[go: up one dir, main page]

CN111682093A - A kind of gallium nitride epitaxial chip and preparation method thereof - Google Patents

A kind of gallium nitride epitaxial chip and preparation method thereof Download PDF

Info

Publication number
CN111682093A
CN111682093A CN202010548110.7A CN202010548110A CN111682093A CN 111682093 A CN111682093 A CN 111682093A CN 202010548110 A CN202010548110 A CN 202010548110A CN 111682093 A CN111682093 A CN 111682093A
Authority
CN
China
Prior art keywords
layer
gallium nitride
layers
composite
nitride epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010548110.7A
Other languages
Chinese (zh)
Inventor
李东键
叶宏伦
钟健
钟其龙
刘崇志
张本义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aksu Silicon Card Semiconductor Technology R & D Co ltd
Xinjiang Can Ke Semiconductor Material Manufacturing Co ltd
Can Long Technology Development Co Ltd
Original Assignee
Aksu Silicon Card Semiconductor Technology R & D Co ltd
Xinjiang Can Ke Semiconductor Material Manufacturing Co ltd
Can Long Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aksu Silicon Card Semiconductor Technology R & D Co ltd, Xinjiang Can Ke Semiconductor Material Manufacturing Co ltd, Can Long Technology Development Co Ltd filed Critical Aksu Silicon Card Semiconductor Technology R & D Co ltd
Priority to CN202010548110.7A priority Critical patent/CN111682093A/en
Publication of CN111682093A publication Critical patent/CN111682093A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • H10H20/825Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0137Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/815Bodies having stress relaxation structures, e.g. buffer layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • H10H20/825Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
    • H10H20/8252Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN characterised by the dopants

Landscapes

  • Led Devices (AREA)

Abstract

本发明涉及一种氮化镓外延芯片及其制备方法,其中,氮化镓外延芯片包括衬底、种子层、缓冲层和氮化镓外延层,其中,种子层设于衬底上,缓冲层设于种子层和氮化镓外延层之间。本发明在衬底和氮化镓外延层之间增设了种子层和缓冲层,用于改善氮化镓与衬底之间的晶格系数、热膨胀系数等特性的匹配性,从而在保证氮化镓晶格排列错位密度的情况下,能够提高氮化镓的的生长厚度。

Figure 202010548110

The invention relates to a gallium nitride epitaxial chip and a preparation method thereof, wherein the gallium nitride epitaxial chip comprises a substrate, a seed layer, a buffer layer and a gallium nitride epitaxial layer, wherein the seed layer is arranged on the substrate, and the buffer layer is arranged on the substrate. between the seed layer and the gallium nitride epitaxial layer. In the present invention, a seed layer and a buffer layer are added between the substrate and the gallium nitride epitaxial layer, so as to improve the matching of characteristics such as lattice coefficient and thermal expansion coefficient between the gallium nitride and the substrate, so as to ensure the nitrided nitride. In the case of gallium lattice dislocation density, the growth thickness of gallium nitride can be increased.

Figure 202010548110

Description

一种氮化镓外延芯片及其制备方法A kind of gallium nitride epitaxial chip and preparation method thereof

技术领域technical field

本发明涉及半导体材料领域,具体涉及一种氮化镓外延芯片及其制备方法。The invention relates to the field of semiconductor materials, in particular to a gallium nitride epitaxial chip and a preparation method thereof.

背景技术Background technique

目前III/V族氮化物半导体材主要有GaN(氮化镓)、InGaN(氮化铟镓) 和AlGaN(氮化铝镓)。这类材料被应用在光电器件、半导体激光器件、发光二极体、高电子迁移率电晶体等。氮化物半导体材料的能隙特性,可在1.9到6.2ev之间做连续性调变(非阶段性)。其具有良好的物理,化学稳定性和高饱和电子迁移率,是大功率、高频、发光器件的理想材料。At present, III/V nitride semiconductor materials mainly include GaN (gallium nitride), InGaN (indium gallium nitride) and AlGaN (aluminum gallium nitride). Such materials are used in optoelectronic devices, semiconductor laser devices, light-emitting diodes, high electron mobility transistors, and the like. The energy gap characteristics of nitride semiconductor materials can be continuously modulated (non-staged) between 1.9 and 6.2ev. It has good physical and chemical stability and high saturation electron mobility, and is an ideal material for high-power, high-frequency, light-emitting devices.

氮化镓单晶体不存在自然界,没办法从自然界中取得,所以要人工制造。目前的制造方法就是找一种单晶材料当基础,称衬底基板,然后在衬底基板上再生长氮化镓薄膜。因为衬底材料的不同,没办法完美的匹配。热膨胀时易发生龟裂,衬底材料的位错会被带进氮化镓层然后被放大。所以有研究提出了在这中间利用其他材料生长出多一层的氮化铝AlN缓冲层来解决问题。Gallium nitride single crystals do not exist in nature and cannot be obtained from nature, so they must be manufactured artificially. The current manufacturing method is to find a single crystal material as the basis, called the substrate substrate, and then grow a gallium nitride film on the substrate substrate. Because of the different substrate materials, there is no way to perfectly match. Cracks are prone to occur during thermal expansion, and dislocations in the substrate material are brought into the GaN layer and amplified. Therefore, some studies have proposed to use other materials to grow an aluminum nitride AlN buffer layer in the middle to solve the problem.

现有的缓冲层很难生长出1微米或以上厚度的氮化镓GaN ,同时得到氮化镓GaN晶格层中原子的排列错位密度(dislocation densities)在5x108/cm2以下的质量。It is difficult to grow GaN GaN with a thickness of 1 micron or more in the existing buffer layer, and at the same time, the dislocation densities of atoms in the GaN GaN lattice layer can be obtained with a mass below 5× 10 8 /cm 2 .

发明内容SUMMARY OF THE INVENTION

针对现有技术存在的问题,本发明的目的在于提供一种氮化镓晶体外延片及其制备方法,其在保证氮化镓晶格排列错位密度的情况下,能够提高氮化镓的的生长厚度。In view of the problems existing in the prior art, the purpose of the present invention is to provide a gallium nitride crystal epitaxial wafer and a preparation method thereof, which can improve the growth of gallium nitride while ensuring the dislocation density of the gallium nitride crystal lattice. thickness.

为实现上述目的,本发明采用的技术方案是:For achieving the above object, the technical scheme adopted in the present invention is:

一种氮化镓外延芯片,其包括衬底、种子层、缓冲层和氮化镓外延层,所述种子层设于衬底上,所述缓冲层设于种子层和氮化镓外延层之间;A gallium nitride epitaxial chip, comprising a substrate, a seed layer, a buffer layer and a gallium nitride epitaxial layer, the seed layer is arranged on the substrate, and the buffer layer is arranged between the seed layer and the gallium nitride epitaxial layer between;

所述缓冲层包括一组以上的复合层,所述复合层包括AlxGa1-xN层和超级晶格层,所述超级晶格层和AlxGa1-xN层由种子层向氮化镓外延层依次叠加;The buffer layer includes more than one set of composite layers, the composite layers include an AlxGa1 - xN layer and a superlattice layer, and the superlattice layer and the AlxGa1 - xN layer are directed from the seed layer to the layer. The gallium nitride epitaxial layers are stacked in sequence;

所述超级晶格层由氮化铝层和氮化镓层复合形成,所述氮化铝层和氮化镓层由种子层向氮化镓外延层方向交替堆叠;所述超级晶格层中氮化铝层和氮化镓层的厚度比为y。The super lattice layer is formed by a composite of an aluminum nitride layer and a gallium nitride layer, and the aluminum nitride layer and the gallium nitride layer are alternately stacked from the seed layer to the gallium nitride epitaxial layer; in the super lattice layer The thickness ratio of the aluminum nitride layer and the gallium nitride layer is y.

所述超级晶格层中,氮化铝层与其相邻的一氮化镓层形成一铝镓对,每组超级晶格层包括多个铝镓对,各铝镓对的氮化铝层和氮化镓层厚度比为相同,且为y。In the super lattice layer, the aluminum nitride layer and its adjacent gallium nitride layer form an aluminum gallium pair, each group of super lattice layers includes a plurality of aluminum gallium pairs, and the aluminum nitride layer of each aluminum gallium pair and the The gallium nitride layer thickness ratio is the same and is y.

所述超级晶格层中氮化铝层和氮化镓层的堆叠层数为20层以上。The number of stacked layers of the aluminum nitride layer and the gallium nitride layer in the super lattice layer is more than 20 layers.

所述超级晶格层的氮化铝层和氮化镓层的厚度比为y为0.2-1.9。The thickness ratio of the aluminum nitride layer and the gallium nitride layer of the super lattice layer is 0.2-1.9.

所述AlxGa1-xN层的x值为0.2-0.85。The value of x of the AlxGa1 - xN layer is 0.2-0.85.

所述缓冲层包括两组以上的复合层,各组复合层中AlxGa1-xN层的x值由种子层向氮化镓外延层方向依次减少,各组复合层中超级晶格层的氮化铝和氮化镓厚度比y由种子层向氮化镓方向逐渐较少。The buffer layer includes more than two groups of composite layers, the x value of the Al x Ga 1-x N layer in each group of composite layers decreases sequentially from the seed layer to the gallium nitride epitaxial layer, and the super lattice layer in each group of composite layers The thickness of AlN and GaN is gradually less than y from the seed layer towards GaN.

所述缓冲层中每一复合层的AlxGa1-xN层的x值等于该复合层的超级晶格层的氮化铝和氮化镓厚度比y的两倍,即y=2x。The value of x of the AlxGa1 -xN layer of each composite layer in the buffer layer is equal to twice the thickness ratio y of aluminum nitride and gallium nitride of the superlattice layer of the composite layer, that is, y=2x.

所述缓冲层中各复合层的超级晶格层厚度由种子层向氮化镓外延层方向逐渐减小,各复合层的AlxGa1-xN层厚度由种子层向氮化镓外延层方向逐渐减小。The thickness of the superlattice layer of each composite layer in the buffer layer gradually decreases from the seed layer to the gallium nitride epitaxial layer, and the thickness of the Al x Ga 1-x N layer of each composite layer is from the seed layer to the gallium nitride epitaxial layer. direction gradually decreases.

所述缓冲层的每一复合层中,AlxGa1-xN层的厚度小于超级晶格层厚度。In each composite layer of the buffer layer, the thickness of the AlxGa1 - xN layer is smaller than the thickness of the superlattice layer.

所述缓冲层的每一复合层厚度为100-800nm。Each composite layer of the buffer layer has a thickness of 100-800 nm.

所述种子层为氮化铝层,其厚度为100-200nm。The seed layer is an aluminum nitride layer with a thickness of 100-200 nm.

一种氮化镓外延芯片的制备方法,其包括:在衬底上依次生长种子层、缓冲层和氮化镓外延层,所述缓冲层包括N组复合层,而所述复合层包括AlxGa1-xN层和超级晶格层,具体生长过程如下:A method for preparing a gallium nitride epitaxial chip, comprising: growing a seed layer, a buffer layer and a gallium nitride epitaxial layer on a substrate in sequence, the buffer layer comprising N groups of composite layers, and the composite layer comprising Al x The specific growth process of the Ga 1-x N layer and the superlattice layer is as follows:

在衬底上生长氮化铝种子层;growing an aluminum nitride seed layer on the substrate;

在种子层上交替堆叠20层以上的氮化铝层和氮化镓层,形成第一组复合层的超级晶格层;在超晶格层上继续生长Alx1Ga1-x2N层;Alternately stack more than 20 aluminum nitride layers and gallium nitride layers on the seed layer to form a superlattice layer of the first group of composite layers; continue to grow Al x1 Ga 1-x2 N layers on the superlattice layer;

在第一组复合层的Alx1Ga1-x1N层上继续交替堆叠20层以上的氮化铝层和氮化镓层,形成第二组复合层的超级晶格层;在超晶格层上继续生长Alx2Ga1-x2N层;On the Al x1 Ga 1-x1 N layer of the first group of composite layers, more than 20 layers of aluminum nitride layers and gallium nitride layers are alternately stacked to form the superlattice layer of the second group of composite layers; on the superlattice layer Continue to grow the Al x2 Ga 1-x2 N layer on it;

继续生长超级晶格层和AlxGa1-xN层,直到形成第N组的超级晶格层和AlxNGa1-xNN层;Continue to grow the superlattice layer and the AlxGa1 - xN layer until the superlattice layer and the AlxNGa1 -xN N layer of the Nth group are formed;

在AlxNGa1-xNN层上生长氮化镓外延层。A gallium nitride epitaxial layer is grown on the AlxNGa1 -xN N layer.

所述种子层、缓冲层和氮化镓外延层的生长方法为氢化物气相外延法、分子束外延法或有机金属化学气相沉积法。The seed layer, the buffer layer and the gallium nitride epitaxial layer are grown by a hydride vapor phase epitaxy method, a molecular beam epitaxy method or an organic metal chemical vapor deposition method.

采用上述方案后,本发明在衬底和氮化镓外延层之间增设了种子层和缓冲层,用于改善氮化镓与衬底之间的晶格系数、热膨胀系数等特性的匹配性。具体地,缓冲层由一组以上复合层构成,而每组复合层由AlxGa1-xN层和超级晶格层构成,通过改变AlxGa1-xN层和超级晶格层的铝占比,使铝占比逐渐减少,镓占比逐渐增多,从而提高衬底与氮化镓的晶格系数匹配度,从而保证氮化镓晶格排列错位密度的情况下,能够提高氮化镓的生长厚度。After adopting the above scheme, the present invention adds a seed layer and a buffer layer between the substrate and the gallium nitride epitaxial layer to improve the matching of characteristics such as lattice coefficient and thermal expansion coefficient between the gallium nitride and the substrate. Specifically, the buffer layer is composed of more than one group of composite layers, and each group of composite layers is composed of an AlxGa1-xN layer and a superlattice layer. By changing the aluminum ratio of the AlxGa1-xN layer and the superlattice layer, the aluminum ratio is Gradually decrease, the proportion of gallium gradually increases, thereby improving the matching degree of lattice coefficient between the substrate and gallium nitride, so as to ensure the dislocation density of gallium nitride lattice arrangement, the growth thickness of gallium nitride can be increased.

附图说明Description of drawings

图1为本发明氮化镓外延芯片结构示意图;1 is a schematic structural diagram of a gallium nitride epitaxial chip of the present invention;

图2为本发明缓冲层中超级晶格SL和AlxNGa1-xNN复合层组合示意图。FIG. 2 is a schematic diagram of the combination of the superlattice SL and the AlxNGa1 -xNNN composite layer in the buffer layer of the present invention.

标号说明:Label description:

衬底1;种子层2;氮化镓外延层3;缓冲层4;复合层41;超级晶格层411;AlxGa1-xN层412。Substrate 1 ; seed layer 2 ; gallium nitride epitaxial layer 3 ; buffer layer 4 ; composite layer 41 ; superlattice layer 411 ;

具体实施方式Detailed ways

如图1和图2所示,本发明揭示了一种氮化镓外延芯片,其可以是高绝缘氮化镓、P型氮化镓或N型氮化镓。该氮化镓外延芯片包括衬底1、种子层2、缓冲层4和氮化镓外延层3,其中,种子层2设于衬底1上,缓冲层4设于种子层2和氮化镓外延层3之间。本发明在衬底1和氮化镓外延层3之间增设了种子层2和缓冲层4,用于改善氮化镓与衬底1之间的晶格系数、热膨胀系数等特性的匹配性。As shown in FIG. 1 and FIG. 2 , the present invention discloses a gallium nitride epitaxial chip, which can be high-insulation gallium nitride, P-type gallium nitride or N-type gallium nitride. The gallium nitride epitaxial chip includes a substrate 1, a seed layer 2, a buffer layer 4 and a gallium nitride epitaxial layer 3, wherein the seed layer 2 is provided on the substrate 1, and the buffer layer 4 is provided on the seed layer 2 and the gallium nitride. between the epitaxial layers 3 . In the present invention, a seed layer 2 and a buffer layer 4 are added between the substrate 1 and the gallium nitride epitaxial layer 3 to improve the matching of characteristics such as lattice coefficient and thermal expansion coefficient between the gallium nitride and the substrate 1 .

如图1和图2所示,所述缓冲层4包括一组以上的复合层41,所述复合层41包括AlxGa1-xN层412和超级晶格层411,所述超级晶格层411和AlxGa1-xN层412由种子层2向氮化镓外延层3依次叠加;所述超级晶格层411由氮化铝层和氮化镓层复合形成,所述氮化铝层和氮化镓层由种子层2向氮化镓外延层3方向交替堆叠;所述超级晶格层411中氮化铝层和氮化镓层的厚度比为y。As shown in FIGS. 1 and 2 , the buffer layer 4 includes more than one set of composite layers 41 , the composite layers 41 include an AlxGa1 - xN layer 412 and a superlattice layer 411, the superlattice The layer 411 and the AlxGa1 - xN layer 412 are sequentially stacked from the seed layer 2 to the gallium nitride epitaxial layer 3; the superlattice layer 411 is formed by a composite of an aluminum nitride layer and a gallium nitride layer, and the nitride The aluminum layer and the gallium nitride layer are alternately stacked from the seed layer 2 to the gallium nitride epitaxial layer 3; the thickness ratio of the aluminum nitride layer and the gallium nitride layer in the super lattice layer 411 is y.

每一超级晶格层411中,氮化铝层和氮化镓层的堆叠层数为20层以上。氮化铝层与其相邻的一氮化镓层形成一铝镓对,每组超级晶格层411包括多个铝镓对,各铝镓对的氮化铝层和氮化镓层厚度比为相同,且为y,其取值为0.2-1.9。而符合层中的AlxGa1-xN层412的x值为0.2-0.85。In each superlattice layer 411 , the number of stacked layers of the aluminum nitride layer and the gallium nitride layer is more than 20 layers. The aluminum nitride layer and its adjacent gallium nitride layer form an aluminum gallium pair, each group of super lattice layers 411 includes a plurality of aluminum gallium pairs, and the thickness ratio of the aluminum nitride layer and the gallium nitride layer of each aluminum gallium pair is The same, and is y, and its value is 0.2-1.9. And the value of x of the AlxGa1 - xN layer 412 in the conforming layer is 0.2-0.85.

当缓冲层4包括两组以上的复合层41时,各组复合层41中AlxGa1-xN层412的x值由种子层2向氮化镓外延层3方向依次减少,各组复合层41中超级晶格层411的氮化铝和氮化镓厚度比y由种子层2向氮化镓方向逐渐较少。缓冲层4中每一复合层41的AlxGa1-xN层412的x值等于该复合层41的超级晶格层411的氮化铝和氮化镓厚度比y的两倍,即y=2x。When the buffer layer 4 includes more than two sets of composite layers 41, the x value of the AlxGa1 - xN layer 412 in each set of composite layers 41 decreases sequentially from the seed layer 2 to the gallium nitride epitaxial layer 3, and each set of composite layers The thickness ratio y of the superlattice layer 411 of the aluminum nitride and the gallium nitride in the layer 41 is gradually smaller from the seed layer 2 to the gallium nitride. The value of x of the AlxGa1 - xN layer 412 of each composite layer 41 in the buffer layer 4 is equal to twice the thickness ratio y of aluminum nitride and gallium nitride of the superlattice layer 411 of the composite layer 41, that is, y =2x.

进一步地,缓冲层4中各复合层41的超级晶格层411厚度由种子层2向氮化镓外延层3方向逐渐减小,各复合层41的AlxGa1-xN层412厚度由种子层2向氮化镓外延层3方向逐渐减小。且缓冲层4的每一复合层41中,AlxGa1-xN层412的厚度小于超级晶格层411厚度。Further, the thickness of the super lattice layer 411 of each composite layer 41 in the buffer layer 4 gradually decreases from the seed layer 2 to the GaN epitaxial layer 3, and the thickness of the AlxGa1 - xN layer 412 of each composite layer 41 is determined by The seed layer 2 gradually decreases in the direction of the gallium nitride epitaxial layer 3 . And in each composite layer 41 of the buffer layer 4 , the thickness of the AlxGa1 - xN layer 412 is smaller than the thickness of the superlattice layer 411 .

所述缓冲层4的每一复合层41厚度为100-800nm。所述种子层2为氮化铝层,其厚度为100-200nm。The thickness of each composite layer 41 of the buffer layer 4 is 100-800 nm. The seed layer 2 is an aluminum nitride layer with a thickness of 100-200 nm.

上述氮化镓外延芯片的制备方法为:在衬底1上依次生长种子层2、缓冲层4和氮化镓外延层3,所述缓冲层4包括N组复合层41,而所述复合层41包括AlxGa1-xN层412和超级晶格层411,具体生长过程如下:The preparation method of the above-mentioned gallium nitride epitaxial chip is as follows: growing a seed layer 2, a buffer layer 4 and a gallium nitride epitaxial layer 3 on the substrate 1 in sequence, the buffer layer 4 includes N groups of composite layers 41, and the composite layer 41 includes an AlxGa1 - xN layer 412 and a superlattice layer 411, and the specific growth process is as follows:

在衬底1上生长氮化铝种子层2;衬底1可以使用Al2O3衬底1、SiC衬底1或Si衬底1。An aluminum nitride seed layer 2 is grown on a substrate 1; the substrate 1 may use an Al2O3 substrate 1, a SiC substrate 1 or a Si substrate 1.

在种子层2上交替堆叠20层以上的氮化铝层和氮化镓层,形成第一组复合层41的超级晶格层411;在超晶格层上继续生长Alx1Ga1-x2N层;Alternately stack more than 20 layers of aluminum nitride layers and gallium nitride layers on the seed layer 2 to form the superlattice layer 411 of the first group of composite layers 41; continue to grow Al x1 Ga 1-x2 N on the superlattice layer Floor;

在第一组复合层41的Alx1Ga1-x1N层上继续交替堆叠20层以上的氮化铝层和氮化镓层,形成第二组复合层41的超级晶格层411;在超晶格层上继续生长Alx2Ga1-x2N层;On the Al x1 Ga 1-x1 N layer of the first group of composite layers 41, more than 20 layers of aluminum nitride layers and gallium nitride layers are alternately stacked to form super lattice layers 411 of the second group of composite layers 41; The Al x2 Ga 1-x2 N layer continues to grow on the lattice layer;

继续生长超级晶格层411和AlxGa1-xN层412,直到形成第N组的超级晶格层411和AlxNGa1-xNN层。Growth of the superlattice layer 411 and the AlxGa1 - xN layer 412 is continued until the superlattice layer 411 and the AlxNGa1 -xN N layer of the Nth group are formed.

在AlxNGa1-xNN层上生长氮化镓外延层3。A gallium nitride epitaxial layer 3 is grown on the AlxNGa1 -xNN layer.

上述种子层2、缓冲层4和氮化镓外延层3的生长方法为氢化物气相外延法、分子束外延法或有机金属化学气相沉积法。The above-mentioned growth methods of the seed layer 2 , the buffer layer 4 and the gallium nitride epitaxial layer 3 are hydride vapor phase epitaxy, molecular beam epitaxy or organic metal chemical vapor deposition method.

为详尽本发明内容,以下将列举几个实施例进行详述,这些实施例中,种子层2、缓冲层4和氮化镓外延层3的生长采用有机金属化学气相沉积法M0CVD。In order to clarify the content of the present invention, several embodiments will be listed below for detailed description. In these embodiments, the growth of the seed layer 2 , the buffer layer 4 and the gallium nitride epitaxial layer 3 adopts the metal organic chemical vapor deposition method MOCVD.

实施例一Example 1

本实施例中,氮化镓外延芯片包括衬底1、种子层2、缓冲层4和氮化镓外延层3,缓冲层4包括一组复合层41,该复合层41则包括超级晶格层411和AlxGa1-xN层412,超级晶格层411连接种子层2,AlxGa1-xN层412连接氮化镓外延层3。超级晶格层411中堆叠的氮化镓和氮化铝的层数为25层,氮化镓和氮化铝的厚度比y为1.8,而AlxGa1-xN层412的x为0.9。本实施例中超级晶格层411的厚度是90nm、AlxGa1-xN层412的厚度为70nm。In this embodiment, the gallium nitride epitaxial chip includes a substrate 1, a seed layer 2, a buffer layer 4 and a gallium nitride epitaxial layer 3. The buffer layer 4 includes a set of composite layers 41, and the composite layer 41 includes a super lattice layer 411 and the AlxGa1 - xN layer 412, the super lattice layer 411 is connected to the seed layer 2, and the AlxGa1 - xN layer 412 is connected to the gallium nitride epitaxial layer 3. The number of layers of gallium nitride and aluminum nitride stacked in the superlattice layer 411 is 25 layers, the thickness ratio y of gallium nitride and aluminum nitride is 1.8, and the x of the AlxGa1 - xN layer 412 is 0.9 . In this embodiment, the thickness of the superlattice layer 411 is 90 nm, and the thickness of the AlxGa1 - xN layer 412 is 70 nm.

该实施例中,氮化镓外延层3的生长厚度为1.2μm,位错缺陷密度为1x108cm2,无裂纹等其他现象。In this embodiment, the growth thickness of the gallium nitride epitaxial layer 3 is 1.2 μm, the dislocation defect density is 1×10 8 cm 2 , and there are no other phenomena such as cracks.

实施例二Embodiment 2

与实施例一不同的是,本实施例的缓冲层4包括两组复合层41,即第一复合层和第二复合层,第一复合层连接种子层2,第二复合层连接氮化镓外延层3。第一复合层和第二复合层的超级晶格层411堆叠的氮化铝和氮化镓层数为20层,第一复合层的AlxGa1-xN层412为Alx1Ga1-x1N层,第二复合层的AlxGa1-xN层412为Alx2Ga1-x2N层。第一复合层的超级晶格层411的氮化镓和氮化铝的厚度比y1为1.8,Alx1Ga1-x1N层的x1为0.9。第一复合层的超级晶格的氮化镓和氮化铝的厚度比y1为1.4,Alx1Ga1-x1N层的x1为0.7。第一复合层的超级晶格层411厚90nm、Alx1Ga1-x1N层厚80nm、第二复合层的超级晶格层411的厚度70nm、Alx2Ga1-x2N层厚60nm。The difference from the first embodiment is that the buffer layer 4 in this embodiment includes two sets of composite layers 41 , namely a first composite layer and a second composite layer, the first composite layer is connected to the seed layer 2 , and the second composite layer is connected to the gallium nitride. Epitaxial layer 3. The number of stacked aluminum nitride and gallium nitride layers 411 of the first composite layer and the second composite layer is 20, and the AlxGa1 - xN layer 412 of the first composite layer is Alx1Ga1- x1 N layer, the AlxGa1 - xN layer 412 of the second composite layer is an Alx2Ga1 -x2N layer. The thickness ratio y1 of the gallium nitride and aluminum nitride of the superlattice layer 411 of the first composite layer was 1.8, and the x1 of the Al x1 Ga 1-x1 N layer was 0.9. The thickness ratio y1 of gallium nitride and aluminum nitride of the superlattice of the first composite layer was 1.4, and x1 of the Alx1Ga1 -x1N layer was 0.7. The thickness of the superlattice layer 411 of the first composite layer is 90 nm, the thickness of the Alx1Ga1 -x1N layer is 80 nm, the thickness of the superlattice layer 411 of the second composite layer is 70 nm, and the thickness of the Alx2Ga1 -x2N layer is 60 nm.

该实施例中,氮化镓外延层3的生长厚度1.35μm、位错缺陷密度5x107cm2,无裂纹等其他现象。In this embodiment, the growth thickness of the gallium nitride epitaxial layer 3 is 1.35 μm, the dislocation defect density is 5× 10 7 cm 2 , and there are no other phenomena such as cracks.

实施例三Embodiment 3

与实施例二不同的是,本实施例的复合层41还包括第三复合层,第三复合层的超级晶格层411堆叠的氮化铝和氮化镓层数为20层。该第三复合层的超级晶格层411的氮化镓和氮化铝的厚度比y3为1.2,Alx3Ga1-x3N层的x3为0.6。第一复合层的超级晶格层411的厚度为90nm、Alx1Ga1-x1N层厚80nm;第二复合层的超级晶格层411的厚度为70nm、Alx2Ga1-x2层厚60nm;第三复合层的超级晶格层411的厚度为60nm、Alx3Ga1-x3N层厚30nm。Different from the second embodiment, the composite layer 41 of this embodiment further includes a third composite layer, and the number of stacked aluminum nitride and gallium nitride layers in the super lattice layer 411 of the third composite layer is 20 layers. The thickness ratio y3 of gallium nitride and aluminum nitride in the superlattice layer 411 of the third composite layer is 1.2, and x3 of the Alx3Ga1 -x3N layer is 0.6. The thickness of the superlattice layer 411 of the first composite layer is 90 nm, and the thickness of the Alx1 Ga1 -x1 N layer is 80 nm; the thickness of the superlattice layer 411 of the second composite layer is 70 nm, and the thickness of the Alx2 Ga1 -x2 layer is 60 nm. ; The thickness of the super lattice layer 411 of the third composite layer is 60 nm, and the thickness of the Al x3 Ga 1-x3 N layer is 30 nm.

该实施例中,氮化镓外延层3的生长厚度为1.5μm、位错缺陷密度为5x107cm2,无裂纹等其他现象。In this embodiment, the growth thickness of the gallium nitride epitaxial layer 3 is 1.5 μm, the dislocation defect density is 5× 10 7 cm 2 , and there are no other phenomena such as cracks.

实施例四Embodiment 4

与实施例三不同的是,本实施例复合层41还包括第四复合层和第五复合层,第四复合层和第五复合层的超级晶格层411堆叠的氮化铝和氮化镓层数为20层。第四复合层的超级晶格层411的氮化镓和氮化铝的厚度比y4为0.8,Alx4Ga1-x4N层的x4为0.4。第五复合层的超级晶格层411的氮化镓和氮化铝的厚度比y5为0.6,Alx5Ga1-x5N层的x5为0.3。第一复合层的超级晶格层411的厚度为90nm、Alx1Ga1-x1N层厚度为80nm,第二复合层的超级晶格层411的厚度为80nm、Alx2Ga1-x2N层厚度50nm,第三复合层的超级晶格层411的厚度为60nm、Alx3Ga1-x3N层厚度为40nm,第四复合层的超级晶格层411的厚度为50nm、Alx3Ga1-x3N层厚度为30nm,第五复合层的超级晶格层411的厚度为40nm、Alx3Ga1-x3N层厚度为20nm。Different from the third embodiment, the composite layer 41 of this embodiment further includes a fourth composite layer and a fifth composite layer, and the super lattice layers 411 of the fourth composite layer and the fifth composite layer are stacked aluminum nitride and gallium nitride. The number of layers is 20. The thickness ratio y4 of gallium nitride and aluminum nitride of the superlattice layer 411 of the fourth composite layer is 0.8, and x4 of the Alx4Ga1 -x4N layer is 0.4. The thickness ratio y5 of gallium nitride and aluminum nitride of the superlattice layer 411 of the fifth composite layer is 0.6, and x5 of the Alx5Ga1 -x5N layer is 0.3. The thickness of the super lattice layer 411 of the first composite layer is 90 nm, the thickness of the Al x1 Ga 1-x1 N layer is 80 nm, and the thickness of the super lattice layer 411 of the second composite layer is 80 nm, and the thickness of the Al x2 Ga 1-x2 N layer is 80 nm. The thickness of the superlattice layer 411 of the third composite layer is 60nm, the thickness of the Alx3Ga1 -x3N layer is 40nm, the thickness of the superlattice layer 411 of the fourth composite layer is 50nm, the thickness of the Alx3Ga1- The thickness of the x3 N layer is 30 nm, the thickness of the superlattice layer 411 of the fifth composite layer is 40 nm, and the thickness of the Al x3 Ga1 -x3 N layer is 20 nm.

该实施例中,氮化镓外延层3的生长厚度为2μm、位错缺陷密度为5x107cm2,无裂纹等其他现象。In this embodiment, the growth thickness of the gallium nitride epitaxial layer 3 is 2 μm, the dislocation defect density is 5× 10 7 cm 2 , and there are no other phenomena such as cracks.

将上述实施例与现有技术(对比例1和对比例2)进行比对,其比对结果如表1所示。The above embodiment is compared with the prior art (Comparative Example 1 and Comparative Example 2), and the comparison results are shown in Table 1.

Figure 473381DEST_PATH_IMAGE001
Figure 473381DEST_PATH_IMAGE001

表1Table 1

表1的对比例1和2为现有的氮化镓外延芯片,其在衬底1和氮化镓外延层3之间仅设置了种子层2,通过该对比例1和2可知,当氮化镓外延层3的生长厚度为0.05μm时,其位错缺陷密度为5x1010/cm2;当氮化镓外延层3的生长厚度增加至0.15μm时,氮化镓外延层3混出现裂纹。Comparative Examples 1 and 2 in Table 1 are the existing gallium nitride epitaxial chips, in which only the seed layer 2 is provided between the substrate 1 and the gallium nitride epitaxial layer 3. It can be seen from the comparative examples 1 and 2 that when the nitrogen When the growth thickness of the gallium nitride epitaxial layer 3 is 0.05 μm, its dislocation defect density is 5× 10 10 /cm 2 ; when the growth thickness of the gallium nitride epitaxial layer 3 increases to 0.15 μm, the gallium nitride epitaxial layer 3 is mixed with cracks .

而本发明各实施例的氮化镓外延芯片的氮化镓外延层3的生长厚度均在1μm以上,且保证位错缺陷密度均保持在5x108/cm2以下,不会出现裂纹。与现有技术相比,本发明的氮化镓外延层3的生长厚度以及其晶格排列错位密度的质量均得到有效提升。The growth thickness of the gallium nitride epitaxial layer 3 of the gallium nitride epitaxial chips according to the embodiments of the present invention is all above 1 μm, and the dislocation defect density is guaranteed to be kept below 5× 10 8 /cm 2 , and cracks will not occur. Compared with the prior art, the growth thickness of the gallium nitride epitaxial layer 3 and the quality of its lattice dislocation density are effectively improved.

以上所述,仅是本发明实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above are only the embodiments of the present invention and do not limit the technical scope of the present invention. Therefore, any minor modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention still belong to the present invention. within the scope of the technical solution.

Claims (13)

1. A gallium nitride epitaxial chip is characterized in that: the gallium nitride epitaxial layer buffer layer is arranged between the seed layer and the gallium nitride epitaxial layer;
the buffer layer comprises more than one group of composite layers, and the composite layers comprise AlxGa1-xN layer and super lattice layer, the super lattice layer and AlxGa1-xThe N layers are sequentially overlapped from the seed layer to the gallium nitride epitaxial layer;
the super lattice layer is formed by compounding an aluminum nitride layer and a gallium nitride layer, and the aluminum nitride layer and the gallium nitride layer are alternately stacked from the seed layer to the gallium nitride epitaxial layer; and the thickness ratio of the aluminum nitride layer to the gallium nitride layer in the super crystal lattice layer is y.
2. A gallium nitride epitaxial chip according to claim 1, wherein: in the super lattice layer, the aluminum nitride layer and an adjacent gallium nitride layer form an aluminum-gallium pair, each super lattice layer comprises a plurality of aluminum-gallium pairs, and the thickness ratio of the aluminum nitride layer to the gallium nitride layer of each aluminum-gallium pair is the same and is y.
3. A gallium nitride epitaxial chip according to claim 1, wherein: the stacking number of the aluminum nitride layer and the gallium nitride layer in the super crystal lattice layer is more than 20.
4. A gallium nitride epitaxial chip according to claim 1, wherein: the thickness ratio of the aluminum nitride layer to the gallium nitride layer of the superlattice layer is 0.2-1.9.
5. A gallium nitride epitaxial chip according to claim 1, wherein: the Al isxGa1-xThe value of x of the N layer is 0.2-0.85.
6. A gallium nitride epitaxial chip according to claim 1, wherein: the buffer layer comprises more than two groups of composite layers, and Al in each group of composite layersxGa1-xThe x value of the N layer is reduced from the seed layer to the gallium nitride epitaxial layer in sequence, and the thickness of the aluminum nitride and the gallium nitride of the super-lattice layer in each group of composite layers is gradually smaller than that of the gallium nitride from the seed layer to the gallium nitride direction.
7. A gallium nitride epitaxial chip according to claim 1 or 6, wherein: al of each composite layer in the buffer layerxGa1-xThe value of x for the N layer is equal to twice the ratio of the aluminum nitride and gallium nitride thicknesses of the superlattice layers of the composite layer to y, i.e., y =2 x.
8. A gallium nitride epitaxial chip according to claim 6, wherein: the thickness of the superlattice layer of each composite layer in the buffer layer is gradually reduced from the seed layer to the gallium nitride epitaxial layer, and the Al of each composite layerxGa1-xThe thickness of the N layer is gradually reduced from the seed layer to the direction of the gallium nitride epitaxial layer.
9. A gallium nitride epitaxial chip according to claim 8, wherein: in each composite layer of the buffer layer, AlxGa1-xThe thickness of the N layer is less than the thickness of the superlattice layer.
10. A gallium nitride epitaxial chip according to claim 1, wherein: the thickness of each composite layer of the buffer layer is 100-800 nm.
11. A gallium nitride epitaxial chip according to claim 1, wherein: the seed layer is an aluminum nitride layer with a thickness of 100-200 nm.
12. A preparation method of a gallium nitride epitaxial chip is characterized by comprising the following steps: a seed layer, a buffer layer and a gallium nitride epitaxial layer are sequentially grown on a substrate, wherein the buffer layer comprises N groups of composite layers, and the composite layers comprise AlxGa1-xThe specific growth process of the N layer and the super lattice layer is as follows:
growing an aluminum nitride seed layer on the substrate;
alternately stacking more than 20 aluminum nitride layers and gallium nitride layers on the seed layer to form a super-lattice layer of a first group of composite layers; continued growth of Al on the superlattice layerx1Ga1-x2N layers;
al in the first set of composite layersx1Ga1-x1Continuously and alternately stacking more than 20 aluminum nitride layers and gallium nitride layers on the N layer to form a super-lattice layer of a second group of composite layers; continued growth of Al on the superlattice layerx2Ga1-x2N layers;
continuously growing the super-lattice layer and AlxGa1-xN layers until forming a super lattice layer of the Nth group and AlxNGa1-xNN layers;
in AlxNGa1-xNAnd growing a gallium nitride epitaxial layer on the N layer.
13. A method for preparing a gallium nitride epitaxial chip according to claim 12, characterized in that: the growth method of the seed layer, the buffer layer and the gallium nitride epitaxial layer is a hydride vapor phase epitaxy method, a molecular beam epitaxy method or an organic metal chemical vapor deposition method.
CN202010548110.7A 2020-06-16 2020-06-16 A kind of gallium nitride epitaxial chip and preparation method thereof Pending CN111682093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010548110.7A CN111682093A (en) 2020-06-16 2020-06-16 A kind of gallium nitride epitaxial chip and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010548110.7A CN111682093A (en) 2020-06-16 2020-06-16 A kind of gallium nitride epitaxial chip and preparation method thereof

Publications (1)

Publication Number Publication Date
CN111682093A true CN111682093A (en) 2020-09-18

Family

ID=72455157

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010548110.7A Pending CN111682093A (en) 2020-06-16 2020-06-16 A kind of gallium nitride epitaxial chip and preparation method thereof

Country Status (1)

Country Link
CN (1) CN111682093A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130019278A (en) * 2011-08-16 2013-02-26 엘지이노텍 주식회사 Light emitting device
US20160211330A1 (en) * 2015-01-21 2016-07-21 National Chiao Tung University High electron mobility transistor
CN106098749A (en) * 2016-06-30 2016-11-09 中国电子科技集团公司第五十五研究所 AlGaN/GaN heterojunction structure and growing method thereof on a kind of silicon substrate
US20170207303A1 (en) * 2015-04-03 2017-07-20 Hermes-Epitek Corp. Semiconductor multilayer structure
CN107810544A (en) * 2015-06-03 2018-03-16 维易科仪器有限公司 The Stress Control of hetero-epitaxy
CN212907772U (en) * 2020-06-16 2021-04-06 璨隆科技发展有限公司 Gallium nitride epitaxial chip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130019278A (en) * 2011-08-16 2013-02-26 엘지이노텍 주식회사 Light emitting device
US20160211330A1 (en) * 2015-01-21 2016-07-21 National Chiao Tung University High electron mobility transistor
US20170207303A1 (en) * 2015-04-03 2017-07-20 Hermes-Epitek Corp. Semiconductor multilayer structure
CN107810544A (en) * 2015-06-03 2018-03-16 维易科仪器有限公司 The Stress Control of hetero-epitaxy
CN106098749A (en) * 2016-06-30 2016-11-09 中国电子科技集团公司第五十五研究所 AlGaN/GaN heterojunction structure and growing method thereof on a kind of silicon substrate
CN212907772U (en) * 2020-06-16 2021-04-06 璨隆科技发展有限公司 Gallium nitride epitaxial chip

Similar Documents

Publication Publication Date Title
JP5095064B2 (en) Semiconductor film having nitride layer deposited on silicon substrate and method for manufacturing the same
JP4592742B2 (en) Semiconductor material, method for manufacturing semiconductor material, and semiconductor element
JP5117609B1 (en) Nitride semiconductor wafer, nitride semiconductor device, and method for growing nitride semiconductor crystal
CN107195736B (en) A gallium nitride-based light-emitting diode epitaxial wafer and its growth method
CN106098871B (en) Preparation method of light-emitting diode epitaxial wafer
CN107195735B (en) Epitaxial wafer of light emitting diode and preparation method thereof
CN115020558B (en) High-recombination-efficiency light-emitting diode epitaxial wafer and preparation method thereof
CN116364820B (en) Light-emitting diode epitaxial wafer and preparation method thereof, LED
CN102790155B (en) The method of nitride compound semiconductor device and wafer and manufacture nitride semiconductor layer
JP5460751B2 (en) Semiconductor device
CN111628061A (en) Gallium nitride epitaxial chip and preparation method thereof
CN212907772U (en) Gallium nitride epitaxial chip
CN116487497B (en) Light-emitting diode epitaxial wafer and preparation method thereof, LED
CN118231539A (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN212209534U (en) Gallium nitride epitaxial chip
CN212907773U (en) Gallium nitride epitaxial chip
CN116960248A (en) A kind of light-emitting diode epitaxial wafer and preparation method
CN111682093A (en) A kind of gallium nitride epitaxial chip and preparation method thereof
JP7205474B2 (en) Template substrate, electronic device, light-emitting device, template substrate manufacturing method, and electronic device manufacturing method
CN106129201A (en) Epitaxial wafer of light emitting diode and preparation method thereof
CN111628060A (en) Gallium nitride epitaxial chip and preparation method thereof
CN116825917B (en) Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode
JP6649693B2 (en) Nitride semiconductor light emitting device and method of manufacturing the same
CN117976792A (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN115172546A (en) Epitaxial wafer, epitaxial wafer preparation method and light emitting diode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination