[go: up one dir, main page]

CN111687827B - Control method and control system for coordinating and operating weak rigid member by two robots - Google Patents

Control method and control system for coordinating and operating weak rigid member by two robots Download PDF

Info

Publication number
CN111687827B
CN111687827B CN202010575209.6A CN202010575209A CN111687827B CN 111687827 B CN111687827 B CN 111687827B CN 202010575209 A CN202010575209 A CN 202010575209A CN 111687827 B CN111687827 B CN 111687827B
Authority
CN
China
Prior art keywords
robot
control
internal force
trajectory
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010575209.6A
Other languages
Chinese (zh)
Other versions
CN111687827A (en
Inventor
张得礼
逯轩
王珉
鲍益东
金霞
陈文亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202010575209.6A priority Critical patent/CN111687827B/en
Publication of CN111687827A publication Critical patent/CN111687827A/en
Application granted granted Critical
Publication of CN111687827B publication Critical patent/CN111687827B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

The invention provides a control method and a control system for coordinately operating a weak rigid member by two robots, which realize that a guide track simultaneously meets the safety restriction requirements of a Cartesian space and a joint space of the robots, solve the problem of dangerous guide tracks caused by too large guide force or sudden change in a guide control algorithm, and improve the smoothness and the safety of the guide tracks; the response speed of the system is greatly improved while stability is guaranteed, the tracking error of the object track can be reduced while the internal force control effect is guaranteed, and the method has important significance for realizing real-time internal force control of the industrial robot based on the position.

Description

一种双机器人协调操作弱刚性构件的控制方法和控制系统A control method and control system for coordinated operation of weak rigid components by two robots

技术领域technical field

本发明属于机器人控制技术领域,尤其是一种双机器人协调操作弱刚性构件的控制方法和控制系统。The invention belongs to the technical field of robot control, in particular to a control method and a control system for double robots to coordinately operate weak rigid components.

背景技术Background technique

单臂机器人在喷涂、焊接、打磨、装配等相关领域的应用已十分成熟,但在一些针对大部件、大尺寸工件的应用场合,单臂机器人受其负载能力以及工作范围的限制已经无法胜任某些工作。随着机器人应用范围的不断扩大,多机器人协调控制系统的应用场景越来越多。双机器人的协调运动是系统协调控制的基础和前提,同时也是实现弱刚性构件装配过程中搬运动作的技术核心,飞机壁板与诸多飞机零部件都是弱刚性或者柔性部件,双机器人之间的协调运动误差会给弱刚性构件这类操作对象带来严重的拉扯、挤压以及剪切应力,严重时会引起对象的变形和损坏。目前的多机器人协调控制技术也不便于实现弱刚性构件在空间6自由度的随意运动,在内力控制和负载分配方面,目前的研究大多是针对小型机器人并结合其动力学模型进行扭矩控制,但工业机器人本身难以精确建模且商用工业机器人并不开放扭矩控制环。为此,需要对机器人导引轨迹进行插补控制及对其内力控制进行调节和轨迹补偿。The application of single-arm robots in spraying, welding, grinding, assembly and other related fields is very mature, but in some applications for large parts and large-sized workpieces, single-arm robots are limited by their load capacity and working range. some work. With the continuous expansion of the application scope of robots, there are more and more application scenarios of the multi-robot coordinated control system. The coordinated motion of the dual robots is the basis and premise of the coordinated control of the system, and it is also the technical core to realize the handling action in the assembly process of weakly rigid components. The aircraft panel and many aircraft parts are weakly rigid or flexible parts. Coordinated motion errors will bring serious pulling, squeezing and shearing stress to operating objects such as weakly rigid components, and will cause deformation and damage to the objects in severe cases. The current multi-robot coordinated control technology is also inconvenient to realize the random motion of weakly rigid components in space with 6 degrees of freedom. In terms of internal force control and load distribution, most of the current research is aimed at small robots and combined with their dynamic models for torque control, but Industrial robots themselves are difficult to model accurately and commercial industrial robots do not open torque control loops. To this end, it is necessary to perform interpolation control on the robot's guiding trajectory and adjust its internal force control and trajectory compensation.

发明内容SUMMARY OF THE INVENTION

本发明所解决的技术问题在于提供一种双机器人协调操作弱刚性构件的控制方法和控制系统,使导引轨迹同时满足机器人笛卡尔空间和关节空间的安全限制要求,解决了因导引力太大或突变而造成的危险导引轨迹问题,提升了导引轨迹的平滑度和安全性,提升了系统的响应速度,减小了对象轨迹跟踪误差。The technical problem solved by the present invention is to provide a control method and a control system for double robots to coordinately operate weak rigid components, so that the guiding trajectory can meet the safety restriction requirements of the robot Cartesian space and joint space at the same time, and solve the problem of excessive guiding force due to excessive guiding force. The dangerous guiding trajectory problem caused by large or sudden changes improves the smoothness and safety of the guiding trajectory, improves the response speed of the system, and reduces the tracking error of the object trajectory.

实现本发明目的的技术解决方案为:The technical solution that realizes the object of the present invention is:

一种双机器人协调操作弱刚性构件的控制方法,包括以下步骤:A control method for two robots to coordinately operate weak rigid components, comprising the following steps:

步骤1:将弱刚性构件作为直接操作对象,搭建双机器人的运动学闭环链模型,并基于该模型设计双机器人导引控制,所述双机器人导引控制包括力坐标变换、刚度控制和导引力阈值控制;Step 1: Take the weakly rigid component as the direct manipulation object, build the kinematic closed-loop chain model of the dual robot, and design the dual robot guidance control based on the model, the dual robot guidance control includes force coordinate transformation, stiffness control and guidance force threshold control;

步骤2:根据机器人末端与操作对象之间的运动学约束关系,设计导引轨迹在笛卡尔空间和关节空间的多空间自适应插补控制,具体包括:Step 2: According to the kinematic constraint relationship between the robot end and the operating object, design the multi-space adaptive interpolation control of the guiding trajectory in Cartesian space and joint space, including:

步骤2-1:根据操作对象的角速度过大和/或角加速度过大,对其旋转导引轨迹进行插补;Step 2-1: According to the excessive angular velocity and/or excessive angular acceleration of the operating object, interpolate the rotation guidance trajectory;

步骤2-2:重新计算机器人末端的速度、加速度以及对象导引轨迹离散点,再根据操作对象的移动速度过大和/或移动加速度过大,对其移动导引轨迹进行插补;Step 2-2: Recalculate the speed and acceleration of the robot end and the discrete points of the object guidance trajectory, and then interpolate the movement guidance trajectory according to the excessive movement speed and/or the movement acceleration of the operating object;

步骤2-3:根据各关节的运动约束条件,对导引轨迹进行关节空间的自适应插补;Step 2-3: According to the motion constraints of each joint, perform adaptive interpolation of the joint space on the guiding trajectory;

步骤3:根据操作对象的内力计算模型,设计基于阻抗模型的双输入模糊控制和对象轨迹跟踪误差补偿控制,具体包括:Step 3: Design the dual-input fuzzy control and object trajectory tracking error compensation control based on the impedance model according to the internal force calculation model of the operating object, including:

步骤3-1:采用内力控制的基准调节策略,将一侧的机器人末端固定作为控制基准,另外一侧的机器人末端根据内力随动调节;Step 3-1: Adopt the benchmark adjustment strategy of internal force control, fix the robot end on one side as the control benchmark, and adjust the robot end on the other side according to the internal force;

步骤3-2:建立基于阻抗模型的内力模糊控制架构:向模糊控制器输入内力偏差量及上周期的位姿调整量,则输出本周期的位姿调整量并对双机器人系统进行内力控制;Step 3-2: Establish the internal force fuzzy control framework based on the impedance model: input the internal force deviation and the pose adjustment amount of the previous cycle to the fuzzy controller, then output the pose adjustment amount of the current cycle and control the internal force of the dual robot system;

步骤3-3:根据固定端是否存在响应滞后误差对轨迹进行补偿。进一步的,本发明的双机器人协调操作弱刚性构件的控制方法,步骤1中建立双机器人的运动学闭环链模型具体包括以下步骤:Step 3-3: Compensate the trajectory according to whether there is a response lag error at the fixed end. Further, in the control method for the coordinated operation of weakly rigid components by dual robots of the present invention, establishing a kinematic closed-loop chain model of the dual robots in step 1 specifically includes the following steps:

步骤1-1:操作对象坐标系{c}相对于世界坐标系{W}的运动学模型为:Step 1-1: The kinematic model of the operation object coordinate system {c} relative to the world coordinate system {W} is:

WTcWTR1·R1 Te1·e1 Tc1·c1 Tc W T c = W T R1 · R1 T e1 · e1 T c1 · c1 T c

WTcWTR2·R2 Te2·e2 Tc2·c2 Tc W T c = W T R2 · R2 T e2 · e2 T c2 · c2 T c

WTR1WTR2是各机器人底座安装位置与世界坐标系的变换关系,且为固定的常数矩阵;{R1}、{R2}分别表示机器人A、机器人B各自的基坐标系;{e1}、{e2}分别表示机器人A、机器人B的末端工具坐标系,与机器人末端抓取点重合;{c1}、{c2}分别表示{e1}、{e2}平移延伸后的坐标系,且坐标系原点与{c}的原点重合;c1Tcc2Tc分别表示对象坐标系{c}相对于{c1}、{c2}的位姿齐次变化矩阵;e1Tc1e2Tc2分别表示{c1}、{c2}相对于机器人末端坐标系{e1}、{e2}的齐次变换矩阵;R1Te1R2Te2分别表示机器人末端坐标系与各自基坐标系的齐次变换矩阵;WTR1WTR2分别表示机器人基坐标系{R1}、{R2}相对于世界坐标系{W}的齐次变换矩阵; W T R1 and W T R2 are the transformation relationship between the installation position of each robot base and the world coordinate system, and are fixed constant matrices; {R1}, {R2} represent the respective base coordinate systems of robot A and robot B; {e1 } and {e2} represent the end tool coordinate systems of robot A and robot B, respectively, which coincide with the gripping point at the end of the robot; {c1} and {c2} represent the coordinate systems after translation and extension of {e1} and {e2}, respectively, and The origin of the coordinate system coincides with the origin of {c}; c1 T c , c2 T c represent the homogeneous change matrix of the object coordinate system {c} relative to {c1}, {c2} respectively; e1 T c1 , e2 T c2 respectively represent the homogeneous transformation matrices of {c1} and {c2} relative to the robot end coordinate systems {e1} and {e2}; R1 T e1 and R2 T e2 respectively represent the homogeneous transformation between the robot end coordinate system and their respective base coordinate systems matrix; W T R1 and W T R2 respectively represent the homogeneous transformation matrix of the robot base coordinate system {R1}, {R2} relative to the world coordinate system {W};

1-2:将世界坐标系{W}与其中一台机器人的基坐标系{R1}相重合,采用四点标定法确定基座标系之间的转化关系R1TR2,则由运动学闭环链确定双机器人末端之间的末端虚拟连杆矩阵:1-2: The world coordinate system {W} is coincident with the base coordinate system {R1} of one of the robots, and the four-point calibration method is used to determine the transformation relationship R1 T R2 between the base coordinate systems, then the kinematics closed loop The chain determines the end virtual link matrix between the ends of the dual robot:

e1Te2=[R1Te1]-1·R1 TR2·R2 Te2 e1 T e2 = [ R1 T e1 ] -1 · R1 T R2 · R2 T e2

1-3:在虚拟连杆矩阵e1Te2的基础上引入位置调节比例K来确定双机器人末端平移坐标系{c1}和{c2}的原点位置,将对象坐标系{c}建立在机器人末端平移坐标系{c1}、{c2}的原点位置,则机器人末端工具坐标系{e1}、{e2}与其平移后的坐标系{c1}、{c2}之间的齐次变换矩阵为:1-3: Based on the virtual link matrix e1 T e2 , the position adjustment ratio K is introduced to determine the origin of the double robot end translation coordinate systems {c1} and {c2}, and the object coordinate system {c} is established at the robot end Translate the origin of the coordinate systems {c1} and {c2}, then the homogeneous transformation matrix between the robot end tool coordinate systems {e1}, {e2} and their translated coordinate systems {c1}, {c2} is:

Figure GDA0003502729970000031
Figure GDA0003502729970000031

Figure GDA0003502729970000032
Figure GDA0003502729970000032

式中,E3表示3阶单位矩阵,O1×3表示1行3列的零矢量,其中P{·}表示提取齐次矩阵的位置矢量,e1Tc1e2Tc2中只按照e1Te2的位置矢量进行移动,c1Tc2c2Tc1则只按照e1Te2的旋转矩阵e1Re2进行变化;In the formula, E 3 represents the 3rd-order unit matrix, O 1×3 represents the zero vector with 1 row and 3 columns, and P{·} represents the position vector for extracting the homogeneous matrix, e1 T c1 and e2 T c2 only follow e1 T The position vector of e2 moves, and c1 T c2 and c2 T c1 only change according to the rotation matrix e1 R e2 of e1 T e2 ;

1-4:建立对象坐标系{c}与末端平移坐标系{c1}、{c2}之间的坐标系变换关系,其中A为常数齐次旋转矩阵:1-4: Establish the coordinate system transformation relationship between the object coordinate system {c} and the end translation coordinate systems {c1}, {c2}, where A is a constant homogeneous rotation matrix:

Figure GDA0003502729970000033
Figure GDA0003502729970000033

cTc2cTc1·c1Tc2 c T c2 = c T c1 · c1 T c2

1-5:通过双机器人的闭环运动学模型确定各机器人的运动学驱动控制方程:1-5: Determine the kinematic drive control equation of each robot through the closed-loop kinematics model of the dual robots:

R1Te1R1Tc·[e1Tc]-1=[R1Te1·e1 Tc1·c1 Tc]·[e1Tc1·c1 Tc]-1 R1 T e1 = R1 T c · [ e1 T c ] -1 = [ R1 T e1 · e1 T c1 · c1 T c ] · [ e1 T c1 · c1 T c ] -1

R2Te2=[R1TR2]-1·R1Te1·e1 Tc1·c1 Tc·[e2Tc2·c2 Tc1·c1 Tc]-1 R2 T e2 = [ R1 T R2 ] -1 · R1 T e1 · e1 T c1 · c1 T c · [ e2 T c2 · c2 T c1 · c1 T c ] -1

R1Te1R2Te2为双机器人各自坐标系下的位姿齐次矩阵。 R1 T e1 , R2 T e2 are the pose homogeneous matrices in the respective coordinate systems of the two robots.

进一步的,本发明的双机器人协调操作弱刚性构件的控制方法,步骤3-2具体包括内力差值ΔFi和位置调整量Δx的变量模糊化、模糊规则设计和去模糊3部分,具体为:Further, in the control method of the double-robot coordinated operation of weakly rigid components of the present invention, step 3-2 specifically includes three parts: variable fuzzification, fuzzy rule design and de-fuzzification of internal force difference ΔF i and position adjustment amount Δx, specifically:

步骤3-2-1:对输入输出量进行模糊化:Step 3-2-1: Fuzzy input and output:

设置基本论域,确定量化因子和比例因子,对未超出论域边界的数据采用三角隶属函数进行变量模糊化,将超出论域边界的数据设为论域边界值;Set the basic universe, determine the quantification factor and scale factor, use the triangular membership function to fuzzify the data that does not exceed the boundary of the universe, and set the data beyond the boundary of the universe as the boundary value of the universe;

步骤3-2-2:设计模糊规则:Step 3-2-2: Design fuzzy rules:

1)如果内力Fi和上周期的位置调整量X方向相同,则机器人还处于上周期的内力调整趋势中,输出控制量的方向保持不变,大小则根据内力大小和上周期位置调整量的权重进行选择;1) If the internal force F i and the position adjustment amount X of the previous cycle are in the same direction, the robot is still in the internal force adjustment trend of the previous cycle, the direction of the output control amount remains unchanged, and the magnitude is based on the internal force and the position adjustment amount in the previous cycle. weight selection;

2)如果内力Fi和上周期的位置调整量X方向不同,则机器人本周期的内力调节方向与上周期调节方向不同,减小输出控制量;2) If the direction of the internal force F i and the position adjustment amount X of the previous cycle is different, the adjustment direction of the internal force of the robot in this cycle is different from the adjustment direction of the previous cycle, reducing the output control amount;

同时,将上周期位置调整量X和内力Fi的权重进行对比,如果上周期位置调整量X权重大,则仍按上周期方向选择较小的控制输出量,保持调整方向上的“惯性效应”;如果内力Fi的权重大,则按内力调节方向选择较小的控制输出量;At the same time, compare the weight of the position adjustment amount X in the previous cycle with the weight of the internal force F i . If the weight of the position adjustment amount X in the previous cycle is large, the smaller control output is still selected according to the direction of the previous cycle, and the "inertial effect" in the adjustment direction is maintained. ”; if the weight of the internal force F i is large, select the smaller control output according to the adjustment direction of the internal force;

3)去模糊化:采用重心法对输出控制量进行模糊判决,控制器输出具体的位置调整量。3) Defuzzification: The center of gravity method is used to make fuzzy judgment on the output control quantity, and the controller outputs the specific position adjustment quantity.

进一步的,本发明的双机器人协调操作弱刚性构件的控制方法,步骤3-3具体包括:Further, in the control method of the double-robot coordinated operation of the weakly rigid member of the present invention, step 3-3 specifically includes:

1)固定端不存在响应滞后误差:1) There is no response lag error at the fixed end:

当机器人A末端为固定端且不存在动态响应滞后带来的误差时,机器人B末端的误差包含坐标系标定误差Δd、机器人B的末端因偏载而存在的动态响应滞后误差Δs2,机器人B作为动态调节端,在单端调节的内力控制系统下,机器人B的位置调整量ΔD将在一定程度上补偿末端的偏差,两机器人的控制执行指令分别为:When the end of robot A is a fixed end and there is no error caused by the dynamic response lag, the error at the end of robot B includes the coordinate system calibration error Δd, the end of robot B due to eccentric load The dynamic response lag error Δs 2 , the robot B As the dynamic adjustment end, under the internal force control system of single-end adjustment, the position adjustment amount ΔD of robot B will compensate the deviation of the end to a certain extent. The control execution instructions of the two robots are:

x1(n+1)=xobj(n+1)·T1 x 1 (n+1)=x obj (n+1) · T 1

x2(n+1)=xobj(n+1)·T2+ΔDx 2 (n+1)=x obj (n+1)·T 2 +ΔD

ΔD=Δd+Δs2 ΔD=Δd+Δs 2

式中,x1(n+1)和x2(n+1)表示即将下发的双机器人末端轨迹,xobj(n+1)表示该控制周期中所规划的对象理论运动轨迹,T1、T2分别表示对象轨迹与机器人末端轨迹的变换矩阵;In the formula, x 1 (n+1) and x 2 (n+1) represent the dual robot end trajectory to be issued, x obj (n+1) represents the theoretical motion trajectory of the object planned in the control cycle, T 1 , T 2 represent the transformation matrix of the object trajectory and the robot end trajectory, respectively;

2)固定端存在响应滞后误差:2) There is a response lag error at the fixed end:

当机器人A末端作为固定端存在因偏载而导致的响应滞后误差Δs1时,机器人B的末端存在坐标系标定误差Δd和响应滞后误差Δs2,当因偏载而造成末端机器人的实际响应位置滞后于理论控制层下发位置时,计算机器人A固定端的响应滞后误差Δs1如下:When the end of robot A is used as a fixed end, there is a response lag error Δs 1 caused by eccentric load, and there is a coordinate system calibration error Δd and a response lag error Δs 2 at the end of robot B. When the eccentric load causes the actual response position of the end robot When it lags behind the position issued by the theoretical control layer, the response lag error Δs 1 of the fixed end of robot A is calculated as follows:

Figure GDA0003502729970000041
Figure GDA0003502729970000041

式中,x1(n)为上个控制周期理论控制层的下发位置,而

Figure GDA0003502729970000042
为机器人上个控制周期的实际位置;In the formula, x 1 (n) is the delivery position of the theoretical control layer of the previous control cycle, and
Figure GDA0003502729970000042
is the actual position of the robot in the last control cycle;

当固定端存在滞后响应偏差Δs1,在内力控制过程中模糊控制器输出的位置调整量ΔD不仅包含了机器人B的所有位置误差,同时也包含了机器人A的响应滞后偏差Δs1,各机器人末端最终下发轨迹整体偏移Δs1,Δs1作为操作对象的轨迹跟踪误差的补偿量Δe_comp,此时位置控制指令分别为:When there is a lag response deviation Δs 1 at the fixed end, the position adjustment amount ΔD output by the fuzzy controller during the internal force control process not only includes all the position errors of robot B, but also includes the response lag deviation Δs 1 of robot A. Finally, the overall track offset Δs 1 and Δs 1 are used as the compensation amount Δe_comp of the trajectory tracking error of the operation object. At this time, the position control commands are:

x1(n+1)=xobj(n+1)·T-Δs1 x 1 (n+1)=x obj (n+1) · T-Δs 1

x2(n+1)=xobj(n+1)·T2+ΔD-Δs1 x 2 (n+1)=x obj (n+1)·T 2 +ΔD-Δs 1

ΔD=Δd+Δs1+Δs2ΔD=Δd+Δs 1 +Δs 2 .

一种双机器人协调操作弱刚性构件的控制系统,包括双机器人运动导引模块、内力控制及轨迹补偿模块、多传感器的UDP和TCP/IP混合通讯模块,其中:双机器人运动导引模块包括力坐标变换模块、刚度控制模块以及导引力阈值控制模块,其中,力坐标变换模块获取传感器相对于世界坐标系的坐标系转换关系,刚度控制模块获取刚度控制关系,并将力信息转化为对象的运动轨迹然后通过运动学闭环链解耦来驱动各个分机器人系统,导引力阈值控制模块通过设置导引力阈值来控制输出的导引力矢量,减少传感器初始状态下的力信号波动而造成对象位置波动;A control system for dual robots to coordinately operate weak rigid components, comprising a dual robot motion guidance module, an internal force control and trajectory compensation module, and a multi-sensor UDP and TCP/IP hybrid communication module, wherein: the dual robot motion guidance module includes a force The coordinate transformation module, the stiffness control module and the guiding force threshold control module, wherein the force coordinate transformation module obtains the coordinate system transformation relationship of the sensor relative to the world coordinate system, and the stiffness control module obtains the stiffness control relationship and converts the force information into the object's The motion trajectory is then decoupled through the kinematic closed-loop chain to drive each sub-robot system. The guiding force threshold control module controls the output guiding force vector by setting the guiding force threshold, reducing the force signal fluctuation in the initial state of the sensor and causing the object position fluctuation;

内力控制及轨迹补偿模块包括多机器人运动学解算模块、轨迹跟踪误差补偿模块、内力单端调节模块、单机器人伺服控制模块,其中,多机器人运动学解算模块根据给定对象的运动轨迹通过闭环运动学模型解算出各机器人末端的运动轨迹,经过轨迹精度补偿模块进行补偿后输出给单机器人伺服控制模块,轨迹跟踪误差补偿模块对轨迹跟踪误差进行在线计算生成轨迹实时补偿量叠加至各机器人的末端轨迹上,内力单端调节模块根据各机器人末端传感器的信号实时计算出的调节端机器人的对象内力,通过基于阻抗模型的模糊控制器输出调节端机器人末端的位置补偿量。The internal force control and trajectory compensation module includes a multi-robot kinematics calculation module, a trajectory tracking error compensation module, an internal force single-end adjustment module, and a single-robot servo control module. The closed-loop kinematics model solves the motion trajectories of each robot end, which is compensated by the trajectory accuracy compensation module and then output to the single robot servo control module. The trajectory tracking error compensation module calculates the trajectory tracking error online to generate the trajectory real-time compensation amount and superimpose it on each robot. On the end trajectory of , the internal force single-end adjustment module calculates the object internal force of the robot at the adjustment end in real time according to the signal of each robot end sensor, and outputs the position compensation amount of the end of the robot at the adjustment end through the fuzzy controller based on the impedance model.

本发明采用以上技术方案与现有技术相比,具有以下技术效果:Compared with the prior art, the present invention adopts the above technical scheme, and has the following technical effects:

1、本发明的导引轨迹同时满足机器人笛卡尔空间和关节空间的安全限制要求,解决了导引控制算法中因导引力太大或突变而造成的危险导引轨迹问题,提升了导引轨迹的平滑度和安全性。1. The guiding trajectory of the present invention meets the safety restriction requirements of the robot Cartesian space and joint space at the same time, solves the dangerous guiding trajectory problem caused by too large guiding force or sudden change in the guiding control algorithm, and improves the guiding Smoothness and safety of trajectories.

2、本发明保证平稳性的同时极大的提升了系统的响应速度,保证内力控制效果的同时可以减小对象轨迹跟踪误差,对于工业机器人基于位置实现实时内力控制具有重要意义。2. The present invention greatly improves the response speed of the system while ensuring the stability, and can reduce the tracking error of the object trajectory while ensuring the internal force control effect, which is of great significance for industrial robots to realize real-time internal force control based on position.

附图说明Description of drawings

图1是双机器人运动闭环系统示意图。Figure 1 is a schematic diagram of a double robot motion closed-loop system.

图2是双机器人内力模型示意图。Figure 2 is a schematic diagram of the internal force model of the dual robot.

图3是轨迹误差分析图。Fig. 3 is a trajectory error analysis diagram.

图4是操作对象内力控制示意图。FIG. 4 is a schematic diagram of the internal force control of the operation object.

图5是基于阻抗模型的模糊控制架构示意图。Figure 5 is a schematic diagram of a fuzzy control architecture based on an impedance model.

图6是隶属函数示意图。FIG. 6 is a schematic diagram of membership functions.

图7是固定端无响应滞后误差时轨迹误差补偿示意图。FIG. 7 is a schematic diagram of trajectory error compensation when the fixed end has no response lag error.

图8是固定端存在响应滞后误差时轨迹误差补偿示意图。FIG. 8 is a schematic diagram of trajectory error compensation when there is a response lag error at the fixed end.

具体实施方式Detailed ways

下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary and are only used to explain the present invention, but not to be construed as a limitation of the present invention.

实施例1Example 1

一种双机器人协调操作弱刚性构件的控制方法,包括以下步骤:A control method for two robots to coordinately operate weak rigid components, comprising the following steps:

步骤1:将弱刚性构件作为直接操作对象,搭建双机器人的运动学闭环链模型,并基于该模型设计双机器人导引控制,所述双机器人导引控制包括力坐标变换、刚度控制和导引力阈值控制。Step 1: Take the weakly rigid component as the direct manipulation object, build the kinematic closed-loop chain model of the dual robot, and design the dual robot guidance control based on the model, the dual robot guidance control includes force coordinate transformation, stiffness control and guidance Force threshold control.

多机器人协调控制系统的核心目标是实现被夹持对象的期望运动,直接将操作对象作为控制目标将更加简单直观,而且更容易实现被夹持对象的复杂运动轨迹。The core goal of the multi-robot coordinated control system is to achieve the desired motion of the object to be gripped. It is simpler and more intuitive to directly use the operating object as the control object, and it is easier to realize the complex motion trajectory of the object to be gripped.

机器人工具末端与对象抓取点视为固定连接且不存在相对移动,此时双机器人与操作对象则构成一个运动学闭环链,双机器人闭环运动模型如下图1所示,由图1几何关系可知,对象坐标系{c}相对于世界坐标系{W}的运动学模型为:The end of the robot tool and the grasping point of the object are regarded as a fixed connection and there is no relative movement. At this time, the double robot and the operating object form a kinematic closed-loop chain. The closed-loop motion model of the double robot is shown in Figure 1 below, and the geometric relationship in Figure 1 shows that , the kinematic model of the object coordinate system {c} relative to the world coordinate system {W} is:

WTcWTR1·R1 Te1·e1 Tc1·c1 Tc W T c = W T R1 · R1 T e1 · e1 T c1 · c1 T c

WTcWTR2·R2 Te2·e2 Tc2·c2 Tc W T c = W T R2 · R2 T e2 · e2 T c2 · c2 T c

其中:{W}表示系统世界坐标系;{R1}、{R2}分别表示机器人A、机器人B各自的基坐标系;{e1}、{e2}分别表示机器人A、机器人B的末端工具坐标系,与机器人末端抓取点重合;{c}表示操作对象的坐标系,为了实现复杂的导引轨迹,该参考系原点位置可移动调节;{c1}、{c2}分别表示{e1}、{e2}平移延伸后的坐标系,且坐标系原点与{c}的原点重合;c1Tcc2Tc分别表示对象坐标系{c}相对于{c1}、{c2}的位姿齐次变化矩阵;e1Tc1e2Tc2分别表示{c1}、{c2}相对于机器人末端坐标系{e1}、{e2}的齐次变换矩阵;R1Te1R2Te2分别表示机器人末端坐标系与各自基坐标系的齐次变换矩阵;WTR1WTR2分别表示机器人基坐标系{R1}、{R2}相对于世界坐标系{W}的齐次变换矩阵;WTR1WTR2是各机器人底座安装位置与世界坐标系的变换关系,且为固定的常数矩阵。Among them: {W} represents the system world coordinate system; {R1}, {R2} represent the respective base coordinate systems of robot A and robot B; {e1}, {e2} represent the end tool coordinate system of robot A and robot B, respectively , which coincides with the grasping point at the end of the robot; {c} represents the coordinate system of the operating object. In order to realize the complex guidance trajectory, the origin of the reference system can be adjusted by moving; {c1} and {c2} represent {e1}, { e2} The coordinate system after translation and extension, and the origin of the coordinate system coincides with the origin of {c}; c1 T c , c2 T c respectively represent the homogeneous pose of the object coordinate system {c} relative to {c1}, {c2} Change matrix; e1 T c1 , e2 T c2 represent the homogeneous transformation matrix of {c1}, {c2} relative to the robot end coordinate system {e1}, {e2} respectively; R1 T e1 , R2 T e2 respectively represent the robot end coordinate are the homogeneous transformation matrices of the robot base coordinate system and their respective base coordinate systems; W T R1 and W T R2 represent the homogeneous transformation matrices of the robot base coordinate systems {R1} and {R2} relative to the world coordinate system {W}, respectively; W T R1 and W T R2 is the transformation relationship between the installation position of each robot base and the world coordinate system, and is a fixed constant matrix.

为了方便控制并保证标定精度,将世界坐标系{W}与其中一台机器人的基坐标系{R1}相重合,此时只需双机器人各自基座标系之间的变换矩阵R1TR2即可,采用四点标定法确定基座标系之间的转化关系R1TR2In order to facilitate control and ensure the calibration accuracy, the world coordinate system {W} and the base coordinate system {R1} of one of the robots are coincident. At this time, only the transformation matrix R1 T R2 between the respective base coordinate systems of the two robots is Yes, the four-point calibration method is used to determine the transformation relationship R1 T R2 between the base standard systems.

获得基座标转换关系后,由运动学闭环链确定双机器人末端之间的末端虚拟连杆矩阵:After obtaining the base-mark conversion relationship, the end virtual link matrix between the two robot ends is determined by the kinematic closed-loop chain:

e1Te2=[R1Te1]-1·R1 TR2·R2 Te2 e1 T e2 = [ R1 T e1 ] -1 · R1 T R2 · R2 T e2

为方便操作者按照自己的操作意图导引对象运动,在虚拟连杆矩阵e1Te2的基础上引入位置调节比例K来确定双机器人末端平移坐标系{c1}和{c2}的原点位置。并将对象坐标系{c}建立在机器人末端平移坐标系{c1}、{c2}的原点位置。因此,只需调节比例K(0~1)则可以改变对象坐标系的位置。In order to facilitate the operator to guide the movement of the object according to his own operation intention, the position adjustment ratio K is introduced on the basis of the virtual link matrix e1 T e2 to determine the origin of the double robot end translation coordinate systems {c1} and {c2}. The object coordinate system {c} is established at the origin of the translation coordinate system {c1} and {c2} of the robot end. Therefore, the position of the object coordinate system can be changed only by adjusting the ratio K (0~1).

由于机器人末端坐标系的平移位置是由位置调节比例K确定的,因此机器人末端工具坐标系{e1}、{e2}与其平移后的坐标系{c1}、{c2}之间的齐次变换矩阵为:Since the translation position of the robot end coordinate system is determined by the position adjustment ratio K, the homogeneous transformation matrix between the robot end tool coordinate systems {e1}, {e2} and their translated coordinate systems {c1}, {c2} for:

Figure GDA0003502729970000071
Figure GDA0003502729970000071

Figure GDA0003502729970000072
Figure GDA0003502729970000072

式中,E3表示3阶单位矩阵,O1×3表示1行3列的零矢量,其中P{·}表示提取齐次矩阵的位置矢量,e1Tc1e2Tc2中只按照e1Te2的位置矢量进行移动。而c1Tc2c2Tc1则只按照e1Te2的旋转矩阵e1Re2进行变化。In the formula, E 3 represents the 3rd-order unit matrix, O 1×3 represents the zero vector with 1 row and 3 columns, and P{·} represents the position vector for extracting the homogeneous matrix, e1 T c1 and e2 T c2 only follow e1 T The position vector of e2 is moved. And c1 T c2 and c2 T c1 only change according to the rotation matrix e1 R e2 of e1 T e2 .

同时,建立对象坐标系{c}与末端平移坐标系{c1}、{c2}之间的坐标系变换关系,其中A为常数齐次旋转矩阵:At the same time, establish the coordinate system transformation relationship between the object coordinate system {c} and the end translation coordinate systems {c1}, {c2}, where A is a constant homogeneous rotation matrix:

Figure GDA0003502729970000073
Figure GDA0003502729970000073

cTc2cTc1·c1Tc2 c T c2 = c T c1 · c1 T c2

最后,通过双机器人的闭环运动学模型可确定各机器人的运动学驱动控制方程:Finally, the kinematic drive control equation of each robot can be determined through the closed-loop kinematics model of the two robots:

R1Te1R1Tc·[e1Tc]-1=[R1Te1·e1 Tc1·c1 Tc]·[e1Tc1·c1 Tc]-1 R1 T e1 = R1 T c · [ e1 T c ] -1 = [ R1 T e1 · e1 T c1 · c1 T c ] · [ e1 T c1 · c1 T c ] -1

R2Te2=[R1TR2]-1·R1Te1·e1 Tc1·c1 Tc·[e2Tc2·c2 Tc1·c1 Tc]-1 R2 T e2 = [ R1 T R2 ] -1 · R1 T e1 · e1 T c1 · c1 T c · [ e2 T c2 · c2 T c1 · c1 T c ] -1

通过不断改变操作对象在世界坐标系{R1}的齐次变化矩阵R1Tc则可以解耦计算出双机器人各自坐标系下的位姿齐次矩阵R1Te1R2Te2,代入各自单机器人逆运动学则可求解出各关节的驱动角度。By constantly changing the homogeneous change matrix R1 T c of the operating object in the world coordinate system {R1}, the pose homogeneous matrices R1 T e1 and R2 T e2 in the respective coordinate systems of the dual robots can be decoupled and calculated, and substituted into the respective single robots. Inverse kinematics can solve the driving angle of each joint.

步骤2:根据机器人末端与操作对象之间的运动学约束关系,设计导引轨迹在笛卡尔空间和关节空间的多空间自适应插补控制。Step 2: According to the kinematic constraint relationship between the robot end and the operating object, design the multi-space adaptive interpolation control of the guiding trajectory in Cartesian space and joint space.

运动学约束关系中的位置约束为:The position constraints in the kinematic constraint relationship are:

根据操作对象位置计算机器人的末端位姿矩阵:Calculate the end pose matrix of the robot according to the position of the operating object:

R1TcR1 Te1·e1 Tc1·c1 TcR1TR2·R2 Te2·e2 Tc2·c2 Tc R1 T c = R1 T e1 · e1 T c1 · c1 T c = R1 T R2 · R2 T e2 · e2 T c2 · c2 T c

R1Tc为操作对象在世界坐标系{R1}的齐次变化矩阵,R1Te1R2Te2为双机器人在各自坐标系下的位姿齐次矩阵,c1Tcc2Tce1Tc1e2Tc2是由对象抓取方式确定的常数矩阵,R1TR2为基坐标系标定矩阵。 R1 T c is the homogeneous change matrix of the operation object in the world coordinate system {R1}, R1 T e1 , R2 T e2 are the homogeneous matrix of the dual robots in their respective coordinate systems, c1 T c , c2 T c , e1 T c1 , e2 T c2 are constant matrices determined by the object grasping method, and R1 T R2 is the base coordinate system calibration matrix.

运动学约束关系中的速度约束为:The velocity constraint in the kinematic constraint relationship is:

当双机器人末端与操作对象采用刚性抓取方式时,操作对象与双机器人末端的速度关系为:When the rigid grasping method is adopted between the double robot end and the operation object, the speed relationship between the operation object and the double robot end is:

Figure GDA0003502729970000081
Figure GDA0003502729970000081

vc、wc表示对象运动的线速度与角速度,vei、wei表示第i个机器人末端的线速度与角速度,rei=[reix reiy reiz]T表示第i个机器人末端在对象坐标系中的位置矢量;v c , w c represent the linear velocity and angular velocity of object motion, v ei , w ei represent the linear velocity and angular velocity of the i-th robot end, r ei =[ reix r eiy r eiz ] T means that the i-th robot end is in the position vector in the object coordinate system;

则,机器人末端的速度约束方程为:Then, the speed constraint equation of the robot end is:

Figure GDA0003502729970000082
Figure GDA0003502729970000082

其中,

Figure GDA0003502729970000083
E3表示3阶单位矩阵,O3表示3阶零矩阵。in,
Figure GDA0003502729970000083
E 3 represents a unit matrix of order 3, and O 3 represents a zero matrix of order 3.

运动学约束关系中的加速度约束为:The acceleration constraint in the kinematic constraint relationship is:

操作对象与机器人末端的加速度约束关系为:The acceleration constraint relationship between the operation object and the robot end is:

Figure GDA0003502729970000084
Figure GDA0003502729970000084

则,机器人末端的加速度约束方程为:Then, the acceleration constraint equation of the robot end is:

Figure GDA0003502729970000085
Figure GDA0003502729970000085

根据操作对象的角速度过大和/或角加速度过大,对其旋转导引轨迹进行插补:According to the excessive angular velocity and/or excessive angular acceleration of the operating object, the rotation guidance trajectory is interpolated:

1)当操作对象角速度过大而导致机器人末端角速度超限时,计算各机器人末端角速度超限比例Rvelo_ei,选取最大超限比例Rvelo_END进行降速插补,得到:1) When the angular velocity of the operating object is too large and the angular velocity of the end of the robot exceeds the limit, calculate the over-limit ratio R velo_ei of the angular velocity of each robot end, select the maximum over-limit ratio R velo_END for deceleration interpolation, and obtain:

Rvelo_ei=ABS(wei)/wmax_ei,i∈[1,2]R velo_ei =ABS(w ei )/w max_ei ,i∈[1,2]

Rvelo_END=max(Rvelo_e1,Rvelo_e2),Rvelo_END>1R velo_END =max(R velo_e1 ,R velo_e2 ),R velo_END >1

Rvelo_END为导引轨迹插补的调节参数,以机器人末端角速度约束条件来插补操作对象离散导引轨迹的旋转角度为:R velo_END is the adjustment parameter of the guidance trajectory interpolation, and the rotation angle of the discrete guidance trajectory of the operation object is interpolated based on the constraints of the angular velocity of the robot end:

Δθvcal_END(n)=Δθinitial(n)/Rvelo_END Δθ vcal_END (n)=Δθ initial (n)/R velo_END

2)当操作对象角加速度过大而导致机器人末端角加速度超限时,计算各机器人末端角加速度超限比例Raccel_ei,选取最大超限比例值Raccel_END进行插补,得到:2) When the angular acceleration of the operating object is too large and the angular acceleration of the end of the robot exceeds the limit, calculate the excess ratio R accel_ei of the angular acceleration of the end of each robot, select the maximum excess ratio R accel_END for interpolation, and obtain:

Figure GDA0003502729970000091
Figure GDA0003502729970000091

Raccel_END=max(Raccel_e1,Raccel_e2),Raccel_END>1R accel_END =max(R accel_e1 ,R accel_e2 ),R accel_END >1

Raccel_END为引导轨迹插补的调节参数,以机器人末端角加速度约束条件来插补操作对象导引轨迹的旋转角度为:R accel_END is the adjustment parameter of the guidance trajectory interpolation, and the rotation angle of the guidance trajectory of the operation object is interpolated based on the angular acceleration constraint of the robot end:

Figure GDA0003502729970000092
Figure GDA0003502729970000092

3)当操作对象同时存在角速度过大且角加速度过大而导致机器人超限时,则选取两者中的最小值作为插补操作对象导引轨迹的旋转角度;3) When the angular velocity of the operating object is too large and the angular acceleration is too large at the same time, which causes the robot to exceed the limit, the minimum value of the two is selected as the rotation angle of the guiding trajectory of the interpolation operating object;

即,Δθcal_END作为本周期的离散轨迹点输出值表示为:That is, Δθ cal_END is expressed as the discrete trajectory point output value of this cycle as:

Figure GDA0003502729970000093
Figure GDA0003502729970000093

在操作对象的旋转导引轨迹插补后,重新计算机器人末端的速度vei、加速度wei以及对象导引轨迹离散点Δxinitial(n),再根据操作对象的移动速度过大和/或移动加速度过大,对其移动导引轨迹进行插补:After the rotation guidance trajectory of the operating object is interpolated, recalculate the speed ve ei , acceleration wi ei of the robot end, and the discrete point Δx initial (n) of the object guidance trajectory, and then recalculate the movement speed and/or acceleration of the operating object according to the If it is too large, it will be interpolated for its moving guide trajectory:

1)当对象移动速度过大而导致机器人末端速度超限时,计算各机器人末端的速度超限比例Rvelo_ei,选取最大超限比例Rvelo_END进行降速插补,得到:1) When the moving speed of the object is too large and the speed of the robot end exceeds the limit, calculate the speed overrun ratio R velo_ei of each robot end, and select the maximum overrun ratio R velo_END to perform deceleration interpolation, and obtain:

Rvelo_ei=ABS(vei)/vmax_ei,i∈[1,2]R velo_ei =ABS(v ei )/v max_ei ,i∈[1,2]

Rvelo_END=max(Rvelo_e1,Rvelo_e2),Rvelo_END>1R velo_END =max(R velo_e1 ,R velo_e2 ),R velo_END >1

Rvelo_END为导引轨迹插补的调节参数,以机器人末端速度约束条件来插补对象导引轨迹的离散轨迹点(包括位置与姿态)为:R velo_END is the adjustment parameter of the guidance trajectory interpolation, and the discrete trajectory points (including position and attitude) of the object guidance trajectory are interpolated with the robot end speed constraint as follows:

Δxvcal_END(n)=Δxinitial(n)/Rvelo_END Δx vcal_END (n)=Δx initial (n)/R velo_END

2)当对象移动加速度过大而导致机器人末端加速度超限时,计算各机器人末端的加速度超限比例Raccel_ei,选取最大超限比例Raccel_END进行插补,得到:2) When the moving acceleration of the object is too large and the acceleration of the robot end exceeds the limit, calculate the acceleration overrun ratio R accel_ei of each robot end, select the maximum overrun ratio R accel_END for interpolation, and obtain:

Figure GDA0003502729970000101
Figure GDA0003502729970000101

Raccel_END=max(Raccel_e1,Raccel_e2),Raccel_END>1R accel_END =max(R accel_e1 ,R accel_e2 ),R accel_END >1

Raccel_END为导引轨迹插补的调节参数,以机器人末端加速度约束条件来插补对象导引轨迹的离散轨迹点(包括位置与姿态)为:R accel_END is the adjustment parameter of the guidance trajectory interpolation, and the discrete trajectory points (including position and attitude) of the object guidance trajectory are interpolated with the robot end acceleration constraints as follows:

Figure GDA0003502729970000102
Figure GDA0003502729970000102

3)当操作对象同时存在移动速度过大和移动加速度过大而导致机器人超限时,则选取两者中的最小值作为插补操作对象导引轨迹的离散轨迹点;3) When the operating object has both too large moving speed and too large moving acceleration, which causes the robot to exceed the limit, the minimum value of the two is selected as the discrete trajectory point of the guiding trajectory of the interpolation operating object;

即,Δxcal_END为本周期的离散轨迹点输出量表示为:That is, Δx cal_END is expressed as the discrete trajectory point output of this cycle as:

Figure GDA0003502729970000103
Figure GDA0003502729970000103

根据各关节的运动约束条件,对导引轨迹进行关节空间的自适应插补:According to the motion constraints of each joint, the joint space adaptive interpolation is performed on the guiding trajectory:

设定各机器人在关节空间中的关节最大限制速度为

Figure GDA0003502729970000104
最大限制加速度为
Figure GDA0003502729970000105
机器人末端速度与关节速度之间通过机器人雅克比矩阵J(qi)表示,两机器人的关节速度
Figure GDA0003502729970000106
表示为:Set the maximum joint speed limit of each robot in the joint space as
Figure GDA0003502729970000104
The maximum limit acceleration is
Figure GDA0003502729970000105
The relationship between the robot end speed and the joint speed is represented by the robot Jacobian matrix J(q i ), the joint speed of the two robots
Figure GDA0003502729970000106
Expressed as:

Figure GDA0003502729970000107
Figure GDA0003502729970000107

根据机器人关节速度过大和/或关节加速度过大,对机器人的关节导引轨迹进行插补:1)当机器人关节速度过大而导致超限时,计算机器人各关节的关节角速度超限比例,选取最大超限比例Rvelo_Ji进行插补降速,得到:Interpolate the joint guidance trajectory of the robot according to the excessive joint speed and/or joint acceleration of the robot: 1) When the joint speed of the robot is too large and the limit exceeds the limit, calculate the ratio of the joint angular velocity of each joint of the robot exceeding the limit, and select the maximum The over-limit ratio R velo_Ji is interpolated to decelerate, and we get:

Figure GDA0003502729970000108
Figure GDA0003502729970000108

Rvelo_JOINT=max(Rvelo_J1,Rvelo_J2)R velo_JOINT =max(R velo_J1 ,R velo_J2 )

Rvelo_JOINT为导引轨迹插补的调节参数,以单位时间的关节角速度超限比例对笛卡尔空间插补后的离散导引轨迹点Δxvcal_JOINT进行插补,得到:R velo_JOINT is the adjustment parameter of the guidance trajectory interpolation. Interpolate the discrete guidance trajectory points Δx vcal_JOINT after Cartesian space interpolation with the joint angular velocity overrun ratio per unit time, and obtain:

Δxvcal_JOINT(n)=Δxcal_END(n)/Rvelo_JOINT Δx vcal_JOINT (n)=Δx cal_END (n)/R velo_JOINT

2)当机器人关节加速度过大而导致超限时,计算机器人各关节的关节角加速度超限比例,选择最大超限比例Raccel_Ji进行插补,得到:2) When the joint acceleration of the robot is too large and the overrun is caused, calculate the overrun ratio of the joint angular acceleration of each joint of the robot, select the maximum overrun ratio R accel_Ji for interpolation, and obtain:

Figure GDA0003502729970000111
Figure GDA0003502729970000111

Figure GDA0003502729970000112
Figure GDA0003502729970000112

Raccel_JOINT=max(Raccel_J1,Raccel_J2)R accel_JOINT =max(R accel_J1 ,R accel_J2 )

Raccel_JOINT为导引轨迹插补的调节参数,以机器人关节角加速度超限比例对笛卡尔空间插补后的离散导引轨迹点Δxcal_END进行插补,得到:R accel_JOINT is the adjustment parameter of the guidance trajectory interpolation, and the discrete guidance trajectory point Δx cal_END after Cartesian space interpolation is interpolated with the robot joint angular acceleration overrun ratio to obtain:

Figure GDA0003502729970000113
Figure GDA0003502729970000113

3)当机器人的关节同时存在关节速度过大和关节加速度过大而导致超限时,则选取两者中的较小值作为插补;3) When the joint speed of the robot is too large and the acceleration of the joint is too large at the same time, which causes the limit to exceed, the smaller value of the two is selected as the interpolation;

即,Δx作为本周期的离散轨迹点输出量表示为:That is, Δx is expressed as the discrete trajectory point output of this cycle as:

Figure GDA0003502729970000114
Figure GDA0003502729970000114

步骤3:根据操作对象的内力计算模型,设计基于阻抗模型的双输入模糊控制和对象轨迹跟踪误差补偿控制。Step 3: Design dual-input fuzzy control and object trajectory tracking error compensation control based on impedance model according to the internal force calculation model of the operating object.

考虑双机器人系统共同夹持一个对象,夹持点默认为刚性固连而不存在位置的相对滑动,如图2所示。在运动执行过程中,各机器人末端会对操作对象施加力矢量fi与力矩矢量mi,而对象则受到机器人末端施加的合力Fobj,其中关系有:Considering that the dual robot system jointly grips an object, the gripping point is rigidly fixed by default without relative sliding of the position, as shown in Figure 2. In the process of motion execution, each robot end will apply force vector f i and moment vector mi to the operating object, and the object will be subjected to the resultant force F obj exerted by the robot end. The relationship is as follows:

Figure GDA0003502729970000115
Figure GDA0003502729970000115

Figure GDA0003502729970000116
Figure GDA0003502729970000116

式中,

Figure GDA0003502729970000117
表示对象坐标系与第i个机器人末端坐标系之间的雅克比变化矩阵,其矩阵表达式:In the formula,
Figure GDA0003502729970000117
Represents the Jacobian change matrix between the object coordinate system and the ith robot end coordinate system, and its matrix expression:

Figure GDA0003502729970000118
Figure GDA0003502729970000118

式中,(rei)×为各末端到物体坐标系的位置矢量rei=[reix reiy reiz]T的斜对称矩阵。E3表示3维单位矩阵,O3表示空矩阵。In the formula, ( re ei ) × is the obliquely symmetric matrix of the position vector r ei =[ reix r eiy r eiz ] T from each end to the object coordinate system. E 3 represents a 3-dimensional identity matrix, and O 3 represents an empty matrix.

从机器人末端力分解的角度看,机器人末端施加的力一部分转化为运动驱动力fM来驱动对象运动(通常称之为机器人施加于对象的外力),另一部分则转化为对象内力fI,且对象内力不影响对象的运动状态。除了特殊情况,内力一般都会为系统控制带来负面影响,所以要将内力尽可能的控制在最小值,避免装配过程中对操作对象造成一系列变形损坏。由上可知,机器人末端力分解表达式为:From the point of view of the force decomposition of the robot end, part of the force exerted by the robot end is converted into the motion driving force f M to drive the object to move (usually called the external force applied by the robot to the object), and the other part is converted into the object internal force f I , and Object internal forces do not affect the motion state of the object. Except in special cases, the internal force will generally have a negative impact on the system control, so the internal force should be controlled to the minimum value as much as possible to avoid a series of deformation and damage to the operation object during the assembly process. It can be seen from the above that the decomposition expression of the robot end force is:

f=fM+fI f=f M + f I

因为内力fI不会向对象产生净合力,所以其位于

Figure GDA00035027299700001215
的零空间,由此可得对象运动驱动力和内力的计算公式:Since the internal force f I does not produce a net resultant force on the object, it is located at
Figure GDA00035027299700001215
The null space of , from which the calculation formulas of the driving force and internal force of the object motion can be obtained:

Figure GDA0003502729970000121
Figure GDA0003502729970000121

Figure GDA0003502729970000122
Figure GDA0003502729970000122

步骤3-1:采用内力控制的基准调节策略,将一侧的机器人末端固定作为控制基准,另外一侧的机器人末端根据内力随动调节。Step 3-1: Adopt the benchmark adjustment strategy of internal force control, fix the robot end on one side as the control benchmark, and adjust the robot end on the other side according to the internal force.

由于两台机器人末端施加在对象上的内力是一组相互作用力,因此控制一个末端就能实现内力控制。“基准调节”策略就是将一侧的机器人末端固定作为控制基准,另外一侧的机器人末端根据内力随动调节。单端调节可以有效的缩短稳定时间,在控制系统固定的控制周期中可以取得更好的内力控制效果。Since the internal force exerted by the two robot ends on the object is a set of interaction forces, controlling one end can achieve internal force control. The "reference adjustment" strategy is to fix the robot end on one side as the control reference, and the robot end on the other side adjusts accordingly according to the internal force. Single-ended adjustment can effectively shorten the stabilization time, and can achieve better internal force control effect in the fixed control cycle of the control system.

为保证内力控制系统的控制精度,在确定内力固定端和内力调节端之前,需对内力系统的模型误差进行分析。双机器人闭环运动学模型的控制误差主要发生在基座标系之间的标定结果上。由于世界坐标系与其中一台机器人的基座标系重合,双机器人各自末端受基坐标系标定结果的影响程度并不相同。In order to ensure the control accuracy of the internal force control system, it is necessary to analyze the model error of the internal force system before determining the internal force fixed end and the internal force adjustment end. The control error of the closed-loop kinematics model of the dual-robot mainly occurs in the calibration results between the base frames. Since the world coordinate system coincides with the base coordinate system of one of the robots, the respective ends of the two robots are not affected to the same extent by the calibration results of the base coordinate system.

受标定误差

Figure GDA0003502729970000123
的影响,基座系的标定结果
Figure GDA0003502729970000124
与真实值R1TR2之间的关系为:Subject to calibration error
Figure GDA0003502729970000123
The effect of , the calibration results of the base system
Figure GDA0003502729970000124
The relationship with the true value R1 T R2 is:

Figure GDA0003502729970000125
Figure GDA0003502729970000125

控制过程受误差项影响的中间项有

Figure GDA0003502729970000126
其中
Figure GDA0003502729970000127
Figure GDA0003502729970000128
受标定结果的位置误差和姿态误差影响,
Figure GDA00035027299700001216
Figure GDA0003502729970000129
Figure GDA00035027299700001210
的位置误差影响,
Figure GDA00035027299700001211
则受
Figure GDA00035027299700001212
的姿态误差影响。The intermediate term of the control process affected by the error term is:
Figure GDA0003502729970000126
in
Figure GDA0003502729970000127
and
Figure GDA0003502729970000128
Affected by the position error and attitude error of the calibration result,
Figure GDA00035027299700001216
and
Figure GDA0003502729970000129
by
Figure GDA00035027299700001210
The position error effect of ,
Figure GDA00035027299700001211
be subject to
Figure GDA00035027299700001212
attitude error.

为了方便控制实现并减少标定误差,该双机器人协作系统的世界坐标系与机器人A的基座标系重合。机器人A的基坐标系计算环链明显比机器人B的要短。且误差项的

Figure GDA00035027299700001213
在计算过程中可与其逆矩阵
Figure GDA00035027299700001214
相抵消,机器人A基本不受影响,所以标定误差主要表现在机器人B的末端位姿表达式中。In order to facilitate control implementation and reduce calibration errors, the world coordinate system of the dual-robot collaborative system coincides with the base coordinate system of robot A. The calculation chain of the base coordinate system of robot A is obviously shorter than that of robot B. and the error term
Figure GDA00035027299700001213
In the calculation process, the inverse matrix can be
Figure GDA00035027299700001214
In contrast, robot A is basically unaffected, so the calibration error is mainly manifested in the expression of the end pose of robot B.

基于以上的误差分析结果,对内力单端调节的控制精度进行具体分析。在图3中,数字1和2编号的三角形代表机器人末端,同心圆环表示所搬运的操作对象,虚线表示受标定误差影响的初始轨迹,实线表示各机器人实际的运动轨迹。如果固定端选择在控制精度高的一侧(图3(a)中的数字1一侧),调节端的初始轨迹偏差在内力控制过程中被直接补偿掉,从而保证了操作对象的位置控制精度,如图3(a)所示。如果固定端选择在位置误差较大的一侧(图3(b)中的数字2一侧),另一侧的机器人调节端在内力控制过程中将随固定端进行运动调节,操作对象和调节端的轨迹都受固定端的轨迹偏差的影响而发生偏移,如图3(b)所示。因此,双机器人系统在采取“基准调节”策略进行内力控制时,将机器人A作为固定端,机器人B作为运动调节端。Based on the above error analysis results, the control accuracy of the single-end adjustment of the internal force is analyzed in detail. In Figure 3, the triangles numbered 1 and 2 represent the end of the robot, the concentric circles represent the object being handled, the dashed line represents the initial trajectory affected by the calibration error, and the solid line represents the actual motion trajectory of each robot. If the fixed end is selected on the side with high control accuracy (the side of number 1 in Figure 3(a)), the initial trajectory deviation of the adjustment end is directly compensated during the internal force control process, thereby ensuring the position control accuracy of the operating object, As shown in Figure 3(a). If the fixed end is selected on the side with the larger position error (the side with the number 2 in Figure 3(b)), the robot adjusting end on the other side will adjust the motion along with the fixed end during the internal force control process. The trajectories of the fixed ends are all offset by the influence of the trajectory deviation of the fixed ends, as shown in Fig. 3(b). Therefore, when the dual-robot system adopts the "reference adjustment" strategy for internal force control, robot A is used as the fixed end, and robot B is used as the motion adjustment end.

步骤3-2:建立基于阻抗模型的内力模糊控制架构:向模糊控制器输入内力偏差量及上周期的位姿调整量,则输出本周期的位姿调整量并对双机器人系统进行内力控制。Step 3-2: Establish the internal force fuzzy control framework based on the impedance model: input the internal force deviation and the pose adjustment amount of the previous cycle to the fuzzy controller, then output the pose adjustment amount of the current cycle and control the internal force of the dual robot system.

双机器人系统内力控制模型相当于在内力调节端创建一种力与位置的变换规则,如图4所示。而阻抗模型相当于空间中的一种6维虚拟弹簧阻尼器,将内力转化为机器人内力调节端的位置调整量Δx。Δx同时包含位移调整量和旋转调整量,与力传感器解算对象导引动作的位姿增量的方法相同,由内力力矢量转化的位置补偿直接叠加到实际位置量上进行输出,而由内力扭矩矢量转化的姿态补偿则需要将其转换为相应形式的欧拉角补偿量,然后将欧拉角补偿量叠加到实际欧拉角上进行输出,从而实现空间中内力的6维控制。The internal force control model of the dual robot system is equivalent to creating a force and position transformation rule at the internal force adjustment end, as shown in Figure 4. The impedance model is equivalent to a 6-dimensional virtual spring damper in space, which converts the internal force into the position adjustment amount Δx of the adjustment end of the robot's internal force. Δx includes both the displacement adjustment amount and the rotation adjustment amount, which is the same as the method used by the force sensor to calculate the pose increment of the guiding action of the object. The position compensation converted from the internal force force vector is directly superimposed on the actual position amount for output, while the internal force The attitude compensation of torque vector conversion needs to be converted into the corresponding Euler angle compensation, and then the Euler angle compensation is superimposed on the actual Euler angle for output, so as to realize the 6-dimensional control of the internal force in space.

在内力控制过程中,系统实时检测对象与双机器人末端存在内力偏差量ΔFi=Fi-Fid,其中Fi为系统实际内力,Fid为内力期望值,通常令Fid=0以取得最佳的内力控制效果。一旦检测到内力存在,双机器人系统进入内力控制模式,内力偏差ΔFi与位置调整量Δx的阻抗关系为:In the process of internal force control, the system detects the internal force deviation between the object and the end of the double robot in real time, ΔF i =F i -F id , where F i is the actual internal force of the system, and F id is the expected value of the internal force. Usually, F id =0 is used to obtain the maximum value. Excellent internal force control effect. Once the internal force is detected, the dual robot system enters the internal force control mode, and the impedance relationship between the internal force deviation ΔF i and the position adjustment amount Δx is:

Figure GDA0003502729970000131
Figure GDA0003502729970000131

式中B、K分别为阻抗控制中的阻尼系数和刚度系数矩阵,Δx和

Figure GDA0003502729970000132
分别表示机器人末端位置调整量及其调整量变化速度。where B and K are the damping coefficient and stiffness coefficient matrices in impedance control, respectively, Δx and
Figure GDA0003502729970000132
Respectively represent the adjustment amount of the robot end position and the change speed of the adjustment amount.

在控制系统中,补偿量的变化速度由前后控制周期的时间差分求得,n代表当前控制周期,而n-1代表上个执行过的周期,由此求得:In the control system, the change speed of the compensation amount is obtained from the time difference between the previous and previous control cycles, n represents the current control cycle, and n-1 represents the last executed cycle, thus obtaining:

Figure GDA0003502729970000133
Figure GDA0003502729970000133

内力差值ΔFi与位置调整量Δx的离散数学关系为:The discrete mathematical relationship between the internal force difference ΔF i and the position adjustment amount Δx is:

Figure GDA0003502729970000134
Figure GDA0003502729970000134

为了得到最终机器人末端位置调整量Δx的表达式,则:In order to obtain the expression of the final robot end position adjustment Δx, then:

Figure GDA0003502729970000141
Figure GDA0003502729970000141

若将传统的模糊控制器应用在双机器人内力控制系统中,通常采用内力偏差量ΔF及其偏差量变化速度

Figure GDA0003502729970000142
作为模糊控制器的输入控制量,机器人末端调整量的输出函数为:If the traditional fuzzy controller is applied in the dual robot internal force control system, the internal force deviation ΔF and its deviation change speed are usually used.
Figure GDA0003502729970000142
As the input control quantity of the fuzzy controller, the output function of the adjustment quantity of the robot end is:

Figure GDA0003502729970000143
Figure GDA0003502729970000143

为结合阻抗控制和模糊控制两种控制方法,将ΔFi(n)和Δx(n-1)作为模糊控制器的输入控制量,在保证模糊控制的高响应特性的前提下,保留了阻抗控制的二阶系统特性,模糊系统相当于对Δt/(KΔt+B)和B/(KΔt+B)两项包含刚度系数K和阻尼系数B代数项进行自适应推理控制,避免了阻抗控制中K、B的取值难题。该模糊架构的位置调整量输出函数为:In order to combine the two control methods of impedance control and fuzzy control, ΔF i (n) and Δx (n-1) are used as the input control variables of the fuzzy controller. On the premise of ensuring the high response characteristics of the fuzzy control, the impedance control is retained. The second-order system characteristics of , the fuzzy system is equivalent to adaptive reasoning control of Δt/(KΔt+B) and B/(KΔt+B) including stiffness coefficient K and damping coefficient B algebraic term, avoiding the impedance control of K , the value problem of B. The position adjustment output function of this fuzzy architecture is:

Δx(n)=Fuzzy(ΔFi,Δx(n-1))Δx(n)=Fuzzy(ΔF i ,Δx(n-1))

由此获得基于阻抗模型的双输入模糊控制架构,如图5所示。向模糊控制器输入内力偏差量及上周期的位姿调整量,则可以输出本周期的位姿调整量并实现双机器人系统的内力控制。From this, a dual-input fuzzy control architecture based on the impedance model is obtained, as shown in Figure 5. By inputting the internal force deviation and the pose adjustment amount of the previous cycle to the fuzzy controller, the pose adjustment amount of the current cycle can be output and the internal force control of the dual robot system can be realized.

在基于阻抗模型的双输入内力模糊控制架构的基础上,需结合双机器人内力控制的实际应用场景,对双输入模糊控制算法进行详细设计。该算法主要包括内力差值ΔFi和位置调整量Δx的变量模糊化、模糊规则设计、去模糊等3部分。On the basis of the dual-input internal force fuzzy control architecture based on the impedance model, the dual-input fuzzy control algorithm needs to be designed in detail in combination with the actual application scenario of dual-robot internal force control. The algorithm mainly includes three parts: variable fuzzification of internal force difference ΔF i and position adjustment Δx, fuzzy rule design, and de-fuzzification.

(1)输入输出量模糊化(1) Fuzzy input and output

为了保证双机器人系统内力控制的安全性,首先确定一个安全内力限制值。若超出该内力限制后,则按照最大限制内力进行控制,避免因位置调整量过大而造成的内力突变现象。同时在内力大的区域,论域划分稀疏使其内力快速响应;在内力小的区域划分密集,尽量使内力控制精度提高。故选取内力的论域为Fi={-12,-6,-3,0,3,6,12},论域上对应的模糊子集Ai(i=1,2,3,4,5,6)的语言表述为:{NB,NM,NS,Z,PS,PM,PB},同时采用实际控制中计算量较小的三角隶属函数进行变量模糊化,内力Fi的隶属函数uA(Fi)如图6(a)所示。In order to ensure the safety of the internal force control of the dual robot system, a safe internal force limit value is first determined. If the internal force limit is exceeded, it will be controlled according to the maximum limit internal force to avoid the sudden change of internal force caused by excessive position adjustment. At the same time, in the area with large internal force, the universe of discourse is sparsely divided to make the internal force respond quickly; the area with small internal force is divided densely, so as to improve the internal force control accuracy as much as possible. Therefore, the domain of the internal force is selected as F i ={-12,-6,-3,0,3,6,12}, and the corresponding fuzzy subset A i (i=1,2,3,4, 5,6) are expressed in language as: {NB, NM, NS, Z, PS, PM, PB}, and at the same time, the triangular membership function with less calculation amount in the actual control is used for variable fuzzification, and the membership function u of the internal force F i A ( Fi ) is shown in Fig. 6(a).

由于机器人末端与对象之间是通过刚性固连方式实现紧协调控制,因此较小的位置偏差量会产生较大的内力。位置偏差量的论域范围的选择不能太大,同理也采取内力论域划分时的“外疏内密”的原则。选取输入控制量的论域X={-0.1,-0.05,-0.02,0,0.02,0.05,0.1},论域上对应的模糊子集Bi(i=1,2,3,4,5,6)的语言表述为:{NB,NM,NS,Z,PS,PM,PB}。同理,系统的输出控制量也是位置调整量,同取论域X1={-0.1,-0.05,-0.02,0,0.02,0.05,0.1},论域上对应的模糊子集Ci(i=1,2,3,4,5,6)的语言表述为:{NB,NM,NS,Z,PS,PM,PB}。采用实际控制中计算量较小的三角隶属函数进行变量模糊化,输入位置调整量X的隶属函数uB(X)和输出位置调整量X1隶属函数uC(X1)相同,如图6(b)所示。Since the end of the robot and the object are rigidly connected to achieve tight coordination control, a small position deviation will generate a large internal force. The choice of the universe of discourse for the position deviation should not be too large. Similarly, the principle of "sparse outside and dense inside" is adopted when dividing the universe of internal force. Select the universe of discourse X={-0.1,-0.05,-0.02,0,0.02,0.05,0.1}, the corresponding fuzzy subset B i (i=1,2,3,4,5 , 6) is expressed as: {NB, NM, NS, Z, PS, PM, PB}. In the same way, the output control quantity of the system is also the position adjustment quantity, which takes the universe of discourse X1={-0.1,-0.05,-0.02,0,0.02,0.05,0.1}, and the corresponding fuzzy subset C i (i = 1, 2, 3, 4, 5, 6) are expressed as: {NB, NM, NS, Z, PS, PM, PB}. The variable fuzzification is carried out by using the triangular membership function with a small amount of calculation in the actual control. The membership function u B (X) of the input position adjustment value X and the output position adjustment value X1 membership function u C (X1) are the same, as shown in Figure 6(b) ) shown.

(2)模糊规则设计(2) Fuzzy rule design

改进后的双输入模糊控制器由内力和上周期的位置调整量作为输入,而上周期的位置调整量反应了机器人末端的上周期的调节趋势,它将作为前馈判断来决策本周期位置调整量的选择。通常内力有拉力与压力的正负之分,位置调整则也有一一对应的正负控制量来调节内力,由此本系统模糊控制推理规则的制定原则为:The improved dual-input fuzzy controller takes the internal force and the position adjustment amount of the previous cycle as input, and the position adjustment amount of the previous cycle reflects the adjustment trend of the robot end in the previous cycle, and it will be used as a feedforward judgment to decide the position adjustment of this cycle. amount of choice. Usually, the internal force has positive and negative points of tension and pressure, and the position adjustment also has a one-to-one corresponding positive and negative control amount to adjust the internal force. Therefore, the formulation principles of the fuzzy control inference rules of this system are as follows:

1)如果内力Fi和上周期的位置调整量X方向相同,此时说明机器人还处于上周期的内力调整趋势中,输出控制量的方向保持不变,大小则根据内力大小和上周期位置调整量的权重进行选择。1) If the internal force F i is in the same direction as the position adjustment value X of the previous cycle, it means that the robot is still in the internal force adjustment trend of the previous cycle, the direction of the output control value remains unchanged, and the magnitude is adjusted according to the internal force and the position of the previous cycle. Amount of weight to choose.

2)如果内力Fi和上周期的位置调整量X方向不同,此时说明机器人本周期的内力调节方向与上周期调节方向不同,应该酌情减小输出控制量。同时,将上周期位置调整量X和内力Fi的权重进行对比,如果上周期位置调整量X权重大则仍按上周期方向选择较小的控制输出量,保持调整方向上的“惯性效应”;如果内力Fi的权重大,则按内力调节方向选择较小的控制输出量,保证内力调节方向的平滑过渡。2) If the direction of the internal force F i and the position adjustment amount X of the previous cycle is different, it means that the adjustment direction of the internal force of the robot in this cycle is different from the adjustment direction of the previous cycle, and the output control amount should be reduced as appropriate. At the same time, compare the weight of the position adjustment amount X in the previous cycle with the weight of the internal force F i . If the weight of the position adjustment amount X in the previous cycle is large, the smaller control output is still selected according to the direction of the previous cycle, and the "inertial effect" in the adjustment direction is maintained. ; If the weight of the internal force F i is large, select the smaller control output according to the internal force adjustment direction to ensure the smooth transition of the internal force adjustment direction.

该控制原则在保持模糊控制的原有特色基础上,引入了阻抗控制中弹簧阻尼的二阶系统特性。将上周期的控制量作为一种惯性量来预测本周期行为,最后总结制定模糊控制规则表如下:On the basis of maintaining the original characteristics of fuzzy control, the control principle introduces the second-order system characteristics of spring damping in impedance control. The control amount of the previous cycle is used as an inertial amount to predict the behavior of this cycle. Finally, the fuzzy control rule table is summarized and formulated as follows:

表1模糊控制规则表Table 1 Fuzzy control rule table

Figure GDA0003502729970000151
Figure GDA0003502729970000151

Figure GDA0003502729970000161
Figure GDA0003502729970000161

(3)去模糊化(3) Defuzzification

基于模糊规则库完成模糊推理后,得到的是输出位置调整量X1以模糊语言表示的模糊集合,所以模糊控制器的最后一个步骤是对输出控制量进行模糊判决,得到具体的位置调整量X1。其中,重心法是采用的较多的一种去模糊方法,一些学者的研究结果也表明重心法的输出是连续的而不是跳跃式的,并且能够给出较为稳定的输出,其计算公式如下:After the fuzzy inference is completed based on the fuzzy rule base, the output position adjustment amount X1 is obtained as a fuzzy set expressed in fuzzy language, so the last step of the fuzzy controller is to make a fuzzy judgment on the output control amount to obtain the specific position adjustment amount X1. Among them, the center of gravity method is the most commonly used deblurring method. The research results of some scholars also show that the output of the center of gravity method is continuous rather than jumping, and can give a relatively stable output. The calculation formula is as follows:

Figure GDA0003502729970000162
Figure GDA0003502729970000162

式中,μA(Fi)、μB(X)分别为内力和上周期位置调整量的函数隶属度,Δxij为模糊推理规则库中对应不同隶属度的输出论域值,最终模糊判决得到模糊控制器的输出Δx即为本周期的位置调整量,并对其进行保存,用于下个周期的计算。In the formula, μ A (F i ) and μ B (X) are the functional membership degrees of the internal force and the position adjustment of the previous cycle, respectively, Δx ij is the output domain value corresponding to different membership degrees in the fuzzy inference rule base, and the final fuzzy decision The output Δx of the fuzzy controller is obtained as the position adjustment amount of this cycle, and it is saved for the calculation of the next cycle.

步骤3-3:根据固定端是否存在响应滞后误差对轨迹进行补偿。Step 3-3: Compensate the trajectory according to whether there is a response lag error at the fixed end.

(1)固定端不存在响应滞后误差的情况(1) There is no response lag error at the fixed end

通过误差分析已知,受机械结构和设备使用情况所造成的机器人本体机械误差通常很小,而且对于工业机器人在线实时控制中很难实时计算机器人机械误差的大小,所以在本文忽略不计。多机器人基座标系标定是协调控制工作的基础,但不可避免存在的标定误差在本文的机械系统中主要表现在机器人B端。Through error analysis, it is known that the mechanical error of the robot body caused by the mechanical structure and equipment usage is usually small, and it is difficult to calculate the size of the robot mechanical error in real time in the online real-time control of industrial robots, so it is ignored in this paper. The calibration of the multi-robot base calibration system is the basis of the coordinated control work, but the inevitable calibration error is mainly manifested in the robot B side in the mechanical system of this paper.

当机器人A末端为固定端且不存在动态响应滞后带来的误差时,机器人B末端可能存在的误差主要包含了坐标系标定误差Δd、机器人B的末端因偏载而存在的动态响应滞后误差Δs2,如图7所示。机器人B作为动态调节端,在单端调节的内力控制系统下,机器人B的位置调整量ΔD将在一定程度上补偿末端的偏差,两机器人的控制执行指令分别为:When the end of robot A is a fixed end and there is no error caused by the dynamic response lag, the possible errors at the end of robot B mainly include the coordinate system calibration error Δd and the dynamic response lag error Δs of the end of robot B due to eccentric load. 2 , as shown in Figure 7. Robot B is used as the dynamic adjustment end. Under the internal force control system of single-end adjustment, the position adjustment amount ΔD of robot B will compensate the deviation of the end to a certain extent. The control execution instructions of the two robots are:

x1(n+1)=xobj(n+1)·T1 x 1 (n+1)=x obj (n+1) · T 1

x2(n+1)=xobj(n+1)·T2+ΔDx 2 (n+1)=x obj (n+1)·T 2 +ΔD

ΔD=Δd+Δs2 ΔD=Δd+Δs 2

式中,x1(n+1)和x2(n+1)表示即将下发的双机器人末端轨迹,xobj(n+1)表示该控制周期中所规划的对象理论运动轨迹,T1、T2分别表示对象轨迹与机器人末端轨迹的变换矩阵。In the formula, x 1 (n+1) and x 2 (n+1) represent the dual robot end trajectory to be issued, x obj (n+1) represents the theoretical motion trajectory of the object planned in the control cycle, T 1 , T 2 represent the transformation matrix of the object trajectory and the robot end trajectory, respectively.

(2)固定端存在响应滞后误差的情况(2) When there is a response lag error at the fixed end

当机器人A固定端存在了因偏载而导致的响应滞后误差Δs1时,机器人B的末端仍存在坐标系标定误差Δd和响应滞后误差Δs2。在内力控制过程中,对象的轨迹和调节端的轨迹也将发生偏移,如图8所示。When the fixed end of robot A has response lag error Δs 1 caused by eccentric load, the end of robot B still has coordinate system calibration error Δd and response lag error Δs 2 . During the internal force control process, the trajectory of the object and the trajectory of the adjustment end will also be offset, as shown in Figure 8.

当因偏载而造成末端机器人的实际响应位置滞后于理论控制层下发位置时,此时的滞后误差在控制器中可以实时计算,所以首先计算机器人A固定端的响应滞后误差Δs1如下:When the actual response position of the terminal robot lags behind the position issued by the theoretical control layer due to eccentric load, the lag error at this time can be calculated in real time in the controller, so first calculate the response lag error Δs 1 of the fixed end of robot A as follows:

Figure GDA0003502729970000171
Figure GDA0003502729970000171

式中,x1(n)为上个控制周期理论控制层的下发位置,而

Figure GDA0003502729970000172
为机器人上个控制周期的实际位置,通过关节电机实时角度反馈进行机器人正运动学求解获得。In the formula, x 1 (n) is the delivery position of the theoretical control layer of the previous control cycle, and
Figure GDA0003502729970000172
is the actual position of the robot in the last control cycle, obtained by solving the forward kinematics of the robot through the real-time angle feedback of the joint motor.

当固定端存在滞后响应偏差Δs1,在内力控制过程中模糊控制器输出的位置调整量ΔD不仅包含了机器人B的所有位置误差,同时也包含了机器人A的响应滞后偏差Δs1。此时在单端调节过后对象的运行轨迹将整体发生偏移。为了补偿对象的轨迹跟踪精度,各机器人末端最终下发轨迹整体偏移Δs1,从而在一定程度上补偿固定端和调节端因各类误差所导致的对象轨迹误差,因此Δs1将作为操作对象的轨迹跟踪误差的补偿量Δe_comp。此时的位置控制指令分别为:When there is a lag response deviation Δs 1 at the fixed end, the position adjustment amount ΔD output by the fuzzy controller during the internal force control process not only includes all the position errors of robot B, but also includes the response lag deviation Δs 1 of robot A. At this time, the running track of the object will be offset as a whole after the single-end adjustment. In order to compensate the trajectory tracking accuracy of the object, each robot end finally sends the overall trajectory offset Δs 1 , so as to compensate the target trajectory error caused by various errors at the fixed end and the adjustment end to a certain extent, so Δs 1 will be used as the operation object The compensation amount Δe_comp of the trajectory tracking error. The position control commands at this time are:

x1(n+1)=xobj(n+1)·T-Δs1 x 1 (n+1)=x obj (n+1) · T-Δs 1

x2(n+1)=xobj(n+1)·T2+ΔD-Δs1 x 2 (n+1)=x obj (n+1)·T 2 +ΔD-Δs 1

ΔD=Δd+Δs1+Δs2 ΔD=Δd+Δs 1 +Δs 2

实施例2Example 2

一种双机器人协调控制系统,包括双机器人运动导引模块、内力控制及轨迹补偿模块、多传感器的UDP和TCP/IP混合通讯模块。A dual-robot coordinated control system includes a dual-robot motion guidance module, an internal force control and trajectory compensation module, and a multi-sensor UDP and TCP/IP hybrid communication module.

双机器人运动导引模块包括力坐标变换模块、刚度控制模块以及导引力阈值控制模块,其中,力坐标变换模块获取传感器相对于世界坐标系的坐标系转换关系,刚度控制模块获取刚度控制关系,并将力信息转化为对象的运动轨迹然后通过运动学闭环链解耦来驱动各个分机器人系统,导引力阈值控制模块通过设置导引力阈值来控制输出的导引力矢量,减少传感器初始状态下的力信号波动而造成对象位置波动。The dual-robot motion guidance module includes a force coordinate transformation module, a stiffness control module, and a guidance force threshold control module. The force coordinate transformation module obtains the coordinate system transformation relationship of the sensor relative to the world coordinate system, and the stiffness control module obtains the stiffness control relationship. The force information is converted into the motion trajectory of the object, and then each sub-robot system is driven by the kinematic closed-loop chain decoupling. The guiding force threshold control module controls the output guiding force vector by setting the guiding force threshold, reducing the initial state of the sensor. The position of the object fluctuates due to the fluctuation of the force signal.

内力控制及轨迹补偿模块包括多机器人运动学解算模块、轨迹跟踪误差补偿模块、内力单端调节模块、单机器人伺服控制模块。对象内力控制系统分为了多机器人运动学解算模块、轨迹精度补偿模块、内力单端调节模块、单机器人伺服控制模块等4大部分,首先是给定对象的运动轨迹,通过闭环运动学模型解算出各机器人末端的运动轨迹,然后驱动单机器人伺服控制模块运行;各机器人末端的传感器实时进行力解耦计算出在调节端机器人B处的对象内力,并传入改进的基于阻抗模型的模糊控制器中输出机器人B末端的位置补偿量,实现双机器人系统中对象的内力控制;然后通过设计的对象轨迹跟踪误差补偿算法对轨迹跟踪误差进行在线计算,并将轨迹偏差量作为轨迹实时补偿量叠加至各机器人的末端轨迹上,实现对象轨迹跟踪误差的自适应在线补偿,提高双机器人系统在响应滞后等情况下的轨迹跟踪精度。The internal force control and trajectory compensation module includes a multi-robot kinematics solution module, a trajectory tracking error compensation module, an internal force single-end adjustment module, and a single robot servo control module. The object internal force control system is divided into four parts: multi-robot kinematics calculation module, trajectory accuracy compensation module, internal force single-end adjustment module, and single-robot servo control module. Calculate the motion trajectory of each robot end, and then drive the single robot servo control module to run; the sensors at each robot end perform force decoupling in real time to calculate the internal force of the object at the regulating end robot B, and transmit it to the improved fuzzy control based on the impedance model The position compensation amount of the end of robot B is output in the device to realize the internal force control of the object in the dual robot system; then the trajectory tracking error is calculated online through the designed object trajectory tracking error compensation algorithm, and the trajectory deviation amount is superimposed as the trajectory real-time compensation amount To the end trajectory of each robot, the adaptive online compensation of the object trajectory tracking error is realized, and the trajectory tracking accuracy of the dual-robot system in the case of response lag is improved.

以上所述仅是本发明的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进,这些改进应视为本发明的保护范围。The above are only some embodiments of the present invention. It should be pointed out that for those skilled in the art, some improvements can be made without departing from the principles of the present invention, and these improvements should be regarded as the present invention. scope of protection.

Claims (5)

1.一种双机器人协调操作弱刚性构件的控制方法,其特征在于,包括以下步骤:1. a control method of a double robot coordinated operation weak rigid member, is characterized in that, comprises the following steps: 步骤1:将弱刚性构件作为直接操作对象,搭建双机器人的运动学闭环链模型,并基于该模型设计双机器人导引控制,所述双机器人导引控制包括力坐标变换、刚度控制和导引力阈值控制;Step 1: Take the weakly rigid component as the direct manipulation object, build the kinematic closed-loop chain model of the dual robot, and design the dual robot guidance control based on the model, the dual robot guidance control includes force coordinate transformation, stiffness control and guidance force threshold control; 步骤2:根据机器人末端与操作对象之间的运动学约束关系,设计导引轨迹在笛卡尔空间和关节空间的多空间自适应插补控制,具体包括:Step 2: According to the kinematic constraint relationship between the robot end and the operating object, design the multi-space adaptive interpolation control of the guiding trajectory in Cartesian space and joint space, including: 步骤2-1:根据操作对象的角速度过大和/或角加速度过大,对其旋转导引轨迹进行插补;Step 2-1: According to the excessive angular velocity and/or excessive angular acceleration of the operating object, interpolate the rotation guidance trajectory; 步骤2-2:重新计算机器人末端的速度、加速度以及对象导引轨迹离散点,再根据操作对象的移动速度过大和/或移动加速度过大,对其移动导引轨迹进行插补;Step 2-2: Recalculate the speed and acceleration of the robot end and the discrete points of the object guiding trajectory, and then interpolate the movement guiding trajectory according to the excessive moving speed and/or excessive moving acceleration of the operating object; 步骤2-3:根据各关节的运动约束条件,对导引轨迹进行关节空间的自适应插补;Step 2-3: According to the motion constraints of each joint, perform adaptive interpolation of the joint space on the guiding trajectory; 步骤3:根据操作对象的内力计算模型,设计基于阻抗模型的双输入模糊控制和对象轨迹跟踪误差补偿控制,具体包括:Step 3: Design the dual-input fuzzy control and object trajectory tracking error compensation control based on the impedance model according to the internal force calculation model of the operating object, including: 步骤3-1:采用内力控制的基准调节策略,将一侧的机器人末端固定作为控制基准,另外一侧的机器人末端根据内力随动调节;Step 3-1: Adopt the benchmark adjustment strategy of internal force control, fix the robot end on one side as the control benchmark, and adjust the robot end on the other side according to the internal force; 步骤3-2:建立基于阻抗模型的内力模糊控制架构:向模糊控制器输入内力偏差量及上周期的位姿调整量,则输出本周期的位姿调整量并对双机器人系统进行内力控制;Step 3-2: Establish the internal force fuzzy control framework based on the impedance model: input the internal force deviation and the pose adjustment amount of the previous cycle to the fuzzy controller, then output the pose adjustment amount of the current cycle and control the internal force of the dual robot system; 步骤3-3:根据固定端是否存在响应滞后误差对轨迹进行补偿。Step 3-3: Compensate the trajectory according to whether there is a response lag error at the fixed end. 2.根据权利要求1所述的双机器人协调操作弱刚性构件的控制方法,其特征在于,步骤1中建立双机器人的运动学闭环链模型具体包括以下步骤:2. the control method of double robot coordinated operation weak rigid member according to claim 1, is characterized in that, the kinematics closed-loop chain model of establishing double robot in step 1 specifically comprises the following steps: 步骤1-1:操作对象坐标系{c}相对于世界坐标系{W}的运动学模型为:Step 1-1: The kinematic model of the operation object coordinate system {c} relative to the world coordinate system {W} is: WTcWTR1·R1Te1·e1Tc1·c1Tc W T c = W T R1 · R1 T e1 · e1 T c1 · c1 T c WTcWTR2·R2Te2·e2Tc2·c2Tc W T c = W T R2 · R2 T e2 · e2 T c2 · c2 T c WTR1WTR2是各机器人底座安装位置与世界坐标系的变换关系,且为固定的常数矩阵;{R1}、{R2}分别表示机器人A、机器人B各自的基坐标系;{e1}、{e2}分别表示机器人A、机器人B的末端工具坐标系,与机器人末端抓取点重合;{c1}、{c2}分别表示{e1}、{e2}平移延伸后的坐标系,且坐标系原点与{c}的原点重合;c1Tcc2Tc分别表示对象坐标系{c}相对于{c1}、{c2}的位姿齐次变化矩阵;e1Tc1e2Tc2分别表示{c1}、{c2}相对于机器人末端坐标系{e1}、{e2}的齐次变换矩阵;R1Te1R2Te2分别表示机器人末端坐标系与各自基坐标系的齐次变换矩阵;WTR1WTR2分别表示机器人基坐标系{R1}、{R2}相对于世界坐标系{W}的齐次变换矩阵; W T R1 and W T R2 are the transformation relationship between the installation position of each robot base and the world coordinate system, and are fixed constant matrices; {R1}, {R2} represent the respective base coordinate systems of robot A and robot B; {e1 } and {e2} represent the end tool coordinate systems of robot A and robot B, respectively, which coincide with the gripping point at the end of the robot; {c1} and {c2} represent the coordinate systems after translation and extension of {e1} and {e2}, respectively, and The origin of the coordinate system coincides with the origin of {c}; c1 T c , c2 T c represent the homogeneous change matrix of the object coordinate system {c} relative to {c1}, {c2} respectively; e1 T c1 , e2 T c2 respectively represent the homogeneous transformation matrices of {c1} and {c2} relative to the robot end coordinate systems {e1} and {e2}; R1 T e1 and R2 T e2 respectively represent the homogeneous transformation between the robot end coordinate system and their respective base coordinate systems matrix; W T R1 and W T R2 represent the homogeneous transformation matrix of the robot base coordinate system {R1}, {R2} relative to the world coordinate system {W}, respectively; 步骤1-2:将世界坐标系{W}与其中一台机器人的基坐标系{R1}相重合,采用四点标定法确定基座标系之间的转化关系R1TR2,则由运动学闭环链确定双机器人末端之间的末端虚拟连杆矩阵:Step 1-2: The world coordinate system {W} is coincident with the base coordinate system {R1} of one of the robots, and the four-point calibration method is used to determine the transformation relationship between the base coordinate systems R1 T R2 , then the kinematics The closed-loop chain determines the end virtual link matrix between the two robot ends: e1Te2=[R1Te1]-1·R1TR2·R2Te2 e1 T e2 = [ R1 T e1 ] -1 · R1 T R2 · R2 T e2 步骤1-3:在虚拟连杆矩阵e1Te2的基础上引入位置调节比例K来确定双机器人末端平移坐标系{c1}和{c2}的原点位置,将对象坐标系{c}建立在机器人末端平移坐标系{c1}、{c2}的原点位置,则机器人末端工具坐标系{e1}、{e2}与其平移后的坐标系{c1}、{c2}之间的齐次变换矩阵为:Step 1-3: On the basis of the virtual link matrix e1 T e2 , the position adjustment ratio K is introduced to determine the origin of the double robot end translation coordinate systems {c1} and {c2}, and the object coordinate system {c} is established on the robot. The origin position of the end translation coordinate system {c1}, {c2}, the homogeneous transformation matrix between the robot end tool coordinate system {e1}, {e2} and its translated coordinate system {c1}, {c2} is:
Figure FDA0003502729960000021
Figure FDA0003502729960000021
Figure FDA0003502729960000022
Figure FDA0003502729960000022
式中,E3表示3阶单位矩阵,O1×3表示1行3列的零矢量,其中P{·}表示提取齐次矩阵的位置矢量,e1Tc1e2Tc2中只按照e1Te2的位置矢量进行移动,c1Tc2c2Tc1则只按照e1Te2的旋转矩阵e1Re2进行变化;In the formula, E 3 represents the 3rd-order unit matrix, O 1×3 represents the zero vector with 1 row and 3 columns, and P{·} represents the position vector for extracting the homogeneous matrix, e1 T c1 and e2 T c2 only follow e1 T The position vector of e2 moves, and c1 T c2 and c2 T c1 only change according to the rotation matrix e1 R e2 of e1 T e2 ; 步骤1-4:建立对象坐标系{c}与末端平移坐标系{c1}、{c2}之间的坐标系变换关系,其中A为常数齐次旋转矩阵:Step 1-4: Establish the coordinate system transformation relationship between the object coordinate system {c} and the end translation coordinate systems {c1}, {c2}, where A is a constant homogeneous rotation matrix: c1Tc=A;
Figure FDA0003502729960000023
c1 T c =A;
Figure FDA0003502729960000023
cTc2cTc1·c1Tc2 c T c2 = c T c1 · c1 T c2 步骤1-5:通过双机器人的闭环运动学模型确定各机器人的运动学驱动控制方程:Step 1-5: Determine the kinematic drive control equation of each robot through the closed-loop kinematics model of the dual robots: R1Te1R1Tc·[e1Tc]-1=[R1Te1·e1Tc1·c1Tc]·[e1Tc1·c1Tc]-1 R1 T e1 = R1 T c · [ e1 T c ] -1 = [ R1 T e1 · e1 T c1 · c1 T c ] · [ e1 T c1 · c1 T c ] -1 R2Te2=[R1TR2]-1·R1Te1·e1Tc1·c1Tc·[e2Tc2·c2Tc1·c1Tc]-1 R2 T e2 = [ R1 T R2 ] -1 · R1 T e1 · e1 T c1 · c1 T c · [ e2 T c2 · c2 T c1 · c1 T c ] -1 R1Te1R2Te2为双机器人各自坐标系下的位姿齐次矩阵。 R1 T e1 , R2 T e2 are the pose homogeneous matrices in the respective coordinate systems of the two robots.
3.根据权利要求1所述的双机器人协调操作弱刚性构件的控制方法,其特征在于,步骤3-2具体包括内力差值ΔFi和位置调整量Δx的变量模糊化、模糊规则设计和去模糊化三部分,具体为:3. The control method for the coordinated operation of weakly rigid components by double robots according to claim 1, wherein step 3-2 specifically includes variable fuzzification, fuzzy rule design and removal of internal force difference ΔF i and position adjustment amount Δx. Fuzzy three parts, specifically: 步骤3-2-1:对输入输出量进行模糊化:Step 3-2-1: Fuzzy input and output: 设置基本论域,确定量化因子和比例因子,对未超出论域边界的数据采用三角隶属函数进行变量模糊化,将超出论域边界的数据设为论域边界值;Set the basic universe, determine the quantification factor and scale factor, use triangular membership function to fuzzify the data that does not exceed the boundary of the universe, and set the data beyond the boundary of the universe as the boundary value of the universe; 步骤3-2-2:设计模糊规则:Step 3-2-2: Design fuzzy rules: 1)如果内力Fi和上周期的位置调整量X方向相同,则机器人还处于上周期的内力调整趋势中,输出控制量的方向保持不变,大小则根据内力大小和上周期位置调整量的权重进行选择;1) If the internal force F i and the position adjustment amount X of the previous cycle are in the same direction, the robot is still in the internal force adjustment trend of the previous cycle, the direction of the output control amount remains unchanged, and the magnitude is based on the internal force and the position adjustment amount in the previous cycle. weight selection; 2)如果内力Fi和上周期的位置调整量X方向不同,则机器人本周期的内力调节方向与上周期调节方向不同,减小输出控制量;2) If the direction of the internal force F i and the position adjustment amount X of the previous cycle is different, the adjustment direction of the internal force of the robot in this cycle is different from the adjustment direction of the previous cycle, reducing the output control amount; 同时,将上周期位置调整量X和内力Fi的权重进行对比,如果上周期位置调整量X权重大,则仍按上周期方向选择较小的控制输出量,保持调整方向上的“惯性效应”;如果内力Fi的权重大,则按内力调节方向选择较小的控制输出量;At the same time, compare the weight of the position adjustment amount X in the previous cycle with the weight of the internal force F i . If the weight of the position adjustment amount X in the previous cycle is large, the smaller control output is still selected according to the direction of the previous cycle, and the "inertial effect" in the adjustment direction is maintained. ”; if the weight of the internal force F i is large, select the smaller control output according to the adjustment direction of the internal force; 步骤3-2-3:去模糊化:采用重心法对输出控制量进行模糊判决,控制器输出具体的位置调整量。Step 3-2-3: Defuzzification: The center of gravity method is used to make fuzzy judgment on the output control amount, and the controller outputs the specific position adjustment amount. 4.根据权利要求1所述的双机器人协调操作弱刚性构件的控制方法,其特征在于,步骤3-3具体包括:4. The control method of the double-robot coordinated operation of weakly rigid components according to claim 1, wherein step 3-3 specifically comprises: 1)固定端不存在响应滞后误差:1) There is no response lag error at the fixed end: 当机器人A末端为固定端且不存在动态响应滞后带来的误差时,机器人B末端的误差包含坐标系标定误差Δd、机器人B的末端因偏载而存在的动态响应滞后误差Δs2,机器人B作为动态调节端,在单端调节的内力控制系统下,机器人B的位置调整量ΔD将在一定程度上补偿末端的偏差,两机器人的控制执行指令分别为:When the end of robot A is a fixed end and there is no error caused by the dynamic response lag, the error at the end of robot B includes the coordinate system calibration error Δd, the end of robot B due to eccentric load The dynamic response lag error Δs 2 , the robot B As the dynamic adjustment end, under the internal force control system of single-end adjustment, the position adjustment amount ΔD of robot B will compensate the deviation of the end to a certain extent. The control execution instructions of the two robots are: x1(n+1)=xobj(n+1)·T1 x 1 (n+1)=x obj (n+1) · T 1 x2(n+1)=xobj(n+1)·T2+ΔDx 2 (n+1)=x obj (n+1)·T 2 +ΔD ΔD=Δd+Δs2 ΔD=Δd+Δs 2 式中,x1(n+1)和x2(n+1)表示即将下发的双机器人末端轨迹,xobj(n+1)表示控制周期中所规划的对象理论运动轨迹,T1、T2分别表示对象轨迹与机器人末端轨迹的变换矩阵;In the formula, x 1 (n+1) and x 2 (n+1) represent the dual robot end trajectory to be issued, x obj (n+1) represents the theoretical motion trajectory of the object planned in the control cycle, T 1 , T 2 represents the transformation matrix of the object trajectory and the robot end trajectory respectively; 2)固定端存在响应滞后误差:2) There is a response lag error at the fixed end: 当机器人A末端作为固定端存在因偏载而导致的响应滞后误差Δs1时,机器人B的末端存在坐标系标定误差Δd和响应滞后误差Δs2,当因偏载而造成末端机器人的实际响应位置滞后于理论控制层下发位置时,计算机器人A固定端的响应滞后误差Δs1如下:When the end of robot A is used as a fixed end, there is a response lag error Δs 1 caused by eccentric load, and there is a coordinate system calibration error Δd and a response lag error Δs 2 at the end of robot B. When the eccentric load causes the actual response position of the end robot When it lags behind the position issued by the theoretical control layer, the response lag error Δs 1 of the fixed end of robot A is calculated as follows:
Figure FDA0003502729960000041
Figure FDA0003502729960000041
式中,x1(n)为上个控制周期理论控制层的下发位置,而
Figure FDA0003502729960000042
为机器人上个控制周期的实际位置;
In the formula, x 1 (n) is the delivery position of the theoretical control layer of the previous control cycle, and
Figure FDA0003502729960000042
is the actual position of the robot in the last control cycle;
当固定端存在滞后响应偏差Δs1,在内力控制过程中模糊控制器输出的位置调整量ΔD不仅包含了机器人B的所有位置误差,同时也包含了机器人A的响应滞后偏差Δs1,各机器人末端最终下发轨迹整体偏移Δs1,Δs1作为操作对象的轨迹跟踪误差的补偿量Δe_comp,此时位置控制指令分别为:When there is a lag response deviation Δs 1 at the fixed end, the position adjustment amount ΔD output by the fuzzy controller during the internal force control process not only includes all the position errors of robot B, but also includes the response lag deviation Δs 1 of robot A. Finally, the overall track offset Δs 1 and Δs 1 are used as the compensation amount Δe_comp of the trajectory tracking error of the operation object. At this time, the position control commands are: x1(n+1)=xobj(n+1)·T-Δs1 x 1 (n+1)=x obj (n+1) · T-Δs 1 x2(n+1)=xobj(n+1)·T2+ΔD-Δs1 x 2 (n+1)=x obj (n+1)·T 2 +ΔD-Δs 1 ΔD=Δd+Δs1+Δs2ΔD=Δd+Δs 1 +Δs 2 .
5.一种双机器人协调控制系统,其特征在于,包括双机器人运动导引模块、内力控制及轨迹补偿模块、多传感器的UDP和TCP/IP混合通讯模块,其中:双机器人运动导引模块包括力坐标变换模块、刚度控制模块以及导引力阈值控制模块,其中,力坐标变换模块获取传感器相对于世界坐标系的坐标系转换关系,刚度控制模块获取刚度控制关系,并将力信息转化为对象的运动轨迹,然后通过运动学闭环链解耦来驱动各个分机器人系统,导引力阈值控制模块通过设置导引力阈值来控制输出的导引力矢量,减少传感器初始状态下的力信号波动而造成对象位置波动;5. A dual-robot coordinated control system is characterized in that, comprising dual-robot motion guidance module, internal force control and trajectory compensation module, multi-sensor UDP and TCP/IP mixed communication module, wherein: dual-robot motion guidance module includes The force coordinate transformation module, the stiffness control module and the guiding force threshold control module, wherein the force coordinate transformation module obtains the coordinate system transformation relationship of the sensor relative to the world coordinate system, and the stiffness control module obtains the stiffness control relationship and converts the force information into objects Then, each sub-robot system is driven by the kinematic closed-loop chain decoupling. The guiding force threshold control module controls the output guiding force vector by setting the guiding force threshold to reduce the force signal fluctuation in the initial state of the sensor. cause the object position to fluctuate; 内力控制及轨迹补偿模块包括多机器人运动学解算模块、轨迹跟踪误差补偿模块、内力单端调节模块、单机器人伺服控制模块,其中,多机器人运动学解算模块根据给定对象的运动轨迹通过闭环运动学模型解算出各机器人末端的运动轨迹,经过轨迹精度补偿模块进行补偿后输出给单机器人伺服控制模块,轨迹跟踪误差补偿模块对轨迹跟踪误差进行在线计算生成轨迹实时补偿量叠加至各机器人的末端轨迹上,内力单端调节模块根据各机器人末端传感器的信号实时计算出的调节端机器人的对象内力,通过基于阻抗模型的模糊控制器输出调节端机器人末端的位置补偿量。The internal force control and trajectory compensation module includes a multi-robot kinematics calculation module, a trajectory tracking error compensation module, an internal force single-end adjustment module, and a single-robot servo control module. The closed-loop kinematics model solves the motion trajectories of each robot end, which is compensated by the trajectory accuracy compensation module and then output to the single robot servo control module. The trajectory tracking error compensation module calculates the trajectory tracking error online to generate the trajectory real-time compensation amount and superimpose it on each robot. On the end trajectory of , the internal force single-end adjustment module calculates the object internal force of the robot at the adjustment end in real time according to the signal of each robot end sensor, and outputs the position compensation amount of the end of the robot at the adjustment end through the fuzzy controller based on the impedance model.
CN202010575209.6A 2020-06-22 2020-06-22 Control method and control system for coordinating and operating weak rigid member by two robots Active CN111687827B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010575209.6A CN111687827B (en) 2020-06-22 2020-06-22 Control method and control system for coordinating and operating weak rigid member by two robots

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010575209.6A CN111687827B (en) 2020-06-22 2020-06-22 Control method and control system for coordinating and operating weak rigid member by two robots

Publications (2)

Publication Number Publication Date
CN111687827A CN111687827A (en) 2020-09-22
CN111687827B true CN111687827B (en) 2022-03-29

Family

ID=72482371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010575209.6A Active CN111687827B (en) 2020-06-22 2020-06-22 Control method and control system for coordinating and operating weak rigid member by two robots

Country Status (1)

Country Link
CN (1) CN111687827B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115179273A (en) * 2021-04-02 2022-10-14 腾讯科技(深圳)有限公司 Method and device for controlling double-arm robot, robot and storage medium
CN113189950B (en) * 2021-05-07 2022-02-11 南京航空航天大学 Double-robot cooperative flexible assembly and adjustment method for assembling large weak-rigidity structural member
CN113524183B (en) * 2021-07-14 2023-01-24 广东智源机器人科技有限公司 Relative position obtaining method, robot arm control method, and robot arm system
CN113814985B (en) * 2021-10-29 2023-04-14 遨博(北京)智能科技股份有限公司 Robot control method, control cabinet and system
CN113967916B (en) * 2021-11-22 2023-01-10 浙江工业大学 A multi-robot cooperative handling control method based on centralized predictive control
CN114083538B (en) * 2021-11-30 2023-06-20 深圳市优必选科技股份有限公司 Method, device and robot for realizing stable clamping of double mechanical arms
CN117921685B (en) * 2024-03-22 2024-05-24 南京航空航天大学 A calibration method for dual robot collaborative positioning accuracy
CN118617420B (en) * 2024-08-12 2024-12-17 南京航空航天大学 Calibration method for cooperative error of double robots based on kinematic model

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414799A (en) * 1987-04-06 1995-05-09 California Institute Of Technology Method and apparatus for adaptive force and position control of manipulators
CN104647379A (en) * 2015-01-19 2015-05-27 广东工业大学 Dual-arm robot movement control method under non-linear condition of driver
CN106475999A (en) * 2016-12-23 2017-03-08 东南大学 The acceleration control method of the Dual-Arm Coordination based on impedance model under hard conditions
CN108621163A (en) * 2018-05-10 2018-10-09 同济大学 A kind of redundancy tow-armed robot cooperation control method towards remittance tenon technique
CN108638052A (en) * 2018-03-29 2018-10-12 南京航空航天大学 A kind of closed chain formula multi-arm robot Shared control method
CN109434841A (en) * 2019-01-07 2019-03-08 南京航空航天大学 A kind of length of a game's optimal trajectory planning method of industrial robot dynamic speed adjustment
CN109807902A (en) * 2019-04-08 2019-05-28 青岛大学 A dual manipulator force/position fuzzy hybrid control method based on backstepping method
CN110421547A (en) * 2019-07-12 2019-11-08 中南大学 A kind of tow-armed robot collaboration impedance adjustment based on estimated driving force model
CN110434858A (en) * 2019-09-11 2019-11-12 青岛大学 A kind of power of the Multi-arm robots based on command filtering/position mixing control method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414799A (en) * 1987-04-06 1995-05-09 California Institute Of Technology Method and apparatus for adaptive force and position control of manipulators
CN104647379A (en) * 2015-01-19 2015-05-27 广东工业大学 Dual-arm robot movement control method under non-linear condition of driver
CN106475999A (en) * 2016-12-23 2017-03-08 东南大学 The acceleration control method of the Dual-Arm Coordination based on impedance model under hard conditions
CN108638052A (en) * 2018-03-29 2018-10-12 南京航空航天大学 A kind of closed chain formula multi-arm robot Shared control method
CN108621163A (en) * 2018-05-10 2018-10-09 同济大学 A kind of redundancy tow-armed robot cooperation control method towards remittance tenon technique
CN109434841A (en) * 2019-01-07 2019-03-08 南京航空航天大学 A kind of length of a game's optimal trajectory planning method of industrial robot dynamic speed adjustment
CN109807902A (en) * 2019-04-08 2019-05-28 青岛大学 A dual manipulator force/position fuzzy hybrid control method based on backstepping method
CN110421547A (en) * 2019-07-12 2019-11-08 中南大学 A kind of tow-armed robot collaboration impedance adjustment based on estimated driving force model
CN110434858A (en) * 2019-09-11 2019-11-12 青岛大学 A kind of power of the Multi-arm robots based on command filtering/position mixing control method

Also Published As

Publication number Publication date
CN111687827A (en) 2020-09-22

Similar Documents

Publication Publication Date Title
CN111687827B (en) Control method and control system for coordinating and operating weak rigid member by two robots
CN111618858B (en) A Robust Tracking Control Algorithm for Manipulator Based on Adaptive Fuzzy Sliding Mode
CN113721607B (en) Optimal control method for tracking track of wheeled robot
Fang et al. A motion planning-based adaptive control method for an underactuated crane system
CN115157238B (en) A dynamic modeling and trajectory tracking method for multi-degree-of-freedom robots
CN105676896B (en) A kind of feed forward control method applied to robot servo system
CN110007594A (en) An adaptive robust sliding mode control method for a hybrid robot for automobile electrocoating and conveying
CN105629729A (en) Network mobile robot locus tracking control method based on linearity auto-disturbance rejection
CN113433827B (en) A kind of center of mass change sandblasting and rust removal parallel robot mobile platform trajectory tracking control method
CN110181510A (en) A kind of mechanical arm Trajectory Tracking Control method based on time delay estimation and fuzzy logic
Qian et al. Finite-time neural network-based hierarchical sliding mode antiswing control for underactuated dual ship-mounted cranes with unmatched sea wave disturbances suppression
Zhou et al. Fuzzy adaptive whale optimization control algorithm for trajectory tracking of a cable-driven parallel robot
Kalaycioglu et al. Coordinated motion and force control of multi-rover robotics system with Mecanum wheels
Yang et al. Concurrent learning-based adaptive control of underactuated robotic systems with guaranteed transient performance for both actuated and unactuated motions
Li et al. Improved sliding mode control for mobile manipulators based on an adaptive neural network
Yue et al. A WIP vehicle control method based on improved artificial potential field subject to multi-obstacle environment
CN118721187A (en) A collaborative handling control method for multiple mobile manipulators based on the fusion of multi-objective optimization and learning strategy
WO2025050879A1 (en) Control system and method for mobile manipulation robot
CN113001549A (en) Multi-mechanical-arm load distribution method based on generalized grasping inverse matrix
Sun Automatic vibration control method for grasping end of flexible joint robot
Leahy et al. Dynamics-based control of robotic manipulators
Gerelli et al. Real-time path-tracking control of robotic manipulators with bounded torques and torque-derivatives
CN111687822B (en) Double-robot guiding track multi-space self-adaptive interpolation method
Hong et al. Obstacle avoidance dynamic control of manipulator based on space operator algebra
CN116088299A (en) Neural network backstepping control method for satellite antenna series-parallel motor mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant