the need for an information model.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的在于提供一种基于反演模糊自适应的机械手阻抗控制方法。该方法基于改进的阻抗控制策略,融合自适应算法实现机械手统一的力/位控制。为了使系统控制无需机械手信息模型且具有较好的鲁棒性,该方法提出了PID-阻抗控制策略,解决了机械手对接触力变化响应性能较差的问题,并将力误差系统作为算法的依据。然后根据力误差系统及位置跟踪误差,结合反演理论设计控制律,并将控制律包含的建模信息用模糊控制逼近。而后根据系统控制指标,完成目标阻抗参数的自整定,提高机械手对接触力变化和位置跟踪的响应性能。In view of this, the purpose of the present invention is to provide a method for controlling the impedance of a manipulator based on inversion fuzzy self-adaptation. The method is based on the improved impedance control strategy and integrates the adaptive algorithm to realize the unified force/position control of the manipulator. In order to make the system control without manipulator information model and have good robustness, this method proposes a PID-impedance control strategy, which solves the problem of poor response performance of the manipulator to the change of contact force, and uses the force error system as the basis of the algorithm . Then, according to the force error system and position tracking error, combined with the inversion theory, the control law is designed, and the modeling information contained in the control law is approximated by fuzzy control. Then, according to the system control index, the self-tuning of the target impedance parameters is completed, and the response performance of the manipulator to the contact force change and position tracking is improved.
为达到上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:
一种基于反演模糊自适应的机械手阻抗控制方法,该方法包括以下步骤:A manipulator impedance control method based on inversion fuzzy self-adaptation, the method includes the following steps:
步骤1:完成机械手和环境系统建模并输入已知的系统参数和算法执行所需的参数;Step 1: Complete the modeling of the manipulator and the environmental system and input the known system parameters and parameters required for algorithm execution;
步骤2:根据步骤1的输入执行改进的PID-阻抗控制策略,得到机械手跟踪接触力的误差系统并输出;Step 2: Execute the improved PID-impedance control strategy according to the input of
步骤3:根据步骤1的输入执行反演模糊自适应算法,根据系统指标得到目标阻抗参数的自整定结果并输出;Step 3: Execute the inversion fuzzy adaptive algorithm according to the input of
步骤4:根据步骤2得到的力误差系统和步骤3得到的自整定目标阻抗参数,完成机械手无需依赖信息模型的主动柔顺控制。Step 4: According to the force error system obtained in
可选的,所述步骤1通过以下方式实现:建立n自由度串联机械手抓取模型及关节空间动力学方程:Optionally, the
式中q=[q1,q2,···,qn]T为关节角矢量,Mq(q1)为正定惯性矩阵矢量,Cq(q1,q2)q2为离心力和哥氏力矢量,Gq(q1)为重力转矩矢量,Fq(q1)为摩擦力转矩矢量,τ和τe分别表示设计扭矩矢量和外部扭矩矢量;建立环境模型并采用二阶非线性函数方程来近似: where q=[q 1 ,q 2 ,...,q n ] T is the joint angle vector, M q (q 1 ) is the positive definite inertia matrix vector, C q (q 1 ,q 2 )q 2 is the centrifugal force and Coriolis force vector, G q (q 1 ) is the gravitational torque vector, F q (q 1 ) is the friction torque vector, τ and τ e represent the design torque vector and the external torque vector respectively; order nonlinear function equation to approximate:
式中Be∈Rn×n和Ke∈Rn×n为对角正定矩阵,分别表示为环境阻尼参数和刚度参数;Xe∈Rn表示为环境位置向量;输入已知的系统参数包括:机械手的自由度、各关节的尺寸等;输入算法执行所需的参数:初始关节状态矢量、设计扭矩矢量、设计位移矢量、摩擦力扭矩矢量等。In the formula, B e ∈ R n×n and Ke ∈ R n×n are diagonal positive definite matrices, which are respectively expressed as environmental damping parameters and stiffness parameters; X e ∈ R n is expressed as environmental position vector; input known system parameters Including: the degree of freedom of the manipulator, the size of each joint, etc.; input parameters required for the execution of the algorithm: initial joint state vector, design torque vector, design displacement vector, friction torque vector, etc.
可选的,所述步骤2具体通过以下方式实现:建立机械手的抓取模型及与未知环境的等效阻抗模型,然后引入力补偿的PID-目标阻抗控制方程:Optionally, the
式中,M(X)∈Rn×n表示机械手的理想惯性矩阵,是机械手的理想阻尼矩阵,K∈Rn表示机械手的理想目标刚度,Kd、Kp、Kd∈Rn×n为对角正定矩阵,X、分别表示机械手所需的位移、位移速度和位移加速度矢量,Xd、表示所需位移、所需位移速度和所需位移加速度矢量,Fe表示机械手和工作环境之间所需的接触作用力。In the formula, M(X)∈R n×n represents the ideal inertia matrix of the manipulator, is the ideal damping matrix of the manipulator, K∈R n represents the ideal target stiffness of the manipulator, K d , K p , K d ∈ R n×n are diagonal positive definite matrices, X, respectively represent the displacement, displacement velocity and displacement acceleration vector required by the manipulator, X d , Represents the required displacement, the required displacement velocity and the required displacement acceleration vector, and Fe represents the required contact force between the manipulator and the working environment.
可选的,所述步骤3具体通过以下方式实现:结合接触力和位置跟踪的误差系统,建立基于位置阻抗的自适应系统控制方案;依据所设计的自适应律和模糊控制律,完成力/位置的跟踪及目标阻抗参数自整定;然后根据机械手系统控制指标,选择最优的目标阻抗参数,直到满足算法终止条件并输出最优目标阻抗参数。Optionally, the step 3 is specifically implemented in the following ways: combining the contact force and the error system of position tracking, establishing an adaptive system control scheme based on position impedance; according to the designed adaptive law and fuzzy control law, complete the force/ Position tracking and self-tuning of target impedance parameters; then according to the control index of the manipulator system, the optimal target impedance parameters are selected until the algorithm termination conditions are met and the optimal target impedance parameters are output.
可选的,所述步骤4具体通过以下方法实现:结合步骤2得到的力误差系统和步骤3得到的自整定目标阻抗参数,完成机械手无需依赖信息模型的主动柔顺控制。Optionally, the
可选的,所述步骤2中,引入PID-阻抗控制策略:根据接触力的变化机械手能快速对力进行跟踪控制,提高了系统的响应性;此外,PID参数可根据系统要求进行设计,保证了该控制策略的适应性。Optionally, in
可选的,所述步骤3中,自适应律及模糊控制律:自适应律的设计采用反演理论,将复杂的非线性系统分解成2子系统,然后为每个子系统设计Lyapunov函数和中间虚拟控制量,一直“后退”到整个系统,直到完成整个自适应控制律设计;根据得到的自适应律项中包含机械手系统的建模信息,为实现无模型信息的控制,采用模糊系统逼近系统参数,即目标阻抗参数。Optionally, in the step 3, the adaptive law and the fuzzy control law: the design of the adaptive law adopts the inversion theory, decomposes the complex nonlinear system into 2 subsystems, and then designs the Lyapunov function and the intermediate system for each subsystem. The virtual control quantity has been "backward" to the entire system until the entire adaptive control law design is completed; according to the obtained adaptive law term containing the modeling information of the manipulator system, in order to realize the control without model information, a fuzzy system is used to approximate the system parameter, the target impedance parameter.
本发明的有益效果在于:本发明基于改进的阻抗控制策略,融合自适应算法实现机械手统一的力/位控制。为了使系统控制无需机械手信息模型且具有较好的鲁棒性,该方法提出了PID-阻抗控制策略,解决了机械手对接触力变化响应性能较差的问题,并将力误差系统作为算法的依据。然后根据力误差系统及位置跟踪误差,结合反演理论设计控制律,并将控制律包含的建模信息用模糊控制逼近。而后根据系统控制指标,完成目标阻抗参数的自整定,提高机械手对接触力变化和位置跟踪的响应性能。The beneficial effects of the present invention are as follows: the present invention realizes the unified force/position control of the manipulator based on the improved impedance control strategy and the fusion of the adaptive algorithm. In order to make the system control without manipulator information model and have good robustness, this method proposes a PID-impedance control strategy, which solves the problem of poor response performance of the manipulator to the change of contact force, and uses the force error system as the basis of the algorithm . Then, according to the force error system and position tracking error, combined with the inversion theory, the control law is designed, and the modeling information contained in the control law is approximated by fuzzy control. Then, according to the system control index, the self-tuning of the target impedance parameters is completed, and the response performance of the manipulator to the contact force change and position tracking is improved.
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。Other advantages, objects, and features of the present invention will be set forth in the description that follows, and will be apparent to those skilled in the art based on a study of the following, to the extent that is taught in the practice of the present invention. The objectives and other advantages of the present invention may be realized and attained by the following description.
附图说明Description of drawings
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:In order to make the objectives, technical solutions and advantages of the present invention clearer, the present invention will be preferably described in detail below with reference to the accompanying drawings, wherein:
图1为基于反演模糊自适应的机械手阻抗控制总体流程图;Fig. 1 is the overall flow chart of the manipulator impedance control based on inversion fuzzy self-adaptation;
图2为串联机械手抓取模型分析;Figure 2 is the analysis of the grasping model of the serial manipulator;
图3为机械手与环境的等效阻抗模型;Figure 3 is the equivalent impedance model of the manipulator and the environment;
图4为基于位置阻抗的自适应系统控制方案;Fig. 4 is the adaptive system control scheme based on position impedance;
图5为本发明实验实例中采用的仿真二自由度机械手。FIG. 5 is a simulated two-degree-of-freedom manipulator used in the experimental example of the present invention.
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。The embodiments of the present invention are described below through specific specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and various details in this specification can also be modified or changed based on different viewpoints and applications without departing from the spirit of the present invention. It should be noted that the drawings provided in the following embodiments are only used to illustrate the basic idea of the present invention in a schematic manner, and the following embodiments and features in the embodiments can be combined with each other without conflict.
其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本发明的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。Among them, the accompanying drawings are only used for exemplary description, and represent only schematic diagrams, not physical drawings, and should not be construed as limitations of the present invention; in order to better illustrate the embodiments of the present invention, some parts of the accompanying drawings will be omitted, The enlargement or reduction does not represent the size of the actual product; it is understandable to those skilled in the art that some well-known structures and their descriptions in the accompanying drawings may be omitted.
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本发明的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。The same or similar numbers in the drawings of the embodiments of the present invention correspond to the same or similar components; in the description of the present invention, it should be understood that if there are terms “upper”, “lower”, “left” and “right” , "front", "rear" and other indicated orientations or positional relationships are based on the orientations or positional relationships shown in the accompanying drawings, and are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must be It has a specific orientation, is constructed and operated in a specific orientation, so the terms describing the positional relationship in the accompanying drawings are only used for exemplary illustration, and should not be construed as a limitation of the present invention. situation to understand the specific meaning of the above terms.
图1为基于反演模糊自适应的机械手阻抗控制总体流程图;本发明提供一种基于反演模糊自适应的机械手阻抗控制方法,该方法基于改进的阻抗控制策略,融合自适应算法实现机械手统一的力/位控制,完成目标阻抗参数的自整定,提高机械手对接触力变化和位置跟踪的响应性能,实现系统控制不依赖于具体的信息模型。本发明首先分析机械手的抓取模型、然后完成动力学建模和环境建模,如公式(1):Fig. 1 is the overall flow chart of the manipulator impedance control based on inversion fuzzy adaptation; the present invention provides a manipulator impedance control method based on inversion fuzzy adaptation. It can complete the self-tuning of target impedance parameters, improve the response performance of the manipulator to contact force changes and position tracking, and realize system control without relying on specific information models. The present invention first analyzes the grasping model of the manipulator, and then completes dynamic modeling and environmental modeling, such as formula (1):
式中q=[q1,q2,···,qn]T为关节角矢量,Mq(q1)为正定惯性矩阵矢量,Cq(q1,q2)q2为离心力和哥氏力矢量,Gq(q1)为重力转矩矢量,Fq(q1)为摩擦力转矩矢量,τ和τe分别表示设计扭矩矢量和外部扭矩矢量;建立环境模型并采用二阶非线性函数方程来近似,如公式(2):where q=[q 1 ,q 2 ,...,q n ] T is the joint angle vector, M q (q 1 ) is the positive definite inertia matrix vector, C q (q 1 ,q 2 )q 2 is the centrifugal force and Coriolis force vector, G q (q 1 ) is the gravitational torque vector, F q (q 1 ) is the friction torque vector, τ and τ e represent the design torque vector and the external torque vector respectively; order nonlinear function equation to approximate, such as formula (2):
式中Be∈Rn×n和Ke∈Rn×n为对角正定矩阵,分别表示为环境阻尼参数和刚度参数。Xe∈Rn表示为环境位置向量。为便于理解各个参数的含义,在图2中给出串联机械手抓取模型分析。In the formula, Be ∈ R n ×n and Ke ∈ R n×n are diagonal positive definite matrices, which are denoted as environmental damping parameters and stiffness parameters, respectively. X e ∈ R n is represented as an environment location vector. In order to facilitate the understanding of the meaning of each parameter, the grasping model analysis of the serial manipulator is given in Figure 2.
进一步地,建立机械手与环境等效的阻抗模型,并引入改进的PID-阻抗控制策略,如公式(3):Further, the equivalent impedance model of the manipulator and the environment is established, and an improved PID-impedance control strategy is introduced, such as formula (3):
式中,M(X)∈Rn×n表示机械手的理想惯性矩阵,是机械手的理想阻尼矩阵,K∈Rn表示机械手的理想目标刚度,Kd、Kp、Ki∈Rn×n为对角正定矩阵,X、分别表示机械手所需的位移、位移速度和位移加速度矢量,Xd、表示所需位移、所需位移速度和所需位移加速度矢量,Fe表示机械手和工作环境之间所需的接触作用力。为便于理解各个参数的含义,在图3中给出机械手与环境的等效阻抗模型。In the formula, M(X)∈R n×n represents the ideal inertia matrix of the manipulator, is the ideal damping matrix of the manipulator, K∈R n represents the ideal target stiffness of the manipulator, K d , K p , K i ∈ R n×n are diagonal positive definite matrices, X, respectively represent the displacement, displacement velocity and displacement acceleration vector required by the manipulator, X d , Represents the required displacement, the required displacement velocity and the required displacement acceleration vector, and Fe represents the required contact force between the manipulator and the working environment. In order to facilitate the understanding of the meaning of each parameter, the equivalent impedance model of the manipulator and the environment is given in Figure 3.
进一步地,根据公式(3)设计控制律,如公式(4):Further, the control law is designed according to formula (3), such as formula (4):
式中,z1为定义的位移误差矢量、α表示z2的估计值,通过选择α使得z2趋近于0,λ>0的自适应参数,为逼近非线性的模糊系统。In the formula, z 1 is the defined displacement error vector, and α represents the estimated value of z 2. By selecting α, z 2 tends to be close to 0, and λ > 0 is an adaptive parameter, for approximating nonlinear fuzzy systems.
进一步,结合接触力和位置跟踪的误差系统,建立基于位置阻抗的自适应系统控制方案。依据所设计的自适应律和模糊控制律,完成力/位置的跟踪及目标阻抗参数自整定。然后根据机械手系统控制指标,选择最优的目标阻抗参数,直到满足算法终止条件即系统控制指标并输出最优目标阻抗参数。为便于理解整体的控制系统,在图4中给出基于位置阻抗的自适应系统控制方案。Furthermore, combined with the error system of contact force and position tracking, an adaptive system control scheme based on position impedance is established. According to the designed adaptive law and fuzzy control law, the tracking of force/position and the self-tuning of target impedance parameters are completed. Then, according to the control index of the manipulator system, the optimal target impedance parameter is selected until the algorithm termination condition, that is, the system control index, is satisfied, and the optimal target impedance parameter is output. In order to facilitate the understanding of the overall control system, an adaptive system control scheme based on position impedance is presented in Fig. 4 .
最后,结合步骤2得到的力误差系统和步骤3得到的自整定目标阻抗参数,完成目标阻抗参数的自整定,提高机械手对接触力变化和位置跟踪的响应性能,实现系统控制不依赖于具体的信息模型。Finally, combining the force error system obtained in
对上面设计的自适应控制律进行稳定分析:对于整个系统,将Lyapunov函数设计为Stability analysis of the adaptive control law designed above: For the whole system, the Lyapunov function is designed as
其中γ>0,则where γ>0, then
则but
将代入上式,得Will Substitute into the above formula, we get
由(θ-θ*)T(θ-θ*)≥0,得2θ*Tθ-2θTθ≤-θTθ+θ*Tθ*,代入上式有From (θ-θ * ) T (θ-θ * )≥0, we get 2θ *T θ-2θ T θ≤-θ T θ+θ *T θ * , substituting into the above formula has
由(θ+θ*)T(θ+θ*)≥0,得-θ*Tθ-θTθ*≤θ*Tθ*+θTθ,则有From (θ+θ * ) T (θ+θ * )≥0, we get -θ *T θ-θ T θ * ≤θ *T θ * +θ T θ, then we have
即which is
则有then there are
取λ1>1,由于即有Take λ 1 > 1, because which is Have
定义有definition Have
式中 in the formula
解上式方程,得Solving the above equation, we get
其中V(0)为V的初始值,得到结论为:V上有界,且闭环系统所有信号有界。Where V(0) is the initial value of V, the conclusion is: V is bounded, and all signals of the closed-loop system are bounded.
为了验证所发明控制方法的有效性,实验实例中采用的仿真二自由度机械手,仿真平台在Windows764操作系统Matlab/Simulink下。假设系统仿真参数取值如表1所示,图5为本发明实验实例中采用的仿真二自由度机械手。In order to verify the effectiveness of the invented control method, the simulated two-degree-of-freedom manipulator is used in the experimental example, and the simulation platform is under the Windows764 operating system Matlab/Simulink. It is assumed that the values of the system simulation parameters are shown in Table 1, and FIG. 5 is the simulated two-degree-of-freedom manipulator used in the experimental example of the present invention.
表1系统仿真参数Table 1 System simulation parameters
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be Modifications or equivalent replacements, without departing from the spirit and scope of the technical solution, should all be included in the scope of the claims of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010675488.3A CN111702767A (en) | 2020-07-14 | 2020-07-14 | A Manipulator Impedance Control Method Based on Inversion Fuzzy Adaptive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010675488.3A CN111702767A (en) | 2020-07-14 | 2020-07-14 | A Manipulator Impedance Control Method Based on Inversion Fuzzy Adaptive |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111702767A true CN111702767A (en) | 2020-09-25 |
Family
ID=72546368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010675488.3A Pending CN111702767A (en) | 2020-07-14 | 2020-07-14 | A Manipulator Impedance Control Method Based on Inversion Fuzzy Adaptive |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111702767A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112454351A (en) * | 2020-10-28 | 2021-03-09 | 上海景奕智能控制技术有限公司 | Manipulator control method and device and manipulator |
CN112757298A (en) * | 2020-12-29 | 2021-05-07 | 苏州连恺自动化有限公司 | Intelligent inversion control method for manipulator |
CN113009819A (en) * | 2021-02-09 | 2021-06-22 | 南京航空航天大学 | Force control-based elliptical vibration cutting machining method |
CN114043480A (en) * | 2021-11-25 | 2022-02-15 | 上海智能制造功能平台有限公司 | Adaptive impedance control algorithm based on fuzzy control |
CN114434449A (en) * | 2022-04-02 | 2022-05-06 | 北京科技大学 | Novel particle swarm adaptive impedance control method and device |
CN114578697A (en) * | 2022-05-09 | 2022-06-03 | 西南石油大学 | A multi-constraint adaptive control method for a motor-driven manipulator |
CN115556108A (en) * | 2022-10-24 | 2023-01-03 | 盐城工学院 | A multi-manipulator force-position control method based on fuzzy adaptive sliding mode algorithm |
CN117426255A (en) * | 2023-12-07 | 2024-01-23 | 南京农业大学 | Automatic agaricus bisporus picking system and method based on vision and force sense feedback |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060206022A1 (en) * | 2005-03-11 | 2006-09-14 | Tanita Corporation | Stress evaluation apparatus |
CN102306029A (en) * | 2011-08-08 | 2012-01-04 | 东南大学 | Impedance self-adapting motion control method based on rehabilitation training robot |
CN104950674A (en) * | 2015-06-12 | 2015-09-30 | 河海大学常州校区 | Cantilever beam vibration control method based on back-stepping fuzzy sliding mode control |
CN106272428A (en) * | 2016-09-13 | 2017-01-04 | 江苏大学 | A kind of apple picking robot end effector grasp force Active Compliance Control method |
CN209999214U (en) * | 2019-05-28 | 2020-01-31 | 重庆邮电大学 | novel mechanical arm |
CN111319036A (en) * | 2018-12-15 | 2020-06-23 | 天津大学青岛海洋技术研究院 | Self-adaptive algorithm-based mobile mechanical arm position/force active disturbance rejection control method |
-
2020
- 2020-07-14 CN CN202010675488.3A patent/CN111702767A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060206022A1 (en) * | 2005-03-11 | 2006-09-14 | Tanita Corporation | Stress evaluation apparatus |
CN102306029A (en) * | 2011-08-08 | 2012-01-04 | 东南大学 | Impedance self-adapting motion control method based on rehabilitation training robot |
CN104950674A (en) * | 2015-06-12 | 2015-09-30 | 河海大学常州校区 | Cantilever beam vibration control method based on back-stepping fuzzy sliding mode control |
CN106272428A (en) * | 2016-09-13 | 2017-01-04 | 江苏大学 | A kind of apple picking robot end effector grasp force Active Compliance Control method |
CN111319036A (en) * | 2018-12-15 | 2020-06-23 | 天津大学青岛海洋技术研究院 | Self-adaptive algorithm-based mobile mechanical arm position/force active disturbance rejection control method |
CN209999214U (en) * | 2019-05-28 | 2020-01-31 | 重庆邮电大学 | novel mechanical arm |
Non-Patent Citations (3)
Title |
---|
杨泽琦: "基于神经网络阻抗控制的机器人柔顺控制方法研究", 《基于神经网络阻抗控制的机器人柔顺控制方法研究》 * |
耿宝亮: "《严格反馈系统预设性能控制》", 31 March 2018, 北京航空航天大学出版社 * |
马宇豪: "六自由度机械臂避障轨迹规划及控制算法研究", 《六自由度机械臂避障轨迹规划及控制算法研究》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112454351A (en) * | 2020-10-28 | 2021-03-09 | 上海景奕智能控制技术有限公司 | Manipulator control method and device and manipulator |
CN112757298A (en) * | 2020-12-29 | 2021-05-07 | 苏州连恺自动化有限公司 | Intelligent inversion control method for manipulator |
CN113009819A (en) * | 2021-02-09 | 2021-06-22 | 南京航空航天大学 | Force control-based elliptical vibration cutting machining method |
CN114043480A (en) * | 2021-11-25 | 2022-02-15 | 上海智能制造功能平台有限公司 | Adaptive impedance control algorithm based on fuzzy control |
CN114434449A (en) * | 2022-04-02 | 2022-05-06 | 北京科技大学 | Novel particle swarm adaptive impedance control method and device |
CN114434449B (en) * | 2022-04-02 | 2022-08-09 | 北京科技大学 | Novel particle swarm adaptive impedance control method and device |
CN114578697A (en) * | 2022-05-09 | 2022-06-03 | 西南石油大学 | A multi-constraint adaptive control method for a motor-driven manipulator |
CN115556108A (en) * | 2022-10-24 | 2023-01-03 | 盐城工学院 | A multi-manipulator force-position control method based on fuzzy adaptive sliding mode algorithm |
CN117426255A (en) * | 2023-12-07 | 2024-01-23 | 南京农业大学 | Automatic agaricus bisporus picking system and method based on vision and force sense feedback |
CN117426255B (en) * | 2023-12-07 | 2024-04-12 | 南京农业大学 | Automatic Agaricus bisporus picking system and method based on vision and force feedback |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111702767A (en) | A Manipulator Impedance Control Method Based on Inversion Fuzzy Adaptive | |
Liu et al. | Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism | |
Fan et al. | Data-driven motion-force control scheme for redundant manipulators: A kinematic perspective | |
CN116460860B (en) | A model-based offline reinforcement learning control method for robots | |
Sauvée et al. | Image based visual servoing through nonlinear model predictive control | |
CN115157238B (en) | A dynamic modeling and trajectory tracking method for multi-degree-of-freedom robots | |
CN114721275B (en) | An adaptive tracking control method for visual servo robot based on preset performance | |
WO2007127723A2 (en) | Control of robots from human motion descriptors | |
CN108227506A (en) | A kind of robot admittance control system based on adaptive optimization method | |
Zheng et al. | Tracking control of manipulator based on high-order disturbance observer | |
CN106406098B (en) | A Human-Computer Interaction Control Method of Robot System in Unknown Environment | |
CN116423509B (en) | Mechanical arm residual vibration suppression method and device based on deep neural network | |
Noshadi et al. | Active disturbance rejection control of a parallel manipulator with self learning algorithm for a pulsating trajectory tracking task | |
CN117733860A (en) | Sliding mode control method of tail end track of double-arm robot based on position dynamics | |
CN118915475A (en) | Underwater robot track tracking method, device, equipment and storage medium | |
Lin et al. | Safety control for UR-type robotic manipulators via high-order control barrier functions and analytical inverse kinematics | |
Stulp et al. | Reinforcement learning of impedance control in stochastic force fields | |
Ren et al. | Adaptive object impedance control of dual-arm cooperative humanoid manipulators | |
CN116834016A (en) | Coordinated control method, system, equipment and medium for double-arm reconfigurable robot | |
Chen et al. | Neural network adaptive terminal sliding mode trajectory tracking control for mechanical leg systems with uncertainty | |
CN111413995B (en) | Method and system for relative position tracking and attitude synchronization control between dual rigid body feature points | |
Korayem et al. | New optimization method to solve motion planning of dynamic systems: Application on mechanical manipulators | |
Garcia-Valdovinos et al. | Cartesian sliding PID force/position control for transparent bilateral teleoperation | |
Sun et al. | Collision avoidance analysis of human–robot physical interaction based on null-space impedance control of a dynamic reference arm plane | |
Parra-Vega et al. | Sliding PID uncalibrated visual servoing for finite-time tracking of planar robots |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200925 |