[go: up one dir, main page]

CN111697113A - Preparation method of Micro-LED device and Micro-LED device - Google Patents

Preparation method of Micro-LED device and Micro-LED device Download PDF

Info

Publication number
CN111697113A
CN111697113A CN202010542773.8A CN202010542773A CN111697113A CN 111697113 A CN111697113 A CN 111697113A CN 202010542773 A CN202010542773 A CN 202010542773A CN 111697113 A CN111697113 A CN 111697113A
Authority
CN
China
Prior art keywords
layer
type semiconductor
semiconductor layer
plasma
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010542773.8A
Other languages
Chinese (zh)
Inventor
刘召军
蒋府龙
刘亚莹
李四龙
吴国才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern University of Science and Technology
Original Assignee
Southern University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southern University of Science and Technology filed Critical Southern University of Science and Technology
Priority to CN202010542773.8A priority Critical patent/CN111697113A/en
Publication of CN111697113A publication Critical patent/CN111697113A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • H10H20/812Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/816Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/84Coatings, e.g. passivation layers or antireflective coatings

Landscapes

  • Led Devices (AREA)

Abstract

本发明实施例公开了一种Micro‑LED器件的制备方法及Micro‑LED器件,其中制备方法包括:形成外延层,外延层包括设置在衬底上的第一N型半导体层、第二N型半导体层、量子阱层、P型半导体层和电流扩展层;通过等离子体对外延层进行处理;形成同族界面层,同族界面层覆盖第二N型半导体层、量子阱层、P型半导体层和电流扩展层的侧表面,以及电流扩展层和第一N型半导体层上表面的非电极区域;形成电极,电极覆盖电流扩展层和第一N型半导体层上表面的电极区域。本发明实施例提供的技术方案降低了侧壁表面态的形成,降低了器件表面缺陷密度,从而提高了器件发光效率,保证了器件工作特性。

Figure 202010542773

Embodiments of the present invention disclose a preparation method of a Micro-LED device and a Micro-LED device, wherein the preparation method includes: forming an epitaxial layer, and the epitaxial layer includes a first N-type semiconductor layer and a second N-type semiconductor layer disposed on a substrate. The semiconductor layer, the quantum well layer, the P-type semiconductor layer and the current spreading layer; the epitaxial layer is processed by plasma; the same family interface layer is formed, and the same family interface layer covers the second N-type semiconductor layer, the quantum well layer, the P-type semiconductor layer and the The side surface of the current spreading layer, and the non-electrode area on the upper surface of the current spreading layer and the first N-type semiconductor layer; forming an electrode covering the current spreading layer and the electrode area on the upper surface of the first N-type semiconductor layer. The technical solutions provided by the embodiments of the present invention reduce the formation of sidewall surface states and the density of surface defects of the device, thereby improving the luminous efficiency of the device and ensuring the working characteristics of the device.

Figure 202010542773

Description

一种Micro-LED器件的制备方法及Micro-LED器件A kind of preparation method of Micro-LED device and Micro-LED device

技术领域technical field

本发明实施例涉及半导体器件制备技术领域,尤其涉及一种Micro-LED器件的制备方法及Micro-LED器件。Embodiments of the present invention relate to the technical field of semiconductor device fabrication, and in particular, to a method for fabricating a Micro-LED device and a Micro-LED device.

背景技术Background technique

Micro-LED显示是由集成在有源寻址驱动基板上的微米级LED发光像元组成的阵列显示技术,具有高效率、低功耗、高集成、高稳定性等优点。在众多新型显示技术中,Micro-LED显示被认为是具有颠覆性的下一代显示技术。Micro-LED显示技术的核心是尺寸小于50微米的Micro-LED器件。目前Micro-LED器件面临的技术瓶颈是其峰值效率随器件尺寸减小而衰减。随着Micro-LED器件尺寸从500微米减小到10微米时,其发光效率的峰值衰减了50%左右。这是由于器件在制备过程中,由于刻蚀工艺在Micro-LED侧壁引入晶格损伤,在侧壁表面存在悬挂键、氮空位、氧化层和表面缺陷等表面态,从而在Micro-LED侧壁引入大量的表面缺陷能级,降低了器件的发光效率。由此可见,表面态对Micro-LED器件效率的影响随器件尺寸减小而显著增加。Micro-LED display is an array display technology composed of micron-scale LED light-emitting pixels integrated on an active addressing drive substrate, which has the advantages of high efficiency, low power consumption, high integration, and high stability. Among many new display technologies, Micro-LED display is considered to be a disruptive next-generation display technology. The core of Micro-LED display technology is Micro-LED devices with dimensions less than 50 microns. The technical bottleneck faced by Micro-LED devices at present is that their peak efficiency decreases as the device size decreases. As the size of Micro-LED devices decreases from 500 microns to 10 microns, the peak luminous efficiency attenuates by about 50%. This is due to the fact that during the preparation process of the device, the etching process introduces lattice damage to the sidewall of the Micro-LED, and surface states such as dangling bonds, nitrogen vacancies, oxide layers and surface defects exist on the sidewall surface, so the micro-LED side The wall introduces a large number of surface defect levels, which reduces the luminous efficiency of the device. It can be seen that the effect of surface states on the efficiency of Micro-LED devices increases significantly with decreasing device size.

目前Micro-LED器件的侧壁钝化工艺主要是用等离子体增强化学气相外延设备或原子层沉积设备,在Micro-LED侧壁沉积氧化硅或氧化铝等绝缘层。虽然此钝化工艺可有效钝化侧壁表面,减小侧壁表面悬挂键密度,然而对于Micro-LED器件而言,此工艺并没有有效改善Micro-LED器件的氮空位、氧化层及表面缺陷等现象,表面态对Micro-LED器件效率的影响依然没有得到解决。At present, the sidewall passivation process of Micro-LED devices mainly uses plasma-enhanced chemical vapor epitaxy or atomic layer deposition equipment to deposit insulating layers such as silicon oxide or aluminum oxide on the sidewalls of Micro-LEDs. Although this passivation process can effectively passivate the sidewall surface and reduce the density of dangling bonds on the sidewall surface, for Micro-LED devices, this process does not effectively improve the nitrogen vacancies, oxide layers and surface defects of Micro-LED devices However, the effect of surface states on the efficiency of Micro-LED devices remains unresolved.

发明内容SUMMARY OF THE INVENTION

本发明实施例提供了一种Micro-LED器件的制备方法及Micro-LED器件,以有效阻止侧壁表面态的形成,降低表面态对Micro-LED器件的影响,提高Micro-LED器件发光效率,保证器件工作特性。The embodiments of the present invention provide a preparation method of a Micro-LED device and a Micro-LED device, so as to effectively prevent the formation of sidewall surface states, reduce the influence of the surface states on the Micro-LED device, and improve the luminous efficiency of the Micro-LED device, Guaranteed device operating characteristics.

第一方面,本发明实施例提供了一种Micro-LED器件的制备方法,包括:In a first aspect, an embodiment of the present invention provides a method for preparing a Micro-LED device, including:

形成外延层,所述外延层包括设置在衬底上的第一N型半导体层、第二N型半导体层、量子阱层、P型半导体层和电流扩展层,所述第二N型半导体层、所述量子阱层、所述P型半导体层和所述电流扩展层层叠设置,并覆盖部分所述第一N型半导体层;An epitaxial layer is formed, the epitaxial layer includes a first N-type semiconductor layer, a second N-type semiconductor layer, a quantum well layer, a P-type semiconductor layer and a current spreading layer disposed on a substrate, the second N-type semiconductor layer , the quantum well layer, the P-type semiconductor layer and the current spreading layer are stacked and arranged, and cover part of the first N-type semiconductor layer;

通过等离子体对所述外延层进行处理;treating the epitaxial layer by plasma;

形成同族界面层;所述同族界面层覆盖所述第二N型半导体层、所述量子阱层、所述P型半导体层和所述电流扩展层的侧表面,以及所述电流扩展层和所述第一N型半导体层上表面的非电极区域;forming a same-family interface layer; the same-family interface layer covers the side surfaces of the second N-type semiconductor layer, the quantum well layer, the P-type semiconductor layer and the current spreading layer, and the current spreading layer and the the non-electrode region on the upper surface of the first N-type semiconductor layer;

形成电极;所述电极覆盖所述电流扩展层和所述第一N型半导体层上表面的电极区域。forming electrodes; the electrodes cover the current spreading layer and the electrode regions on the upper surface of the first N-type semiconductor layer.

可选的,所述通过等离子体对所述外延层进行处理之前还包括:Optionally, before the treatment of the epitaxial layer by plasma further includes:

通过氢氧化钾溶液去除所述外延层侧壁的刻蚀损伤;Remove the etching damage on the sidewall of the epitaxial layer by potassium hydroxide solution;

通过氯化氢溶液去除所述外延层侧壁的第一氧化产物。The first oxidation product on the sidewalls of the epitaxial layer is removed by a hydrogen chloride solution.

可选的,所述通过等离子体对所述外延层进行处理包括:Optionally, the processing of the epitaxial layer by plasma includes:

通过等离子体增强原子层沉积设备形成第一等离子体,并通过所述第一等离子体以去除所述外延层侧壁的第二氧化产物;forming a first plasma by plasma enhanced atomic layer deposition equipment, and passing through the first plasma to remove the second oxidation product on the sidewall of the epitaxial layer;

通过等离子体增强原子层沉积设备形成第二等离子体,并通过所述第二等离子体填补所述外延层侧壁的氮空位并改善侧壁界面质量。A second plasma is formed by a plasma-enhanced atomic layer deposition apparatus, and the second plasma fills nitrogen vacancies in the sidewalls of the epitaxial layer and improves the interface quality of the sidewalls.

可选的,所述第一等离子体基于氨气和/或氮气和氢气的混合气体形成;所述第二等离子体基于氨气和/或氮气形成。Optionally, the first plasma is formed based on ammonia gas and/or a mixed gas of nitrogen gas and hydrogen gas; the second plasma is formed based on ammonia gas and/or nitrogen gas.

可选的,所述第一等离子体和所述第二等离子体还基于氩气作为辅助气体对表面进行处理。Optionally, the first plasma and the second plasma further treat the surface based on argon gas as an auxiliary gas.

可选的,所述形成同族界面层包括:Optionally, the forming the interface layer of the same family includes:

通过等离子体增强原子层沉积设备沉积氮化铝;其中铝源为三甲基铝,氮源为氮气和氢气混合气的等离子体。Aluminum nitride is deposited by plasma enhanced atomic layer deposition equipment; wherein the aluminum source is trimethylaluminum, and the nitrogen source is plasma of a mixture of nitrogen and hydrogen.

可选的,所述形成同族界面层之后还包括:Optionally, after forming the interface layer of the same family, the method further includes:

于所述同族界面层上形成绝缘层。An insulating layer is formed on the same-family interface layer.

可选的,所述于所述同族界面层上形成绝缘层包括:Optionally, the forming an insulating layer on the interface layer of the same family includes:

通过等离子体增强原子层沉积设备沉积氧化铝;其中铝源为三甲基铝,氧源为水。Aluminum oxide is deposited by plasma enhanced atomic layer deposition equipment; wherein the aluminum source is trimethylaluminum, and the oxygen source is water.

第二方面,本发明实施例提供了一种Micro-LED器件,包括:In a second aspect, an embodiment of the present invention provides a Micro-LED device, including:

外延层,所述外延层包括设置在衬底上的第一N型半导体层、第二N型半导体层、量子阱层、P型半导体层和电流扩展层,所述第二N型半导体层、所述量子阱层、所述P型半导体层和电流扩展层层叠设置,并覆盖部分所述第一N型半导体层;an epitaxial layer, the epitaxial layer includes a first N-type semiconductor layer, a second N-type semiconductor layer, a quantum well layer, a P-type semiconductor layer and a current spreading layer arranged on a substrate, the second N-type semiconductor layer, the quantum well layer, the P-type semiconductor layer and the current spreading layer are stacked and arranged to cover part of the first N-type semiconductor layer;

同族界面层,所述同族界面层覆盖所述第二N型半导体层、所述量子阱层、所述P型半导体层和电流扩展层的侧表面,以及所述电流扩展层和所述第一N型半导体层上表面的非电极区域;an interface layer of the same family covering the side surfaces of the second N-type semiconductor layer, the quantum well layer, the P-type semiconductor layer and the current spreading layer, and the current spreading layer and the first The non-electrode region on the upper surface of the N-type semiconductor layer;

电极,所述电极覆盖所述电流扩展层和所述第一N型半导体层上表面的电极区域。and an electrode covering the current spreading layer and the electrode region on the upper surface of the first N-type semiconductor layer.

可选的,所述Micro-LED器件还包括绝缘层,所述绝缘层覆盖所述同族界面层。Optionally, the Micro-LED device further includes an insulating layer, and the insulating layer covers the interface layer of the same family.

本发明实施例提供了一种Micro-LED器件的制备方法及Micro-LED器件,其中Micro-LED器件的制备方法包括:形成外延层,外延层包括设置在衬底上的第一N型半导体层、第二N型半导体层、量子阱层、P型半导体层和电流扩展层,第二N型半导体层、量子阱层、P型半导体层和电流扩展层层叠设置,并覆盖部分第一N型半导体层;通过等离子体对外延层进行处理;形成同族界面层,同族界面层覆盖第二N型半导体层、量子阱层、P型半导体层和电流扩展层的侧表面,以及电流扩展层和第一N型半导体层上表面的非电极区域;形成电极,电极覆盖电流扩展层和第一N型半导体层上表面的电极区域。本发明实施例提供的技术方案针对Micro-LED侧壁表面态形成的起因,通过采用表面处理工艺和插入的同族界面层,可有效降低侧壁表面态的形成,降低Micro-LED表面缺陷密度,从而提高Micro-LED器件发光效率,保证了器件工作特性。Embodiments of the present invention provide a method for preparing a Micro-LED device and a Micro-LED device, wherein the method for preparing a Micro-LED device includes: forming an epitaxial layer, and the epitaxial layer includes a first N-type semiconductor layer disposed on a substrate , the second N-type semiconductor layer, the quantum well layer, the P-type semiconductor layer and the current spreading layer, the second N-type semiconductor layer, the quantum well layer, the P-type semiconductor layer and the current spreading layer are stacked and arranged to cover part of the first N-type The semiconductor layer; the epitaxial layer is processed by plasma; the same-family interface layer is formed, and the same-family interface layer covers the side surfaces of the second N-type semiconductor layer, the quantum well layer, the P-type semiconductor layer and the current spreading layer, as well as the current spreading layer and the first semiconductor layer; A non-electrode area on the upper surface of the N-type semiconductor layer; forming an electrode, the electrode covers the current spreading layer and the electrode area on the upper surface of the first N-type semiconductor layer. The technical solutions provided by the embodiments of the present invention are aimed at the cause of the formation of the surface state of the sidewall of the Micro-LED. By adopting the surface treatment process and the interfacial layer of the same family inserted, the formation of the surface state of the sidewall can be effectively reduced, and the surface defect density of the Micro-LED can be reduced. Thus, the luminous efficiency of the Micro-LED device is improved, and the working characteristics of the device are ensured.

附图说明Description of drawings

图1是本发明实施例一提供的一种Micro-LED器件的制备方法的流程图;FIG. 1 is a flowchart of a method for preparing a Micro-LED device provided in Embodiment 1 of the present invention;

图2-图13是本发明实施例一提供的一种Micro-LED器件的制备方法中各步骤结构剖面图;2 to 13 are structural cross-sectional views of each step in a method for preparing a Micro-LED device provided in Embodiment 1 of the present invention;

图14是本发明实施例二提供的一种Micro-LED器件的制备方法的流程图;14 is a flow chart of a method for preparing a Micro-LED device provided in Embodiment 2 of the present invention;

图15是本发明实施例二提供的一种通过第一等离子体对外延层进行处理的示意图;15 is a schematic diagram of processing an epitaxial layer by a first plasma according to Embodiment 2 of the present invention;

图16是本发明实施例二提供的一种通过第二等离子体对外延层进行处理的示意图;16 is a schematic diagram of processing an epitaxial layer by a second plasma according to Embodiment 2 of the present invention;

图17是本发明实施例二提供的一种Micro-LED器件的结构剖面图。FIG. 17 is a structural cross-sectional view of a Micro-LED device according to the second embodiment of the present invention.

具体实施方式Detailed ways

下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention. In addition, it should be noted that, for the convenience of description, the drawings only show some but not all structures related to the present invention.

实施例一Example 1

本发明实施例提供了一种Micro-LED器件的制备方法,图1是本发明实施例一提供的一种Micro-LED器件的制备方法的流程图,图2-图13是本发明实施例一提供的一种Micro-LED器件的制备方法中各步骤结构剖面图,参考图1-13,制备方法包括:An embodiment of the present invention provides a method for fabricating a Micro-LED device. FIG. 1 is a flowchart of a method for fabricating a Micro-LED device according to Embodiment 1 of the present invention. FIGS. 2 to 13 are Embodiment 1 of the present invention. Provided is a cross-sectional view of the structure of each step in the preparation method of a Micro-LED device, referring to Figures 1-13, the preparation method includes:

S110、形成外延层,外延层包括设置在衬底上的第一N型半导体层、第二N型半导体层、量子阱层、P型半导体层和电流扩展层,第二N型半导体层、量子阱层、P型半导体层和电流扩展层层叠设置,并覆盖部分第一N型半导体层。S110, forming an epitaxial layer, the epitaxial layer includes a first N-type semiconductor layer, a second N-type semiconductor layer, a quantum well layer, a P-type semiconductor layer and a current spreading layer disposed on the substrate, the second N-type semiconductor layer, the quantum The well layer, the P-type semiconductor layer and the current spreading layer are stacked and arranged to cover part of the first N-type semiconductor layer.

具体的,参考图2,在衬底10上依次形成一层N型半导体层20、一层量子阱层30和一层P型半导体层40。参考图3,在P型半导体层40上沉积一层电流扩展层50,并进行退火工艺,使其作为p型电流扩展层。其中衬底10可以选取蓝宝石衬底;N型半导体层20可以设置为n-GaN层;量子阱层30可以设置为InGaN/GaN层,P型半导体层40可以设置为P-GaN层;电流扩展层50可以设置为ITO(Indium Tin Oxide,氧化铟锡)层,ITO是一种N型氧化物半导体-氧化铟锡,具有一定的电阻且具有透光性,ITO层用作透明导电薄膜,可减少Micro-LED器件对人体有害的电子辐射。Specifically, referring to FIG. 2 , an N-type semiconductor layer 20 , a quantum well layer 30 and a P-type semiconductor layer 40 are sequentially formed on the substrate 10 . Referring to FIG. 3, a current spreading layer 50 is deposited on the p-type semiconductor layer 40, and an annealing process is performed to make it a p-type current spreading layer. The substrate 10 can be a sapphire substrate; the N-type semiconductor layer 20 can be set as an n-GaN layer; the quantum well layer 30 can be set as an InGaN/GaN layer, and the P-type semiconductor layer 40 can be set as a P-GaN layer; The layer 50 can be set as an ITO (Indium Tin Oxide, indium tin oxide) layer. ITO is an N-type oxide semiconductor-indium tin oxide, which has a certain resistance and light transmittance. The ITO layer is used as a transparent conductive film, which can Reduce the harmful electronic radiation of Micro-LED devices to the human body.

参考图4,在电流扩展层50上沉积一层氧化硅层60,厚度为200nm。进一步地,参考图5,在氧化硅层60表面进行光刻形成第一光刻胶掩膜70,使第一光刻胶掩膜70覆盖需要保留的区域。进一步地,参考图6,利用RIE(Reactive Ion Etching,反应离子刻蚀)设备,以第一光刻胶掩膜70为掩膜,通过CHF3和O2的等离子体刻蚀氧化硅层60,将光刻胶的图形转移至氧化硅层60,并去除表面残余光刻胶。进一步地,参考图7-图8,利用ICP(InductivelyCoupled Plasma,感应耦合等离子体)设备,以表面的氧化硅层60为掩膜,通过Cl2和Cl3B的等离子体依次对电流扩展层50、P型半导体层40、量子阱层30和部分的N型半导体层20进行刻蚀,形成第二N型半导体层21、量子阱层30、P型半导体层40和电流扩展层50层叠设置并覆盖部分第一N型半导体层21的台面结构。Referring to FIG. 4 , a silicon oxide layer 60 is deposited on the current spreading layer 50 with a thickness of 200 nm. Further, referring to FIG. 5 , photolithography is performed on the surface of the silicon oxide layer 60 to form a first photoresist mask 70 , so that the first photoresist mask 70 covers the area that needs to be reserved. Further, referring to FIG. 6 , using RIE (Reactive Ion Etching, reactive ion etching) equipment, using the first photoresist mask 70 as a mask, the silicon oxide layer 60 is etched by plasma of CHF 3 and O 2 , The pattern of photoresist is transferred to the silicon oxide layer 60, and the residual photoresist on the surface is removed. Further, referring to FIGS. 7-8 , using ICP (Inductively Coupled Plasma) equipment, using the silicon oxide layer 60 on the surface as a mask, the current spreading layer 50 is sequentially applied to the current spreading layer 50 by the plasma of Cl 2 and Cl 3 B , P-type semiconductor layer 40, quantum well layer 30 and part of N-type semiconductor layer 20 are etched to form second N-type semiconductor layer 21, quantum well layer 30, P-type semiconductor layer 40 and current spreading layer 50 are stacked and arranged Parts of the mesa structures of the first N-type semiconductor layer 21 are covered.

S120、通过等离子体对外延层进行处理。S120, treating the epitaxial layer by plasma.

具体的,步骤S110中利用ICP设备对外延层进行刻蚀,在外延层刻蚀后的侧壁表面会存在悬挂键、氮空位、氧化层及表面缺陷等表面态,使在Micro-LED侧壁引入大量的表面缺陷能级,导致器件的发光效率降低。参考图9,步骤S120针对Micro-LED器件的效率衰减主要起因,可以采用PEALD(Plasma EnhancedChemical Vapor Deposition,等离子增强化学气相沉积)设备,利用远程等离子体3的高化学活性对外延层2侧壁表面进行表面处理。在PEALD设备中通入气体G,气体G经过PEALD设备的射频线圈1后产生离子体3,通过等离子体3对外延层2进行处理可以去除侧壁表面的氧化层并填补氮空位,可有效降低侧壁表面态的形成,从而提高了Micro-LED器件发光效率,保证了器件工作特性。Specifically, in step S110, ICP equipment is used to etch the epitaxial layer, and surface states such as dangling bonds, nitrogen vacancies, oxide layers, and surface defects may exist on the sidewall surface after the epitaxial layer is etched, so that the sidewall of the Micro-LED has surface states such as dangling bonds, nitrogen vacancies, oxide layers, and surface defects. A large number of surface defect levels are introduced, resulting in a decrease in the luminous efficiency of the device. Referring to FIG. 9 , in step S120 , for the main cause of the efficiency attenuation of the Micro-LED device, PEALD (Plasma Enhanced Chemical Vapor Deposition, plasma enhanced chemical vapor deposition) equipment can be used to utilize the high chemical activity of the remote plasma 3 on the sidewall surface of the epitaxial layer 2 Surface treatment. The gas G is introduced into the PEALD equipment, and the gas G passes through the radio frequency coil 1 of the PEALD equipment to generate ions 3. The oxide layer on the sidewall surface can be removed and the nitrogen vacancies can be filled by treating the epitaxial layer 2 with the plasma 3, which can effectively reduce the The formation of sidewall surface states improves the luminous efficiency of the Micro-LED device and ensures the device operating characteristics.

S130、形成同族界面层;同族界面层覆盖第二N型半导体层、量子阱层、P型半导体层和电流扩展层的侧表面,以及电流扩展层和第一N型半导体层上表面的非电极区域。S130, forming an interface layer of the same family; the interface layer of the same family covers the side surfaces of the second N-type semiconductor layer, the quantum well layer, the P-type semiconductor layer and the current spreading layer, and the non-electrodes on the upper surface of the current spreading layer and the first N-type semiconductor layer area.

具体的,参考图10,采用PEALD设备在第二N型半导体层22、量子阱层30、P型半导体层40和电流扩展层50的侧表面,以及电流扩展层50和第一N型半导体层21上表面原位沉积与Micro-LED同族的同族界面层80。同族界面层80的材料中的元素与外延层中的镓元素为同族元素,化学特性相近,因此在外延层刻蚀后的侧壁上即第二N型半导体层22、量子阱层30、P型半导体层40和电流扩展层50的侧表面,以及电流扩展层50和第一N型半导体层21上表面沉积一层同族界面层,可使同族界面层与外延层刻蚀后的侧壁连接起来,减少侧壁的悬挂键,起到钝化的作用。进一步地降低了侧壁表面态的形成,提高了Micro-LED器件发光效率,保证了器件工作特性。Specifically, referring to FIG. 10, PEALD equipment is used on the side surfaces of the second N-type semiconductor layer 22, the quantum well layer 30, the P-type semiconductor layer 40 and the current spreading layer 50, as well as the current spreading layer 50 and the first N-type semiconductor layer. 21 In situ deposition of the same family interface layer 80 as the Micro-LED same family on the upper surface. The elements in the material of the interface layer 80 of the same family are of the same family as the gallium element in the epitaxial layer, and have similar chemical properties. Therefore, on the sidewall after the epitaxial layer is etched, that is, the second N-type semiconductor layer 22, the quantum well layer 30, the P The side surfaces of the N-type semiconductor layer 40 and the current spreading layer 50, as well as the upper surfaces of the current spreading layer 50 and the first N-type semiconductor layer 21, are deposited with an interface layer of the same family, so that the interface layer of the same family can be connected to the sidewall after the epitaxial layer is etched Up, reduce the dangling keys on the side wall and play a passivation role. The formation of the sidewall surface states is further reduced, the luminous efficiency of the Micro-LED device is improved, and the working characteristics of the device are ensured.

由于需要在电流扩展层50和第一N型半导体层21上表面的电极区域L形成电极,因此在外延层刻蚀后的侧壁上即第二N型半导体层22、量子阱层30、P型半导体层40和电流扩展层50的侧表面,以及电流扩展层50和第一N型半导体层21上表面沉积一层同族界面层80后,需要在位于电流扩展层50和第一N型半导体层21上表面电极区域L的同族界面层80设置窗口,以实现电极与电流扩展层和第一N型半导体层的接触。参考图11,在外延层的表面形成第二光刻胶掩膜100,通过光刻工艺将电流扩展层50和第一N型半导体层21上表面电极区域L的窗口打开。参考图12,以第二光刻胶掩膜100为掩膜,并进一步用ICP对外延层进行刻蚀,去除电流扩展层50和第一N型半导体层21上表面电极区域L的同族界面层80。Since electrodes need to be formed on the electrode region L on the upper surface of the current spreading layer 50 and the first N-type semiconductor layer 21, the sidewalls after epitaxial layer etching, namely the second N-type semiconductor layer 22, the quantum well layer 30, P After depositing a same-family interface layer 80 on the side surfaces of the current spreading layer 40 and the current spreading layer 50, and the upper surfaces of the current spreading layer 50 and the first N-type semiconductor layer 21, it needs to be located between the current spreading layer 50 and the first N-type semiconductor layer 21. The interface layer 80 of the same family in the electrode region L on the upper surface of the layer 21 is provided with a window to realize the contact of the electrode with the current spreading layer and the first N-type semiconductor layer. Referring to FIG. 11 , a second photoresist mask 100 is formed on the surface of the epitaxial layer, and the current spreading layer 50 and the window of the upper surface electrode region L of the first N-type semiconductor layer 21 are opened by a photolithography process. Referring to FIG. 12 , the second photoresist mask 100 is used as a mask, and the epitaxial layer is further etched by ICP to remove the current spreading layer 50 and the same family interface layer of the electrode region L on the upper surface of the first N-type semiconductor layer 21 80.

需要注意的是,步骤S120中通过等离子体对外延层进行处理与步骤S130中形成同族界面层均可以在PEALD设备中完成,即本步骤S130原位沉积与Micro-LED同族的同族界面层,从而可以避免采用不同设备而导致处理后的外延层再次被氧化或被外界环境污染的情况。It should be noted that both the plasma treatment of the epitaxial layer in step S120 and the formation of the same family interface layer in step S130 can be completed in the PEALD equipment, that is, the same family interface layer of the same family as the Micro-LED is deposited in-situ in this step S130, thereby It can be avoided that the treated epitaxial layer is oxidized again or polluted by the external environment due to the use of different equipment.

S140、形成电极;电极覆盖电流扩展层和第一N型半导体层上表面的电极区域。S140 , forming an electrode; the electrode covers the current spreading layer and the electrode region on the upper surface of the first N-type semiconductor layer.

具体的,参考图13,形成电极。其中位于电流扩展层50上电极区域L的电极为P电极110,位于第一N型半导体层21上电极区域L的电极为N电极120。每一电极由四层金属层形成,依次对应金属为钛、铝、钛和金。Specifically, referring to FIG. 13 , electrodes are formed. The electrode located in the electrode region L on the current spreading layer 50 is the P electrode 110 , and the electrode located in the electrode region L on the first N-type semiconductor layer 21 is the N electrode 120 . Each electrode is formed by four metal layers, and the corresponding metals are titanium, aluminum, titanium and gold in turn.

本发明实施例提供的Micro-LED器件的制备方法,包括:形成外延层,外延层包括设置在衬底上的第一N型半导体层、第二N型半导体层、量子阱层、P型半导体层和电流扩展层,第二N型半导体层、量子阱层、P型半导体层和电流扩展层层叠设置,并覆盖部分第一N型半导体层;通过等离子体对外延层进行处理;形成同族界面层,同族界面层覆盖第二N型半导体层、量子阱层、P型半导体层和电流扩展层的侧表面,以及电流扩展层和第一N型半导体层上表面的非电极区域;形成电极,电极覆盖电流扩展层和第一N型半导体层上表面的电极区域。本发明实施例提供的技术方案针对Micro-LED侧壁表面态形成的起因,通过采用表面处理工艺和插入的同族界面层,可有效降低侧壁表面态的形成,降低Micro-LED表面缺陷密度,从而提高Micro-LED器件发光效率,保证了器件工作特性。The preparation method of the Micro-LED device provided by the embodiment of the present invention includes: forming an epitaxial layer, and the epitaxial layer includes a first N-type semiconductor layer, a second N-type semiconductor layer, a quantum well layer, and a P-type semiconductor layer disposed on a substrate. layer and current spreading layer, the second N-type semiconductor layer, quantum well layer, P-type semiconductor layer and current spreading layer are stacked and arranged, and cover part of the first N-type semiconductor layer; the epitaxial layer is processed by plasma; the same family interface is formed layer, the same family interface layer covers the side surfaces of the second N-type semiconductor layer, the quantum well layer, the P-type semiconductor layer and the current spreading layer, as well as the non-electrode regions of the current spreading layer and the upper surface of the first N-type semiconductor layer; forming electrodes, The electrode covers the current spreading layer and the electrode region on the upper surface of the first N-type semiconductor layer. The technical solutions provided by the embodiments of the present invention are aimed at the cause of the formation of the surface state of the sidewall of the Micro-LED. By adopting the surface treatment process and the interfacial layer of the same family inserted, the formation of the surface state of the sidewall can be effectively reduced, and the surface defect density of the Micro-LED can be reduced. Thus, the luminous efficiency of the Micro-LED device is improved, and the working characteristics of the device are ensured.

实施例二Embodiment 2

本发明实施例提供了一种Micro-LED器件的制备方法,在上述实施例一的基础上,本发明实施例对制备方法进行了补充和细化。其中,通过等离子体对所述外延层进行处理之前还包括:通过氢氧化钾溶液去除所述外延层侧壁的刻蚀损伤;通过氯化氢溶液去除所述外延层侧壁的第一氧化产物。形成同族界面层之后还包括:于所述同族界面层上形成绝缘层。另外,通过等离子体对外延层进行处理包括:通过等离子体增强原子层沉积设备形成第一等离子体,并通过第一等离子体以去除所述外延层侧壁的第二氧化产物;通过等离子体增强原子层沉积设备形成第二等离子体,并通过第二等离子体填补所述外延层侧壁的氮空位。The embodiment of the present invention provides a preparation method of a Micro-LED device. On the basis of the above-mentioned first embodiment, the embodiment of the present invention supplements and refines the preparation method. Wherein, before the treatment of the epitaxial layer by plasma further includes: removing the etching damage on the sidewall of the epitaxial layer by using a potassium hydroxide solution; removing the first oxidation product on the sidewall of the epitaxial layer by using a hydrogen chloride solution. After forming the same-family interface layer, the method further includes: forming an insulating layer on the same-family interface layer. In addition, the processing of the epitaxial layer by plasma includes: forming a first plasma by plasma enhanced atomic layer deposition equipment, and passing the first plasma to remove the second oxidation product of the sidewall of the epitaxial layer; enhancing the plasma The atomic layer deposition apparatus forms a second plasma, and fills the nitrogen vacancies in the sidewalls of the epitaxial layer by the second plasma.

一种Micro-LED器件的制备方法,图14是本发明实施例二提供的一种Micro-LED器件的制备方法的流程图,参考图14,制备方法包括:A preparation method of a Micro-LED device, FIG. 14 is a flow chart of a preparation method of a Micro-LED device provided in Embodiment 2 of the present invention, with reference to FIG. 14 , the preparation method includes:

S210、形成外延层,外延层包括设置在衬底上的第一N型半导体层、第二N型半导体层、量子阱层、P型半导体层和电流扩展层,第二N型半导体层、量子阱层、P型半导体层和电流扩展层层叠设置,并覆盖部分第一N型半导体层。S210, forming an epitaxial layer, the epitaxial layer includes a first N-type semiconductor layer, a second N-type semiconductor layer, a quantum well layer, a P-type semiconductor layer, and a current spreading layer disposed on the substrate, the second N-type semiconductor layer, the quantum The well layer, the P-type semiconductor layer and the current spreading layer are stacked and arranged to cover part of the first N-type semiconductor layer.

S220、通过氢氧化钾溶液去除外延层侧壁的刻蚀损伤。S220, removing the etching damage on the sidewall of the epitaxial layer by using a potassium hydroxide solution.

具体的,利用ICP(Inductively Coupled Plasma,感应耦合等离子体)设备,以表面氧化硅层为掩膜,依次对电流扩展层、P型半导体层、量子阱层和第二N型半导体层进行刻蚀后,在外延层刻蚀后的侧壁表面会存在悬挂键、氮空位、氧化层及表面缺陷。通过氢氧化钾溶液可以去除外延层侧壁的刻蚀损伤,以避免表面态中的表面缺陷对降低Micro-LED器件的发光效率的影响,进一步地提高Micro-LED器件的发光效率。示例性地,在浓度范围为0.5mol/L~2mol/L,并且温度范围为40℃~80℃的氢氧化钾溶液中浸泡30分钟的外延层,可以去除外延层侧壁的刻蚀损伤,留下理想的晶格。值得注意的是,在通过氢氧化钾溶液去除外延层侧壁的刻蚀损伤后,需要用去离子水冲洗外延层以去除其它杂质。Specifically, using ICP (Inductively Coupled Plasma, Inductively Coupled Plasma) equipment, using the surface silicon oxide layer as a mask, the current spreading layer, the P-type semiconductor layer, the quantum well layer and the second N-type semiconductor layer are sequentially etched Then, dangling bonds, nitrogen vacancies, oxide layers and surface defects may exist on the sidewall surface after the epitaxial layer is etched. The etching damage on the sidewall of the epitaxial layer can be removed by potassium hydroxide solution, so as to avoid the influence of surface defects in the surface state on reducing the luminous efficiency of the Micro-LED device, and further improve the luminous efficiency of the Micro-LED device. Exemplarily, immersing the epitaxial layer in a potassium hydroxide solution with a concentration range of 0.5 mol/L to 2 mol/L and a temperature range of 40 ℃ to 80 ℃ for 30 minutes can remove the etching damage on the sidewall of the epitaxial layer, leaving the ideal lattice. It is worth noting that after removing the etch damage on the sidewall of the epitaxial layer by potassium hydroxide solution, the epitaxial layer needs to be rinsed with deionized water to remove other impurities.

S230、通过氯化氢溶液去除外延层侧壁的第一氧化产物。S230 , removing the first oxidation product on the sidewall of the epitaxial layer by using a hydrogen chloride solution.

具体的,通过氢氧化钾溶液去除外延层侧壁的刻蚀损伤的过程中,会在外延层侧壁上留有第一氧化产物,第一氧化产物主要为GaO2。可以通过氯化氢溶液即稀盐酸与第一氧化产物反应,去除外延层侧壁的第一氧化产物。氯化氢溶液即稀盐酸与第一氧化产物反应时间维持2min~3min即刻去除外延层侧壁的第一氧化产物,若第一氧化产物较多,可适当延长反应时间。值得注意的是,在通过氯化氢溶液去除外延层侧壁的第一氧化产物后,需要用去离子水冲洗外延层以去除其它杂质,最后将外延层烘干。通过氯化氢溶液去除外延层侧壁由第一氧化产物形成的氧化层,可有效降低侧壁表面态的形成,从而进一步地提高Micro-LED器件发光效率,保证了器件工作特性。Specifically, in the process of removing the etching damage on the sidewall of the epitaxial layer by the potassium hydroxide solution, a first oxidation product will remain on the sidewall of the epitaxial layer, and the first oxidation product is mainly GaO 2 . The first oxidation product on the sidewall of the epitaxial layer can be removed by reacting the hydrogen chloride solution, ie, dilute hydrochloric acid, with the first oxidation product. The hydrogen chloride solution, that is, the reaction time between dilute hydrochloric acid and the first oxidation product, is maintained for 2 to 3 minutes to immediately remove the first oxidation product on the sidewall of the epitaxial layer. If there are many first oxidation products, the reaction time can be appropriately extended. It is worth noting that, after the first oxidation product on the sidewall of the epitaxial layer is removed by the hydrogen chloride solution, the epitaxial layer needs to be rinsed with deionized water to remove other impurities, and finally the epitaxial layer is dried. Removing the oxide layer formed by the first oxidation product on the sidewall of the epitaxial layer by the hydrogen chloride solution can effectively reduce the formation of the surface state of the sidewall, thereby further improving the luminous efficiency of the Micro-LED device and ensuring the device operating characteristics.

S240、通过等离子体增强原子层沉积设备形成第一等离子体,并通过第一等离子体以去除外延层侧壁的第二氧化产物。S240 , using a plasma enhanced atomic layer deposition apparatus to form a first plasma, and using the first plasma to remove the second oxidation product on the sidewall of the epitaxial layer.

具体的,将烘干后的外延层放置在等离子体增强原子层沉积设备的过程中,外延层与外界空气接触后,会再次在外延层的表面产生氧化物,即第二氧化产物。图15是本发明实施例二提供的一种通过第一等离子体对外延层进行处理的示意图,参考图15,结合图9,通过等离子体增强原子层沉积设备形成第一等离子体C,并通过第一等离子体C以去除外延层侧壁的第二氧化产物。可选的,第一等离子体C基于氨气和/或氮气和氢气的混合气体形成。将氨气通入PEALD设备中,或者将氮气和氢气的混合气体通入PEALD设备中,或者也可以将氨气、氮气和氢气的混合气体通入PEALD设备中。气体G经过PEALD设备的射频线圈1后产生第一等离子体C。值得注意的是,产生第一等离子体C的位置与外延层位置不同,第一等离子体C扩散至外延层表面,并对外延层侧壁进行处理,去除外延层侧壁的第二氧化产物。通过等离子体增强原子层沉积设备形成的第一等离子体C去除外延层侧壁由第二氧化产物形成的氧化层,可有效降低侧壁表面态的形成,从而进一步地提高Micro-LED器件发光效率,保证了器件工作特性。Specifically, during the process of placing the dried epitaxial layer in the plasma enhanced atomic layer deposition equipment, after the epitaxial layer is in contact with the outside air, an oxide, ie, a second oxidation product, will be generated on the surface of the epitaxial layer again. FIG. 15 is a schematic diagram of processing an epitaxial layer by a first plasma according to Embodiment 2 of the present invention. Referring to FIG. 15 and in conjunction with FIG. 9 , a first plasma C is formed by a plasma enhanced atomic layer deposition apparatus, and the The first plasma C is used to remove the second oxidation product on the sidewall of the epitaxial layer. Optionally, the first plasma C is formed based on ammonia gas and/or a mixed gas of nitrogen gas and hydrogen gas. The ammonia gas is passed into the PEALD equipment, or the mixed gas of nitrogen and hydrogen is passed into the PEALD equipment, or the mixed gas of ammonia, nitrogen and hydrogen can also be passed into the PEALD equipment. The gas G generates a first plasma C after passing through the radio frequency coil 1 of the PEALD device. It is worth noting that the position where the first plasma C is generated is different from that of the epitaxial layer. The first plasma C diffuses to the surface of the epitaxial layer, and processes the sidewall of the epitaxial layer to remove the second oxidation product on the sidewall of the epitaxial layer. The first plasma C formed by the plasma enhanced atomic layer deposition equipment removes the oxide layer formed by the second oxidation product on the sidewall of the epitaxial layer, which can effectively reduce the formation of surface states on the sidewall, thereby further improving the luminous efficiency of the Micro-LED device , to ensure the device operating characteristics.

S250、通过等离子体增强原子层沉积设备形成第二等离子体,并通过第二等离子体填补外延层侧壁的氮空位并改善侧壁界面质量。S250 , forming a second plasma by using a plasma enhanced atomic layer deposition apparatus, and filling nitrogen vacancies in the sidewall of the epitaxial layer and improving the interface quality of the sidewall by using the second plasma.

具体的,图16是本发明实施例二提供的一种通过第二等离子体对外延层进行处理的示意图,参考图16,结合图9,在外延层经第一等离子体C处理完毕后,通过等离子体增强原子层沉积设备形成第二等离子体D,并通过第二等离子体D填补外延层侧壁的氮空位,减小外延层侧壁氮空位的密度。可选的,第二等离子体D基于氨气和/或氮气形成。将氨气通入PEALD设备中,或者将氮气通入PEALD设备中,或者将氨气和氮气的混合气体通入PEALD设备中。气体G经过PEALD设备的射频线圈1后产生第二等离子体D,第二等离子体D为氮等离子体,用氮等离子体对Micro-LED侧壁进行氮化处理,改善侧壁界面质量。通过等离子体增强原子层沉积设备形成的第二等离子体D对外延层侧壁的氮空位进行填补,减小外延层侧壁氮空位的密度,可有效降低侧壁表面态的形成,从而进一步地提高Micro-LED器件发光效率,保证了器件工作特性。Specifically, FIG. 16 is a schematic diagram of processing the epitaxial layer by the second plasma according to the second embodiment of the present invention. Referring to FIG. 16 , in conjunction with FIG. 9 , after the epitaxial layer is processed by the first plasma C, the The plasma enhanced atomic layer deposition equipment forms a second plasma D, and fills the nitrogen vacancies in the sidewall of the epitaxial layer by the second plasma D, thereby reducing the density of nitrogen vacancies in the sidewall of the epitaxial layer. Optionally, the second plasma D is formed based on ammonia and/or nitrogen. The ammonia gas is passed into the PEALD equipment, or the nitrogen gas is passed into the PEALD equipment, or the mixed gas of ammonia gas and nitrogen gas is passed into the PEALD equipment. After the gas G passes through the radio frequency coil 1 of the PEALD equipment, a second plasma D is generated. The second plasma D is nitrogen plasma. The sidewall of the Micro-LED is nitrided with nitrogen plasma to improve the interface quality of the sidewall. The second plasma D formed by the plasma-enhanced atomic layer deposition equipment fills the nitrogen vacancies on the sidewall of the epitaxial layer, reduces the density of nitrogen vacancies on the sidewall of the epitaxial layer, and can effectively reduce the formation of surface states on the sidewall, thereby further improving the The luminous efficiency of the Micro-LED device is improved, and the working characteristics of the device are guaranteed.

S260、形成同族界面层;同族界面层覆盖第二N型半导体层、量子阱层、P型半导体层和电流扩展层的侧表面,以及电流扩展层和第一N型半导体层上表面的非电极区域。S260, forming an interface layer of the same family; the interface layer of the same family covers the side surfaces of the second N-type semiconductor layer, the quantum well layer, the P-type semiconductor layer and the current spreading layer, as well as the non-electrodes on the upper surface of the current spreading layer and the first N-type semiconductor layer area.

可选的,形成同族界面层包括:通过等离子体增强原子层沉积设备沉积氮化铝;其中铝源为三甲基铝,氮源为氮气和氢气混合气的等离子体。Optionally, forming the interface layer of the same family includes: depositing aluminum nitride by plasma enhanced atomic layer deposition equipment; wherein the aluminum source is trimethyl aluminum, and the nitrogen source is plasma of a mixture of nitrogen and hydrogen.

具体的,在PEALD设备中于外延层第二N型半导体层、量子阱层、P型半导体层和电流扩展层的侧表面,以及电流扩展层和第一N型半导体层上表面原位生长一层同族氮化物的同族界面层。同族界面层可由沉积一层氮化铝形成。铝元素与镓元素为同族元素,可减小界面处的态密度。插入的同族界面层,有效降低了Micro-LED表面缺陷密度,从而提高Micro-LED器件发光效率。其中铝源为三甲基铝,氮源为氮气和氢气混合气的等离子体。氮气和氢气以1:1混合,在常温下即可形成等离子体。氮源也可以选取氨气的等离子体,但是需要在高温下形成等离子体。Specifically, in the PEALD device, in-situ growth of a second N-type semiconductor layer, a quantum well layer, a P-type semiconductor layer and a side surface of the current spreading layer of the epitaxial layer, as well as the upper surfaces of the current spreading layer and the first N-type semiconductor layer Homogeneous interface layer of the same family of nitrides. Homologous interface layers may be formed by depositing a layer of aluminum nitride. Aluminum and gallium are elements of the same family, which can reduce the density of states at the interface. The inserted interfacial layer of the same family effectively reduces the surface defect density of the Micro-LED, thereby improving the luminous efficiency of the Micro-LED device. The aluminum source is trimethylaluminum, and the nitrogen source is a plasma of a mixture of nitrogen and hydrogen. A 1:1 mixture of nitrogen and hydrogen can form a plasma at room temperature. Ammonia plasma can also be selected as the nitrogen source, but the plasma needs to be formed at a high temperature.

S270、于同族界面层上形成绝缘层。S270 , forming an insulating layer on the interface layer of the same family.

可选的,图17是本发明实施例二提供的一种Micro-LED器件的结构剖面图,参考图17,还可以在同族界面层80上形成绝缘层90。通过等离子体增强原子层沉积设备沉积氧化铝;其中铝源为三甲基铝,氧源为水。三甲基铝与水可直接反应形成氧化铝,不需要先产生等离子体再形成氧化铝。形成绝缘层90可有效钝化侧壁表面,进一步地减小侧壁表面悬挂键密度。Optionally, FIG. 17 is a structural cross-sectional view of a Micro-LED device according to Embodiment 2 of the present invention. Referring to FIG. 17 , an insulating layer 90 may also be formed on the interface layer 80 of the same family. Aluminum oxide is deposited by plasma enhanced atomic layer deposition equipment; wherein the aluminum source is trimethylaluminum, and the oxygen source is water. Trimethylaluminum and water can directly react to form alumina, and it is not necessary to generate plasma before forming alumina. Forming the insulating layer 90 can effectively passivate the sidewall surface and further reduce the density of dangling bonds on the sidewall surface.

S280、形成电极;电极覆盖所述电流扩展层和第一N型半导体层上表面的电极区域。S280 , forming an electrode; the electrode covers the current spreading layer and the electrode region on the upper surface of the first N-type semiconductor layer.

具体的,继续参考图17,利用ICP对外延层进行刻蚀,去除P电极和N电极区域的同族界面层80以及绝缘层90,刻蚀方法与实施例一中的步骤S130一致,这里不再赘述。在上述的P电极和N电极区域制备电极,其中位于电流扩展层50上电极区域L的电极为P电极110,位于第一N型半导体层21上电极区域L的电极为N电极120,每一电极由四层金属层形成,依次对应金属为钛、铝、钛和金。Specifically, continue to refer to FIG. 17 , the epitaxial layer is etched by ICP to remove the same family interface layer 80 and insulating layer 90 in the P electrode and N electrode regions. Repeat. Electrodes are prepared in the above-mentioned P electrode and N electrode regions, wherein the electrode located in the electrode region L on the current spreading layer 50 is the P electrode 110, and the electrode located in the electrode region L on the first N-type semiconductor layer 21 is the N electrode 120. The electrodes are formed by four metal layers, and the corresponding metals are titanium, aluminum, titanium and gold in turn.

可选的,在步骤S240和步骤S250中,在通入气体时还可以同时通入氩气,第一等离子体和第二等离子体还基于氩气作为辅助气体对表面进行处理。Optionally, in step S240 and step S250, argon gas may also be introduced at the same time when the gas is introduced, and the first plasma and the second plasma also process the surface based on argon gas as an auxiliary gas.

本发明实施例提供的Micro-LED器件的制备方法。其中,通过等离子体对所述外延层进行处理之前还包括:通过氢氧化钾溶液去除所述外延层侧壁的刻蚀损伤;通过氯化氢溶液去除所述外延层侧壁的第一氧化产物。形成同族界面层之后还包括:于所述同族界面层上形成绝缘层。另外,通过等离子体对外延层进行处理包括:通过等离子体增强原子层沉积设备形成第一等离子体,并通过第一等离子体以去除所述外延层侧壁的第二氧化产物;通过等离子体增强原子层沉积设备形成第二等离子体,并通过第二等离子体填补所述外延层侧壁的氮空位。本发明实施例提供的技术方案,根据外延层侧壁表面缺陷的起源,针对性的采用PEALD设备,利用远程等离子体的高化学活性,先对外延层侧壁表面进行表面处理,并原位沉积同族界面层,进一步沉积氧化铝绝缘层。此方法中采用的表面处理工艺和插入的同族界面层,可有效降低了Micro-LED表面缺陷密度,从而提高Micro-LED器件发光效率。The preparation method of the Micro-LED device provided by the embodiment of the present invention. Wherein, before the treatment of the epitaxial layer by plasma further includes: removing the etching damage on the sidewall of the epitaxial layer by using a potassium hydroxide solution; removing the first oxidation product on the sidewall of the epitaxial layer by using a hydrogen chloride solution. After forming the same-family interface layer, the method further includes: forming an insulating layer on the same-family interface layer. In addition, the processing of the epitaxial layer by plasma includes: forming a first plasma by plasma enhanced atomic layer deposition equipment, and passing the first plasma to remove the second oxidation product of the sidewall of the epitaxial layer; enhancing the plasma The atomic layer deposition apparatus forms a second plasma, and fills the nitrogen vacancies in the sidewalls of the epitaxial layer by the second plasma. According to the technical solutions provided by the embodiments of the present invention, according to the origin of the surface defects of the sidewall of the epitaxial layer, PEALD equipment is used in a targeted manner, and the high chemical activity of the remote plasma is used to first perform surface treatment on the surface of the sidewall of the epitaxial layer, and deposit in situ. The interface layer of the same family is further deposited with an aluminum oxide insulating layer. The surface treatment process and the interfacial layer of the same family inserted in this method can effectively reduce the surface defect density of the Micro-LED, thereby improving the luminous efficiency of the Micro-LED device.

实施例三Embodiment 3

本发明实施例提供了一种Micro-LED器件,参考图13,器件包括:An embodiment of the present invention provides a Micro-LED device. Referring to FIG. 13 , the device includes:

外延层,外延层包括设置在衬底10上的第一N型半导体层21、第二N型半导体层22、量子阱层30、P型半导体层40和电流扩展层50,第二N型半导体层22、量子阱层30、P型半导体层40和电流扩展层50层叠设置,并覆盖部分第一N型半导体层21;Epitaxial layer, the epitaxial layer includes a first N-type semiconductor layer 21 , a second N-type semiconductor layer 22 , a quantum well layer 30 , a P-type semiconductor layer 40 and a current spreading layer 50 arranged on the substrate 10 , the second N-type semiconductor layer 50 The layer 22, the quantum well layer 30, the P-type semiconductor layer 40 and the current spreading layer 50 are stacked and arranged, and cover part of the first N-type semiconductor layer 21;

同族界面层80,同族界面层80覆盖第二N型半导体层22、量子阱层30、P型半导体层40和电流扩展层50的侧表面,以及电流扩展层50和第一N型半导体层21上表面的非电极区域;The same family interface layer 80 covers the side surfaces of the second N-type semiconductor layer 22 , the quantum well layer 30 , the P-type semiconductor layer 40 and the current spreading layer 50 , and the current spreading layer 50 and the first N-type semiconductor layer 21 non-electrode areas on the upper surface;

电极,电极覆盖电流扩展层50和第一N型半导体层21上表面的电极区域。其中位于电流扩展层50上的电极为P电极110,位于第一N型半导体层21上的电极为N电极120The electrode covers the current spreading layer 50 and the electrode region on the upper surface of the first N-type semiconductor layer 21 . The electrode located on the current spreading layer 50 is the P electrode 110, and the electrode located on the first N-type semiconductor layer 21 is the N electrode 120

可选的,参考图17,Micro-LED器件还包括绝缘90,绝缘层90覆盖所述同族界面层80。Optionally, referring to FIG. 17 , the Micro-LED device further includes insulation 90 , and the insulation layer 90 covers the interface layer 80 of the same family.

本发明实施例提供的Micro-LED器件,包括外延层、同族界面层和电极。其中,外延层包括设置在衬底、上的第一N型半导体层、、第二N型半导体层、量子阱层、P型半导体层和电流扩展层,第二N型半导体层、量子阱层、P型半导体层和电流扩展层层叠设置,并覆盖部分第一N型半导体层;同族界面层覆盖第二N型半导体层、量子阱层、P型半导体层和电流扩展层的侧表面,以及电流扩展层和第一N型半导体层上表面的非电极区域;电极覆盖电流扩展层和第一N型半导体层上表面的电极区域。通过表面处理工艺和插入的同族界面层,减少了Micro-LED器件的表面态,提高了Micro-LED器件的发光效率。The Micro-LED device provided by the embodiment of the present invention includes an epitaxial layer, a homologous interface layer and an electrode. Wherein, the epitaxial layer includes a first N-type semiconductor layer, a second N-type semiconductor layer, a quantum well layer, a P-type semiconductor layer and a current spreading layer disposed on the substrate, the second N-type semiconductor layer, the quantum well layer , a P-type semiconductor layer and a current spreading layer are stacked and arranged to cover part of the first N-type semiconductor layer; the same family interface layer covers the side surfaces of the second N-type semiconductor layer, the quantum well layer, the P-type semiconductor layer and the current spreading layer, and The current spreading layer and the non-electrode area on the upper surface of the first N-type semiconductor layer; the electrode covers the current spreading layer and the electrode area on the upper surface of the first N-type semiconductor layer. The surface state of the Micro-LED device is reduced and the luminous efficiency of the Micro-LED device is improved by the surface treatment process and the intercalated interfacial layer of the same family.

注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention. The scope is determined by the scope of the appended claims.

Claims (10)

1.一种Micro-LED器件的制备方法,其特征在于,包括:1. a preparation method of Micro-LED device, is characterized in that, comprises: 形成外延层,所述外延层包括设置在衬底上的第一N型半导体层、第二N型半导体层、量子阱层、P型半导体层和电流扩展层,所述第二N型半导体层、所述量子阱层、所述P型半导体层和所述电流扩展层层叠设置,并覆盖部分所述第一N型半导体层;An epitaxial layer is formed, the epitaxial layer includes a first N-type semiconductor layer, a second N-type semiconductor layer, a quantum well layer, a P-type semiconductor layer and a current spreading layer disposed on a substrate, the second N-type semiconductor layer , the quantum well layer, the P-type semiconductor layer and the current spreading layer are stacked and arranged, and cover part of the first N-type semiconductor layer; 通过等离子体对所述外延层进行处理;treating the epitaxial layer by plasma; 形成同族界面层;所述同族界面层覆盖所述第二N型半导体层、所述量子阱层、所述P型半导体层和所述电流扩展层的侧表面,以及所述电流扩展层和所述第一N型半导体层上表面的非电极区域;forming a same-family interface layer; the same-family interface layer covers the side surfaces of the second N-type semiconductor layer, the quantum well layer, the P-type semiconductor layer and the current spreading layer, and the current spreading layer and the the non-electrode region on the upper surface of the first N-type semiconductor layer; 形成电极;所述电极覆盖所述电流扩展层和所述第一N型半导体层上表面的电极区域。forming electrodes; the electrodes cover the current spreading layer and the electrode regions on the upper surface of the first N-type semiconductor layer. 2.根据权利要求1所述的Micro-LED器件的制备方法,其特征在于,所述通过等离子体对所述外延层进行处理之前还包括:2 . The method for preparing a Micro-LED device according to claim 1 , wherein before the treatment of the epitaxial layer by plasma, the method further comprises: 3 . 通过氢氧化钾溶液去除所述外延层侧壁的刻蚀损伤;Remove the etching damage on the sidewall of the epitaxial layer by potassium hydroxide solution; 通过氯化氢溶液去除所述外延层侧壁的第一氧化产物。The first oxidation product on the sidewalls of the epitaxial layer is removed by a hydrogen chloride solution. 3.根据权利要求1所述的Micro-LED器件的制备方法,其特征在于,所述通过等离子体对所述外延层进行处理包括:3 . The method for preparing a Micro-LED device according to claim 1 , wherein the processing of the epitaxial layer by plasma comprises: 4 . 通过等离子体增强原子层沉积设备形成第一等离子体,并通过所述第一等离子体以去除所述外延层侧壁的第二氧化产物;forming a first plasma by plasma enhanced atomic layer deposition equipment, and passing through the first plasma to remove the second oxidation product on the sidewall of the epitaxial layer; 通过等离子体增强原子层沉积设备形成第二等离子体,并通过所述第二等离子体填补所述外延层侧壁的氮空位并改善侧壁界面质量。A second plasma is formed by a plasma-enhanced atomic layer deposition apparatus, and the second plasma fills nitrogen vacancies in the sidewalls of the epitaxial layer and improves the interface quality of the sidewalls. 4.根据权利要求3所述的Micro-LED器件的制备方法,其特征在于,4. The preparation method of Micro-LED device according to claim 3, wherein, 所述第一等离子体基于氨气和/或氮气和氢气的混合气体形成;The first plasma is formed based on ammonia and/or a mixed gas of nitrogen and hydrogen; 所述第二等离子体基于氨气和/或氮气形成。The second plasma is formed based on ammonia and/or nitrogen. 5.根据权利要求4所述的Micro-LED器件的制备方法,其特征在于,所述第一等离子体和所述第二等离子体还基于氩气作为辅助气体对表面进行处理。5 . The method for manufacturing a Micro-LED device according to claim 4 , wherein the first plasma and the second plasma further treat the surface based on argon gas as an auxiliary gas. 6 . 6.根据权利要求1所述的Micro-LED器件的制备方法,其特征在于,所述形成同族界面层包括:6 . The method for preparing a Micro-LED device according to claim 1 , wherein the forming the interface layer of the same family comprises: 通过等离子体增强原子层沉积设备沉积氮化铝;其中铝源为三甲基铝,氮源为氮气和氢气混合气的等离子体。Aluminum nitride is deposited by plasma enhanced atomic layer deposition equipment; wherein the aluminum source is trimethylaluminum, and the nitrogen source is plasma of a mixture of nitrogen and hydrogen. 7.根据权利要求1所述的Micro-LED器件的制备方法,其特征在于,所述形成同族界面层之后还包括:7 . The method for preparing a Micro-LED device according to claim 1 , wherein after forming the interface layer of the same family, the method further comprises: 8 . 于所述同族界面层上形成绝缘层。An insulating layer is formed on the same-family interface layer. 8.根据权利要求7所述的Micro-LED器件的制备方法,其特征在于,所述于所述同族界面层上形成绝缘层包括:8. The method for preparing a Micro-LED device according to claim 7, wherein the forming an insulating layer on the interface layer of the same family comprises: 通过等离子体增强原子层沉积设备沉积氧化铝;其中铝源为三甲基铝,氧源为水。Aluminum oxide is deposited by plasma enhanced atomic layer deposition equipment; wherein the aluminum source is trimethylaluminum, and the oxygen source is water. 9.一种Micro-LED器件,其特征在于,包括:9. A Micro-LED device, characterized in that, comprising: 外延层,所述外延层包括设置在衬底上的第一N型半导体层、第二N型半导体层、量子阱层、P型半导体层和电流扩展层,所述第二N型半导体层、所述量子阱层、所述P型半导体层和电流扩展层层叠设置,并覆盖部分所述第一N型半导体层;an epitaxial layer, the epitaxial layer includes a first N-type semiconductor layer, a second N-type semiconductor layer, a quantum well layer, a P-type semiconductor layer and a current spreading layer arranged on a substrate, the second N-type semiconductor layer, the quantum well layer, the P-type semiconductor layer and the current spreading layer are stacked and arranged to cover part of the first N-type semiconductor layer; 同族界面层,所述同族界面层覆盖所述第二N型半导体层、所述量子阱层、所述P型半导体层和电流扩展层的侧表面,以及所述电流扩展层和所述第一N型半导体层上表面的非电极区域;a homologous interface layer covering the side surfaces of the second N-type semiconductor layer, the quantum well layer, the P-type semiconductor layer and the current spreading layer, and the current spreading layer and the first The non-electrode region on the upper surface of the N-type semiconductor layer; 电极,所述电极覆盖所述电流扩展层和所述第一N型半导体层上表面的电极区域。and an electrode covering the current spreading layer and the electrode region on the upper surface of the first N-type semiconductor layer. 10.根据权利要求9所述的Micro-LED器件,其特征在于,还包括绝缘层,所述绝缘层覆盖所述同族界面层。10 . The Micro-LED device according to claim 9 , further comprising an insulating layer covering the same-family interface layer. 11 .
CN202010542773.8A 2020-06-15 2020-06-15 Preparation method of Micro-LED device and Micro-LED device Pending CN111697113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010542773.8A CN111697113A (en) 2020-06-15 2020-06-15 Preparation method of Micro-LED device and Micro-LED device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010542773.8A CN111697113A (en) 2020-06-15 2020-06-15 Preparation method of Micro-LED device and Micro-LED device

Publications (1)

Publication Number Publication Date
CN111697113A true CN111697113A (en) 2020-09-22

Family

ID=72481100

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010542773.8A Pending CN111697113A (en) 2020-06-15 2020-06-15 Preparation method of Micro-LED device and Micro-LED device

Country Status (1)

Country Link
CN (1) CN111697113A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257960A (en) * 2021-04-13 2021-08-13 深圳市思坦科技有限公司 Processing method of Micro LED chip, Micro LED chip and display module
CN114032527A (en) * 2021-09-16 2022-02-11 重庆康佳光电技术研究院有限公司 Method for preparing passivation layer of epitaxial wafer, light-emitting chip and display device
CN115148590A (en) * 2022-07-05 2022-10-04 苏州英嘉通半导体有限公司 Surface treatment method and semiconductor device based on atomic layer etching
WO2023134869A1 (en) * 2022-01-14 2023-07-20 Ams-Osram International Gmbh Method of processing an optoelectronic device and optoelectronic device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488553A (en) * 2009-02-09 2009-07-22 晶能光电(江西)有限公司 Silica gel protected LED chip and manufacturing method thereof
CN101640242A (en) * 2009-08-05 2010-02-03 上海蓝光科技有限公司 Manufacturing method for light-emitting diode chip
CN102414846A (en) * 2009-10-07 2012-04-11 应用材料公司 Improved multichamber split processes for LED manufacturing
CN102544268A (en) * 2012-03-05 2012-07-04 复旦大学 Surface treatment method for semiconductor LED
CN104409605A (en) * 2014-11-28 2015-03-11 杭州士兰明芯科技有限公司 High-voltage chip LED (light-emitting diode) structure and manufacture method thereof
CN104538522A (en) * 2014-12-31 2015-04-22 杭州士兰明芯科技有限公司 High-voltage chip LED structure and manufacturing method thereof
CN104966673A (en) * 2015-07-07 2015-10-07 桂林电子科技大学 An interface passivation method for improving Al2O3/InP MOS capacitor interface characteristics and leakage characteristics
CN106992231A (en) * 2017-04-06 2017-07-28 厦门三安光电有限公司 Nitride semiconductor device and preparation method thereof
CN108493104A (en) * 2018-04-10 2018-09-04 睿力集成电路有限公司 Method for etching plasma and plasma etching post-processing approach

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488553A (en) * 2009-02-09 2009-07-22 晶能光电(江西)有限公司 Silica gel protected LED chip and manufacturing method thereof
CN101640242A (en) * 2009-08-05 2010-02-03 上海蓝光科技有限公司 Manufacturing method for light-emitting diode chip
CN102414846A (en) * 2009-10-07 2012-04-11 应用材料公司 Improved multichamber split processes for LED manufacturing
CN102544268A (en) * 2012-03-05 2012-07-04 复旦大学 Surface treatment method for semiconductor LED
CN104409605A (en) * 2014-11-28 2015-03-11 杭州士兰明芯科技有限公司 High-voltage chip LED (light-emitting diode) structure and manufacture method thereof
CN104538522A (en) * 2014-12-31 2015-04-22 杭州士兰明芯科技有限公司 High-voltage chip LED structure and manufacturing method thereof
CN104966673A (en) * 2015-07-07 2015-10-07 桂林电子科技大学 An interface passivation method for improving Al2O3/InP MOS capacitor interface characteristics and leakage characteristics
CN106992231A (en) * 2017-04-06 2017-07-28 厦门三安光电有限公司 Nitride semiconductor device and preparation method thereof
CN108493104A (en) * 2018-04-10 2018-09-04 睿力集成电路有限公司 Method for etching plasma and plasma etching post-processing approach

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257960A (en) * 2021-04-13 2021-08-13 深圳市思坦科技有限公司 Processing method of Micro LED chip, Micro LED chip and display module
CN114032527A (en) * 2021-09-16 2022-02-11 重庆康佳光电技术研究院有限公司 Method for preparing passivation layer of epitaxial wafer, light-emitting chip and display device
WO2023134869A1 (en) * 2022-01-14 2023-07-20 Ams-Osram International Gmbh Method of processing an optoelectronic device and optoelectronic device
CN115148590A (en) * 2022-07-05 2022-10-04 苏州英嘉通半导体有限公司 Surface treatment method and semiconductor device based on atomic layer etching

Similar Documents

Publication Publication Date Title
CN111697113A (en) Preparation method of Micro-LED device and Micro-LED device
CN101904018B (en) Light emitting device and method of manufacturing the same
US7588955B2 (en) Method for promoting light emission efficiency of LED using nanorods structure
CN105190914B (en) Process for depositing epitaxial ZnO on group III nitride based light emitting diodes and light emitting diodes comprising epitaxial ZnO
JP2010166040A (en) Method for fabricating semiconductor device
CN109346576B (en) Light emitting diode epitaxial wafer and preparation method thereof
CN113990949A (en) A kind of semiconductor device and its application and manufacturing method
CN111554742A (en) Preparation method of GaN HEMT device
TWI653742B (en) Semiconductor device and method of manufacturing same
CN108987544B (en) A light-emitting diode epitaxial wafer and its manufacturing method
CN106373874A (en) Fabrication Method of Ohmic Contact Electrode Based on AlGaN/GaN HEMT
KR100988194B1 (en) Semiconductor light emitting device and method of fabricating the same
CN106571387A (en) High K material-based stacked-gate AlGaN/GaN high-electron mobility MOS device
CN107230617A (en) The preparation method of gallium nitride semiconductor device
CN112820774A (en) GaN device and preparation method thereof
US8679877B2 (en) Nitride semiconductor light emitting device and method for manufacturing the same
CN117133655A (en) Semiconductor preparation method and semiconductor structure
CN107230614B (en) Preparation method of gallium nitride semiconductor device
CN114521293B (en) Semiconductor device and method for manufacturing semiconductor device
JP2010225605A (en) Compound semiconductor device manufacturing method and compound semiconductor device
CN113130307A (en) Epitaxial wafer processing method, epitaxial wafer and Micro-LED array
CN109473525B (en) A kind of gallium nitride-based light-emitting diode epitaxial wafer and manufacturing method thereof
CN107230725A (en) The preparation method of gallium nitride semiconductor device
JP2006114802A (en) Structure in which upper layer is laminated on group III-V semiconductor layer and manufacturing method thereof
JP2009246038A (en) Crystal growth method of group iii-v compound semiconductor, and crystal growth device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200922