CN111697270A - Method for forming negative electrode protection layer through in-situ transfer - Google Patents
Method for forming negative electrode protection layer through in-situ transfer Download PDFInfo
- Publication number
- CN111697270A CN111697270A CN201910190086.1A CN201910190086A CN111697270A CN 111697270 A CN111697270 A CN 111697270A CN 201910190086 A CN201910190086 A CN 201910190086A CN 111697270 A CN111697270 A CN 111697270A
- Authority
- CN
- China
- Prior art keywords
- coating
- negative electrode
- lithium
- ion battery
- protective layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000012546 transfer Methods 0.000 title claims abstract description 24
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 23
- 239000011248 coating agent Substances 0.000 claims abstract description 77
- 238000000576 coating method Methods 0.000 claims abstract description 77
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 59
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 58
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 47
- 239000011241 protective layer Substances 0.000 claims abstract description 42
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 35
- 238000006243 chemical reaction Methods 0.000 claims abstract description 29
- 230000008569 process Effects 0.000 claims abstract description 23
- 238000002360 preparation method Methods 0.000 claims abstract description 17
- 239000002994 raw material Substances 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims description 35
- 239000010410 layer Substances 0.000 claims description 16
- 239000011230 binding agent Substances 0.000 claims description 15
- 150000001875 compounds Chemical class 0.000 claims description 15
- -1 manganates Chemical class 0.000 claims description 13
- 239000002270 dispersing agent Substances 0.000 claims description 12
- 238000006479 redox reaction Methods 0.000 claims description 12
- 239000012752 auxiliary agent Substances 0.000 claims description 10
- 239000011268 mixed slurry Substances 0.000 claims description 10
- QNVRIHYSUZMSGM-UHFFFAOYSA-N hexan-2-ol Chemical compound CCCCC(C)O QNVRIHYSUZMSGM-UHFFFAOYSA-N 0.000 claims description 8
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 8
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 8
- 229910019142 PO4 Inorganic materials 0.000 claims description 7
- 230000002687 intercalation Effects 0.000 claims description 7
- 238000009830 intercalation Methods 0.000 claims description 7
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 7
- 150000004692 metal hydroxides Chemical class 0.000 claims description 7
- 235000021317 phosphate Nutrition 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 claims description 7
- 229910000314 transition metal oxide Inorganic materials 0.000 claims description 7
- 229920002125 Sokalan® Polymers 0.000 claims description 6
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 claims description 6
- CHZUADMGGDUUEF-UHFFFAOYSA-N [Mn](=O)(=O)([O-])[O-].[Co+2] Chemical compound [Mn](=O)(=O)([O-])[O-].[Co+2] CHZUADMGGDUUEF-UHFFFAOYSA-N 0.000 claims description 6
- 229910003480 inorganic solid Inorganic materials 0.000 claims description 6
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 claims description 6
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 claims description 6
- 239000004584 polyacrylic acid Substances 0.000 claims description 6
- 229920000056 polyoxyethylene ether Polymers 0.000 claims description 6
- 229940051841 polyoxyethylene ether Drugs 0.000 claims description 6
- 239000007784 solid electrolyte Substances 0.000 claims description 6
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 6
- 229910001887 tin oxide Inorganic materials 0.000 claims description 6
- 229910000010 zinc carbonate Inorganic materials 0.000 claims description 6
- 239000011667 zinc carbonate Substances 0.000 claims description 6
- 235000004416 zinc carbonate Nutrition 0.000 claims description 6
- 229910000398 iron phosphate Inorganic materials 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 5
- 239000002033 PVDF binder Substances 0.000 claims description 4
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 4
- 239000004359 castor oil Substances 0.000 claims description 4
- 235000019438 castor oil Nutrition 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 claims description 4
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 claims description 4
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims description 4
- 239000012528 membrane Substances 0.000 claims description 4
- 150000003013 phosphoric acid derivatives Chemical class 0.000 claims description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 4
- 239000004094 surface-active agent Substances 0.000 claims description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 3
- 229920003063 hydroxymethyl cellulose Polymers 0.000 claims description 3
- 229940031574 hydroxymethyl cellulose Drugs 0.000 claims description 3
- LBSANEJBGMCTBH-UHFFFAOYSA-N manganate Chemical compound [O-][Mn]([O-])(=O)=O LBSANEJBGMCTBH-UHFFFAOYSA-N 0.000 claims description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 3
- 239000010452 phosphate Substances 0.000 claims description 3
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 3
- BSWXAWQTMPECAK-UHFFFAOYSA-N 6,6-diethyloctyl dihydrogen phosphate Chemical compound CCC(CC)(CC)CCCCCOP(O)(O)=O BSWXAWQTMPECAK-UHFFFAOYSA-N 0.000 claims description 2
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 claims description 2
- 229920002230 Pectic acid Polymers 0.000 claims description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- XRFJZINEJXCFNW-UHFFFAOYSA-N [Zn+2].[O-][Mn]([O-])(=O)=O Chemical compound [Zn+2].[O-][Mn]([O-])(=O)=O XRFJZINEJXCFNW-UHFFFAOYSA-N 0.000 claims description 2
- 229910052946 acanthite Inorganic materials 0.000 claims description 2
- 229940072056 alginate Drugs 0.000 claims description 2
- 235000010443 alginic acid Nutrition 0.000 claims description 2
- 229920000615 alginic acid Polymers 0.000 claims description 2
- AEMOLEFTQBMNLQ-BKBMJHBISA-N alpha-D-galacturonic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-BKBMJHBISA-N 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 229920001577 copolymer Polymers 0.000 claims description 2
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 2
- KWABLUYIOFEZOY-UHFFFAOYSA-N dioctyl butanedioate Chemical compound CCCCCCCCOC(=O)CCC(=O)OCCCCCCCC KWABLUYIOFEZOY-UHFFFAOYSA-N 0.000 claims description 2
- YRIUSKIDOIARQF-UHFFFAOYSA-N dodecyl benzenesulfonate Chemical compound CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 YRIUSKIDOIARQF-UHFFFAOYSA-N 0.000 claims description 2
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 claims description 2
- 229940043264 dodecyl sulfate Drugs 0.000 claims description 2
- 229940071161 dodecylbenzenesulfonate Drugs 0.000 claims description 2
- 229920001971 elastomer Polymers 0.000 claims description 2
- 239000000194 fatty acid Substances 0.000 claims description 2
- 229930195729 fatty acid Natural products 0.000 claims description 2
- RAQDACVRFCEPDA-UHFFFAOYSA-L ferrous carbonate Chemical compound [Fe+2].[O-]C([O-])=O RAQDACVRFCEPDA-UHFFFAOYSA-L 0.000 claims description 2
- 239000010416 ion conductor Substances 0.000 claims description 2
- 229910000464 lead oxide Inorganic materials 0.000 claims description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 2
- 239000000347 magnesium hydroxide Substances 0.000 claims description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229910000159 nickel phosphate Inorganic materials 0.000 claims description 2
- JOCJYBPHESYFOK-UHFFFAOYSA-K nickel(3+);phosphate Chemical compound [Ni+3].[O-]P([O-])([O-])=O JOCJYBPHESYFOK-UHFFFAOYSA-K 0.000 claims description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 2
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 claims description 2
- 229940049964 oleate Drugs 0.000 claims description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 2
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 2
- 229920002401 polyacrylamide Polymers 0.000 claims description 2
- 229920000058 polyacrylate Polymers 0.000 claims description 2
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- 239000005060 rubber Substances 0.000 claims description 2
- 229940056910 silver sulfide Drugs 0.000 claims description 2
- XUARKZBEFFVFRG-UHFFFAOYSA-N silver sulfide Chemical compound [S-2].[Ag+].[Ag+] XUARKZBEFFVFRG-UHFFFAOYSA-N 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 2
- MUZDXNQOSGWMJJ-UHFFFAOYSA-N 2-methylprop-2-enoic acid;prop-2-enoic acid Chemical compound OC(=O)C=C.CC(=C)C(O)=O MUZDXNQOSGWMJJ-UHFFFAOYSA-N 0.000 claims 1
- 239000005955 Ferric phosphate Substances 0.000 claims 1
- GQOKIYDTHHZSCJ-UHFFFAOYSA-M dimethyl-bis(prop-2-enyl)azanium;chloride Chemical compound [Cl-].C=CC[N+](C)(C)CC=C GQOKIYDTHHZSCJ-UHFFFAOYSA-M 0.000 claims 1
- 229940032958 ferric phosphate Drugs 0.000 claims 1
- 239000003292 glue Substances 0.000 claims 1
- 229910000399 iron(III) phosphate Inorganic materials 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- FATBGEAMYMYZAF-UHFFFAOYSA-N oleicacidamide-heptaglycolether Natural products CCCCCCCCC=CCCCCCCCC(N)=O FATBGEAMYMYZAF-UHFFFAOYSA-N 0.000 claims 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 1
- 230000008021 deposition Effects 0.000 abstract description 9
- 230000009286 beneficial effect Effects 0.000 abstract description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 4
- 230000007423 decrease Effects 0.000 abstract description 4
- 239000001301 oxygen Substances 0.000 abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 abstract description 4
- 238000003756 stirring Methods 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 3
- 239000010405 anode material Substances 0.000 description 3
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 235000014676 Phragmites communis Nutrition 0.000 description 2
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 244000089486 Phragmites australis subsp australis Species 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- YZJBSOIDMBITDG-UHFFFAOYSA-M [Cl-].CC=C[N+](C)(C)C=CC Chemical compound [Cl-].CC=C[N+](C)(C)C=CC YZJBSOIDMBITDG-UHFFFAOYSA-M 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- KUJOABUXCGVGIY-UHFFFAOYSA-N lithium zinc Chemical compound [Li].[Zn] KUJOABUXCGVGIY-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229940047670 sodium acrylate Drugs 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明提供了一种通过原位转移形成负极保护层的方法,所述方法可以将负极保护层的初始原料作为涂层涂覆在隔膜上,在电池组装后,隔膜上的涂层通过反应转移至锂离子电池负极表面,形成保护层。所述初始原料在隔膜上形成涂层,其制备过程简单,制备条件宽松。所述反应发生在电池内部,通过反应转移到负极表面,无需额外控制水氧条件。所述保护层与负极表面因为反应而形成一个整体,保护层与负极之间的界面阻抗下降,有利于提高对应电池循环寿命。所述保护层在负极表面可以有效影响循环过程中锂沉积行为,有利于提高对应负极的稳定性及电池的安全性。
The present invention provides a method for forming a negative electrode protective layer by in-situ transfer. The method can coat the initial raw material of the negative electrode protective layer as a coating on a separator, and after the battery is assembled, the coating on the separator is transferred by reaction to the surface of the negative electrode of the lithium ion battery to form a protective layer. The initial raw material forms a coating on the separator, the preparation process is simple, and the preparation conditions are relaxed. The reaction occurs inside the cell and is transferred to the surface of the negative electrode through the reaction, without additional control of water and oxygen conditions. The protective layer and the surface of the negative electrode form a whole due to the reaction, and the interface impedance between the protective layer and the negative electrode decreases, which is beneficial to improve the cycle life of the corresponding battery. The protective layer on the surface of the negative electrode can effectively affect the lithium deposition behavior during the cycle process, which is beneficial to improve the stability of the corresponding negative electrode and the safety of the battery.
Description
技术领域technical field
本发明属于锂离子电池技术领域,具体涉及一种通过原位转移形成负极保护层的方法。The invention belongs to the technical field of lithium ion batteries, and in particular relates to a method for forming a negative electrode protective layer by in-situ transfer.
背景技术Background technique
锂离子电池具有高比容量、长循环寿命、绿色环保等众多优势,是目前高性能二次电池的主要代表之一,现在已经广泛运用在各类电子器件、电动或混合动力汽车及航空航天等不同领域。其中锂离子电池主要由正极、负极、隔膜及电解质四部分组成,目前负极材料多采用碳负极,其理论比容量相对较低(372mAh/g),难以满足日益增长的需求。因此硅碳电极、锂金属电极等新型负极材料有待替代碳材料成为新型负极。其中锂金属的理论比容量是3860mAh/g,是目前已知比容量最高的负极材料,因此其有希望成为下一代锂电池最优负极材料。然而锂金属负极在循环过程中极易形成树枝状锂沉积,会刺穿隔膜,导致电池短路,进而引发热失控,最终发生起火甚至爆炸,带来安全隐患。此外,锂离子在循环过程中产生的不规则沉积,很容易从锂金属电极表面脱落,散落在电极表面,无法继续得失电子参与反应,成为死锂,而且还会增加电池内部的界面内阻,这将导致电池库伦效率下降,比容量衰减,寿命减少。同样,硅碳负极等也面临类似的问题,因此,如何有效解决上述负极的安全、循环容量及寿命两大问题便成为目前科研工作者的研究对象。Lithium-ion batteries have many advantages such as high specific capacity, long cycle life, and environmental protection. They are one of the main representatives of high-performance secondary batteries. Now they have been widely used in various electronic devices, electric or hybrid vehicles, aerospace, etc. different area. Among them, lithium-ion batteries are mainly composed of four parts: positive electrode, negative electrode, separator and electrolyte. At present, carbon negative electrode is mostly used as negative electrode material, and its theoretical specific capacity is relatively low (372mAh/g), which is difficult to meet the growing demand. Therefore, new anode materials such as silicon carbon electrodes and lithium metal electrodes need to replace carbon materials as new anodes. Among them, the theoretical specific capacity of lithium metal is 3860mAh/g, which is the anode material with the highest specific capacity currently known, so it is expected to become the best anode material for the next generation of lithium batteries. However, the lithium metal anode is prone to form dendritic lithium deposits during cycling, which will pierce the separator and cause a short circuit in the battery, which in turn leads to thermal runaway, and eventually fires or even explodes, posing a safety hazard. In addition, the irregular deposition of lithium ions during the cycling process can easily fall off the surface of the lithium metal electrode and be scattered on the surface of the electrode. The gain and loss of electrons cannot continue to participate in the reaction, becoming dead lithium, and it will also increase the interfacial resistance inside the battery. This will lead to a decrease in the coulombic efficiency of the battery, a decline in the specific capacity, and a reduction in the lifespan. Similarly, silicon carbon anodes also face similar problems. Therefore, how to effectively solve the two major problems of safety, cycle capacity and life of the above-mentioned anodes has become the research object of current researchers.
目前,针对锂离子电池负极的研究主要集中在如下几个方面:其一,是在电池电解液中添加有效添加剂,合理改善锂离子在负极表面的沉积行为,辅助形成稳定的界面层;其二,是在电池隔膜上增加涂层,增加隔膜对枝晶的耐受程度,提高电池整体安全性能;其三,是对负极表面或者结构进行改进,诱导锂离子均匀沉积或限制锂离子在特定区域内沉积,减少树枝状锂晶体产生。其中,由于负极极片,尤其是锂金属极片十分活泼,易与水氧等发生反应,因此在对负极改性的过程中,实验条件需要严格控制,这将增加相应方法广泛应用的难度。此外,增加的保护层与负极之间的界面内阻通常也是研究者关注的问题,如果二者无法有效接触,可能会降低保护层对锂离子沉积行为的影响力度,同时额外增加的界面内阻同样会降低电池的循环性能。At present, the research on the negative electrode of lithium ion battery mainly focuses on the following aspects: first, adding effective additives to the battery electrolyte to reasonably improve the deposition behavior of lithium ions on the surface of the negative electrode and assist in the formation of a stable interface layer; second , is to add a coating on the battery separator to increase the resistance of the separator to dendrites and improve the overall safety performance of the battery; the third is to improve the surface or structure of the negative electrode to induce uniform deposition of lithium ions or restrict lithium ions in specific areas. Internal deposition, reducing the generation of dendritic lithium crystals. Among them, since the negative pole piece, especially the lithium metal pole piece is very active and easy to react with water and oxygen, the experimental conditions need to be strictly controlled in the process of modifying the negative pole, which will increase the difficulty of wide application of the corresponding method. In addition, the increased interfacial resistance between the protective layer and the negative electrode is usually a concern of researchers. If the two cannot be effectively contacted, the influence of the protective layer on the lithium ion deposition behavior may be reduced, and the additional interfacial resistance will be increased. It also reduces the cycle performance of the battery.
此外,目前在隔膜上进行改性的技术手段已相对成熟,市场上有大量陶瓷涂覆的聚烯烃隔膜,其陶瓷层的主要作用是改善隔膜受热收缩性能,从而提高电池安全性能。隔膜上的涂层组装在电池中时,与负极通常为宏观上的接触,二者之间存在界面问题,因此该涂层对负极上锂离子的沉积行为作用相对较小。In addition, the technical means of modifying the separator is relatively mature at present. There are a large number of ceramic-coated polyolefin separators on the market. The main function of the ceramic layer is to improve the thermal shrinkage performance of the separator, thereby improving the safety performance of the battery. When the coating on the separator is assembled in the battery, it is usually in macroscopic contact with the negative electrode, and there is an interface problem between the two, so the coating has relatively little effect on the deposition behavior of lithium ions on the negative electrode.
发明内容SUMMARY OF THE INVENTION
为了改善现有技术的不足,本发明的第一方面是提供一种以原位转移的方式制备锂离子电池负极保护层的方法,所述方法包括:In order to improve the deficiencies of the prior art, a first aspect of the present invention is to provide a method for preparing a lithium ion battery negative electrode protective layer by in-situ transfer, the method comprising:
将涂覆有涂层的隔膜与锂离子电池负极接触,反应,在锂离子电池负极表面得到保护层;所述反应包括但不限于嵌入反应和氧化还原反应;所述反应在一定外加电压条件下进行的;形成所述涂层的原料包括下述涂层材料中的至少一种:磷酸盐,锰酸盐,碳酸盐,金属氢氧化物,无机固态电解质材料,无机半导体材料和可以与锂反应的过渡金属氧化物。Contact the separator coated with the coating with the negative electrode of the lithium ion battery, and react to obtain a protective layer on the surface of the negative electrode of the lithium ion battery; the reaction includes but is not limited to an intercalation reaction and a redox reaction; the reaction is under a certain applied voltage condition. The raw materials for forming the coating include at least one of the following coating materials: phosphates, manganates, carbonates, metal hydroxides, inorganic solid electrolyte materials, inorganic semiconductor materials and materials that can interact with lithium Reacted transition metal oxides.
本发明的第二方面是提供一种锂离子电池的制备方法,所述方法包括上述的以原位转移的方式制备锂离子电池负极保护层的方法。A second aspect of the present invention is to provide a method for preparing a lithium ion battery, the method comprising the above-mentioned method for preparing a negative electrode protective layer of a lithium ion battery by in-situ transfer.
本发明的第三方面是提供一种锂离子电池,所述锂离子电池是通过上述锂离子电池的制备方法制备得到的。A third aspect of the present invention is to provide a lithium ion battery prepared by the above-mentioned method for preparing a lithium ion battery.
本发明的有益效果:Beneficial effects of the present invention:
本发明提供了一种以原位转移的方式制备锂离子电池负极保护层的方法,所述方法可以将负极保护层的初始原料作为涂层涂覆在隔膜上,在电池组装后,隔膜上的涂层通过反应转移至锂离子电池负极表面,形成保护层。所述初始原料在隔膜上形成涂层,其制备过程简单,制备条件宽松。所述反应发生在电池内部,通过反应转移到负极表面,无需额外控制水氧条件。所述保护层与负极表面因为反应而形成一个整体,保护层与负极之间的界面阻抗下降,有利于提高对应电池循环寿命。所述保护层在负极表面可以有效影响循环过程中锂沉积行为,有利于提高对应负极的稳定性及电池的安全性。The invention provides a method for preparing a negative electrode protective layer of a lithium ion battery by in-situ transfer. The method can coat the initial raw material of the negative electrode protective layer as a coating on the separator. After the battery is assembled, the protective layer on the separator The coating is transferred to the surface of the negative electrode of the lithium-ion battery through the reaction to form a protective layer. The initial raw material forms a coating on the separator, the preparation process is simple, and the preparation conditions are relaxed. The reaction occurs inside the cell and is transferred to the surface of the negative electrode through the reaction, without additional control of water and oxygen conditions. The protective layer and the surface of the negative electrode form a whole due to the reaction, and the interface impedance between the protective layer and the negative electrode decreases, which is beneficial to improve the cycle life of the corresponding battery. The protective layer on the surface of the negative electrode can effectively affect the lithium deposition behavior during the cycle process, which is beneficial to improve the stability of the corresponding negative electrode and the safety of the battery.
相比于现有技术中的在负极组装成电池前完成对负极的修饰,本申请是在电池组装成电池后完成对负极的修饰改性。本申请的方法无需考虑修饰过程中对负极的影响,尤其是针对锂金属负极时,无需严格控制制备过程中的水氧含量,这大大降低制备成本以及制备难度。Compared with the modification of the negative electrode in the prior art before the negative electrode is assembled into a battery, the present application completes the modification and modification of the negative electrode after the battery is assembled into a battery. The method of the present application does not need to consider the impact on the negative electrode during the modification process, especially for lithium metal negative electrodes, there is no need to strictly control the water and oxygen content in the preparation process, which greatly reduces the preparation cost and difficulty of preparation.
附图说明Description of drawings
图1为实施例1中得到的涂层转移复合在负极表面的扫描电子显微镜图片。FIG. 1 is a scanning electron microscope picture of the coating transfer compound obtained in Example 1 on the surface of the negative electrode.
具体实施方式Detailed ways
如前所述,本发明的第一方面是提供一种以原位转移的方式制备锂离子电池负极保护层的方法,所述方法包括:As mentioned above, the first aspect of the present invention is to provide a method for preparing a lithium ion battery negative electrode protective layer by in-situ transfer, the method comprising:
将涂覆有涂层的隔膜与锂离子电池负极接触,反应,在锂离子电池负极表面得到保护层;所述反应包括但不限于嵌入反应和氧化还原反应;所述反应在一定外加电压条件下进行的;形成所述涂层的原料包括下述涂层材料中的至少一种:磷酸盐,锰酸盐,碳酸盐,金属氢氧化物,无机固态电解质材料,无机半导体材料和可以与锂反应的过渡金属氧化物。Contact the separator coated with the coating with the negative electrode of the lithium ion battery, and react to obtain a protective layer on the surface of the negative electrode of the lithium ion battery; the reaction includes but is not limited to an intercalation reaction and a redox reaction; the reaction is under a certain applied voltage condition. The raw materials for forming the coating include at least one of the following coating materials: phosphates, manganates, carbonates, metal hydroxides, inorganic solid electrolyte materials, inorganic semiconductor materials and materials that can interact with lithium Reacted transition metal oxides.
以嵌入反应为例,锂以离子的方式嵌入涂层材料中,生成含锂的化合物,该化合物在反应过程中能够在负极表面形成均匀的一层保护层。示例性地,负极中的锂以离子的形式嵌入涂层材料的晶格中,生成含锂的化合物,而该化合物在反应过程中能够在负极表面形成均匀的一层保护层。Taking the intercalation reaction as an example, lithium is intercalated into the coating material in the form of ions to generate a lithium-containing compound, which can form a uniform protective layer on the surface of the negative electrode during the reaction. Exemplarily, lithium in the negative electrode is embedded in the lattice of the coating material in the form of ions to generate a lithium-containing compound, and the compound can form a uniform protective layer on the surface of the negative electrode during the reaction.
以氧化还原反应为例,单质锂与涂层材料反应,生成对应的还原产物和含锂化合物,该还原产物和含锂的化合物与负极融合为整体,成为负极的保护层。示例性地,锂负极与涂层材料反应,生成对应的金属单质和含锂的化合物,该金属单质和含锂的化合物与负极融合为整体,成为负极的保护层。Taking the redox reaction as an example, elemental lithium reacts with the coating material to form a corresponding reduction product and a lithium-containing compound. The reduction product and the lithium-containing compound are integrated with the negative electrode and become the protective layer of the negative electrode. Exemplarily, the lithium negative electrode reacts with the coating material to generate a corresponding metal element and a lithium-containing compound, and the metal element and the lithium-containing compound are integrated with the negative electrode to become a protective layer of the negative electrode.
其中,所述负极为本领域已知的常规锂离子电池负极,例如选自碳负极,硅碳负极,锂金属负极,钛酸锂负极等中的至少一种。Wherein, the negative electrode is a conventional lithium-ion battery negative electrode known in the art, for example, at least one selected from a carbon negative electrode, a silicon carbon negative electrode, a lithium metal negative electrode, a lithium titanate negative electrode, and the like.
在一个具体的实施方式中,所述外加电压为大于0且小于等于5V,其中,优选为大于0且小于等于3V;所述外加电压的加压时间为大于0小时,其中,优选为大于0小时且小于等于24小时。例如所述外加电压为0.5V、1.0V、1.5V、2.0V或2.5V,加压时间为1h、3h、5h、10h、12h、18h或24h。In a specific embodiment, the applied voltage is greater than 0 and less than or equal to 5V, preferably greater than 0 and less than or equal to 3V; the pressing time of the applied voltage is greater than 0 hours, wherein preferably greater than 0 hours and less than or equal to 24 hours. For example, the applied voltage is 0.5V, 1.0V, 1.5V, 2.0V or 2.5V, and the pressing time is 1h, 3h, 5h, 10h, 12h, 18h or 24h.
在一个具体的实施方式中,所述可以与锂反应的过渡金属氧化物选自氧化镍、氧化铅等中的一种或多种;所述磷酸盐选自磷酸铁、磷酸镍等中的一种或多种;所述锰酸盐选自锰酸钴、锰酸锌等中的一种或多种;所述碳酸盐选自碳酸铁、碳酸锌等中的一种或多种;所述金属氢氧化物选自氢氧化镍、氢氧化镁等中的一种或多种;所述无机固态电解质材料选自锂快离子导体、钙钛矿等中的一种或多种;所述无机半导体材料选自氧化锡、硫化银等中的一种或多种。In a specific embodiment, the transition metal oxide that can react with lithium is selected from one or more of nickel oxide, lead oxide, etc.; the phosphate is selected from one or more of iron phosphate, nickel phosphate, etc. one or more; the manganate is selected from one or more of cobalt manganate, zinc manganate, etc.; the carbonate is selected from one or more of iron carbonate, zinc carbonate, etc.; the The metal hydroxide is selected from one or more of nickel hydroxide, magnesium hydroxide, etc.; the inorganic solid electrolyte material is selected from one or more of lithium fast ion conductor, perovskite, etc.; the The inorganic semiconductor material is selected from one or more of tin oxide, silver sulfide and the like.
具体的,所述涂层材料选自锰酸钴、氧化镍、锆钛酸铅、碳酸锌、氢氧化镍、氧化锡和磷酸铁中的一种或多种。Specifically, the coating material is selected from one or more of cobalt manganate, nickel oxide, lead zirconate titanate, zinc carbonate, nickel hydroxide, tin oxide and iron phosphate.
在一个具体的实施方式中,所述涂层的原料还包括分散剂。所述分散剂选自水和有机试剂。所述有机试剂选择本领域已知的常规有机溶剂,例如选自乙醇、丙酮、异丙醇和三氯甲烷等中的至少一种。In a specific embodiment, the raw material of the coating further includes a dispersant. The dispersing agent is selected from water and organic agents. The organic reagent is selected from conventional organic solvents known in the art, for example, at least one selected from ethanol, acetone, isopropanol, chloroform and the like.
在一个具体的实施方式中,所述涂层的原料中还包括助剂。具体的,所述助剂选自表面活性剂和分散助剂中的至少一种。其中,所述表面活性剂包括十二烷基苯磺酸盐(如十二烷基苯磺酸钠)、二辛基琥珀酸磺酸盐、脂肪醇聚氧乙烯醚、油醇聚氧乙烯醚、聚氧乙烯脂肪酸酯、油酸盐和硬脂酸盐中的一种或多种。所述分散助剂包括聚丙烯酸及其盐、共聚的聚(丙烯酸-甲基丙烯酸)及其盐、蓖麻油、十二烷基硫酸盐、三乙基己基磷酸、甲基戊醇、聚丙烯酰胺、聚氧乙烯醚和油酸酰胺等中的一种或多种。In a specific embodiment, the raw material of the coating further includes an auxiliary agent. Specifically, the auxiliary agent is selected from at least one of surfactants and dispersing auxiliary agents. Wherein, the surfactant includes dodecylbenzene sulfonate (such as sodium dodecylbenzenesulfonate), dioctyl succinate sulfonate, fatty alcohol polyoxyethylene ether, oleyl alcohol polyoxyethylene ether , one or more of polyoxyethylene fatty acid ester, oleate and stearate. The dispersing aids include polyacrylic acid and its salts, copolymerized poly(acrylic acid-methacrylic acid) and its salts, castor oil, lauryl sulfate, triethylhexylphosphoric acid, methyl amyl alcohol, polyacrylamide , one or more of polyoxyethylene ether and oleic acid amide.
在一个具体的实施方式中,所述涂层的原料中还包括粘结剂。具体的,所述粘结剂包括丁苯橡胶、氟化橡胶、聚乙烯醇、羟甲基纤维素盐、聚丙烯酸、聚丙烯酸酯及其衍生物、聚丙烯腈、丙烯酸酯-丙烯腈共聚物、聚甲基丙烯酸甲酯、二甲基二丙烯基氯化铵、海藻酸盐、果胶酸盐、鹿角胶盐和聚偏氟乙烯中的一种或多种。In a specific embodiment, the raw material of the coating further includes a binder. Specifically, the binder includes styrene-butadiene rubber, fluorinated rubber, polyvinyl alcohol, hydroxymethyl cellulose salt, polyacrylic acid, polyacrylate and its derivatives, polyacrylonitrile, acrylate-acrylonitrile copolymer , one or more of polymethyl methacrylate, dimethyldipropenyl ammonium chloride, alginate, pectate, carrageenan and polyvinylidene fluoride.
在一个具体的实施方式中,所述方法还包括涂覆有涂层的隔膜的制备,所述隔膜的制备包括如下步骤:In a specific embodiment, the method further includes the preparation of the membrane coated with the coating, and the preparation of the membrane includes the steps of:
(1)将涂层材料分散于分散剂中,任选地加入助剂和/或粘结剂混合均匀,制备得到所述涂层材料的混合浆料;(1) Dispersing the coating material in a dispersant, optionally adding an auxiliary agent and/or a binder and mixing uniformly, to prepare a mixed slurry of the coating material;
(2)将步骤(1)的混合浆料涂覆到隔膜基层的一侧表面上;(2) coating the mixed slurry of step (1) on one side surface of the diaphragm base layer;
(3)将步骤(2)中涂覆有混合浆料的隔膜基层烘干,即制备得到所述涂覆有涂层的隔膜。(3) drying the diaphragm base layer coated with the mixed slurry in step (2), that is, to prepare the coated diaphragm.
在步骤(1)中,所述涂层材料与分散剂的质量比为(0.1-50):100,优选为(0.5-33):100,还优选为(1-15):100。In step (1), the mass ratio of the coating material to the dispersant is (0.1-50):100, preferably (0.5-33):100, and also preferably (1-15):100.
在步骤(1)中,所述助剂的用量与分散剂的质量比为(0.001-20):100,优选为(0.001-10):100,还优选为(0.005-5):100。In step (1), the mass ratio of the amount of the auxiliary agent to the dispersant is (0.001-20):100, preferably (0.001-10):100, and preferably (0.005-5):100.
在步骤(1)中,所述粘结剂的用量与分散剂的质量比为(0.001-20):100,优选为(0.001-15):100,还优选为(0.005-10):100。In step (1), the mass ratio of the amount of the binder to the dispersant is (0.001-20):100, preferably (0.001-15):100, and preferably (0.005-10):100.
在步骤(2)中,所述涂覆选自喷涂、刮刀涂覆、涂布辊、涂布刷等方式中的至少一种。In step (2), the coating is selected from at least one of spray coating, blade coating, coating roller, coating brush and the like.
在步骤(3)中,所述烘干的时间为0.01-24h;所述烘干的温度为30-80℃。In step (3), the drying time is 0.01-24h; the drying temperature is 30-80°C.
其中,所述涂层的厚度为0.1-10μm。Wherein, the thickness of the coating is 0.1-10 μm.
其中,所述涂层的涂覆面密度为0.2-5g/m2。Wherein, the coating areal density of the coating is 0.2-5 g/m 2 .
如前所述,本发明的第二方面是提供一种锂离子电池的制备方法,所述方法包括上述的以原位转移的方式制备锂离子电池负极保护层的方法。As mentioned above, the second aspect of the present invention is to provide a method for preparing a lithium ion battery, the method includes the above-mentioned method for preparing a negative electrode protective layer of a lithium ion battery by in-situ transfer.
在一个具体的实施方式中,所述方法还包括将正极、涂覆有涂层的隔膜与锂离子电池负极接触,反应,在锂离子电池负极表面得到保护层;所述反应包括但不限于嵌入反应和/或氧化还原反应;所述反应在一定外加电压条件下进行的;形成所述涂层的原料包括下述涂层材料中的至少一种:磷酸盐,锰酸盐,碳酸盐,金属氢氧化物,无机固态电解质材料,无机半导体材料和可以与锂反应的过渡金属氧化物。In a specific embodiment, the method further includes contacting the positive electrode and the coated separator with the negative electrode of the lithium ion battery, and reacting to obtain a protective layer on the surface of the negative electrode of the lithium ion battery; the reaction includes but is not limited to intercalation. reaction and/or redox reaction; the reaction is carried out under a certain applied voltage condition; the raw material for forming the coating comprises at least one of the following coating materials: phosphate, manganate, carbonate, Metal hydroxides, inorganic solid-state electrolyte materials, inorganic semiconductor materials, and transition metal oxides that can react with lithium.
如前所述,本发明的第三方面是提供一种锂离子电池,所述锂离子电池是通过上述锂离子电池的制备方法制备得到的。As mentioned above, the third aspect of the present invention is to provide a lithium ion battery, the lithium ion battery is prepared by the above-mentioned preparation method of a lithium ion battery.
优选地,所述锂离子电池为纽扣电池、层叠式电池、卷绕式电池中的至少一种。Preferably, the lithium ion battery is at least one of a button battery, a stacked battery, and a wound battery.
优选地,所述锂离子电池的外包装为软塑包装或钢壳包装。Preferably, the outer packaging of the lithium ion battery is a soft plastic packaging or a steel case packaging.
下文将结合具体实施例对本发明的制备方法做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。The preparation method of the present invention will be described in further detail below with reference to specific examples. It should be understood that the following examples are only for illustrating and explaining the present invention, and should not be construed as limiting the protection scope of the present invention. All technologies implemented based on the above content of the present invention are covered within the intended protection scope of the present invention.
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。The experimental methods used in the following examples are conventional methods unless otherwise specified; the reagents, materials, etc. used in the following examples can be obtained from commercial sources unless otherwise specified.
本实施例中,制备得到的锂离子电池进行循环充放电测试时,所述的锂离子电池在0.5C下进行充放电循环测试,分别记录循环第10圈、第100圈、第200圈和第500圈时的放电比容量。In this example, when the prepared lithium-ion battery is subjected to a cyclic charge-discharge test, the lithium-ion battery is subjected to a charge-discharge cycle test at 0.5C, and the 10th cycle, the 100th cycle, the 200th cycle, and the 10th cycle are recorded respectively. Discharge specific capacity at 500 cycles.
本实施例中,制备得到的锂离子电池在观测其保护层原位转移的形貌时,所述的锂离子电池在氩气气氛的手套箱中拆开,用电解液溶剂冲洗干净,晾干,用扫描电子显微镜观测。In this example, when the appearance of the in-situ transfer of the protective layer of the prepared lithium ion battery was observed, the lithium ion battery was disassembled in a glove box in an argon atmosphere, rinsed with an electrolyte solvent, and dried in the air. , observed with a scanning electron microscope.
正极片的制备:将正极活性物质磷酸铁锂85份、乙炔黑5份、导电石墨5份、PVDF5份用N-甲基吡咯烷酮充分混合得到正极浆料,均匀涂覆于铝箔集流体表面,完成正极片制备。Preparation of positive electrode sheet: fully mix 85 parts of positive electrode active material lithium iron phosphate, 5 parts of acetylene black, 5 parts of conductive graphite, and 5 parts of PVDF with N-methylpyrrolidone to obtain a positive electrode slurry, which is uniformly coated on the surface of the aluminum foil current collector to complete Preparation of positive plates.
负极片的制备:选用锂金属电极。Preparation of negative electrode sheet: Lithium metal electrode is selected.
实施例1Example 1
步骤1)将十二烷基苯磺酸钠25g溶于460mL水中得到混合体系,再将氧化镍160g分散于上述混合体系中,加入丁苯橡胶粘结剂5g,充分搅拌,制得混合浆料;Step 1) Dissolve 25 g of sodium dodecyl benzene sulfonate in 460 mL of water to obtain a mixed system, then disperse 160 g of nickel oxide in the above mixed system, add 5 g of styrene-butadiene rubber binder, and fully stir to prepare a mixed slurry ;
步骤2)将步骤1)的混合浆料刮刀涂覆到聚丙烯隔膜基层的一侧;Step 2) applying the mixed slurry blade of step 1) to one side of the polypropylene diaphragm base layer;
步骤3)将步骤2)中涂覆有混合浆料的隔膜基层在真空干燥箱中40℃烘干2h,制备得到所述氧化镍涂层的隔膜;所述涂层的厚度为4μm。Step 3) Dry the diaphragm base layer coated with the mixed slurry in step 2) in a vacuum drying oven at 40° C. for 2 hours to prepare the diaphragm with the nickel oxide coating; the thickness of the coating is 4 μm.
步骤4)组装锂离子电池:Step 4) Assemble the Li-ion battery:
在正极与负极极片中间放入步骤3)得到的氧化镍隔膜,将涂层方向朝向负极一侧,加入商用锂离子电池电解液100μL,放入簧片后液压封口机封口,制备纽扣式2032锂离子电池。Put the nickel oxide diaphragm obtained in step 3) between the positive electrode and the negative electrode plate, orient the coating direction toward the negative electrode side, add 100 μL of commercial lithium-ion battery electrolyte, put in the reed, and seal it with a hydraulic sealer to prepare a button-type 2032 Lithium Ion Battery.
步骤5)涂层原位转移过程:在1.5V恒压下通电10h,通电过程中,锂离子嵌入涂层中的氧化镍晶格内并形成均匀的一层,且与负极紧密接触,即在负极表面形成一层保护层。Step 5) Coating in-situ transfer process: energize for 10 hours at a constant voltage of 1.5V, during the energization process, lithium ions are embedded in the nickel oxide lattice in the coating and form a uniform layer, and are in close contact with the negative electrode, that is, in the A protective layer is formed on the surface of the negative electrode.
制备得到的锂离子电池进行循环充放电测试(见表1)和原位转移保护层形貌表征(见图1)。The prepared lithium-ion batteries were subjected to cyclic charge-discharge tests (see Table 1) and the morphology characterization of the in-situ transfer protective layer (see Figure 1).
图1为实施例1原位转移保护层形貌表征。由图可知,隔膜上的涂层已成功转移在锂金属负极上,且在循环中促使锂沉积更加平整。FIG. 1 is the characterization of the morphology of the in-situ transfer protective layer in Example 1. It can be seen from the figure that the coating on the separator has been successfully transferred to the lithium metal anode, and the lithium deposition is promoted to be smoother during the cycle.
实施例2Example 2
其他步骤同实施例1,区别仅在于:Other steps are the same as in Example 1, the difference is only:
步骤1)将甲基戊醇15g溶于1500mL水中得到混合体系,再将磷酸铁145g溶于上述混合体系中,加入聚丙烯酸粘结剂14g充分搅拌,制得复合浆料;Step 1) Dissolving 15 g of methyl amyl alcohol in 1500 mL of water to obtain a mixed system, then dissolving 145 g of iron phosphate in the above mixed system, adding 14 g of a polyacrylic acid binder and fully stirring to prepare a composite slurry;
步骤5)涂层原位转移过程:在1.5V恒压下通电10h,通电过程中,锂离子嵌入磷酸铁晶格中并形成磷酸铁锂等化合物,其可形成均匀的一层并与负极紧密结合,即在负极表面形成一层保护层。Step 5) Coating in-situ transfer process: power on for 10h under a constant voltage of 1.5V, during the power-on process, lithium ions are embedded in the iron phosphate lattice and form compounds such as lithium iron phosphate, which can form a uniform layer and be closely connected to the negative electrode Combined, that is, a protective layer is formed on the surface of the negative electrode.
实施例3Example 3
其他步骤同实施例1,区别仅在于:Other steps are the same as in Example 1, the difference is only:
步骤1)将甲基戊醇15g溶于1500mL丙酮中得到混合体系,再将锰酸钴200g分散于上述混合体系中,加入聚偏氟乙烯粘结剂30g充分搅拌,制得复合浆料;Step 1) Dissolve 15 g of methyl amyl alcohol in 1500 mL of acetone to obtain a mixed system, then disperse 200 g of cobalt manganate in the above mixed system, add 30 g of polyvinylidene fluoride binder and stir to obtain a composite slurry;
步骤5)涂层原位转移过程:在2.5V恒压下通电5h,通电过程中,涂层中的锰酸钴与锂金属发生氧化还原反应,生成锰、钴金属单质及少量低价化合物,其可形成均匀的一层并与负极紧密结合,即在负极表面形成一层保护层。Step 5) Coating in-situ transfer process: energize for 5 hours at a constant voltage of 2.5V, during the energization process, the cobalt manganate in the coating undergoes a redox reaction with lithium metal to generate manganese, cobalt metal elemental substance and a small amount of low-valent compounds, It can form a uniform layer and be closely combined with the negative electrode, that is, a protective layer is formed on the surface of the negative electrode.
实施例4Example 4
其他步骤同实施例1,区别仅在于:Other steps are the same as in Example 1, the difference is only:
步骤1)将蓖麻油35g溶于1500mL水中得到混合体系,再将碳酸锌300g溶于上述混合体系中,加入聚丙烯腈粘结剂100g充分搅拌,制得复合浆料;Step 1) Dissolving 35 g of castor oil in 1500 mL of water to obtain a mixed system, then dissolving 300 g of zinc carbonate in the above mixed system, adding 100 g of polyacrylonitrile binder and fully stirring to prepare a composite slurry;
步骤5)涂层原位转移过程:在0.5V恒压下通电10h,通电过程中,涂层中的碳酸锌与锂发生氧化还原反应,生成碳酸锂及金属锌、锌锂合金混合物,其形成均匀的一层并与负极紧密结合,即在负极表面形成一层保护层。Step 5) In-situ transfer process of the coating: electrify for 10 hours at a constant voltage of 0.5V, during the electrification process, the zinc carbonate in the coating undergoes a redox reaction with lithium to generate lithium carbonate and a mixture of metallic zinc and zinc-lithium alloy, which forms A uniform layer and closely combined with the negative electrode, that is, a protective layer is formed on the surface of the negative electrode.
实施例5Example 5
其他步骤同实施例1,区别仅在于:Other steps are the same as in Example 1, the difference is only:
步骤1)将油酸钠5g溶于1500mL水中得到混合体系,再将氢氧化镍145g溶于上述混合体系中,加入聚丙烯酸粘结剂15g充分搅拌,制得复合浆料;Step 1) dissolving 5 g of sodium oleate in 1500 mL of water to obtain a mixed system, then dissolving 145 g of nickel hydroxide in the above mixed system, adding 15 g of a polyacrylic acid binder and fully stirring to prepare a composite slurry;
步骤5)涂层原位转移过程:在1.5V恒压下通电5h,通电过程中,涂层中的氢氧化镍与锂离子发生氧化还原反应,生成单质镍和含锂的化合物,二者形成均匀的一层并与负极紧密结合,即在负极表面形成一层保护层。Step 5) Coating in-situ transfer process: energize for 5 hours at a constant voltage of 1.5V, during the energization process, the nickel hydroxide in the coating undergoes a redox reaction with lithium ions to generate elemental nickel and a lithium-containing compound, and the two form A uniform layer and closely combined with the negative electrode, that is, a protective layer is formed on the surface of the negative electrode.
实施例6Example 6
其他步骤同实施例1,区别仅在于:Other steps are the same as in Example 1, the difference is only:
步骤1)将蓖麻油5g溶于1500mL水中得到混合体系,再将锆钛酸铅200g溶于上述混合体系中,加入羟甲基纤维素钠20g粘结剂充分搅拌,制得复合浆料;步骤5)涂层原位转移过程:在1.5V恒压下通电1h,通电过程中,涂层中的锆钛酸铅与锂金属发生氧化还原反应,生成单质铅和含锂的化合物,二者形成均匀的一层并与负极紧密结合,即在负极表面形成一层保护层。Step 1) Dissolve 5 g of castor oil in 1500 mL of water to obtain a mixed system, then dissolve 200 g of lead zirconate titanate in the above mixed system, add 20 g of sodium hydroxymethyl cellulose as a binder and fully stir to prepare a composite slurry; step 5) Coating in-situ transfer process: power on for 1 h under a constant voltage of 1.5V, during the power-on process, the lead zirconate titanate in the coating undergoes a redox reaction with lithium metal to generate elemental lead and lithium-containing compounds, and the two form A uniform layer and closely combined with the negative electrode, that is, a protective layer is formed on the surface of the negative electrode.
实施例7Example 7
其他步骤同实施例1,区别仅在于:Other steps are the same as in Example 1, the difference is only:
步骤1)将油酸钠15g溶于1500mL水中得到混合体系,再将氧化锡145g溶于上述混合体系中,加入丙烯酸钠粘结剂10g充分搅拌,制得复合浆料;Step 1) Dissolving 15 g of sodium oleate in 1500 mL of water to obtain a mixed system, then dissolving 145 g of tin oxide in the above mixed system, adding 10 g of sodium acrylate binder and fully stirring to prepare a composite slurry;
步骤5)涂层原位转移过程:在1.5V恒压下通电18h,通电过程中,涂层中的氧化锡与锂金属发生氧化还原反应,生成锡金属单质和锂的氧化物,二者形成均匀的一层并与负极紧密结合,即在负极表面形成一层保护层。Step 5) Coating in-situ transfer process: power on for 18h under a constant voltage of 1.5V, during the power-on process, the tin oxide in the coating undergoes a redox reaction with lithium metal to generate tin metal element and lithium oxide, and the two form A uniform layer and closely combined with the negative electrode, that is, a protective layer is formed on the surface of the negative electrode.
对比例1Comparative Example 1
其他步骤同实施例1,区别在于:Other steps are the same as in Example 1, the difference is:
步骤1)将十二烷基苯磺酸钠25g溶于460mL水中得到混合体系,再将氧化铝160g分散于上述混合体系中,加入丁苯橡胶粘结剂1g,充分搅拌,制得混合浆料;Step 1) Dissolve 25 g of sodium dodecyl benzene sulfonate in 460 mL of water to obtain a mixed system, then disperse 160 g of alumina in the above mixed system, add 1 g of styrene-butadiene rubber binder, and fully stir to prepare a mixed slurry ;
步骤5)涂层原位转移过程:在1.5V恒压下通电10h,通电过程中,无原位转移发生。Step 5) Coating in-situ transfer process: electrify for 10h under a constant voltage of 1.5V, during the electrification process, no in-situ transfer occurs.
对比例2Comparative Example 2
在正极与负极极片中间放入未涂覆的聚丙烯隔膜(商用聚丙烯隔膜),加入商用锂离子电池电解液100μL,放入簧片后液压封口机封口,制备纽扣式2032锂离子电池,并在1.5V恒压下通电10h,通电过程中,无原位转移发生。随后进行循环充放电测试。An uncoated polypropylene separator (commercial polypropylene separator) was placed between the positive and negative pole pieces, 100 μL of a commercial lithium-ion battery electrolyte was added, and the reeds were put in and sealed with a hydraulic sealer to prepare a button-type 2032 lithium-ion battery. And energized at 1.5V constant voltage for 10h, no in-situ transfer occurred during the energization process. Then a cyclic charge-discharge test was performed.
对比例3Comparative Example 3
其他步骤同实施例1,区别仅在于省略步骤5),即将制备得到的纽扣式2032锂离子电池不经通电步骤,而是直接进行循环充放电测试。The other steps are the same as those in Example 1, except that step 5) is omitted. The button-type 2032 lithium ion battery to be prepared is not subjected to the electrification step, but is directly subjected to the cyclic charge-discharge test.
通过上述测试方法对实施例1-7和对比例1-3进行测试,得到电池性能参数如表1所示。The above-mentioned test methods were used to test Examples 1-7 and Comparative Examples 1-3, and the battery performance parameters were obtained as shown in Table 1.
表1为实施例1-7和对比例1-3制备得到锂离子电池性能参数Table 1 shows the performance parameters of lithium ion batteries prepared in Examples 1-7 and Comparative Examples 1-3
从表1的数据可见,本发明的锂离子电池的循环稳定性明显优于对比例中的,尤其是500圈后的性能较对比例至少提高20%,极具应用前景。It can be seen from the data in Table 1 that the cycle stability of the lithium ion battery of the present invention is obviously better than that of the comparative example, especially the performance after 500 cycles is at least 20% higher than that of the comparative example, which has great application prospects.
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910190086.1A CN111697270B (en) | 2019-03-13 | 2019-03-13 | Method for forming negative electrode protection layer through in-situ transfer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910190086.1A CN111697270B (en) | 2019-03-13 | 2019-03-13 | Method for forming negative electrode protection layer through in-situ transfer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111697270A true CN111697270A (en) | 2020-09-22 |
CN111697270B CN111697270B (en) | 2022-01-14 |
Family
ID=72475706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910190086.1A Active CN111697270B (en) | 2019-03-13 | 2019-03-13 | Method for forming negative electrode protection layer through in-situ transfer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111697270B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113380976A (en) * | 2021-05-27 | 2021-09-10 | 浙江锋锂新能源科技有限公司 | Pole piece surface coating slurry and manufacturing method thereof, lithium battery pole piece and manufacturing method thereof |
CN114142161A (en) * | 2021-11-26 | 2022-03-04 | 吉林大学 | A kind of preparation method of modified lithium ion battery separator |
CN114744158A (en) * | 2022-05-18 | 2022-07-12 | 中南大学 | A method of organic/inorganic composite coating for surface modification of lithium metal electrode |
CN115832180A (en) * | 2022-01-05 | 2023-03-21 | 宁德时代新能源科技股份有限公司 | Secondary battery, battery module, battery pack, and electric device using the same |
CN118610689A (en) * | 2024-05-24 | 2024-09-06 | 哈尔滨工业大学 | Preparation method and application of protective layer material for suppressing short circuit in lithium battery |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008039416A1 (en) * | 2006-09-25 | 2008-04-03 | Zpower Inc. | Dendrite-resistant separator for alkaline storage batteries |
CN105140449A (en) * | 2015-08-14 | 2015-12-09 | 中国人民解放军63971部队 | Method for protecting anode of lithium sulfur battery |
CN105280886A (en) * | 2015-09-16 | 2016-01-27 | 中国科学院化学研究所 | Surface in-situ processing method of metal lithium negative electrode and application |
CN105449139A (en) * | 2015-03-27 | 2016-03-30 | 万向A一二三系统有限公司 | Method for solving high-temperature flatulence of lithium titanate negative lithium-ion battery |
US20160141598A1 (en) * | 2014-11-14 | 2016-05-19 | GM Global Technology Operations LLC | Methods for making a solid electrolyte interface layer on a surface of an electrode |
CN105762326A (en) * | 2014-12-17 | 2016-07-13 | 中国科学院宁波材料技术与工程研究所 | Lithium battery and preparation method thereof |
CN107123788A (en) * | 2017-03-30 | 2017-09-01 | 中国科学院青岛生物能源与过程研究所 | A kind of lithium anode with organic-inorganic duplicate protection layer |
KR20180071884A (en) * | 2016-12-20 | 2018-06-28 | 주식회사 엘지화학 | Separator and lithium-sulfur battery comprising the same |
US20180226624A1 (en) * | 2015-08-26 | 2018-08-09 | Xiamen University | Modified ceramic composite separator and manufacturing method thereof |
CN207765523U (en) * | 2017-12-28 | 2018-08-24 | 东莞市赛洋新能源科技有限公司 | A diaphragm and a lithium battery with the diaphragm |
CN108493454A (en) * | 2018-01-29 | 2018-09-04 | 东莞市航盛新能源材料有限公司 | A kind of copper current collector and preparation method thereof of transient metal sulfide modification |
CN108933215A (en) * | 2017-05-27 | 2018-12-04 | 北京师范大学 | It is a kind of to include graphene/cellulose composite material battery slurry and its preparation method and application |
CN109216652A (en) * | 2018-08-01 | 2019-01-15 | 珠海光宇电池有限公司 | A kind of cathode of lithium and preparation method thereof of polymer protection |
CN111490252A (en) * | 2019-01-29 | 2020-08-04 | 中国科学院宁波材料技术与工程研究所 | Lithium metal protective layer, preparation method thereof, and battery with the protective layer |
-
2019
- 2019-03-13 CN CN201910190086.1A patent/CN111697270B/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008039416A1 (en) * | 2006-09-25 | 2008-04-03 | Zpower Inc. | Dendrite-resistant separator for alkaline storage batteries |
US20160141598A1 (en) * | 2014-11-14 | 2016-05-19 | GM Global Technology Operations LLC | Methods for making a solid electrolyte interface layer on a surface of an electrode |
CN105762326A (en) * | 2014-12-17 | 2016-07-13 | 中国科学院宁波材料技术与工程研究所 | Lithium battery and preparation method thereof |
CN105449139A (en) * | 2015-03-27 | 2016-03-30 | 万向A一二三系统有限公司 | Method for solving high-temperature flatulence of lithium titanate negative lithium-ion battery |
CN105140449A (en) * | 2015-08-14 | 2015-12-09 | 中国人民解放军63971部队 | Method for protecting anode of lithium sulfur battery |
US20180226624A1 (en) * | 2015-08-26 | 2018-08-09 | Xiamen University | Modified ceramic composite separator and manufacturing method thereof |
CN105280886A (en) * | 2015-09-16 | 2016-01-27 | 中国科学院化学研究所 | Surface in-situ processing method of metal lithium negative electrode and application |
KR20180071884A (en) * | 2016-12-20 | 2018-06-28 | 주식회사 엘지화학 | Separator and lithium-sulfur battery comprising the same |
CN107123788A (en) * | 2017-03-30 | 2017-09-01 | 中国科学院青岛生物能源与过程研究所 | A kind of lithium anode with organic-inorganic duplicate protection layer |
CN108933215A (en) * | 2017-05-27 | 2018-12-04 | 北京师范大学 | It is a kind of to include graphene/cellulose composite material battery slurry and its preparation method and application |
CN207765523U (en) * | 2017-12-28 | 2018-08-24 | 东莞市赛洋新能源科技有限公司 | A diaphragm and a lithium battery with the diaphragm |
CN108493454A (en) * | 2018-01-29 | 2018-09-04 | 东莞市航盛新能源材料有限公司 | A kind of copper current collector and preparation method thereof of transient metal sulfide modification |
CN109216652A (en) * | 2018-08-01 | 2019-01-15 | 珠海光宇电池有限公司 | A kind of cathode of lithium and preparation method thereof of polymer protection |
CN111490252A (en) * | 2019-01-29 | 2020-08-04 | 中国科学院宁波材料技术与工程研究所 | Lithium metal protective layer, preparation method thereof, and battery with the protective layer |
Non-Patent Citations (2)
Title |
---|
JIAO-YANG WU等: ""Forming solid electrolyte interphase in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3-polypropylene(PP) based separator for Li-ion batteries"", 《CHIN. PHYS. B》 * |
宋建龙等: "涂层改性锂离子电池隔膜研究进展", 《信息记录材料》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113380976A (en) * | 2021-05-27 | 2021-09-10 | 浙江锋锂新能源科技有限公司 | Pole piece surface coating slurry and manufacturing method thereof, lithium battery pole piece and manufacturing method thereof |
CN114142161A (en) * | 2021-11-26 | 2022-03-04 | 吉林大学 | A kind of preparation method of modified lithium ion battery separator |
CN114142161B (en) * | 2021-11-26 | 2023-09-22 | 吉林大学 | A kind of preparation method of modified lithium-ion battery separator |
CN115832180A (en) * | 2022-01-05 | 2023-03-21 | 宁德时代新能源科技股份有限公司 | Secondary battery, battery module, battery pack, and electric device using the same |
CN115832180B (en) * | 2022-01-05 | 2024-03-22 | 宁德时代新能源科技股份有限公司 | Secondary battery, battery module, battery pack and power utilization device thereof |
CN114744158A (en) * | 2022-05-18 | 2022-07-12 | 中南大学 | A method of organic/inorganic composite coating for surface modification of lithium metal electrode |
CN114744158B (en) * | 2022-05-18 | 2024-05-03 | 中南大学 | Method for modifying surface of lithium metal electrode by using organic/inorganic composite coating |
CN118610689A (en) * | 2024-05-24 | 2024-09-06 | 哈尔滨工业大学 | Preparation method and application of protective layer material for suppressing short circuit in lithium battery |
CN118610689B (en) * | 2024-05-24 | 2025-01-24 | 哈尔滨工业大学 | Preparation method and application of protective layer material for suppressing short circuit in lithium battery |
Also Published As
Publication number | Publication date |
---|---|
CN111697270B (en) | 2022-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111697270B (en) | Method for forming negative electrode protection layer through in-situ transfer | |
CN110190243A (en) | Preparation and application of a lithium metal negative electrode with a composite film | |
CN109755448A (en) | A kind of lithium battery diaphragm and preparation method thereof with benefit lithium coating | |
CN102124595B (en) | Negative electrode for nonaqueous electrolyte secondary cells, manufacturing method therefor, and nonaqueous electrolyte secondary cell | |
CN100583501C (en) | Lithium ion battery cathode and preparation method thereof | |
CN111463403A (en) | Negative electrode material modified by composite artificial solid electrolyte interface film and battery application thereof | |
CN111081982A (en) | Lithium ion battery lithium supplementing method | |
CN110071265A (en) | A kind of silicon-carbon cathode prelithiation method | |
CN102449811A (en) | Lithium secondary battery having high energy density | |
CN102694200A (en) | Silicon-based negative lithium-ion battery and manufacturing method thereof | |
WO2023108963A1 (en) | Lithium-ion battery | |
CN211907608U (en) | Lithium ion battery structure | |
CN113097648B (en) | Separator for lithium metal battery and method for preparing the same | |
CN110790322A (en) | Core-shell nickel ferrite and preparation method thereof, nickel ferrite @ C material and preparation method and application thereof | |
CN111682147A (en) | A double-coated separator for simultaneously inhibiting lithium dendrite and shuttle effect and its preparation method | |
CN112736277A (en) | Solid electrolyte-lithium negative electrode complex, method for producing same, and all-solid-state lithium secondary battery | |
CN114284567A (en) | A kind of preparation method of high energy density anode-free lithium metal battery | |
CN107910484A (en) | It is a kind of using fast charge lithium ion battery of ceramic diaphragm and preparation method thereof | |
CN107731542A (en) | A kind of solid state battery capacitor | |
CN112243546B (en) | Functional separator, manufacturing method thereof, and lithium secondary battery comprising the functional separator | |
CN112952292A (en) | Composite diaphragm capable of being used for metal lithium battery and metal sodium battery, and preparation method and application thereof | |
JP2000011991A (en) | Organic electrolyte secondary battery | |
CN109037683A (en) | A kind of negative electrode of lithium ion battery plate and its modified technique | |
CN110391415A (en) | A positive electrode active material and a zinc ion battery comprising the positive electrode active material | |
CN111883765A (en) | Lithium battery positive active material, preparation method thereof and lithium battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |