[go: up one dir, main page]

CN111675896A - A method for improving cell retraction behavior of thermoplastic elastomer microcellular foam material - Google Patents

A method for improving cell retraction behavior of thermoplastic elastomer microcellular foam material Download PDF

Info

Publication number
CN111675896A
CN111675896A CN202010608428.XA CN202010608428A CN111675896A CN 111675896 A CN111675896 A CN 111675896A CN 202010608428 A CN202010608428 A CN 202010608428A CN 111675896 A CN111675896 A CN 111675896A
Authority
CN
China
Prior art keywords
thermoplastic elastomer
thermoplastic
nanoparticles
foam material
cell shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010608428.XA
Other languages
Chinese (zh)
Inventor
杨其
龚鹏剑
蓝滨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202010608428.XA priority Critical patent/CN111675896A/en
Publication of CN111675896A publication Critical patent/CN111675896A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • C08J9/008Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明涉及一种改善热塑性弹性体微孔发泡材料泡孔回缩行为的方法,属于热塑性弹性体微孔发泡领域。本发明提供一种抑制热塑性弹性体微孔发泡材料泡孔回缩的方法,所述方法为:在制备热塑性弹性体微孔发泡材料的过程中,引入纳米粒子,并且使得所述纳米粒子与所述热塑性弹性体之间存在物理键接或化学交联作用,从而抑制了发泡材料发泡后出现的泡孔回缩。本发明旨在从分子链的角度提出一种便捷、高效的改善热塑性弹性体泡孔回缩行为的方法,从根本上解决了热塑性弹性体泡孔回缩的难题。

Figure 202010608428

The invention relates to a method for improving the cell shrinkage behavior of thermoplastic elastomer microcellular foaming materials, and belongs to the field of thermoplastic elastomer microcellular foaming. The present invention provides a method for inhibiting cell shrinkage of a thermoplastic elastomer microcellular foamed material. The method comprises the following steps: in the process of preparing the thermoplastic elastomer microcellular foamed material, nanoparticles are introduced, and the nanoparticles are made There is a physical bond or chemical cross-linking effect with the thermoplastic elastomer, thereby inhibiting the cell shrinkage that occurs after the foamed material is foamed. The present invention aims to propose a convenient and efficient method for improving the shrinkage behavior of thermoplastic elastomer cells from the perspective of molecular chains, and fundamentally solves the problem of thermoplastic elastomer cell shrinkage.

Figure 202010608428

Description

一种改善热塑性弹性体微孔发泡材料泡孔回缩行为的方法A method for improving cell retraction behavior of thermoplastic elastomer microcellular foam material

技术领域technical field

本发明涉及一种改善热塑性弹性体如热塑性聚氨酯微孔发泡材料泡孔回缩行为的方法,属于热塑性弹性体微孔发泡领域。The invention relates to a method for improving the cell shrinkage behavior of thermoplastic elastomers such as thermoplastic polyurethane microcellular foaming materials, and belongs to the field of thermoplastic elastomer microcellular foaming.

背景技术Background technique

热塑性弹性体如热塑性聚氨酯(TPU)采用二氧化碳(CO2)发泡法制备的微孔发泡材料,具有优异的减震回弹性能和耐磨性能,被广泛地应用于鞋材生产和轮胎制备中;其中最具有代表性的是德国Adidas与BASF公司联合研发的Boost系列跑鞋,首次将TPU的发泡颗粒infinergy应用于跑鞋中底的生产制备中;这种跑鞋鞋底不仅拥有优异的减震回弹性能和耐磨性能,而且鞋底穿着舒适、能量反馈程度高,具有非常广阔的销售市场,深受人们的喜爱。但在TPU微孔发泡材料的成型过程中,我们发现其泡孔定型过程存在明显的泡孔结构不稳定的现象:材料的发泡倍率在泄压完成的短时间内急剧下降,泡孔定型困难,泡孔收缩严重;从而导致TPU发泡材料的密度增大、发泡倍率降低,极大地限制了TPU微孔发泡材料的使用性能与应用领域。Thermoplastic elastomers such as thermoplastic polyurethane (TPU) are microcellular foam materials prepared by carbon dioxide (CO 2 ) foaming. They have excellent shock absorption, resilience and wear resistance, and are widely used in shoe material production and tire preparation. Among them, the most representative is the Boost series of running shoes jointly developed by Adidas and BASF in Germany. For the first time, TPU foam particle infinergy is applied to the production and preparation of running shoe midsole; this running shoe sole not only has excellent shock absorption and return Elasticity and wear resistance, and the sole is comfortable to wear and has a high degree of energy feedback. It has a very broad sales market and is deeply loved by people. However, in the molding process of TPU microcellular foam material, we found that there is an obvious phenomenon of unstable cell structure in the process of cell shaping: the foaming ratio of the material drops sharply in a short period of time after the pressure relief is completed, and the cells are shaped. Difficulty, serious cell shrinkage; resulting in an increase in the density of the TPU foam material and a decrease in the foaming ratio, which greatly limits the performance and application fields of the TPU microcellular foam material.

针对这个问题,现在TPU微孔发泡材料的生产企业多是采用二次发泡技术改善TPU泡孔回缩的行为:在室温条件下,将一次发泡得到的TPU发泡材料在压力为4-5个大气压的气体氛围中充分溶胀后,快速升温到材料的软化点以上;溶胀的气体在高温下受热膨胀,提供了泡孔生长的推动力,促进泡孔的二次生长,降低了TPU发泡材料的密度;但是这种技术工艺繁琐,成型周期长,对设备的技术要求高,无法满足中小企业的生产需求。In response to this problem, most manufacturers of TPU microcellular foaming materials use secondary foaming technology to improve the behavior of TPU cell shrinkage: at room temperature, the TPU foamed material obtained by one-time foaming is at a pressure of 4 -After fully swollen in a gas atmosphere of 5 atmospheres, the temperature rises rapidly to above the softening point of the material; the swollen gas is thermally expanded at high temperature, which provides a driving force for cell growth, promotes the secondary growth of cells, and reduces TPU. The density of the foamed material; however, this technical process is cumbersome, the molding cycle is long, and the technical requirements for equipment are high, which cannot meet the production needs of small and medium-sized enterprises.

发明内容SUMMARY OF THE INVENTION

针对上述缺陷,本发明旨在从分子链的角度提出一种便捷、高效的改善热塑性弹性体泡孔回缩行为的方法,从根本上解决了热塑性弹性体泡孔回缩的难题。In view of the above-mentioned defects, the present invention aims to propose a convenient and efficient method for improving the shrinkage behavior of thermoplastic elastomer cells from the perspective of molecular chains, which fundamentally solves the problem of thermoplastic elastomer cell shrinkage.

本发明的技术方案:Technical scheme of the present invention:

本发明提供了一种抑制热塑性弹性体微孔发泡材料泡孔回缩的方法,所述方法为:在制备热塑性弹性体微孔发泡材料的过程中,引入纳米粒子,并且使得所述纳米粒子与所述热塑性弹性体之间存在物理键接或化学交联作用,从而抑制了发泡材料发泡后出现的泡孔回缩。The present invention provides a method for inhibiting cell shrinkage of a thermoplastic elastomer microcellular foamed material. The method includes: in the process of preparing the thermoplastic elastomer microcellular foamed material, introducing nano-particles, and making the nano-particles Physical bonding or chemical cross-linking exists between the particles and the thermoplastic elastomer, thereby inhibiting cell shrinkage after foaming of the foamed material.

进一步,所述使得所述纳米粒子与所述热塑性弹性体之间存在物理键接或化学交联作用采用下述方式中的至少一种:Further, the physical bonding or chemical cross-linking between the nanoparticles and the thermoplastic elastomer adopts at least one of the following methods:

方式一:选择在熔融共混或溶液共混过程中自身能够与所述热塑性弹性体产生物理键接或化学交联的纳米粒子;比如:热塑性聚氨酯和有机蒙脱土;Method 1: Select nanoparticles that can physically bond or chemically crosslink with the thermoplastic elastomer during melt blending or solution blending; for example: thermoplastic polyurethane and organic montmorillonite;

方式二:对所述热塑性弹性体进行化学改性,包括热塑性弹性体的酰胺化改性、羟基化改性或羧基化改性等;通过化学改性在热塑性弹性体的分子链上引入极性基团,提高分子链间的作用力;比如:聚烯烃型热塑性弹性体和碳纳米纤维;Method 2: chemically modify the thermoplastic elastomer, including amidation modification, hydroxylation modification or carboxylation modification of the thermoplastic elastomer; introduce polarity into the molecular chain of the thermoplastic elastomer through chemical modification group to improve the force between molecular chains; such as: polyolefin thermoplastic elastomers and carbon nanofibers;

方式三:对所述纳米粒子进行有机化官能团改性,包括纳米粒子的硅氧烷改性、羟基化改性、羧基化改性、过氧化物改性或硫化物改性等;通过纳米粒子的有机化官能团改性,提高分子链间的作用力;比如:苯乙烯类热塑性弹性体和碳纳米管,聚酯类热塑性弹性体和石墨烯。Method 3: The nanoparticles are modified with organic functional groups, including siloxane modification, hydroxylation modification, carboxylation modification, peroxide modification or sulfide modification of nanoparticles; The organic modification of the functional group can improve the force between molecular chains; for example: styrene thermoplastic elastomer and carbon nanotubes, polyester thermoplastic elastomer and graphene.

本发明中,通过引入纳米粒子,并且使得所述纳米粒子与热塑性弹性体之间能够发生物理键接或者化学交联,从而增加了热塑性弹性体分子链间的作用力,限制了热塑性弹性体分子链的运动,进而起到了抑制发泡材料发泡后出现的泡孔回缩的作用。In the present invention, by introducing nanoparticles and enabling physical bonding or chemical cross-linking between the nanoparticles and the thermoplastic elastomer, the force between the molecular chains of the thermoplastic elastomer is increased, and the thermoplastic elastomer molecules are limited. The movement of the chain, in turn, plays a role in inhibiting the cell shrinkage that occurs after the foamed material is foamed.

进一步,热塑性弹性体与纳米粒子的质量比为:95~99.75wt.%:0.25~5wt.%。Further, the mass ratio of thermoplastic elastomer to nanoparticles is: 95-99.75 wt.%: 0.25-5 wt.%.

进一步,所述物理键接指氢键或范德华力等作用。Further, the physical bonding refers to the action of hydrogen bonding or van der Waals force.

进一步,所述的化学交联是由硅氧键、二硫键或过氧键等引起的交联。Further, the chemical cross-linking is caused by silicon-oxygen bond, disulfide bond or peroxy bond and the like.

进一步,所述热塑性弹性体选自热塑性聚氨酯类弹性体(TPU)、苯乙烯类热塑性弹性体(SBS)、聚烯烃型热塑性弹性体(POE)或聚酯类热塑性弹性体(TPEE)。Further, the thermoplastic elastomer is selected from thermoplastic polyurethane-based elastomer (TPU), styrene-based thermoplastic elastomer (SBS), polyolefin-based thermoplastic elastomer (POE) or polyester-based thermoplastic elastomer (TPEE).

进一步,所述纳米粒子选自纳米蒙脱土(MMT)、碳纳米管(CNT)、碳纳米纤维(CNF)、石墨烯(GnP)或二氧化硅(SiO2)等。Further, the nanoparticles are selected from nano-montmorillonite (MMT), carbon nanotube (CNT), carbon nanofiber (CNF), graphene (GnP) or silicon dioxide (SiO 2 ) and the like.

进一步,未改性或有机化官能团改性后存在物理键接或化学交联的热塑性弹性体和纳米粒子体系包括但不局限为:Further, unmodified or organically modified thermoplastic elastomers and nanoparticle systems with physical bonding or chemical crosslinking include but are not limited to:

热塑性聚氨酯和有机蒙脱土、苯乙烯类热塑性弹性体和碳纳米管、聚烯烃型热塑性弹性体和碳纳米纤维,或:聚酯类热塑性弹性体和石墨烯。Thermoplastic polyurethane and organic montmorillonite, styrene-based thermoplastic elastomer and carbon nanotubes, polyolefin-based thermoplastic elastomer and carbon nanofibers, or: polyester-based thermoplastic elastomer and graphene.

进一步,上述抑制热塑性弹性体微孔发泡材料泡孔回缩的方法为:先将纳米粒子与热塑性弹性体通过熔融共混,将纳米粒子均匀地分布在热塑性弹性体中得热塑性弹性体-纳米粒子共混材料;然后将所得共混材料发泡制得热塑性弹性体发泡材料;其中,熔融共混前根据需要对纳米粒子进行有机化官能团改性或对热塑性弹性体进行化学改性。Further, the above-mentioned method for suppressing the shrinkage of the cells of the thermoplastic elastomer microcellular foamed material is: firstly, the nanoparticles and the thermoplastic elastomer are melt-blended, and the nanoparticles are uniformly distributed in the thermoplastic elastomer to obtain a thermoplastic elastomer-nano Particle blending material; then foaming the obtained blending material to obtain a thermoplastic elastomer foaming material; wherein, before melt blending, the nanoparticles are modified with organic functional groups or the thermoplastic elastomer is chemically modified as required.

本发明中,选择共混前对纳米粒子进行有机化官能团改性还是对热塑性弹性体进行化学改性,或者是对两者同时改性,主要根据所得材料的之间是否能够形成强烈的相互作用而定,比如纳米粒子的界面效应、硅氧烷的偶联效应、二硫键的化学交联作用等。In the present invention, the choice of organic functional group modification of nanoparticles or chemical modification of thermoplastic elastomers before blending, or simultaneous modification of both, is mainly based on whether a strong interaction can be formed between the obtained materials. It depends, such as the interface effect of nanoparticles, the coupling effect of siloxane, and the chemical cross-linking effect of disulfide bonds.

进一步,当所述热塑性弹性体为热塑性聚氨酯时,所述抑制热塑性弹性体微孔发泡材料泡孔回缩的方法为:通过双螺杆挤出机将双十八烷基二甲基溴化铵改性的纳米粒子与热塑性聚氨酯进行二次熔融共混,将纳米粒子均匀的分布在热塑性聚氨酯中得热塑性聚氨酯-纳米粒子共混材料;然后采用超临界二氧化碳发泡法制备热塑性聚氨酯发泡材料。Further, when the thermoplastic elastomer is thermoplastic polyurethane, the method for inhibiting the cell shrinkage of the thermoplastic elastomer microcellular foam material is: dioctadecyldimethylammonium bromide is extruded by a twin-screw extruder. The modified nano-particles are melt-blended with thermoplastic polyurethane for a second time, and the nano-particles are uniformly distributed in the thermoplastic polyurethane to obtain a thermoplastic polyurethane-nano-particle blend material; and then a thermoplastic polyurethane foam material is prepared by a supercritical carbon dioxide foaming method.

进一步,上述方法中,通过双螺杆挤出机将双十八烷基二甲基溴化铵改性的纳米粒子与热塑性聚氨酯进行二次熔融共混的方法为:先利用双螺杆挤出机挤出成型纳米粒子质量分数为10~20wt.%的热塑性聚氨酯-纳米粒子母料;然后将热塑性聚氨酯与母料共混挤出质量分数为0.25wt.%~5wt.%的热塑性聚氨酯-纳米粒子共混材料。Further, in the above-mentioned method, the method for carrying out secondary melt blending of the modified nano-particles of dioctadecyl dimethyl ammonium bromide and thermoplastic polyurethane by a twin-screw extruder is as follows: firstly utilize a twin-screw extruder to extrude. A thermoplastic polyurethane-nanoparticle masterbatch with a mass fraction of 10-20wt.% of molded nanoparticles is produced; then thermoplastic polyurethane and the masterbatch are blended and extruded with a mass fraction of 0.25wt.%-5wt.% of thermoplastic polyurethane-nanoparticles. mixed materials.

进一步,所述超临界二氧化碳发泡法为:将热塑性聚氨酯-纳米粒子共混材料在高温高压反应釜中,CO2溶胀饱和,快速泄压发泡制备热塑性聚氨酯微孔发泡材料;其中,高温指温度为145~165℃,高压指压力为13~16MPa。Further, the supercritical carbon dioxide foaming method is as follows: the thermoplastic polyurethane-nanoparticle blend material is swelled and saturated with CO 2 in a high temperature and high pressure reactor, and the thermoplastic polyurethane microcellular foamed material is prepared by rapid pressure relief foaming; wherein, the high temperature Refers to the temperature of 145 ~ 165 ℃, high pressure refers to the pressure of 13 ~ 16MPa.

本发明的有益效果:Beneficial effects of the present invention:

本发明以TPU与改性蒙脱土体系为例,与现有的改善TPU泡孔回缩现象的行为相比,本发明所得TPU发泡材料具有以下优点:The present invention takes TPU and the modified montmorillonite system as an example, compared with the existing behavior of improving the TPU cell shrinkage phenomenon, the obtained TPU foam material of the present invention has the following advantages:

1、实验方法便捷、高效,通过双螺杆挤出机将O-MMT与TPU通过二次简单共混,即可将TPU发泡材料收缩行为显著改善;当O-MMT的填料含量达到1wt.%时,TPU超临界二氧化碳发泡成型过程中已经观察不到明显的收缩现象。1. The experimental method is convenient and efficient. By simply blending O-MMT and TPU twice through a twin-screw extruder, the shrinkage behavior of TPU foam materials can be significantly improved; when the filler content of O-MMT reaches 1wt.% When TPU supercritical carbon dioxide foam molding process, no obvious shrinkage phenomenon has been observed.

2、随着O-MMT含量的提高,TPU微孔发泡材料的泡孔直径逐渐减小,泡孔密度有一定程度的提高,有利于维持TPU发泡材料的减震回弹性能,提高穿着的舒适性。2. With the increase of O-MMT content, the cell diameter of the TPU microcellular foam material gradually decreases, and the cell density increases to a certain extent, which is conducive to maintaining the shock absorption and resilience performance of the TPU foam material and improving the wearing performance. of comfort.

附图说明:Description of drawings:

图1为实施例1-4所得的TPU/O-MMT的羰基基团的氢键化指数;由图1可知:随着O-MMT含量的提高,TPU体系碳基的氢键化指数χB不断提高;表明纳米填料与TPU之间的相互作用力增加,限制了发泡过后TPU分子链的松弛行为,从而达到抑制TPU发泡过后泡孔回缩的效果。Fig. 1 is the hydrogen bonding index of the carbonyl group of the TPU/O-MMT obtained in Example 1-4; it can be seen from Fig. 1: with the increase of the O-MMT content, the hydrogen bonding index χ B of the carbon group of the TPU system It shows that the interaction force between nanofillers and TPU increases, which limits the relaxation behavior of TPU molecular chains after foaming, thereby achieving the effect of inhibiting cell shrinkage after TPU foaming.

图2为实施例1-4所得发泡材料在13MPa压力下发泡得到的样品形貌:150℃(a-d),155℃(e-h)和160℃(i-l);由图2可知:所有TPU发泡材料的泡孔结构均匀性好,多为闭孔结构;随着O-MMT含量的提高,泡孔的直径逐渐减小,泡孔壁厚增加,但当O-MMT的含量过高时,泡孔缺陷也有增多的趋势。Figure 2 shows the morphology of the samples obtained by foaming the foamed materials obtained in Examples 1-4 under a pressure of 13MPa: 150°C (a-d), 155°C (e-h) and 160°C (i-l); The cell structure of the foam material has good uniformity and is mostly closed cell structure; with the increase of the O-MMT content, the diameter of the cell gradually decreases, and the cell wall thickness increases, but when the content of O-MMT is too high, the cell size decreases. Defects also tend to increase.

图3为实施例1-4所得发泡材料在13MPa压力下发泡样品泡孔统计信息:泡孔直径,150℃(a),155℃(b)和160℃(c);泡孔密度,150℃(d),155℃(e)和160℃(f);由图3可知:随着O-MMT填料含量的提高,TPU微孔发泡材料的泡孔直径逐渐减小,泡孔密度有一定程度的提高。Figure 3 shows the cell statistics of the foamed samples obtained in Examples 1-4 under a pressure of 13MPa: cell diameter, 150°C (a), 155°C (b) and 160°C (c); cell density, 150 ℃ (d), 155 ℃ (e) and 160 ℃ (f); it can be seen from Figure 3 that with the increase of O-MMT filler content, the cell diameter of TPU microcellular foam material gradually decreases, and the cell density There is a certain degree of improvement.

图4为实施例1-4所得发泡材料在13MPa压力下发泡样品收缩情况:as foamedexpansion ratio表示样品收缩前的起始发泡倍率,final expansion ratio表示样品稳定过后的发泡倍率,O-MMT的加入对TPU发泡样品的收缩情况有明显的改善;由图4可知:随着O-MMT含量的提高,TPU微孔发泡材料泡孔定型前后发泡倍率的绝对差值在不断减小;以150℃发泡的样品为例,TPU0泡孔定型前后发泡倍率的绝对差值为1.36,而随着O-MMT含量的提高,TPU1、TPU3和TPU5泡孔定型前后发泡倍率的绝对差值分别降低为0.43、0.08和0.05,155℃和160℃发泡得到的样品反映出相似的规律。Figure 4 shows the shrinkage of the foamed samples obtained in Examples 1-4 under a pressure of 13MPa: as foamedexpansion ratio represents the initial foaming ratio before the sample shrinks, final expansion ratio represents the foaming ratio after the sample is stabilized, O- The addition of MMT significantly improves the shrinkage of the TPU foamed samples; as can be seen from Figure 4: with the increase of the O-MMT content, the absolute difference of the foaming ratio before and after the cells of the TPU microcellular foamed material is continuously reduced. Small; taking the sample foamed at 150 °C as an example, the absolute difference of the foaming ratio before and after TPU0 cell setting is 1.36, while with the increase of O-MMT content, the foaming ratio of TPU1, TPU3 and TPU5 before and after cell setting is 1.36. The absolute differences were reduced to 0.43, 0.08 and 0.05, respectively, and the samples foamed at 155°C and 160°C reflected similar patterns.

具体实施方式Detailed ways

本发明提供了一种抑制热塑性弹性体微孔发泡材料泡孔回缩的方法,所述方法为:在制备热塑性弹性体微孔发泡材料的过程中,引入纳米粒子,并且使得所述纳米粒子与所述热塑性弹性体之间存在物理键接或化学交联作用,从而抑制了发泡材料发泡后出现的泡孔回缩。本发明中,通过引入纳米粒子,并且使得所述纳米粒子与热塑性弹性体之间能够发生物理键接或者化学交联,从而增加了热塑性弹性体分子链间的作用力,限制了热塑性弹性体分子链的运动,进而起到了抑制发泡材料发泡后出现的泡孔回缩的作用。The present invention provides a method for inhibiting cell shrinkage of a thermoplastic elastomer microcellular foamed material. The method includes: in the process of preparing the thermoplastic elastomer microcellular foamed material, introducing nano-particles, and making the nano-particles Physical bonding or chemical cross-linking exists between the particles and the thermoplastic elastomer, thereby inhibiting cell shrinkage after foaming of the foamed material. In the present invention, by introducing nanoparticles and enabling physical bonding or chemical cross-linking between the nanoparticles and the thermoplastic elastomer, the force between the molecular chains of the thermoplastic elastomer is increased, and the thermoplastic elastomer molecules are limited. The movement of the chain, in turn, plays a role in inhibiting the cell shrinkage that occurs after the foamed material is foamed.

本发明中,对于热塑性弹性体与纳米粒子之间不存在物理键接和化学交联的体系,可以对两者(或一者)进行有机化官能团改性,引入极性官能团,提高热塑性弹性体与纳米粒子之间的作用力;而对于两者之间本身存在强作用力的体系,则可不用进行有机化改性,将纳米粒子引入即可达到改善回缩的效果。In the present invention, for a system in which there is no physical bond and chemical cross-linking between the thermoplastic elastomer and the nanoparticle, the two (or one) can be modified with organic functional groups, and polar functional groups can be introduced to improve the thermoplastic elastomer. The interaction force between the nanoparticle and the nanoparticle; and for the system with a strong interaction between the two, the effect of improving the retraction can be achieved by introducing the nanoparticle without organic modification.

本发明提出一种便捷、高效的改善热塑性弹性体微孔发泡材料泡孔回缩行为的方法,对于热塑性弹性体(TPE)微孔发泡材料,通过引入有机化官能团改性的纳米粒子,采用物理键接或者化学交联的方法,增加热塑性弹性体分子链间的作用力,维持泡孔生长过后分子链的取向,抑制泡孔回缩的行为。如可以在TPU中引入O-MMT,通过O-MMT与TPU之间强烈的氢键作用形成了纳米复合界面,将界面附近的TPU分子链冻结,有效地限制分子链的运动,抑制了TPU在发泡过后的分子链的松弛行为,在最大程度上保留了泡孔生长过后TPU分子链的取向,促进泡孔结构的定型。结果表明:随着O-MMT的加入,TPU体系的泡孔回缩行为逐渐改善:当O-MMT的质量分数达到1wt.%时,TPU发泡材料已经观察不到明显的收缩现象;而且,随着O-MMT的引入,TPU发泡材料的泡孔尺寸逐渐减小,泡孔密度有一定程度的提高,具有较为均匀的泡孔形貌。均匀、细腻的泡孔形貌有利于维持TPU发泡材料的减震回弹性能,提高鞋材穿着的舒适性。The present invention proposes a convenient and efficient method for improving the cell shrinkage behavior of thermoplastic elastomer microcellular foaming materials. For thermoplastic elastomer (TPE) microcellular foaming materials, by introducing nanoparticles modified by organic functional groups, The method of physical bonding or chemical cross-linking is used to increase the force between the molecular chains of thermoplastic elastomers, maintain the orientation of the molecular chains after cell growth, and inhibit the behavior of cell shrinkage. For example, O-MMT can be introduced into TPU, and a nanocomposite interface is formed through the strong hydrogen bonding between O-MMT and TPU, which freezes the TPU molecular chain near the interface, effectively restricts the movement of the molecular chain, and inhibits TPU in The relaxation behavior of the molecular chain after foaming preserves the orientation of the TPU molecular chain after the cell growth to the greatest extent, and promotes the shaping of the cell structure. The results show that: with the addition of O-MMT, the cell shrinkage behavior of the TPU system is gradually improved: when the mass fraction of O-MMT reaches 1 wt.%, no obvious shrinkage phenomenon can be observed in the TPU foam material; moreover, With the introduction of O-MMT, the cell size of the TPU foam material gradually decreased, the cell density increased to a certain extent, and the cell morphology was relatively uniform. The uniform and fine cell morphology is conducive to maintaining the shock absorption and resilience performance of the TPU foam material and improving the wearing comfort of the shoe material.

实施例1-4Examples 1-4

实验原料:聚醚型TPU,牌号:DESMOPAN DP.9385AU DPS650;硬度值为86A;由科思创聚合物(中国)有限公司提供;有机改性的纳米蒙脱土(O-MMT),牌号:I.44P,经双十八烷基二甲基溴化铵改性而成,由美国NANOCOR有限公司提供;CO2气体,纯度为99.5%,由林德气体(成都)有限公司提供。Experiment material: polyether TPU, grade: DESMOPAN DP.9385AU DPS650; hardness 86A; provided by Covestro Polymers (China) Co., Ltd.; organically modified nano-montmorillonite (O-MMT), grade: I.44P, modified by dioctadecyldimethylammonium bromide, provided by NANOCOR Co., Ltd. of the United States; CO 2 gas, with a purity of 99.5%, provided by Linde Gas (Chengdu) Co., Ltd.

试样制备流程:Sample preparation process:

首先,为去除水分的影响,将TPU和O-MMT放置于80℃的真空烘箱中真空干燥8小时;然后,利用双螺杆挤出机(机器型号:NOE 02213,南京科倍隆科技股份有限公司)挤出成型O-MMT质量分数为10wt%的O-MMT母料,挤出机第二段至第十段的温度按175℃,180℃,183℃,185℃,188℃,190℃,193℃,195℃和195℃依次设定;口模温度设定为195℃,双螺杆转速设定为85rpm;接着,将TPU与O-MMT母料共混挤出质量分数为0wt.%(实施例1),1wt.%(实施例2),3wt.%(实施例3)和5wt.%(实施例4)的TPU样条,依次分别标记为TPU0(实施例1),TPU1(实施例2),TPU3(实施例3)和TPU5(实施例4);随后,再将挤出后的样条置于80℃的真空烘箱中真空干燥8小时;最后,将挤出样条在一定的温度(150℃、155℃、160℃)和压力(13MPa)中置于高压发泡釜中经CO2溶胀2小时后,在2s内快速泄压完毕,制备TPU微孔发泡材料。为了便于实验描述,TPU1-150-13表示TPU1在温度为150℃,压力为13MPa的发泡条件下发泡成型,其它样品按同样的规则命名。First, in order to remove the influence of moisture, the TPU and O-MMT were vacuum dried in a vacuum oven at 80 °C for 8 hours; then, a twin-screw extruder (machine model: NOE 02213, Nanjing Coperion Technology Co., Ltd. ) Extruded O-MMT masterbatch with a mass fraction of 10wt% O-MMT, the temperature of the second stage to the tenth stage of the extruder is 175°C, 180°C, 183°C, 185°C, 188°C, 190°C, 193 ℃, 195 ℃ and 195 ℃ are set successively; Die temperature is set as 195 ℃, twin-screw rotation speed is set as 85rpm; Then, TPU and O-MMT master batch are blended and extruded mass fraction is 0wt.% ( Example 1), 1wt.% (Example 2), 3wt.% (Example 3) and 5wt.% (Example 4) TPU splines are marked as TPU0 (Example 1), TPU1 (Example 4) respectively. Example 2), TPU3 (Example 3) and TPU5 (Example 4); subsequently, the extruded splines were placed in a vacuum oven at 80° C. for vacuum drying for 8 hours; The temperature (150°C, 155°C, 160°C) and pressure (13MPa) were placed in a high-pressure foaming kettle and swelled by CO for 2 hours, and the pressure was quickly released within 2s to prepare TPU microcellular foaming materials. For the convenience of experimental description, TPU1-150-13 means that TPU1 is foamed under the foaming conditions of temperature of 150°C and pressure of 13MPa, and other samples are named according to the same rules.

本发明实施例中的工艺条件如表1所示。The process conditions in the examples of the present invention are shown in Table 1.

Table 1 Foaming conditions of TPU samplesTable 1 Foaming conditions of TPU samples

Figure BDA0002561570170000051
Figure BDA0002561570170000051

本发明从分子机理的角度上改善热塑性弹性体如TPU微孔发泡材料泡孔回缩行为,通过将有机改性的纳米蒙脱土与TPU进行两次简单的共混,两者之间存在强烈的氢键作用在TPU的基体中形成了纳米粒子的界面效应,从而限制发泡过后取向分子链的松弛行为,维持泡孔形貌;故而从分子链的角度上便捷、高效地改善了TPU微孔发泡材料的泡孔回缩行为,打破了二次发泡技术对中小企业的限制。The invention improves the cell shrinkage behavior of thermoplastic elastomers such as TPU microcellular foamed materials from the perspective of molecular mechanism. By simply blending the organically modified nano-montmorillonite and TPU twice, there is a The strong hydrogen bonding forms the interface effect of nanoparticles in the matrix of TPU, which limits the relaxation behavior of the oriented molecular chain after foaming and maintains the cell morphology; therefore, it is convenient and efficient to improve the TPU from the perspective of molecular chain. The cell retraction behavior of the microcellular foam material breaks the limitation of secondary foaming technology for small and medium-sized enterprises.

Claims (10)

1.一种抑制热塑性弹性体微孔发泡材料泡孔回缩的方法,其特征在于,所述方法为:在制备热塑性弹性体微孔发泡材料的过程中,引入纳米粒子,并且使得所述纳米粒子与所述热塑性弹性体之间存在物理键接或化学交联作用,从而抑制了发泡材料发泡后出现的泡孔回缩。1. A method for suppressing cell shrinkage of thermoplastic elastomer microcellular foamed material, characterized in that the method is: in the process of preparing the thermoplastic elastomer microcellular foamed material, introducing nanoparticles, and making the There is a physical bond or chemical cross-linking effect between the nanoparticles and the thermoplastic elastomer, thereby inhibiting the cell shrinkage that occurs after the foamed material is foamed. 2.根据权利要求1所述的抑制热塑性弹性体微孔发泡材料泡孔回缩的方法,其特征在于,所述使得所述纳米粒子与所述热塑性弹性体之间存在物理键接或化学交联作用采用下述方式中的至少一种:2 . The method for inhibiting cell shrinkage of thermoplastic elastomer microcellular foam material according to claim 1 , wherein physical bonding or chemical bonding exists between the nanoparticles and the thermoplastic elastomer. 3 . The cross-linking is performed in at least one of the following ways: 方式一:选择在熔融共混或溶液共混过程中自身能够与所述热塑性弹性体产生物理键接或化学交联的纳米粒子;Mode 1: Select nanoparticles that can physically bond or chemically crosslink with the thermoplastic elastomer during melt blending or solution blending; 方式二:对所述热塑性弹性体进行化学改性,包括热塑性弹性体的酰胺化改性、羟基化改性或羧基化改性;Method 2: chemically modify the thermoplastic elastomer, including amidation modification, hydroxylation modification or carboxylation modification of the thermoplastic elastomer; 方式三:对所述纳米粒子进行有机化官能团改性,包括纳米粒子的硅氧烷改性、羟基化改性、羧基化改性、过氧化物改性或硫化物改性。Mode 3: The nanoparticles are modified with organic functional groups, including siloxane modification, hydroxylation modification, carboxylation modification, peroxide modification or sulfide modification of the nanoparticles. 3.根据权利要求1或2所述的抑制热塑性弹性体微孔发泡材料泡孔回缩的方法,其特征在于,所述热塑性弹性体与纳米粒子的质量比为:95~99.75wt.%:0.25~5wt.%。3. The method for inhibiting cell shrinkage of thermoplastic elastomer microcellular foam material according to claim 1 or 2, wherein the mass ratio of the thermoplastic elastomer to nanoparticles is: 95-99.75wt.% : 0.25 to 5 wt.%. 4.根据权利要求1~3任一项所述的抑制热塑性弹性体微孔发泡材料泡孔回缩的方法,其特征在于,所述物理键接指氢键或范德华力;The method for inhibiting cell shrinkage of a thermoplastic elastomer microcellular foam material according to any one of claims 1 to 3, wherein the physical bonding refers to hydrogen bonding or van der Waals force; 进一步,所述的化学交联是由硅氧键、二硫键或过氧键引起的交联。Further, the chemical cross-linking is caused by silicon-oxygen bond, disulfide bond or peroxy bond. 5.根据权利要求1~4任一项所述的抑制热塑性弹性体微孔发泡材料泡孔回缩的方法,其特征在于,所述热塑性弹性体选自热塑性聚氨酯类弹性体、苯乙烯类热塑性弹性体、聚烯烃型热塑性弹性体或聚酯类热塑性弹性体;The method for inhibiting cell shrinkage of a thermoplastic elastomer microcellular foam material according to any one of claims 1 to 4, wherein the thermoplastic elastomer is selected from the group consisting of thermoplastic polyurethane elastomers, styrene-based elastomers thermoplastic elastomer, polyolefin thermoplastic elastomer or polyester thermoplastic elastomer; 进一步,所述纳米粒子选自纳米蒙脱土、碳纳米管、碳纳米纤维、石墨烯或二氧化硅。Further, the nanoparticles are selected from nano-montmorillonite, carbon nanotubes, carbon nanofibers, graphene or silicon dioxide. 6.根据权利要求5所述的抑制热塑性弹性体微孔发泡材料泡孔回缩的方法,其特征在于,所述热塑性弹性体和纳米粒子体系包括:热塑性聚氨酯和有机蒙脱土、苯乙烯类热塑性弹性体和碳纳米管、聚烯烃型热塑性弹性体和碳纳米纤维,或:聚酯类热塑性弹性体和石墨烯。6. The method for inhibiting cell shrinkage of thermoplastic elastomer microcellular foam material according to claim 5, wherein the thermoplastic elastomer and nanoparticle system comprise: thermoplastic polyurethane, organic montmorillonite, styrene Thermoplastic Elastomers and Carbon Nanotubes, Polyolefin Thermoplastic Elastomers and Carbon Nanofibers, or: Polyester Thermoplastic Elastomers and Graphene. 7.根据权利要求1~6任一项所述的抑制热塑性弹性体微孔发泡材料泡孔回缩的方法,其特征在于,所述抑制热塑性弹性体微孔发泡材料泡孔回缩的方法为:先将纳米粒子与热塑性弹性体通过熔融共混,将纳米粒子均匀地分布在热塑性弹性体中得热塑性弹性体-纳米粒子共混材料;然后将所得共混材料发泡制得热塑性弹性体发泡材料;其中,熔融共混前根据需要对纳米粒子进行有机化官能团改性和/或对热塑性弹性体进行化学改性。7. The method for inhibiting cell shrinkage of thermoplastic elastomer microcellular foam material according to any one of claims 1 to 6, wherein the method for inhibiting cell shrinkage of thermoplastic elastomer microcellular foam material The method is as follows: firstly, the nanoparticles and the thermoplastic elastomer are melt-blended, and the nanoparticles are uniformly distributed in the thermoplastic elastomer to obtain a thermoplastic elastomer-nanoparticle blend material; then the obtained blend material is foamed to obtain a thermoplastic elastomer Bulk foam material; wherein, before melt blending, the nanoparticles are modified with organic functional groups and/or the thermoplastic elastomer is chemically modified as required. 8.根据权利要求5~7任一项所述的抑制热塑性弹性体微孔发泡材料泡孔回缩的方法,其特征在于,当所述热塑性弹性体为热塑性聚氨酯时,所述抑制热塑性弹性体微孔发泡材料泡孔回缩的方法为:通过双螺杆挤出机将双十八烷基二甲基溴化铵改性的纳米粒子与热塑性聚氨酯进行二次熔融共混,将纳米粒子均匀的分布在热塑性聚氨酯中得热塑性聚氨酯-纳米粒子共混材料;然后采用超临界二氧化碳发泡法制备热塑性聚氨酯发泡材料。The method for inhibiting cell shrinkage of a thermoplastic elastomer microcellular foam material according to any one of claims 5 to 7, wherein when the thermoplastic elastomer is thermoplastic polyurethane, the inhibiting thermoplastic elasticity The method for cell shrinkage of the bulk microcellular foam material is as follows: secondary melt blending of the nanoparticles modified by dioctadecyldimethylammonium bromide and thermoplastic polyurethane through a twin-screw extruder; The thermoplastic polyurethane-nanoparticle blend material is uniformly distributed in the thermoplastic polyurethane; and the thermoplastic polyurethane foam material is prepared by the supercritical carbon dioxide foaming method. 9.根据权利要求8所述的抑制热塑性弹性体微孔发泡材料泡孔回缩的方法,其特征在于,通过双螺杆挤出机将双十八烷基二甲基溴化铵改性的纳米粒子与热塑性聚氨酯进行二次熔融共混的方法为:先利用双螺杆挤出机挤出成型纳米粒子质量分数为10~20wt.%的热塑性聚氨酯-纳米粒子母料;然后将热塑性聚氨酯与母料共混挤出质量分数为0.25wt.%~5wt.%的热塑性聚氨酯-纳米粒子共混材料。9. The method for inhibiting cell shrinkage of thermoplastic elastomer microcellular foamed material according to claim 8, wherein the dioctadecyldimethylammonium bromide is modified by a twin-screw extruder. The method for secondary melt blending of nanoparticles and thermoplastic polyurethane is as follows: first, a twin-screw extruder is used to extrude a thermoplastic polyurethane-nanoparticle masterbatch with a mass fraction of nanoparticles of 10-20 wt.%; A thermoplastic polyurethane-nanoparticle blend material with a mass fraction of 0.25wt.% to 5wt.% is extruded by blending and extruding the material. 10.根据权利要求8或9所述的抑制热塑性弹性体微孔发泡材料泡孔回缩的方法,其特征在于,所述超临界二氧化碳发泡法为:将热塑性聚氨酯-纳米粒子共混材料在高温高压反应釜中,CO2溶胀饱和,快速泄压发泡制备热塑性聚氨酯微孔发泡材料;其中,高温指温度为145~165℃,高压指压力为13~16MPa。10. The method for inhibiting cell shrinkage of thermoplastic elastomer microcellular foam material according to claim 8 or 9, wherein the supercritical carbon dioxide foaming method is: thermoplastic polyurethane-nanoparticle blend material In the high temperature and high pressure reaction kettle, CO 2 is swelled to saturation, and the thermoplastic polyurethane microcellular foam material is prepared by rapid pressure relief foaming; wherein, high temperature refers to a temperature of 145-165 °C, and high pressure refers to a pressure of 13-16 MPa.
CN202010608428.XA 2020-06-30 2020-06-30 A method for improving cell retraction behavior of thermoplastic elastomer microcellular foam material Pending CN111675896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010608428.XA CN111675896A (en) 2020-06-30 2020-06-30 A method for improving cell retraction behavior of thermoplastic elastomer microcellular foam material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010608428.XA CN111675896A (en) 2020-06-30 2020-06-30 A method for improving cell retraction behavior of thermoplastic elastomer microcellular foam material

Publications (1)

Publication Number Publication Date
CN111675896A true CN111675896A (en) 2020-09-18

Family

ID=72437482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010608428.XA Pending CN111675896A (en) 2020-06-30 2020-06-30 A method for improving cell retraction behavior of thermoplastic elastomer microcellular foam material

Country Status (1)

Country Link
CN (1) CN111675896A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316205A (en) * 2021-12-08 2022-04-12 山东奥卓新材料有限公司 High-strength low-dynamic-static-stiffness-ratio polyurethane microporous elastic base plate and preparation method thereof
CN114410102A (en) * 2022-01-29 2022-04-29 中山大学南昌研究院 Microporous thermoplastic polyurethane nano composite foaming coiled material, preparation method thereof and application thereof in polishing pad
CN115028955A (en) * 2022-05-24 2022-09-09 江苏集萃先进高分子材料研究所有限公司 Olefin block copolymer foam material, preparation method and performance prediction method
CN116872080A (en) * 2023-09-06 2023-10-13 中山大学 Polishing layer for preparing polishing pad and preparation method and application thereof
CN117020935A (en) * 2023-09-06 2023-11-10 中山大学 Polyurethane polishing pad and preparation method and application thereof
CN119567491A (en) * 2025-02-08 2025-03-07 浙江佳纬新材料有限公司 Method for improving shrinkage phenomenon of thermoplastic elastomer plate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160083584A1 (en) * 2014-09-23 2016-03-24 The Boeing Company Nanoparticles for improving the dimensional stability of resins
CN106867228A (en) * 2015-12-10 2017-06-20 福建新峰二维材料科技有限公司 A kind of preparation method of the elastomer foamed material of modified thermoplastic polyurethane
CN106957449A (en) * 2016-01-11 2017-07-18 福建新峰二维材料科技有限公司 A kind of preparation method of Thermoplastic polyurethane elastomer foam material
CN107556513A (en) * 2017-09-14 2018-01-09 四川大学 A kind of Crystalline plastics expanded particle formed body and preparation method thereof
CN108239386A (en) * 2016-12-26 2018-07-03 万华化学集团股份有限公司 A kind of extrusion foaming thermoplastic polyurethane elastomer particle and preparation method thereof
CN108912660A (en) * 2018-07-20 2018-11-30 山东诺威聚氨酯股份有限公司 High-performance modified montmorillonite/thermoplastic polyurethane elastomer expanded bead and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160083584A1 (en) * 2014-09-23 2016-03-24 The Boeing Company Nanoparticles for improving the dimensional stability of resins
CN106867228A (en) * 2015-12-10 2017-06-20 福建新峰二维材料科技有限公司 A kind of preparation method of the elastomer foamed material of modified thermoplastic polyurethane
CN106957449A (en) * 2016-01-11 2017-07-18 福建新峰二维材料科技有限公司 A kind of preparation method of Thermoplastic polyurethane elastomer foam material
CN108239386A (en) * 2016-12-26 2018-07-03 万华化学集团股份有限公司 A kind of extrusion foaming thermoplastic polyurethane elastomer particle and preparation method thereof
CN107556513A (en) * 2017-09-14 2018-01-09 四川大学 A kind of Crystalline plastics expanded particle formed body and preparation method thereof
CN108912660A (en) * 2018-07-20 2018-11-30 山东诺威聚氨酯股份有限公司 High-performance modified montmorillonite/thermoplastic polyurethane elastomer expanded bead and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIN LAN等: ""Dynamic self generation of hydrogen bonding and relaxation of polymer chain segment in stabilizing thermoplastic polyurethane microcellular foams"", 《MATERIALS TODAY COMMUNICATIONS》 *
EMINE BURSA KUCUK等: ""Effect of TPU hard segment content on TPU"s bead foaming behavior"", 《PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY (PPS-35)》 *
王华东等: ""蒙脱土填充环氧化天然橡胶/PVC热塑性弹性体的制备与性能研究"", 《塑料工业》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316205A (en) * 2021-12-08 2022-04-12 山东奥卓新材料有限公司 High-strength low-dynamic-static-stiffness-ratio polyurethane microporous elastic base plate and preparation method thereof
CN114410102A (en) * 2022-01-29 2022-04-29 中山大学南昌研究院 Microporous thermoplastic polyurethane nano composite foaming coiled material, preparation method thereof and application thereof in polishing pad
CN114410102B (en) * 2022-01-29 2022-09-13 浙江环龙新材料科技有限公司 Microporous thermoplastic polyurethane nano composite foaming coiled material, preparation method thereof and application thereof in polishing pad
CN115028955A (en) * 2022-05-24 2022-09-09 江苏集萃先进高分子材料研究所有限公司 Olefin block copolymer foam material, preparation method and performance prediction method
CN115028955B (en) * 2022-05-24 2023-08-18 江苏集萃先进高分子材料研究所有限公司 Olefin block copolymer foaming material, preparation method and performance prediction method
CN116872080A (en) * 2023-09-06 2023-10-13 中山大学 Polishing layer for preparing polishing pad and preparation method and application thereof
CN117020935A (en) * 2023-09-06 2023-11-10 中山大学 Polyurethane polishing pad and preparation method and application thereof
CN116872080B (en) * 2023-09-06 2023-12-05 中山大学 Polishing layer for preparing polishing pad and preparation method and application thereof
CN117020935B (en) * 2023-09-06 2024-04-26 中山大学 Polyurethane polishing pad and preparation method and application thereof
CN119567491A (en) * 2025-02-08 2025-03-07 浙江佳纬新材料有限公司 Method for improving shrinkage phenomenon of thermoplastic elastomer plate

Similar Documents

Publication Publication Date Title
CN111675896A (en) A method for improving cell retraction behavior of thermoplastic elastomer microcellular foam material
CN114773658B (en) Wear-resistant, light and anti-slip high-soft-elasticity cushioning EVA (ethylene-vinyl acetate) foam sole material and preparation method and application thereof
CN112812515A (en) Degradable foaming material and preparation method thereof
CN110577696B (en) A kind of high wear-resistant EVA foam material and preparation method thereof
CN107599296B (en) Micropore injection moulding foaming preparation polylactic acid-natural rubber porous material method and material
JP2010537013A5 (en)
Hassan et al. Cells analyses, mechanical and thermal stability of extruded polylactic acid/kenaf bio-composite foams
CN101250306A (en) High toughness thermoplastic elastomer/polystyrene composite material and preparation method thereof
CN110564035A (en) Ultrahigh molecular weight polyethylene composite material and preparation method thereof
CN104072959A (en) Oxidized graphene modified foam material and preparation method thereof
CN118895018B (en) Gel powder with high mechanical property and preparation method and application thereof
CN115785577B (en) Rubber composition, preparation method thereof and sealing strip
CN113150360B (en) Method for Promoting the Dispersion of Nanofillers by Utilizing the Stretching Effect of Pore Wall of Polymer Foaming Material
CN109081979B (en) A kind of preparation method of ultra-high molecular weight polyethylene nanocomposite material
CN104385479A (en) Method for preparing TPU foamed beads by continuous extrusion foaming
CN101016399A (en) Inorganic nano particle/polymer composite material and preparing method thereof
CN110903627A (en) Thermoplastic elastomer blend supercritical foaming material and preparation method thereof
CN109401253B (en) Biodegradable toughened composite material and preparation method thereof
JP2004352760A (en) Foamed rubber composition and its manufacturing method
CN105670134A (en) Blow-molding-grade TPV (thermoplastic vulcanizate) material for dust shields and preparation method thereof
CN106832582B (en) A kind of preparation method of high-ductility polypropylene based composites
Julkapli et al. Bio-nanocomposites from natural fibre derivatives: manufacturing and properties
CN102070865A (en) Modified TPI/PP dynamically vulcanized thermoplastic elastomer
CN103160082A (en) Polylactic acid/stem grafting ethylene vinyl acetate (EVA)/imvite nano composite materials and preparation method thereof
CN116535725A (en) Preparation method, product and application of a negative Poisson's ratio bio-based flexible sensing material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200918