CN111682093A - A kind of gallium nitride epitaxial chip and preparation method thereof - Google Patents
A kind of gallium nitride epitaxial chip and preparation method thereof Download PDFInfo
- Publication number
- CN111682093A CN111682093A CN202010548110.7A CN202010548110A CN111682093A CN 111682093 A CN111682093 A CN 111682093A CN 202010548110 A CN202010548110 A CN 202010548110A CN 111682093 A CN111682093 A CN 111682093A
- Authority
- CN
- China
- Prior art keywords
- layer
- gallium nitride
- layers
- composite
- nitride epitaxial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910002601 GaN Inorganic materials 0.000 title claims abstract description 146
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims abstract description 145
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 239000002131 composite material Substances 0.000 claims description 88
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 16
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 6
- 238000005229 chemical vapour deposition Methods 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 claims description 3
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 3
- 238000013329 compounding Methods 0.000 claims 1
- 150000004767 nitrides Chemical class 0.000 abstract description 4
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052733 gallium Inorganic materials 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 230000007547 defect Effects 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 101150092200 alx-1 gene Proteins 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/815—Bodies having stress relaxation structures, e.g. buffer layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
- H10H20/8252—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN characterised by the dopants
Landscapes
- Led Devices (AREA)
Abstract
本发明涉及一种氮化镓外延芯片及其制备方法,其中,氮化镓外延芯片包括衬底、种子层、缓冲层和氮化镓外延层,其中,种子层设于衬底上,缓冲层设于种子层和氮化镓外延层之间。本发明在衬底和氮化镓外延层之间增设了种子层和缓冲层,用于改善氮化镓与衬底之间的晶格系数、热膨胀系数等特性的匹配性,从而在保证氮化镓晶格排列错位密度的情况下,能够提高氮化镓的的生长厚度。
The invention relates to a gallium nitride epitaxial chip and a preparation method thereof, wherein the gallium nitride epitaxial chip comprises a substrate, a seed layer, a buffer layer and a gallium nitride epitaxial layer, wherein the seed layer is arranged on the substrate, and the buffer layer is arranged on the substrate. between the seed layer and the gallium nitride epitaxial layer. In the present invention, a seed layer and a buffer layer are added between the substrate and the gallium nitride epitaxial layer, so as to improve the matching of characteristics such as lattice coefficient and thermal expansion coefficient between the gallium nitride and the substrate, so as to ensure the nitrided nitride. In the case of gallium lattice dislocation density, the growth thickness of gallium nitride can be increased.
Description
技术领域technical field
本发明涉及半导体材料领域,具体涉及一种氮化镓外延芯片及其制备方法。The invention relates to the field of semiconductor materials, in particular to a gallium nitride epitaxial chip and a preparation method thereof.
背景技术Background technique
目前III/V族氮化物半导体材主要有GaN(氮化镓)、InGaN(氮化铟镓) 和AlGaN(氮化铝镓)。这类材料被应用在光电器件、半导体激光器件、发光二极体、高电子迁移率电晶体等。氮化物半导体材料的能隙特性,可在1.9到6.2ev之间做连续性调变(非阶段性)。其具有良好的物理,化学稳定性和高饱和电子迁移率,是大功率、高频、发光器件的理想材料。At present, III/V nitride semiconductor materials mainly include GaN (gallium nitride), InGaN (indium gallium nitride) and AlGaN (aluminum gallium nitride). Such materials are used in optoelectronic devices, semiconductor laser devices, light-emitting diodes, high electron mobility transistors, and the like. The energy gap characteristics of nitride semiconductor materials can be continuously modulated (non-staged) between 1.9 and 6.2ev. It has good physical and chemical stability and high saturation electron mobility, and is an ideal material for high-power, high-frequency, light-emitting devices.
氮化镓单晶体不存在自然界,没办法从自然界中取得,所以要人工制造。目前的制造方法就是找一种单晶材料当基础,称衬底基板,然后在衬底基板上再生长氮化镓薄膜。因为衬底材料的不同,没办法完美的匹配。热膨胀时易发生龟裂,衬底材料的位错会被带进氮化镓层然后被放大。所以有研究提出了在这中间利用其他材料生长出多一层的氮化铝AlN缓冲层来解决问题。Gallium nitride single crystals do not exist in nature and cannot be obtained from nature, so they must be manufactured artificially. The current manufacturing method is to find a single crystal material as the basis, called the substrate substrate, and then grow a gallium nitride film on the substrate substrate. Because of the different substrate materials, there is no way to perfectly match. Cracks are prone to occur during thermal expansion, and dislocations in the substrate material are brought into the GaN layer and amplified. Therefore, some studies have proposed to use other materials to grow an aluminum nitride AlN buffer layer in the middle to solve the problem.
现有的缓冲层很难生长出1微米或以上厚度的氮化镓GaN ,同时得到氮化镓GaN晶格层中原子的排列错位密度(dislocation densities)在5x108/cm2以下的质量。It is difficult to grow GaN GaN with a thickness of 1 micron or more in the existing buffer layer, and at the same time, the dislocation densities of atoms in the GaN GaN lattice layer can be obtained with a mass below 5× 10 8 /cm 2 .
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明的目的在于提供一种氮化镓晶体外延片及其制备方法,其在保证氮化镓晶格排列错位密度的情况下,能够提高氮化镓的的生长厚度。In view of the problems existing in the prior art, the purpose of the present invention is to provide a gallium nitride crystal epitaxial wafer and a preparation method thereof, which can improve the growth of gallium nitride while ensuring the dislocation density of the gallium nitride crystal lattice. thickness.
为实现上述目的,本发明采用的技术方案是:For achieving the above object, the technical scheme adopted in the present invention is:
一种氮化镓外延芯片,其包括衬底、种子层、缓冲层和氮化镓外延层,所述种子层设于衬底上,所述缓冲层设于种子层和氮化镓外延层之间;A gallium nitride epitaxial chip, comprising a substrate, a seed layer, a buffer layer and a gallium nitride epitaxial layer, the seed layer is arranged on the substrate, and the buffer layer is arranged between the seed layer and the gallium nitride epitaxial layer between;
所述缓冲层包括一组以上的复合层,所述复合层包括AlxGa1-xN层和超级晶格层,所述超级晶格层和AlxGa1-xN层由种子层向氮化镓外延层依次叠加;The buffer layer includes more than one set of composite layers, the composite layers include an AlxGa1 - xN layer and a superlattice layer, and the superlattice layer and the AlxGa1 - xN layer are directed from the seed layer to the layer. The gallium nitride epitaxial layers are stacked in sequence;
所述超级晶格层由氮化铝层和氮化镓层复合形成,所述氮化铝层和氮化镓层由种子层向氮化镓外延层方向交替堆叠;所述超级晶格层中氮化铝层和氮化镓层的厚度比为y。The super lattice layer is formed by a composite of an aluminum nitride layer and a gallium nitride layer, and the aluminum nitride layer and the gallium nitride layer are alternately stacked from the seed layer to the gallium nitride epitaxial layer; in the super lattice layer The thickness ratio of the aluminum nitride layer and the gallium nitride layer is y.
所述超级晶格层中,氮化铝层与其相邻的一氮化镓层形成一铝镓对,每组超级晶格层包括多个铝镓对,各铝镓对的氮化铝层和氮化镓层厚度比为相同,且为y。In the super lattice layer, the aluminum nitride layer and its adjacent gallium nitride layer form an aluminum gallium pair, each group of super lattice layers includes a plurality of aluminum gallium pairs, and the aluminum nitride layer of each aluminum gallium pair and the The gallium nitride layer thickness ratio is the same and is y.
所述超级晶格层中氮化铝层和氮化镓层的堆叠层数为20层以上。The number of stacked layers of the aluminum nitride layer and the gallium nitride layer in the super lattice layer is more than 20 layers.
所述超级晶格层的氮化铝层和氮化镓层的厚度比为y为0.2-1.9。The thickness ratio of the aluminum nitride layer and the gallium nitride layer of the super lattice layer is 0.2-1.9.
所述AlxGa1-xN层的x值为0.2-0.85。The value of x of the AlxGa1 - xN layer is 0.2-0.85.
所述缓冲层包括两组以上的复合层,各组复合层中AlxGa1-xN层的x值由种子层向氮化镓外延层方向依次减少,各组复合层中超级晶格层的氮化铝和氮化镓厚度比y由种子层向氮化镓方向逐渐较少。The buffer layer includes more than two groups of composite layers, the x value of the Al x Ga 1-x N layer in each group of composite layers decreases sequentially from the seed layer to the gallium nitride epitaxial layer, and the super lattice layer in each group of composite layers The thickness of AlN and GaN is gradually less than y from the seed layer towards GaN.
所述缓冲层中每一复合层的AlxGa1-xN层的x值等于该复合层的超级晶格层的氮化铝和氮化镓厚度比y的两倍,即y=2x。The value of x of the AlxGa1 -xN layer of each composite layer in the buffer layer is equal to twice the thickness ratio y of aluminum nitride and gallium nitride of the superlattice layer of the composite layer, that is, y=2x.
所述缓冲层中各复合层的超级晶格层厚度由种子层向氮化镓外延层方向逐渐减小,各复合层的AlxGa1-xN层厚度由种子层向氮化镓外延层方向逐渐减小。The thickness of the superlattice layer of each composite layer in the buffer layer gradually decreases from the seed layer to the gallium nitride epitaxial layer, and the thickness of the Al x Ga 1-x N layer of each composite layer is from the seed layer to the gallium nitride epitaxial layer. direction gradually decreases.
所述缓冲层的每一复合层中,AlxGa1-xN层的厚度小于超级晶格层厚度。In each composite layer of the buffer layer, the thickness of the AlxGa1 - xN layer is smaller than the thickness of the superlattice layer.
所述缓冲层的每一复合层厚度为100-800nm。Each composite layer of the buffer layer has a thickness of 100-800 nm.
所述种子层为氮化铝层,其厚度为100-200nm。The seed layer is an aluminum nitride layer with a thickness of 100-200 nm.
一种氮化镓外延芯片的制备方法,其包括:在衬底上依次生长种子层、缓冲层和氮化镓外延层,所述缓冲层包括N组复合层,而所述复合层包括AlxGa1-xN层和超级晶格层,具体生长过程如下:A method for preparing a gallium nitride epitaxial chip, comprising: growing a seed layer, a buffer layer and a gallium nitride epitaxial layer on a substrate in sequence, the buffer layer comprising N groups of composite layers, and the composite layer comprising Al x The specific growth process of the Ga 1-x N layer and the superlattice layer is as follows:
在衬底上生长氮化铝种子层;growing an aluminum nitride seed layer on the substrate;
在种子层上交替堆叠20层以上的氮化铝层和氮化镓层,形成第一组复合层的超级晶格层;在超晶格层上继续生长Alx1Ga1-x2N层;Alternately stack more than 20 aluminum nitride layers and gallium nitride layers on the seed layer to form a superlattice layer of the first group of composite layers; continue to grow Al x1 Ga 1-x2 N layers on the superlattice layer;
在第一组复合层的Alx1Ga1-x1N层上继续交替堆叠20层以上的氮化铝层和氮化镓层,形成第二组复合层的超级晶格层;在超晶格层上继续生长Alx2Ga1-x2N层;On the Al x1 Ga 1-x1 N layer of the first group of composite layers, more than 20 layers of aluminum nitride layers and gallium nitride layers are alternately stacked to form the superlattice layer of the second group of composite layers; on the superlattice layer Continue to grow the Al x2 Ga 1-x2 N layer on it;
继续生长超级晶格层和AlxGa1-xN层,直到形成第N组的超级晶格层和AlxNGa1-xNN层;Continue to grow the superlattice layer and the AlxGa1 - xN layer until the superlattice layer and the AlxNGa1 -xN N layer of the Nth group are formed;
在AlxNGa1-xNN层上生长氮化镓外延层。A gallium nitride epitaxial layer is grown on the AlxNGa1 -xN N layer.
所述种子层、缓冲层和氮化镓外延层的生长方法为氢化物气相外延法、分子束外延法或有机金属化学气相沉积法。The seed layer, the buffer layer and the gallium nitride epitaxial layer are grown by a hydride vapor phase epitaxy method, a molecular beam epitaxy method or an organic metal chemical vapor deposition method.
采用上述方案后,本发明在衬底和氮化镓外延层之间增设了种子层和缓冲层,用于改善氮化镓与衬底之间的晶格系数、热膨胀系数等特性的匹配性。具体地,缓冲层由一组以上复合层构成,而每组复合层由AlxGa1-xN层和超级晶格层构成,通过改变AlxGa1-xN层和超级晶格层的铝占比,使铝占比逐渐减少,镓占比逐渐增多,从而提高衬底与氮化镓的晶格系数匹配度,从而保证氮化镓晶格排列错位密度的情况下,能够提高氮化镓的生长厚度。After adopting the above scheme, the present invention adds a seed layer and a buffer layer between the substrate and the gallium nitride epitaxial layer to improve the matching of characteristics such as lattice coefficient and thermal expansion coefficient between the gallium nitride and the substrate. Specifically, the buffer layer is composed of more than one group of composite layers, and each group of composite layers is composed of an AlxGa1-xN layer and a superlattice layer. By changing the aluminum ratio of the AlxGa1-xN layer and the superlattice layer, the aluminum ratio is Gradually decrease, the proportion of gallium gradually increases, thereby improving the matching degree of lattice coefficient between the substrate and gallium nitride, so as to ensure the dislocation density of gallium nitride lattice arrangement, the growth thickness of gallium nitride can be increased.
附图说明Description of drawings
图1为本发明氮化镓外延芯片结构示意图;1 is a schematic structural diagram of a gallium nitride epitaxial chip of the present invention;
图2为本发明缓冲层中超级晶格SL和AlxNGa1-xNN复合层组合示意图。FIG. 2 is a schematic diagram of the combination of the superlattice SL and the AlxNGa1 -xNNN composite layer in the buffer layer of the present invention.
标号说明:Label description:
衬底1;种子层2;氮化镓外延层3;缓冲层4;复合层41;超级晶格层411;AlxGa1-xN层412。Substrate 1 ; seed layer 2 ; gallium nitride epitaxial layer 3 ;
具体实施方式Detailed ways
如图1和图2所示,本发明揭示了一种氮化镓外延芯片,其可以是高绝缘氮化镓、P型氮化镓或N型氮化镓。该氮化镓外延芯片包括衬底1、种子层2、缓冲层4和氮化镓外延层3,其中,种子层2设于衬底1上,缓冲层4设于种子层2和氮化镓外延层3之间。本发明在衬底1和氮化镓外延层3之间增设了种子层2和缓冲层4,用于改善氮化镓与衬底1之间的晶格系数、热膨胀系数等特性的匹配性。As shown in FIG. 1 and FIG. 2 , the present invention discloses a gallium nitride epitaxial chip, which can be high-insulation gallium nitride, P-type gallium nitride or N-type gallium nitride. The gallium nitride epitaxial chip includes a
如图1和图2所示,所述缓冲层4包括一组以上的复合层41,所述复合层41包括AlxGa1-xN层412和超级晶格层411,所述超级晶格层411和AlxGa1-xN层412由种子层2向氮化镓外延层3依次叠加;所述超级晶格层411由氮化铝层和氮化镓层复合形成,所述氮化铝层和氮化镓层由种子层2向氮化镓外延层3方向交替堆叠;所述超级晶格层411中氮化铝层和氮化镓层的厚度比为y。As shown in FIGS. 1 and 2 , the
每一超级晶格层411中,氮化铝层和氮化镓层的堆叠层数为20层以上。氮化铝层与其相邻的一氮化镓层形成一铝镓对,每组超级晶格层411包括多个铝镓对,各铝镓对的氮化铝层和氮化镓层厚度比为相同,且为y,其取值为0.2-1.9。而符合层中的AlxGa1-xN层412的x值为0.2-0.85。In each
当缓冲层4包括两组以上的复合层41时,各组复合层41中AlxGa1-xN层412的x值由种子层2向氮化镓外延层3方向依次减少,各组复合层41中超级晶格层411的氮化铝和氮化镓厚度比y由种子层2向氮化镓方向逐渐较少。缓冲层4中每一复合层41的AlxGa1-xN层412的x值等于该复合层41的超级晶格层411的氮化铝和氮化镓厚度比y的两倍,即y=2x。When the
进一步地,缓冲层4中各复合层41的超级晶格层411厚度由种子层2向氮化镓外延层3方向逐渐减小,各复合层41的AlxGa1-xN层412厚度由种子层2向氮化镓外延层3方向逐渐减小。且缓冲层4的每一复合层41中,AlxGa1-xN层412的厚度小于超级晶格层411厚度。Further, the thickness of the
所述缓冲层4的每一复合层41厚度为100-800nm。所述种子层2为氮化铝层,其厚度为100-200nm。The thickness of each
上述氮化镓外延芯片的制备方法为:在衬底1上依次生长种子层2、缓冲层4和氮化镓外延层3,所述缓冲层4包括N组复合层41,而所述复合层41包括AlxGa1-xN层412和超级晶格层411,具体生长过程如下:The preparation method of the above-mentioned gallium nitride epitaxial chip is as follows: growing a
在衬底1上生长氮化铝种子层2;衬底1可以使用Al2O3衬底1、SiC衬底1或Si衬底1。An aluminum
在种子层2上交替堆叠20层以上的氮化铝层和氮化镓层,形成第一组复合层41的超级晶格层411;在超晶格层上继续生长Alx1Ga1-x2N层;Alternately stack more than 20 layers of aluminum nitride layers and gallium nitride layers on the
在第一组复合层41的Alx1Ga1-x1N层上继续交替堆叠20层以上的氮化铝层和氮化镓层,形成第二组复合层41的超级晶格层411;在超晶格层上继续生长Alx2Ga1-x2N层;On the Al x1 Ga 1-x1 N layer of the first group of
继续生长超级晶格层411和AlxGa1-xN层412,直到形成第N组的超级晶格层411和AlxNGa1-xNN层。Growth of the
在AlxNGa1-xNN层上生长氮化镓外延层3。A gallium nitride epitaxial layer 3 is grown on the AlxNGa1 -xNN layer.
上述种子层2、缓冲层4和氮化镓外延层3的生长方法为氢化物气相外延法、分子束外延法或有机金属化学气相沉积法。The above-mentioned growth methods of the
为详尽本发明内容,以下将列举几个实施例进行详述,这些实施例中,种子层2、缓冲层4和氮化镓外延层3的生长采用有机金属化学气相沉积法M0CVD。In order to clarify the content of the present invention, several embodiments will be listed below for detailed description. In these embodiments, the growth of the
实施例一Example 1
本实施例中,氮化镓外延芯片包括衬底1、种子层2、缓冲层4和氮化镓外延层3,缓冲层4包括一组复合层41,该复合层41则包括超级晶格层411和AlxGa1-xN层412,超级晶格层411连接种子层2,AlxGa1-xN层412连接氮化镓外延层3。超级晶格层411中堆叠的氮化镓和氮化铝的层数为25层,氮化镓和氮化铝的厚度比y为1.8,而AlxGa1-xN层412的x为0.9。本实施例中超级晶格层411的厚度是90nm、AlxGa1-xN层412的厚度为70nm。In this embodiment, the gallium nitride epitaxial chip includes a
该实施例中,氮化镓外延层3的生长厚度为1.2μm,位错缺陷密度为1x108cm2,无裂纹等其他现象。In this embodiment, the growth thickness of the gallium nitride epitaxial layer 3 is 1.2 μm, the dislocation defect density is 1×10 8 cm 2 , and there are no other phenomena such as cracks.
实施例二
与实施例一不同的是,本实施例的缓冲层4包括两组复合层41,即第一复合层和第二复合层,第一复合层连接种子层2,第二复合层连接氮化镓外延层3。第一复合层和第二复合层的超级晶格层411堆叠的氮化铝和氮化镓层数为20层,第一复合层的AlxGa1-xN层412为Alx1Ga1-x1N层,第二复合层的AlxGa1-xN层412为Alx2Ga1-x2N层。第一复合层的超级晶格层411的氮化镓和氮化铝的厚度比y1为1.8,Alx1Ga1-x1N层的x1为0.9。第一复合层的超级晶格的氮化镓和氮化铝的厚度比y1为1.4,Alx1Ga1-x1N层的x1为0.7。第一复合层的超级晶格层411厚90nm、Alx1Ga1-x1N层厚80nm、第二复合层的超级晶格层411的厚度70nm、Alx2Ga1-x2N层厚60nm。The difference from the first embodiment is that the
该实施例中,氮化镓外延层3的生长厚度1.35μm、位错缺陷密度5x107cm2,无裂纹等其他现象。In this embodiment, the growth thickness of the gallium nitride epitaxial layer 3 is 1.35 μm, the dislocation defect density is 5× 10 7 cm 2 , and there are no other phenomena such as cracks.
实施例三Embodiment 3
与实施例二不同的是,本实施例的复合层41还包括第三复合层,第三复合层的超级晶格层411堆叠的氮化铝和氮化镓层数为20层。该第三复合层的超级晶格层411的氮化镓和氮化铝的厚度比y3为1.2,Alx3Ga1-x3N层的x3为0.6。第一复合层的超级晶格层411的厚度为90nm、Alx1Ga1-x1N层厚80nm;第二复合层的超级晶格层411的厚度为70nm、Alx2Ga1-x2层厚60nm;第三复合层的超级晶格层411的厚度为60nm、Alx3Ga1-x3N层厚30nm。Different from the second embodiment, the
该实施例中,氮化镓外延层3的生长厚度为1.5μm、位错缺陷密度为5x107cm2,无裂纹等其他现象。In this embodiment, the growth thickness of the gallium nitride epitaxial layer 3 is 1.5 μm, the dislocation defect density is 5× 10 7 cm 2 , and there are no other phenomena such as cracks.
实施例四
与实施例三不同的是,本实施例复合层41还包括第四复合层和第五复合层,第四复合层和第五复合层的超级晶格层411堆叠的氮化铝和氮化镓层数为20层。第四复合层的超级晶格层411的氮化镓和氮化铝的厚度比y4为0.8,Alx4Ga1-x4N层的x4为0.4。第五复合层的超级晶格层411的氮化镓和氮化铝的厚度比y5为0.6,Alx5Ga1-x5N层的x5为0.3。第一复合层的超级晶格层411的厚度为90nm、Alx1Ga1-x1N层厚度为80nm,第二复合层的超级晶格层411的厚度为80nm、Alx2Ga1-x2N层厚度50nm,第三复合层的超级晶格层411的厚度为60nm、Alx3Ga1-x3N层厚度为40nm,第四复合层的超级晶格层411的厚度为50nm、Alx3Ga1-x3N层厚度为30nm,第五复合层的超级晶格层411的厚度为40nm、Alx3Ga1-x3N层厚度为20nm。Different from the third embodiment, the
该实施例中,氮化镓外延层3的生长厚度为2μm、位错缺陷密度为5x107cm2,无裂纹等其他现象。In this embodiment, the growth thickness of the gallium nitride epitaxial layer 3 is 2 μm, the dislocation defect density is 5× 10 7 cm 2 , and there are no other phenomena such as cracks.
将上述实施例与现有技术(对比例1和对比例2)进行比对,其比对结果如表1所示。The above embodiment is compared with the prior art (Comparative Example 1 and Comparative Example 2), and the comparison results are shown in Table 1.
表1Table 1
表1的对比例1和2为现有的氮化镓外延芯片,其在衬底1和氮化镓外延层3之间仅设置了种子层2,通过该对比例1和2可知,当氮化镓外延层3的生长厚度为0.05μm时,其位错缺陷密度为5x1010/cm2;当氮化镓外延层3的生长厚度增加至0.15μm时,氮化镓外延层3混出现裂纹。Comparative Examples 1 and 2 in Table 1 are the existing gallium nitride epitaxial chips, in which only the
而本发明各实施例的氮化镓外延芯片的氮化镓外延层3的生长厚度均在1μm以上,且保证位错缺陷密度均保持在5x108/cm2以下,不会出现裂纹。与现有技术相比,本发明的氮化镓外延层3的生长厚度以及其晶格排列错位密度的质量均得到有效提升。The growth thickness of the gallium nitride epitaxial layer 3 of the gallium nitride epitaxial chips according to the embodiments of the present invention is all above 1 μm, and the dislocation defect density is guaranteed to be kept below 5× 10 8 /cm 2 , and cracks will not occur. Compared with the prior art, the growth thickness of the gallium nitride epitaxial layer 3 and the quality of its lattice dislocation density are effectively improved.
以上所述,仅是本发明实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above are only the embodiments of the present invention and do not limit the technical scope of the present invention. Therefore, any minor modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention still belong to the present invention. within the scope of the technical solution.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010548110.7A CN111682093A (en) | 2020-06-16 | 2020-06-16 | A kind of gallium nitride epitaxial chip and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010548110.7A CN111682093A (en) | 2020-06-16 | 2020-06-16 | A kind of gallium nitride epitaxial chip and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111682093A true CN111682093A (en) | 2020-09-18 |
Family
ID=72455157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010548110.7A Pending CN111682093A (en) | 2020-06-16 | 2020-06-16 | A kind of gallium nitride epitaxial chip and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111682093A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130019278A (en) * | 2011-08-16 | 2013-02-26 | 엘지이노텍 주식회사 | Light emitting device |
US20160211330A1 (en) * | 2015-01-21 | 2016-07-21 | National Chiao Tung University | High electron mobility transistor |
CN106098749A (en) * | 2016-06-30 | 2016-11-09 | 中国电子科技集团公司第五十五研究所 | AlGaN/GaN heterojunction structure and growing method thereof on a kind of silicon substrate |
US20170207303A1 (en) * | 2015-04-03 | 2017-07-20 | Hermes-Epitek Corp. | Semiconductor multilayer structure |
CN107810544A (en) * | 2015-06-03 | 2018-03-16 | 维易科仪器有限公司 | The Stress Control of hetero-epitaxy |
CN212907772U (en) * | 2020-06-16 | 2021-04-06 | 璨隆科技发展有限公司 | Gallium nitride epitaxial chip |
-
2020
- 2020-06-16 CN CN202010548110.7A patent/CN111682093A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130019278A (en) * | 2011-08-16 | 2013-02-26 | 엘지이노텍 주식회사 | Light emitting device |
US20160211330A1 (en) * | 2015-01-21 | 2016-07-21 | National Chiao Tung University | High electron mobility transistor |
US20170207303A1 (en) * | 2015-04-03 | 2017-07-20 | Hermes-Epitek Corp. | Semiconductor multilayer structure |
CN107810544A (en) * | 2015-06-03 | 2018-03-16 | 维易科仪器有限公司 | The Stress Control of hetero-epitaxy |
CN106098749A (en) * | 2016-06-30 | 2016-11-09 | 中国电子科技集团公司第五十五研究所 | AlGaN/GaN heterojunction structure and growing method thereof on a kind of silicon substrate |
CN212907772U (en) * | 2020-06-16 | 2021-04-06 | 璨隆科技发展有限公司 | Gallium nitride epitaxial chip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5095064B2 (en) | Semiconductor film having nitride layer deposited on silicon substrate and method for manufacturing the same | |
JP4592742B2 (en) | Semiconductor material, method for manufacturing semiconductor material, and semiconductor element | |
JP5117609B1 (en) | Nitride semiconductor wafer, nitride semiconductor device, and method for growing nitride semiconductor crystal | |
CN107195736B (en) | A gallium nitride-based light-emitting diode epitaxial wafer and its growth method | |
CN106098871B (en) | Preparation method of light-emitting diode epitaxial wafer | |
CN107195735B (en) | Epitaxial wafer of light emitting diode and preparation method thereof | |
CN115020558B (en) | High-recombination-efficiency light-emitting diode epitaxial wafer and preparation method thereof | |
CN116364820B (en) | Light-emitting diode epitaxial wafer and preparation method thereof, LED | |
CN102790155B (en) | The method of nitride compound semiconductor device and wafer and manufacture nitride semiconductor layer | |
JP5460751B2 (en) | Semiconductor device | |
CN111628061A (en) | Gallium nitride epitaxial chip and preparation method thereof | |
CN212907772U (en) | Gallium nitride epitaxial chip | |
CN116487497B (en) | Light-emitting diode epitaxial wafer and preparation method thereof, LED | |
CN118231539A (en) | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode | |
CN212209534U (en) | Gallium nitride epitaxial chip | |
CN212907773U (en) | Gallium nitride epitaxial chip | |
CN116960248A (en) | A kind of light-emitting diode epitaxial wafer and preparation method | |
CN111682093A (en) | A kind of gallium nitride epitaxial chip and preparation method thereof | |
JP7205474B2 (en) | Template substrate, electronic device, light-emitting device, template substrate manufacturing method, and electronic device manufacturing method | |
CN106129201A (en) | Epitaxial wafer of light emitting diode and preparation method thereof | |
CN111628060A (en) | Gallium nitride epitaxial chip and preparation method thereof | |
CN116825917B (en) | Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode | |
JP6649693B2 (en) | Nitride semiconductor light emitting device and method of manufacturing the same | |
CN117976792A (en) | Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode | |
CN115172546A (en) | Epitaxial wafer, epitaxial wafer preparation method and light emitting diode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |