[go: up one dir, main page]

CN111671904B - Medicine containing endonuclease inhibiting function and anti-tumor application thereof - Google Patents

Medicine containing endonuclease inhibiting function and anti-tumor application thereof Download PDF

Info

Publication number
CN111671904B
CN111671904B CN202010295776.6A CN202010295776A CN111671904B CN 111671904 B CN111671904 B CN 111671904B CN 202010295776 A CN202010295776 A CN 202010295776A CN 111671904 B CN111671904 B CN 111671904B
Authority
CN
China
Prior art keywords
rna
endod1
artificial sequence
endonuclease
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010295776.6A
Other languages
Chinese (zh)
Other versions
CN111671904A (en
Inventor
刘聪
唐子执
曾鸣
王小军
母得志
孔道春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Jiluokelin Biology Technology Co ltd
West China Second University Hospital of Sichuan University
Original Assignee
Chengdu Jiluokelin Biology Technology Co ltd
West China Second University Hospital of Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Jiluokelin Biology Technology Co ltd, West China Second University Hospital of Sichuan University filed Critical Chengdu Jiluokelin Biology Technology Co ltd
Priority to CN202211388535.1A priority Critical patent/CN115554405B/en
Priority to CN202211388556.3A priority patent/CN115998872B/en
Priority to CN202010295776.6A priority patent/CN111671904B/en
Publication of CN111671904A publication Critical patent/CN111671904A/en
Application granted granted Critical
Publication of CN111671904B publication Critical patent/CN111671904B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering nucleic acids [NA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Biophysics (AREA)
  • Communicable Diseases (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention discloses an inhibitory drug of ENDOD1 endonuclease and an SSA enhancer, and application of the inhibitory drug of ENDOD1 endonuclease and the SSA enhancer in the preparation of drugs for treating or preventing human tumors and hepatitis B virus infection diseases. The endonuclease is an endonuclease encoded by an ENDOD1 gene, the inhibitory drug inhibits the gene expression, activity and/or function of the ENDOD1 endonuclease, and the SSA enhancer upregulates the activity or function of single-stranded DNA fusion repair (SSA). The ENDOD1 endonuclease inhibitory drug or SSA enhancer can effectively inhibit or kill tumor cells with DNA homologous recombination, DNA damage response, DNA damage repair, gene mutation of cancer suppressor genes, gene expression or function defect, and has no toxicity to the genes or normal non-tumor cells.

Description

一种含有抑制核酸内切酶功能的药物及其抗肿瘤的用途A drug containing the function of inhibiting endonuclease and its anti-tumor application

技术领域technical field

本发明属于医药领域,具体涉及利用抑制ENDOD1核酸内切酶的功能在制备治 疗或者预防人类肿瘤的药物中的用途。The invention belongs to the field of medicine, and in particular relates to the use of the function of inhibiting ENDOD1 endonuclease in the preparation of medicines for treating or preventing human tumors.

背景技术Background technique

恶性肿瘤对化学药物的抵抗性高,易于发生耐药,要达到暂时控制肿瘤生 长、延长患者生存时间的目标都很困难,因此开发新一代肿瘤靶向治疗的临床需 求特别迫切,其关键是发现能够有效杀伤肿瘤细胞,但对正常非肿瘤细胞伤害相 对很小的药物。其中一种达到此目的的药物研发策略是合成致死(synthetic lethality),即发现肿瘤细胞的特定缺陷,并确定在该缺陷状态下破坏另外某个 细胞功能会导致肿瘤细胞的死亡(参见:O'Neil,N.J.,M.L.Bailey,and P. Hieter,Synthetic lethality and cancer.Nat RevGenet,2017.18(10):p. 613-623.)。Malignant tumors are highly resistant to chemical drugs and are prone to drug resistance. It is very difficult to achieve the goal of temporarily controlling tumor growth and prolonging the survival time of patients. Therefore, the clinical needs of developing a new generation of tumor targeted therapy are particularly urgent. Drugs that can effectively kill tumor cells but cause relatively little damage to normal non-tumor cells. One of the drug development strategies to achieve this goal is synthetic lethality (synthetic lethality), that is, to discover a specific defect in tumor cells, and to determine that destroying another cell function in this defective state will lead to the death of tumor cells (see: O' Neil, N.J., M.L. Bailey, and P. Hieter, Synthetic lethality and cancer. Nat Rev Genet, 2017.18(10): p. 613-623.).

正常细胞的基因组随时面临DNA损伤因素的威胁,导致癌基因和抑癌基因的 突变和细胞增殖失控,促进肿瘤发生。在这个过程中,DNA损伤应答、DNA修复机 制发挥关键作用,抑制肿瘤相关的基因组突变,消除基因组结构异常或复制缺陷 的细胞,保证基因组的稳定性和器官组织的非癌化(参见:Jeggo,P.A.,L.H. Pearl,and A.M.Carr,DNA repair,genome stability and cancer:a historical perspective.Nat Rev Cancer,2016.16(1):p.35-42.)。常见 的抑癌基因包括PTEN、CDKN2A、TP53、APC、VHL、p16INK4A、p14ARF、LKB1、FBXW7、 NF1、NF2和WT-1等,其突变导致神经胶质瘤、神经纤维瘤、肺癌、胃癌、肝癌、黑色素瘤、大肠癌、鼻咽癌、肾癌和淋巴瘤的发生(参见:Wang,L.H.,et al., Loss ofTumor Suppressor Gene Function in Human Cancer:An Overview.Cell PhysiolBiochem,2018.51(6):p.2647-2693.)。特别是TP53基因,其突变广 泛存在于50-80%的肿瘤中,并且可以被人乳头瘤病毒(HPV)、乙型肝炎病毒(HBV) 等病毒因子破坏(参见:Aubrey,B.J.,A.Strasser,and G.L.Kelly, Tumor-Suppressor Functions of the TP53Pathway.Cold Spring Harb Perspect Med,2016.6(5).)。The genome of normal cells faces the threat of DNA damage factors at any time, leading to mutations of oncogenes and tumor suppressor genes and uncontrolled cell proliferation, which promotes tumorigenesis. In this process, DNA damage response and DNA repair mechanism play a key role, inhibit tumor-related genomic mutations, eliminate cells with abnormal genome structure or replication defects, and ensure genome stability and non-cancerous organ tissue (see: Jeggo, P.A., L.H. Pearl, and A.M. Carr, DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer, 2016.16(1): p.35-42.). Common tumor suppressor genes include PTEN, CDKN2A, TP53, APC, VHL, p16INK4A, p14ARF, LKB1, FBXW7, NF1, NF2 and WT-1, etc., whose mutations lead to glioma, neurofibroma, lung cancer, gastric cancer, liver cancer , melanoma, colorectal cancer, nasopharyngeal cancer, kidney cancer and lymphoma (see: Wang, L.H., et al., Loss of Tumor Suppressor Gene Function in Human Cancer: An Overview. Cell Physiol Biochem, 2018.51(6): p .2647-2693.). Especially the TP53 gene, whose mutation is widely present in 50-80% of tumors, and can be disrupted by viral agents such as human papillomavirus (HPV), hepatitis B virus (HBV) (see: Aubrey, B.J., A.Strasser , and G.L. Kelly, Tumor-Suppressor Functions of the TP53 Pathway. Cold Spring Harb Perspect Med, 2016.6(5).).

人类细胞中,DNA损伤应答主要由ATM和ATR激酶调控,通过γH2AX、53BP1、 MDC1和CDC25等信号转导通路激活CHK1、CHK2,控制细胞周期进展,促进DNA损伤 修复机制的激活。已知的DNA损伤修复机制包括非同样末端链接(NHEJ)、同源重 组修复(HR)、单链DNA融合(SSA)、核苷酸切除修复(NER)、碱基切除修复(BER)、 单链DNA断裂修复(SSR)等(参见:Chatterjee,N.and G.C.Walker,Mechanisms of DNA damage,repair,andmutagenesis.Environ Mol Mutagen,2017.58(5): p.235-263.)。这些机制失活导致皮肤癌、乳腺癌、卵巢癌、肝癌、胆管细胞癌、 大肠癌、前列腺癌和白血病等的发生。In human cells, the DNA damage response is mainly regulated by ATM and ATR kinases, which activate CHK1 and CHK2 through signal transduction pathways such as γH2AX, 53BP1, MDC1 and CDC25, control cell cycle progression, and promote the activation of DNA damage repair mechanisms. Known DNA damage repair mechanisms include non-identical end joining (NHEJ), homologous recombination repair (HR), single-strand DNA fusion (SSA), nucleotide excision repair (NER), base excision repair (BER), single Strand DNA break repair (SSR), etc. (See: Chatterjee, N. and G.C. Walker, Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen, 2017.58(5): p.235-263.). Inactivation of these mechanisms leads to the development of skin cancer, breast cancer, ovarian cancer, liver cancer, cholangiocarcinoma, colorectal cancer, prostate cancer and leukemia.

细胞增殖过程中,DNA复制产生大量DNA损伤,易导致基因突变。这些损伤 主要由依赖同源序列的修复机制消除,如HR、SSA。HR主要由BRCA1、BRCA2、MRE11、 NBS1、BLM、53BP1、RAD51、RPA、WDR70和范可尼(FANC)等因子调控,而SSA 则依赖RAD52、MRE11、RAD54B和RPA等相关的修复因子(参见:Haber,J.E.,DNA Repair:The Search forHomology.Bioessays,2018.40(5):p.e1700229.)。In the process of cell proliferation, DNA replication produces a large amount of DNA damage, which easily leads to gene mutation. These damages are mainly eliminated by repair mechanisms relying on homologous sequences, such as HR, SSA. HR is mainly regulated by factors such as BRCA1, BRCA2, MRE11, NBS1, BLM, 53BP1, RAD51, RPA, WDR70 and Fanconi (FANC), while SSA depends on related repair factors such as RAD52, MRE11, RAD54B and RPA (see: Haber, J.E., DNA Repair: The Search for Homology. Bioessays, 2018.40(5): p.e1700229.).

SSA机制在进化过程中极为保守,主要发生在DNA断点附近的同源序列,其 过程依赖RAD52等修复因子结合DNA断点形成核蛋白复合物突触,侵入并融合位于 DNA断点附近的同源序列。RAD52是SSA通路的关键分子,可以直接结合在加工后 的DNA断裂末端,特别是单链DNA产物,保护加工后的DNA免受核酸酶的降解,促 进单链DNA上同源序列的融合(参见:Wu,Y.,et al.,The DNA binding preference of RAD52 and RAD59 proteins:implications for RAD52 and RAD59 protein function in homologousrecombination.J Biol Chem,2006.281(52): p.40001-9.)。RAD52还可以在同源重组修复后期促进链间交换。RAD52也可以结 合在复制叉阻滞形成的单链DNA上,维持复制叉的稳定,防止新复制的DNA链被降 解,对复制过程中DNA的稳定性起重要作用(参见:Malacaria,E.,et al.,Rad52 prevents excessive replication fork reversal and protectsfrom nascent strand degradation.Nat Commun,2019.10(1):p.1412.)。由于可能导致同源序列的丢失,SSA被认为是一种低保真甚至有毒性的修复方式。因此,SSA通路 调控的紊乱可能导致DNA应答和损伤修复的缺陷,导致基因组的不稳定。The SSA mechanism is extremely conserved during evolution, mainly occurring in homologous sequences near DNA breakpoints. The process relies on repair factors such as RAD52 to combine with DNA breakpoints to form nucleoprotein complex synapses, invade and fuse homologous sequences near DNA breakpoints. source sequence. RAD52 is a key molecule of the SSA pathway, which can directly bind to the broken end of the processed DNA, especially the single-stranded DNA product, protect the processed DNA from nuclease degradation, and promote the fusion of homologous sequences on the single-stranded DNA (see : Wu, Y., et al., The DNA binding preference of RAD52 and RAD59 proteins: implications for RAD52 and RAD59 protein function in homologous recombination. J Biol Chem, 2006.281(52): p.40001-9.). RAD52 also promotes interstrand exchange during late homologous recombination repair. RAD52 can also bind to the single-stranded DNA formed by the replication fork block, maintain the stability of the replication fork, prevent the newly replicated DNA strand from being degraded, and play an important role in the stability of DNA during the replication process (see: Malacaria, E., et al., Rad52 prevents excessive replication fork reversal and protects from nascent strand degradation. Nat Commun, 2019.10(1):p.1412.). Due to the possibility of loss of homologous sequences, SSA is considered a low-fidelity or even toxic repair method. Thus, disturbances in the regulation of the SSA pathway may lead to defects in DNA response and damage repair, resulting in genomic instability.

发明内容Contents of the invention

本发明的目的在于提供了一种ENDOD1核酸内切酶抑制性药物或者SSA增强剂 及其在制备制造预防或治疗肿瘤药物的用途,尤其用于治疗带有DNA同源重组缺 陷、DNA损伤应答缺陷、DNA修复缺陷、TP53等抑癌基因的基因突变、基因表达或 功能缺陷的肿瘤的用途。The purpose of the present invention is to provide an ENDOD1 endonuclease inhibitory drug or SSA enhancer and its use in the preparation and manufacture of drugs for the prevention or treatment of tumors, especially for the treatment of DNA homologous recombination defects and DNA damage response defects , DNA repair defects, TP53 and other tumor suppressor gene mutations, gene expression or functional defects in tumors.

本发明的ENDOD1核酸内切酶作为全新的广谱抗肿瘤药物靶点,该核酸内切酶 是由ENDOD1基因编码的蛋白质,其中所述ENDOD1的mRNA序列为SEQ IDNo.1(对应 的NCBI参考号NM_015036.3),所述蛋白质的编码氨基酸序列为NCBI登录号 NP_055851.1对应的序列。The ENDOD1 endonuclease of the present invention is as a brand-new broad-spectrum antitumor drug target, and this endonuclease is the protein encoded by the ENDOD1 gene, wherein the mRNA sequence of the ENDOD1 is SEQ ID No.1 (corresponding NCBI reference number NM_015036.3), the encoded amino acid sequence of the protein is the sequence corresponding to NCBI accession number NP_055851.1.

本文中的ENDOD1核酸内切酶抑制性药物也可称为ENDOD1核酸内切酶抑制剂。The ENDOD1 endonuclease inhibitory drug herein may also be referred to as an ENDOD1 endonuclease inhibitor.

在一实施方案中,本发明提供了一种治疗或者预防肿瘤的方法,包含给肿瘤 患者服用有效量的ENDOD1核酸内切酶抑制性药物或SSA增强剂,所述抑制性药 物抑制ENDOD1核酸内切酶的功能,所述核酸内切酶为ENDOD1核酸内切酶基因编 码的核酸内切酶。所述SSA增强剂可以提高单链DNA融合修复(single strand annealing,SSA)的功能。In one embodiment, the present invention provides a method for treating or preventing tumors, comprising administering an effective amount of ENDOD1 endonuclease inhibitory drugs or SSA enhancers to tumor patients, and the inhibitory drugs inhibit ENDOD1 endonuclease The function of the enzyme, the endonuclease is the endonuclease encoded by the ENDOD1 endonuclease gene. The SSA enhancer can improve the function of single strand DNA fusion repair (single strand annealing, SSA).

上述本发明的治疗方法,所述肿瘤含有DNA同源重组缺陷、DNA损伤应答缺 陷、DNA修复缺陷、TP53等抑癌基因的基因突变、基因表达或功能缺陷。具体包 括肺癌、乳腺癌、大肠癌、胃癌、肝癌、卵巢癌、宫颈癌、淋巴瘤、白血病、前 列腺癌、黑色素瘤、子宫内膜癌、神经母细胞瘤、神经胶质瘤、肉瘤或/和胆管 细胞癌。In the above treatment method of the present invention, the tumor contains DNA homologous recombination defects, DNA damage response defects, DNA repair defects, gene mutations, gene expression or functional defects of tumor suppressor genes such as TP53. Specifically includes lung cancer, breast cancer, colorectal cancer, stomach cancer, liver cancer, ovarian cancer, cervical cancer, lymphoma, leukemia, prostate cancer, melanoma, endometrial cancer, neuroblastoma, glioma, sarcoma or/and Cholangiocarcinoma.

上述本发明的治疗方法,所述ENDOD1核酸内切酶抑制性药物或SSA增强剂 可以是任何对ENDOD1核酸内切酶有抑制作用的物质,所述SSA增强剂可以是任 何提高单链DNA融合修复(SSA)的物质,具体包括但不限于抗体、有机化合物 或天然化合物、小核酸、小核糖核酸、蛋白质、多肽、反义酸和无机物等物质。In the above treatment method of the present invention, the ENDOD1 endonuclease inhibitory drug or SSA enhancer can be any substance that has an inhibitory effect on ENDOD1 endonuclease, and the SSA enhancer can be any substance that improves single-stranded DNA fusion repair. (SSA) substances, including but not limited to antibodies, organic or natural compounds, small nucleic acids, small RNAs, proteins, polypeptides, antisense acids, and inorganic substances.

上述本发明的治疗方法,进一步包括与其它一种或多种抗肿瘤治疗方法联合 使用或形成组合物使用。所述其它一种或多种抗肿瘤治疗方法包括外科手术、放 射治疗、化学治疗、基因治疗、DNA治疗、病毒疗法、RNA治疗、靶向治疗、佐 剂治疗和/或免疫治疗。The above-mentioned treatment method of the present invention further includes using in combination with or forming a composition with one or more other anti-tumor treatment methods. The other one or more anti-tumor treatment methods include surgery, radiation therapy, chemotherapy, gene therapy, DNA therapy, virus therapy, RNA therapy, targeted therapy, adjuvant therapy and/or immunotherapy.

在一些实施方案中,本发明提供了一种治疗或预防肿瘤的药物组合物,含有ENDOD1核酸内切酶抑制性药物或SSA增强剂,所述ENDOD1抑制性药物能抑制 ENDOD1核酸内切酶的基因表达、活性或功能,所述核酸内切酶为ENDOD1核酸内 切酶基因编码的核酸内切酶。所述SSA增强剂可以上调单链DNA融合修复(SSA) 的功能。所述肿瘤带有DNA同源重组缺陷、DNA损伤应答缺陷、DNA修复缺陷、 TP53等抑癌基因的基因突变、基因表达或功能缺陷。具体为肺癌、乳腺癌、大 肠癌、胃癌、肝癌、卵巢癌、宫颈癌、淋巴瘤、白血病、前列腺癌、黑色素瘤、 子宫内膜癌、神经母细胞瘤、神经胶质瘤、肉瘤或/和胆管细胞癌。In some embodiments, the present invention provides a pharmaceutical composition for treating or preventing tumors, comprising an ENDOD1 endonuclease inhibitory drug or an SSA enhancer, and the ENDOD1 inhibitory drug can inhibit the gene of ENDOD1 endonuclease Expression, activity or function, the endonuclease is the endonuclease encoded by the ENDOD1 endonuclease gene. The SSA enhancer can up-regulate the function of single-strand DNA fusion repair (SSA). The tumor has DNA homologous recombination defect, DNA damage response defect, DNA repair defect, gene mutation, gene expression or function defect of tumor suppressor genes such as TP53. Specifically lung cancer, breast cancer, colorectal cancer, stomach cancer, liver cancer, ovarian cancer, cervical cancer, lymphoma, leukemia, prostate cancer, melanoma, endometrial cancer, neuroblastoma, glioma, sarcoma or/and Cholangiocarcinoma.

上述本发明的药物组合物,所述ENDOD1核酸内切酶抑制性药物可以是任何 对ENDOD1核酸内切酶有抑制作用的物质,所述SSA增强剂可以是任何上调单链 DNA融合修复(SSA)功能的物质,具体包括但不限于药物选自抗体、合成有机 化合物、天然有机化合物、小核酸、小核糖核酸、蛋白质、多肽、反义酸和无机 物等物质。In the above-mentioned pharmaceutical composition of the present invention, the ENDOD1 endonuclease inhibitory drug can be any substance that has an inhibitory effect on ENDOD1 endonuclease, and the SSA enhancer can be any up-regulated single-strand DNA fusion repair (SSA) Functional substances specifically include but are not limited to drugs selected from antibodies, synthetic organic compounds, natural organic compounds, small nucleic acids, small ribonucleic acids, proteins, polypeptides, antisense acids, and inorganic substances.

在一些实施方案中,本发明的ENDOD1核酸内切酶抑制性药物或SSA增强剂 在制造治疗和/或预防肿瘤药物中的用途,所述ENDOD1抑制性药物能抑制ENDOD1 核酸内切酶的基因表达、活性或功能,所述核酸内切酶为ENDOD1核酸内切酶基 因编码的核酸内切酶。所述SSA增强剂可以上调单链DNA融合修复(SSA)的功 能。In some embodiments, the ENDOD1 endonuclease inhibitory drug or SSA enhancer of the present invention is used in the manufacture of a drug for treating and/or preventing tumors, and the ENDOD1 inhibitory drug can inhibit the gene expression of ENDOD1 endonuclease , activity or function, the endonuclease is the endonuclease encoded by the ENDOD1 endonuclease gene. The SSA enhancer can up-regulate the function of single-strand DNA fusion repair (SSA).

上述本发明的用途,所述肿瘤带有DNA同源重组缺陷、DNA损伤应答缺陷、 DNA修复缺陷、TP53等抑癌基因的基因突变、基因表达或功能缺陷。所述肿瘤包 括但不限于肺癌、乳腺癌、大肠癌、胃癌、肝癌、卵巢癌、宫颈癌、淋巴瘤、白 血病、前列腺癌、黑色素瘤、子宫内膜癌、神经母细胞瘤、神经胶质瘤、肉瘤或 /和胆管细胞癌。In the above application of the present invention, the tumor has DNA homologous recombination defect, DNA damage response defect, DNA repair defect, gene mutation, gene expression or function defect of tumor suppressor genes such as TP53. The tumors include but not limited to lung cancer, breast cancer, colorectal cancer, gastric cancer, liver cancer, ovarian cancer, cervical cancer, lymphoma, leukemia, prostate cancer, melanoma, endometrial cancer, neuroblastoma, glioma , sarcoma and/or cholangiocarcinoma.

上述本发明的用途,所述ENDOD1核酸内切酶抑制性药物可以是对ENDOD1 核酸内切酶的基因表达、活性或功能有抑制作用的任何物质,所述SSA增强剂可 以是上调单链DNA融合修复(SSA)功能的任何物质,具体包括但不限于抗体、 有机化合物或天然化合物、小核酸、小核糖核酸、蛋白质、多肽、反义酸和无机 物等物质。In the above-mentioned purposes of the present invention, the ENDOD1 endonuclease inhibitory drug can be any substance that has an inhibitory effect on the gene expression, activity or function of the ENDOD1 endonuclease, and the SSA enhancer can be an up-regulated single-stranded DNA fusion Any substance that restores (SSA) function, including but not limited to antibodies, organic or natural compounds, small nucleic acids, small ribonucleic acids, proteins, polypeptides, antisense acids, and inorganic substances.

上述本发明的用途,进一步包括将所述ENDOD1核酸内切酶抑制性药物或SSA 增强剂与另一种或多种抗肿瘤药物或放疗联合使用或组成复合组合物使用。The above-mentioned use of the present invention further includes using the ENDOD1 endonuclease inhibitory drug or SSA enhancer in combination with another or more anti-tumor drugs or radiotherapy or forming a composite composition.

上述本发明的用途,所述另一种或多种抗肿瘤药物选自化疗药物、多肽药物、 抗体药物、TKI(激酶抑制剂)、小核酸和蛋白质药物。优选的,所述化疗药物选 自铂类、丝裂霉素C、喜树碱、PARP抑制剂、DNAPK抑制剂、放射性同位素、长 春花生物碱、抗肿瘤烷基化药物、单克隆抗体和抗代谢药物。In the above application of the present invention, the other or more anti-tumor drugs are selected from chemotherapy drugs, polypeptide drugs, antibody drugs, TKI (kinase inhibitors), small nucleic acid and protein drugs. Preferably, the chemotherapeutic drugs are selected from platinum, mitomycin C, camptothecin, PARP inhibitors, DNAPK inhibitors, radioisotopes, vinca alkaloids, anti-tumor alkylating drugs, monoclonal antibodies and anti- metabolize drugs.

上述本发明的用途,所述联用是指ENDOD1核酸内切酶抑制性药物或SSA增 强剂与另一种或多种抗肿瘤同时服用同时或者先后服用。In the above-mentioned use of the present invention, the combined use refers to the simultaneous or sequential administration of ENDOD1 endonuclease inhibitory drugs or SSA enhancers and another or more anti-tumor agents.

上述本发明的用途,所述DNA应答缺陷的肿瘤包括带有ATM、ATR、CHK1、CHK2、DNAPK基因突变或功能缺陷,或者带有CDC25A、CDC25B、CDC25C、Cyclin E、Cyclin B1、Cyclin D1过表达特征的肿瘤。In the above application of the present invention, the DNA response-deficient tumors include gene mutations or functional defects of ATM, ATR, CHK1, CHK2, and DNAPK, or overexpression of CDC25A, CDC25B, CDC25C, Cyclin E, Cyclin B1, and Cyclin D1 characteristic tumors.

在一些具体实施方案中,本发明的一种治疗或者预防肿瘤的方法,包括给治 疗对象服用有效量的ENDOD1核酸内切酶抑制性药物或SSA增强剂,所述抑制性 药物能抑制ENDOD1核酸内切酶的基因表达、活性或功能,所述SSA增强剂可以 上调单链DNA融合修复(SSA)功能,所述肿瘤带有DNA损伤修复的基因突变、 基因表达或功能缺陷。优选的,所述DNA损伤修复缺陷包括同源重组修复缺陷、 碱基切除修复缺陷、核苷酸切除缺陷、单链DNA断裂修复的缺陷,以及带有与所 述修复机制相关的基因突变或基因表达和功能缺陷。所述ENDOD1核酸内切酶抑 制性药物是任何一种能抑制ENDOD1核酸内切酶功能的物质,所述SSA增强剂可 以是上调单链DNA融合修复(SSA)功能的任何物质。In some specific embodiments, a method for treating or preventing tumors of the present invention comprises administering an effective amount of an ENDOD1 endonuclease inhibitory drug or an SSA enhancer to the subject, and the inhibitory drug can inhibit ENDOD1 endonuclease The gene expression, activity or function of Dicer, the SSA enhancer can up-regulate the single-strand DNA fusion repair (SSA) function, and the tumor has gene mutation, gene expression or function defect of DNA damage repair. Preferably, the DNA damage repair defect includes homologous recombination repair defect, base excision repair defect, nucleotide excision defect, single-strand DNA break repair defect, and a gene mutation or gene related to the repair mechanism Expression and function deficits. The ENDOD1 endonuclease inhibitory drug is any substance that can inhibit the function of ENDOD1 endonuclease, and the SSA enhancer can be any substance that up-regulates single-strand DNA fusion repair (SSA) function.

在一些具体实施方案中,本发明的一种治疗或者预防肿瘤的药物组合物,包 括ENDOD1核酸内切酶抑制性药物或SSA增强剂,所述ENDOD1抑制性药物能抑制 ENDOD1核酸内切酶的基因表达、活性或功能,所述SSA增强剂可以上调单链DNA 融合修复(SSA)功能,所述肿瘤带有抑癌基因的基因突变、基因表达或功能缺 陷。优选的,所述抑癌基因表达或功能缺陷包括TP53、PTEN、CDKN2A、APC、 p16INK4A、p14ARF、LKB1、FBXW等基因或蛋白质的基因突变或基因表达和功能 缺陷。In some specific embodiments, a pharmaceutical composition for treating or preventing tumors of the present invention includes an ENDOD1 endonuclease inhibitory drug or an SSA enhancer, and the ENDOD1 inhibitory drug can inhibit the gene of the ENDOD1 endonuclease Expression, activity or function, the SSA enhancer can up-regulate the single-strand DNA fusion repair (SSA) function, and the tumor has gene mutation, gene expression or function defect of tumor suppressor gene. Preferably, the tumor suppressor gene expression or functional defects include gene mutations or gene expression and functional defects of genes or proteins such as TP53, PTEN, CDKN2A, APC, p16INK4A, p14ARF, LKB1, FBXW.

上述的药物组合物,所述ENDOD1核酸内切酶抑制性药物可以是对ENDOD1 核酸内切酶的活性或功能有抑制作用的任何物质,具体包括但不限于抗体、有机 化合物或天然化合物、小核酸、小核糖核酸、蛋白质、多肽、反义酸和无机物等 物质。In the above-mentioned pharmaceutical composition, the ENDOD1 endonuclease inhibitory drug can be any substance that has an inhibitory effect on the activity or function of ENDOD1 endonuclease, specifically including but not limited to antibodies, organic compounds or natural compounds, small nucleic acid , small ribonucleic acid, protein, polypeptide, antisense acid and inorganic substances and other substances.

上述的药物组合物,所述SSA增强剂可以是上调单链DNA融合修复(SSA) 功能的任何物质,具体包括但不限于抗体、有机化合物或天然化合物、小核酸、 小核糖核酸、蛋白质、多肽、反义酸和无机物等物质。In the above-mentioned pharmaceutical composition, the SSA enhancer can be any substance that up-regulates the function of single-strand DNA fusion repair (SSA), specifically including but not limited to antibodies, organic compounds or natural compounds, small nucleic acids, small ribonucleic acids, proteins, polypeptides , antisense acid and inorganic substances and other substances.

在另一实施方案中,本发明提供了一种治疗和预防乙型肝炎病毒感染的方 法,包括给治疗对象服用有效剂量的ENDOD1核酸内切酶抑制性药物或SSA增强 剂,所述核酸内切酶为ENDOD1核酸内切酶基因编码的核酸内切酶。In another embodiment, the present invention provides a method for treating and preventing hepatitis B virus infection, comprising administering an effective dose of ENDOD1 endonuclease inhibitory drug or SSA enhancer to the subject, the endonuclease The enzyme is an endonuclease encoded by the ENDOD1 endonuclease gene.

上述的治疗方法或药物组合物,还包括与另一种或多种抗病毒治疗方法联合 使用或形成组合物使用。所述一种或多种抗病毒治疗方法包括抗病毒代谢药物治 疗、基因治疗、DNA治疗、RNA治疗、靶向治疗、佐剂治疗和/或免疫治疗。所述 核酸内切酶为ENDOD1核酸内切酶基因编码的核酸内切酶,所述ENDOD1核酸内切 酶抑制性药物可以是对ENDOD1核酸内切酶的活性或功能有抑制作用的任何物 质,所述SSA增强剂可以是上调单链DNA融合修复(SSA)功能的任何物质,具 体包括但不限于抗体、有机化合物或天然化合物、小核酸、小核糖核酸、蛋白质、 多肽、反义酸和无机物等物质。The above-mentioned treatment method or pharmaceutical composition also includes using in combination with or forming a composition with another or more antiviral treatment methods. The one or more antiviral treatment methods include antiviral metabolic drug therapy, gene therapy, DNA therapy, RNA therapy, targeted therapy, adjuvant therapy and/or immunotherapy. The endonuclease is an endonuclease encoded by the ENDOD1 endonuclease gene, and the ENDOD1 endonuclease inhibitory drug can be any substance that inhibits the activity or function of the ENDOD1 endonuclease, so The SSA enhancer can be any substance that up-regulates the function of single-strand DNA fusion repair (SSA), specifically including but not limited to antibodies, organic compounds or natural compounds, small nucleic acids, small ribonucleic acids, proteins, polypeptides, antisense acids and inorganic substances and other substances.

在另一具体实施方案中,本发明提供了一种治疗和预防乙型方案肝炎病毒感 染的药物组合物,含有有效剂量的ENDOD1核酸内切酶抑制性药物或SSA增强剂, 和药用辅料,所述核酸内切酶为ENDOD1核酸内切酶基因编码的核酸内切酶。优 选所述ENDOD1核酸内切酶抑制性药物可以是对ENDOD1核酸内切酶的活性或功能 有抑制作用的任何物质,所述SSA增强剂可以是上调单链DNA融合修复(SSA) 功能的任何物质,具体包括但不限于抗体、有机化合物或天然化合物、小核酸、 小核糖核酸、蛋白质、多肽、反义酸和无机物等物质。In another specific embodiment, the present invention provides a pharmaceutical composition for the treatment and prevention of hepatitis B virus infection, containing an effective dose of ENDOD1 endonuclease inhibitory drugs or SSA enhancers, and pharmaceutical excipients, The endonuclease is an endonuclease encoded by the ENDOD1 endonuclease gene. Preferably, the ENDOD1 endonuclease inhibitory drug can be any substance that inhibits the activity or function of ENDOD1 endonuclease, and the SSA enhancer can be any substance that up-regulates single-strand DNA fusion repair (SSA) function , including but not limited to antibodies, organic or natural compounds, small nucleic acids, small RNAs, proteins, polypeptides, antisense acids, and inorganic substances.

上述本发明的药物组合物,所述ENDOD1核酸内切酶抑制性药物或SSA增强剂 包括小分子化合物、抗体、多肽或反义化合物。In the above-mentioned pharmaceutical composition of the present invention, the ENDOD1 endonuclease inhibitory drug or SSA enhancer includes small molecule compounds, antibodies, polypeptides or antisense compounds.

在又一实方案中,ENDOD1核酸内切酶抑制性药物或SSA增强剂在制造治疗 和预防乙型肝炎病毒感染的药物中的用途,所述核酸内切酶为ENDOD1核酸内切 酶基因编码的核酸内切酶。还可进一步包括将ENDOD1核酸内切酶抑制性药物或 SSA增强剂与其他抗病毒治疗同时或者先后联合使用。In yet another embodiment, the use of ENDOD1 endonuclease inhibitory drugs or SSA enhancers in the manufacture of medicines for the treatment and prevention of hepatitis B virus infection, the endonuclease is encoded by the ENDOD1 endonuclease gene endonuclease. It may further include using ENDOD1 endonuclease inhibitory drugs or SSA enhancers simultaneously or sequentially in combination with other antiviral treatments.

上述的方法,所述ENDOD1核酸内切酶抑制性药物,其作用抑制ENDOD1核酸 内切酶和/或其调控基因的表达水平,抑制ENDOD1核酸内切酶的核酸内切酶活 性,阻断其DNA修复活性,破坏其亚细胞定位,破坏其蛋白质降解、泛素化、磷 酸化翻译后修饰,或者干扰ENDOD1核酸内切酶及其调控蛋白质的剪切和信号肽 成熟生物学功能。In the above method, the ENDOD1 endonuclease inhibitory drug acts to inhibit the expression level of ENDOD1 endonuclease and/or its regulatory gene, inhibits the endonuclease activity of ENDOD1 endonuclease, and blocks its DNA Repair activity, destroy its subcellular localization, destroy its post-translational modification of protein degradation, ubiquitination, phosphorylation, or interfere with the biological functions of ENDOD1 endonuclease and its regulatory protein cleavage and signal peptide maturation.

上述的方法,所述SSA增强剂,其作用可以上调单链DNA融合修复(SSA) 功能,增强RAD52、MRE11、RAD54B在DNA断裂位点的招募,增强RAD52与DNA 断点末端和单链DNA结合,增强RAD52与RPA70、RPA32的结合,或增强RAD52 促进单链DNA上同源序列的融合。In the above method, the SSA enhancer can up-regulate the single-strand DNA fusion repair (SSA) function, enhance the recruitment of RAD52, MRE11, and RAD54B at the DNA break site, and enhance the binding of RAD52 to the end of the DNA break point and single-stranded DNA , enhance the combination of RAD52 and RPA70, RPA32, or enhance RAD52 to promote the fusion of homologous sequences on single-stranded DNA.

本发明还提供了一种筛选抗肿瘤药物或抗乙肝感染药物的方法,包括将筛选 目标物质与ENDOD1核酸内切酶表达的细胞接触,选择对ENDOD1核酸内切酶的活 性、功能或表达有抑制作用的物质。The present invention also provides a method for screening anti-tumor drugs or anti-hepatitis B infection drugs, comprising contacting the screening target substance with cells expressing ENDOD1 endonuclease, and selecting for inhibition of the activity, function or expression of ENDOD1 endonuclease active substance.

本发明还提供了一种筛选抗肿瘤药物或抗乙肝感染药物的方法,包括将筛选 目标物质与目标细胞接触,选择对单链DNA融合(SSA)修复因子的活性、功能或 表达有上调作用的物质。The present invention also provides a method for screening anti-tumor drugs or anti-hepatitis B infection drugs, including contacting the screening target substance with target cells, and selecting the one that has an up-regulation effect on the activity, function or expression of single-stranded DNA fusion (SSA) repair factors substance.

人ENDOD1核酸内切酶(NCBI基因ID,23052)的同源基因广泛存在于高等真 核生物中,而不存在于酵母、果蝇和线虫等低等真核生物。Homologous genes of human ENDOD1 endonuclease (NCBI Gene ID, 23052) widely exist in higher eukaryotes, but not in lower eukaryotes such as yeast, Drosophila and nematodes.

人ENDOD1核酸内切酶基因编码500氨基酸残基(AA)的蛋白质产物,属于 His-Cys核酸内切酶家族。其ENDOD1核酸内切酶蛋白质有5种亚型,其产生是由于 ENDOD1核酸内切酶的翻译后酶切、信号肽剪切和泛素化修饰。The human ENDOD1 endonuclease gene encodes a protein product of 500 amino acid residues (AA), which belongs to the His-Cys endonuclease family. Its ENDOD1 endonuclease protein has five isoforms, which are produced due to post-translational cleavage, signal peptide cleavage and ubiquitination modification of ENDOD1 endonuclease.

人ENDOD1核酸内切酶在正常生长的细胞中定位于核膜和细胞核。在DNA损伤 后,ENDOD1核酸内切酶可进入DNA断点形成聚集点,与染色质紧密结合,招募于 DNA断点2.5Kb附近。The human ENDOD1 endonuclease localizes to the nuclear membrane and nucleus in normally growing cells. After DNA damage, ENDOD1 endonuclease can enter DNA breakpoints to form aggregation points, tightly bind to chromatin, and recruit around 2.5Kb of DNA breakpoints.

人ENDOD1核酸内切酶参与DNA修复,促进非同源末端链接(NHEJ)和同源重 组(HR)修复功能,更主要的是抑制单链DNA融合(SSA)的功能。ENDOD1核酸内 切酶抑制SSA的功能需要蛋白(RAD52)的参与,ENDOD1核酸内切酶还可以促进NHEJ 因子(γH2AX和53BP1等)和HR因子(BLM、MRE11等)在损伤位点的聚集。ENDOD1 核酸内切酶调控DNA损伤修复的功能依赖于它的核酸内切酶活性。Human ENDOD1 endonuclease participates in DNA repair, promotes non-homologous end joining (NHEJ) and homologous recombination (HR) repair functions, and more importantly, inhibits the function of single-strand DNA fusion (SSA). The function of ENDOD1 endonuclease to inhibit SSA requires the participation of protein (RAD52), and ENDOD1 endonuclease can also promote the accumulation of NHEJ factors (γH2AX and 53BP1, etc.) and HR factors (BLM, MRE11, etc.) at the damage site. The function of ENDOD1 endonuclease to regulate DNA damage repair depends on its endonuclease activity.

ENDOD1核酸内切酶具有核酸内切酶活性,可以切割带有结构损伤的DNA分 子,如紫外线损伤、DNA双链断裂(5’和3’overhang)、氧化损伤(过氧化氢处 理)等。ENDOD1 endonuclease has endonuclease activity and can cut DNA molecules with structural damage, such as ultraviolet damage, DNA double-strand breaks (5' and 3' overhang), oxidative damage (hydrogen peroxide treatment), etc.

ENDOD1核酸内切酶基因表达或功能抑制与多种DNA损伤应答功能的缺陷联 合致死,包括同源重组相关蛋白,具体的包括但不限于CHK1、ATM、CHK2、DNAPK 等。ENDOD1 endonuclease gene expression or functional inhibition is combined with multiple DNA damage response defects, including homologous recombination-related proteins, specifically including but not limited to CHK1, ATM, CHK2, DNAPK, etc.

ENDOD1核酸内切酶基因表达或功能抑制与多种DNA损伤修复功能的缺陷联 合致死,包括BRCA1、BRCA2、MRE11、ARID1A、ARID1B、CTIP、EXO1、FANC和WDR70 等。Inhibition of ENDOD1 endonuclease gene expression or function is lethal in combination with defects in multiple DNA damage repair functions, including BRCA1, BRCA2, MRE11, ARID1A, ARID1B, CTIP, EXO1, FANC, and WDR70.

同时抑制ENDOD1核酸内切酶和DNA损伤修复功能(如BRCA1)可以导致更加 严重的DNA修复缺陷。Simultaneous inhibition of ENDOD1 endonuclease and DNA damage repair functions (such as BRCA1) can lead to more severe DNA repair defects.

ENDOD1核酸内切酶功能抑制与TP53、PTEN等抑癌基因联合致死。Inhibition of ENDOD1 endonuclease function combined with TP53, PTEN and other tumor suppressor genes is lethal.

ENDOD1核酸内切酶是一个良好的肿瘤特异性治疗靶点,其理由是:The ENDOD1 endonuclease is a good tumor-specific therapeutic target for the following reasons:

1)ENDOD1核酸内切酶基因表达或功能抑制对正常非肿瘤细胞的增殖没有影响(如RPE-1、MRC-5和L02)。1) ENDOD1 endonuclease gene expression or functional inhibition has no effect on the proliferation of normal non-tumor cells (such as RPE-1, MRC-5 and L02).

2)ENDOD1核酸内切酶基因表达或功能抑制可以有效杀伤多种组织来源的肿瘤细胞,占所测试肿瘤细胞系的76%(19/25)。2) ENDOD1 endonuclease gene expression or functional inhibition can effectively kill tumor cells from various tissues, accounting for 76% (19/25) of the tested tumor cell lines.

3)ENDOD1核酸内切酶基因表达或功能抑制可以有效杀伤带有DNA修复基因突变或功能缺陷的肿瘤细胞。3) ENDOD1 endonuclease gene expression or functional inhibition can effectively kill tumor cells with DNA repair gene mutations or functional defects.

4)ENDOD1核酸内切酶基因表达或功能抑制可以有效杀伤带有TP53抑癌基因突变或功能缺陷的肿瘤细胞。4) ENDOD1 endonuclease gene expression or functional inhibition can effectively kill tumor cells with TP53 tumor suppressor gene mutation or functional defect.

5)ENDOD1核酸内切酶基因表达或功能抑制可以协同增强常规放化疗的抗肿瘤活性,而相同条件的药物处理对正常细胞没有显著细胞毒效应。5) ENDOD1 endonuclease gene expression or functional inhibition can synergistically enhance the antitumor activity of conventional radiotherapy and chemotherapy, while drug treatment under the same conditions has no significant cytotoxic effect on normal cells.

6)除了抑制ENDOD1核酸内切酶基因表达水平,特异性消除ENDOD1核酸内切酶的核酸酶活性区域也可以有效杀伤肿瘤细胞。6) In addition to inhibiting the expression level of the ENDOD1 endonuclease gene, specifically eliminating the nuclease active region of the ENDOD1 endonuclease can also effectively kill tumor cells.

实施例之一说明可以通过给治疗对象服用足够剂量的ENDOD1核酸内切酶抑 制性药物,可以特异性地治疗或预防带有DNA同源重组缺陷、DNA损伤应答缺陷、 DNA修复缺陷、TP53等抑癌基因的基因突变、基因表达或功能缺陷的肿瘤,但对 正常非肿瘤细胞没有杀伤作用。同样的原理也适用于可以提高SSA活性的药物 (SSA增强剂),因为可以预测ENDOD1抑制性药物能够有效增强SSA的活性,而杀 伤肿瘤依赖于SSA活性的增高,因此可以推断其他SSA增强剂也应该具有同样的治 疗效果。One of the examples illustrates that patients with DNA homologous recombination defects, DNA damage response defects, DNA repair defects, TP53 and other inhibitory drugs can be specifically treated or prevented by administering sufficient doses of ENDOD1 endonuclease inhibitory drugs to the treated subjects. Tumors with defective gene mutations, gene expression, or function of oncogenes, but have no killing effect on normal non-tumor cells. The same principle is also applicable to drugs that can increase the activity of SSA (SSA enhancers), because it can be predicted that ENDOD1 inhibitory drugs can effectively enhance the activity of SSA, and killing tumors depends on the increase of SSA activity, so it can be inferred that other SSA enhancers also should have the same therapeutic effect.

本发明发现要维持肿瘤细胞的生存,ENDOD1核酸内切酶表达或活性与抑癌 基因TP53、PTEN等的功能不能同时丢失,单链融合修复(SSA)活性增高不能同 时丢失抑癌基因TP53、PTEN等的功能。沉默ENDOD1核酸内切酶表达基因,或增 强单链融合修复(SSA),会显著导致TP53、PTEN等缺陷型肿瘤细胞的快速死亡。 与细胞学结果一致的是,TP53缺陷型肿瘤的小鼠模型会被体内沉默ENDOD1核 酸内切酶基因完全抑制。TP53、PTEN等抑癌基因缺陷型肿瘤包括任何降低、减 缓、损坏及预防TP53基因表达或蛋白质水平减低,以及行使抑癌基因正常功能 的缺陷,包括缺失、点突变、移码突变、基因表达减低(基因位点甲基化)等变异。这些突变是可通过任何正规测序试验中检测出的突变。在没有任何确定理论 的限制下,抑制ENDOD1核酸内切酶蛋白或增强单链融合修复(SSA)功能可以增 强TP53、PTEN等抑癌基因缺陷型癌症中肿瘤细胞的死亡。The present invention finds that to maintain the survival of tumor cells, the expression or activity of ENDOD1 endonuclease and the functions of tumor suppressor genes TP53 and PTEN cannot be lost at the same time, and the increase of single-strand fusion repair (SSA) activity cannot simultaneously lose tumor suppressor genes TP53 and PTEN and other functions. Silencing ENDOD1 endonuclease expression gene, or enhancing single-strand fusion repair (SSA), can significantly lead to the rapid death of TP53, PTEN and other deficient tumor cells. Consistent with the cytological results, mouse models of TP53-deficient tumors were completely suppressed by in vivo silencing of the ENDOD1 endonuclease gene. TP53, PTEN and other tumor suppressor gene deficient tumors include any reduction, slowdown, damage and prevention of TP53 gene expression or protein level reduction, as well as defects in the normal function of tumor suppressor genes, including deletion, point mutation, frameshift mutation, gene expression reduction (gene site methylation) and other variations. These mutations are those detectable by any formal sequencing assay. Without being bound by any definitive theory, inhibition of the ENDOD1 endonuclease protein or enhancement of single-strand fusion repair (SSA) function can enhance tumor cell death in cancers deficient in TP53, PTEN, and other tumor suppressor genes.

本发明还发现要维持肿瘤细胞的生存,ENDOD1核酸内切酶活性与同源重组 修复基因(如BRCA1、BRCA2、WDR70和FANC等)的功能不能同时丢失,单链融 合修复(SSA)活性增高不能同时丢失同源重组修复。沉默ENDOD1核酸内切酶蛋 白表达基因,会显著导致同源重组缺陷型肿瘤细胞的快速死亡。与细胞学结果一 致的是,同源重组缺陷型肿瘤的小鼠模型会被体内沉默ENDOD1核酸内切酶基因 完全抑制。同源重组缺陷型肿瘤包括任何降低、减缓、损坏及预防同源重组修复 基因表达或蛋白质水平减低,以及行使同源重组正常修复功能的缺陷,包括缺失、 点突变、移码突变、基因表达减低(基因位点甲基化)等变异。这些突变是可通 过任何正规测序试验中检测出的突变。在没有任何确定理论的限制下,抑制ENDOD1核酸内切酶蛋白或增强单链融合修复(SSA)功能可以增强同源重组缺陷 型肿瘤细胞的死亡。The present invention also finds that to maintain the survival of tumor cells, the ENDOD1 endonuclease activity and the function of homologous recombination repair genes (such as BRCA1, BRCA2, WDR70 and FANC, etc.) cannot be lost simultaneously, and the single-strand fusion repair (SSA) activity cannot be increased. Homologous recombination repair is also lost. Silencing the ENDOD1 endonuclease protein expression gene can significantly lead to the rapid death of homologous recombination-deficient tumor cells. Consistent with the cytological results, mouse models of homologous recombination-deficient tumors were completely suppressed by in vivo silencing of the ENDOD1 endonuclease gene. Homologous recombination-deficient tumors include any defects that reduce, slow down, damage and prevent homologous recombination repair gene expression or protein levels, and perform the normal repair function of homologous recombination, including deletions, point mutations, frameshift mutations, gene expression reductions (gene site methylation) and other variations. These mutations are those detectable by any formal sequencing assay. Without being bound by any definitive theory, inhibition of the ENDOD1 endonuclease protein or enhancement of single-strand fusion repair (SSA) function may enhance homologous recombination-deficient tumor cell death.

对ENDOD1核酸内切酶功能抑制敏感的人肿瘤细胞携带整合乙型肝炎病毒 (HBV)的基因组或表达HBx,这些细胞破坏了同源重组修复因子(CRL4WDR70) 的功能(参见:Ren,L.,et al.,The Antiresection Activity of the X Protein Encoded by HepatitisVirus B.Hepatology,2019.69)。沉默ENDOD1核酸内 切酶蛋白表达基因,会显著导致HBV阳性或HBx表达细胞的快速死亡;而抑制 ENDOD1核酸内切酶功能对乙肝病毒阴性、不表达HBx基因的肝细胞没有等同的毒 性作用。与细胞学结果一致的是,HBV阳性细胞的肿瘤模型会被体内沉默ENDOD1 核酸内切酶基因完全抑制。沉默ENDOD1核酸内切酶基因表达可以有效降低小鼠血 清中HBV抗原的滴度和病毒载量。Human tumor cells harboring an integrated hepatitis B virus (HBV) genome or expressing HBx sensitive to inhibition of ENDOD1 endonuclease function disrupted the function of a homologous recombination repair factor (CRL4WDR70) (see: Ren, L., et al., The Antiresection Activity of the X Protein Encoded by Hepatitis Virus B. Hepatology, 2019.69). Silencing the ENDOD1 endonuclease protein expression gene can significantly lead to the rapid death of HBV positive or HBx expressing cells; while inhibiting the function of ENDOD1 endonuclease has no equivalent toxic effect on liver cells that are negative for hepatitis B virus and do not express the HBx gene. Consistent with the cytological results, tumor models of HBV-positive cells were completely suppressed by in vivo silencing of the ENDOD1 endonuclease gene. Silencing ENDOD1 endonuclease gene expression can effectively reduce the titer and viral load of HBV antigen in mouse serum.

ENDOD1核酸内切酶抑制性药物或SSA增强剂的治疗范围包括人肺癌、乳腺 癌、大肠癌、胃癌、肝癌(病毒性或非病毒性肝癌)、卵巢癌、宫颈癌、淋巴瘤、 白血病、前列腺癌、黑色素瘤、子宫内膜癌、神经胶质瘤、肉瘤和胆管细胞癌等 疾病,以及肿瘤生长所导致的生理指标异常、呼吸系统、循环系统、神经系统、 消化系统、造血系统、运动系统的症状。The therapeutic range of ENDOD1 endonuclease inhibitory drugs or SSA enhancers includes human lung cancer, breast cancer, colorectal cancer, gastric cancer, liver cancer (viral or non-viral liver cancer), ovarian cancer, cervical cancer, lymphoma, leukemia, prostate cancer Carcinoma, melanoma, endometrial cancer, glioma, sarcoma and cholangiocarcinoma and other diseases, as well as abnormal physiological indicators caused by tumor growth, respiratory system, circulatory system, nervous system, digestive system, hematopoietic system, motor system symptoms.

ENDOD1核酸内切酶抑制性药物或SSA增强剂可以治疗上述肿瘤类型中带有 同源重组缺陷的肿瘤。ENDOD1 endonuclease inhibitory drugs or SSA enhancers can treat tumors with homologous recombination deficiency in the above tumor types.

ENDOD1核酸内切酶抑制性药物或SSA增强剂可以治疗上述肿瘤类型中带有 TP53、PTEN等抑癌基因突变或功能缺陷的肿瘤。ENDOD1 endonuclease inhibitory drugs or SSA enhancers can treat tumors with mutations or functional defects in tumor suppressor genes such as TP53 and PTEN among the above tumor types.

ENDOD1核酸内切酶抑制性药物或SSA增强剂可以治疗上述肿瘤类型中对放 射和化学治疗不敏感的肿瘤。ENDOD1 endonuclease inhibitory drugs or SSA enhancers can treat tumors that are not sensitive to radiation and chemotherapy in the above tumor types.

ENDOD1核酸内切酶抑制性药物或SSA增强剂可以治疗上述肿瘤类型中具有 明显ENDOD1核酸内切酶基因和单链融合修复(SSA)因子表达的肿瘤。ENDOD1 endonuclease inhibitory drugs or SSA enhancers can treat tumors with significant expression of the ENDOD1 endonuclease gene and single-strand fusion repair (SSA) factors in the above tumor types.

ENDOD1核酸内切酶抑制性药物或SSA增强剂适用的肿瘤范围,包括但不限 于带有同源重组修复缺陷(BRCA1、BRCA2、PTIP、ARID1A、ARID1B、范可尼基因、 WDR70等)的乳腺癌、卵巢癌、前列腺癌、胃癌和骨肉瘤等肿瘤。ENDOD1 endonuclease inhibitory drugs or SSA enhancers are suitable for tumors, including but not limited to breast cancer with homologous recombination repair defects (BRCA1, BRCA2, PTIP, ARID1A, ARID1B, Fanconi gene, WDR70, etc.) , ovarian cancer, prostate cancer, gastric cancer and osteosarcoma and other tumors.

ENDOD1核酸内切酶抑制性药物或SSA增强剂适用的肿瘤范围,包括但不限 于带有碱基切除修复缺陷(MLH1、MSH2突变或功能缺陷)的大肠癌等肿瘤。ENDOD1 endonuclease inhibitors or SSA enhancers are applicable to tumors, including but not limited to colorectal cancer and other tumors with base excision repair defects (MLH1, MSH2 mutations or functional defects).

ENDOD1核酸内切酶抑制性药物或SSA增强剂适用的肿瘤范围,包括但不限 于带有核苷酸切除修复缺陷(XPA、XPB、XPC、XPD、XPE和XPF突变或功能缺陷) 的皮肤癌和黑色素瘤等肿瘤。The range of tumors for which ENDOD1 endonuclease inhibitory drugs or SSA enhancers are applicable includes, but is not limited to, skin cancers with nucleotide excision repair defects (XPA, XPB, XPC, XPD, XPE, and XPF mutations or functional defects) and Tumors such as melanoma.

ENDOD1核酸内切酶抑制性药物或SSA增强剂适用的肿瘤范围,包括但不限 于带有HBV阳性或HBx表达的病毒感染、肝癌和胆管细胞癌,及HBV病毒感染引 起的肝胆疾病。ENDOD1 endonuclease inhibitory drugs or SSA enhancers are applicable to tumors, including but not limited to HBV-positive or HBx-expressing virus infection, liver cancer and cholangiocarcinoma, and hepatobiliary diseases caused by HBV virus infection.

ENDOD1核酸内切酶抑制性药物或SSA增强剂适用的肿瘤范围,还其他类型 的肿瘤如肺癌、宫颈癌、淋巴瘤、白血病、前列腺癌、黑色素瘤、子宫内膜癌、 神经胶质瘤等,这些肿瘤带有DNA损伤应答和修复缺陷,包括但不限于带有以下DNA损伤应答、DNA修复基因突变的肿瘤,如BRCA1、BRCA2、PTIP、CHK1、CHK2、 ATM、ATR、MLH1、MSH2、WDR70、FANCA、FANCC、FANCD2、FANCF、EMSY、XPA、 XPB、XPC、XPD、XPE、XPF、DNA连接酶I、DNA连接酶II、DNA连接酶III、DNA 连接酶IV等;或带有抑癌基因突变如TP53、PTEN、CDKN2A、APC、p16INK4A、 p14ARF、LKB1、FBXW、VHL和WT-1等。ENDOD1 endonuclease inhibitory drugs or SSA enhancers are suitable for tumor range, and other types of tumors such as lung cancer, cervical cancer, lymphoma, leukemia, prostate cancer, melanoma, endometrial cancer, glioma, etc. These tumors have DNA damage response and repair defects, including but not limited to tumors with mutations in the following DNA damage response and DNA repair genes, such as BRCA1, BRCA2, PTIP, CHK1, CHK2, ATM, ATR, MLH1, MSH2, WDR70, FANCA, FANCC, FANCD2, FANCF, EMSY, XPA, XPB, XPC, XPD, XPE, XPF, DNA ligase I, DNA ligase II, DNA ligase III, DNA ligase IV, etc.; or tumor suppressor gene mutation Such as TP53, PTEN, CDKN2A, APC, p16INK4A, p14ARF, LKB1, FBXW, VHL and WT-1, etc.

本发明的另一目的,可用于减灭或根除HBV感染细胞或表达HBx基因的肝炎 细胞,减低HBV携带者病人的血清病毒抗原滴度和病毒载量,减轻传染性。所述 方法包括给予所述患者有效量的ENDOD1核酸内切酶抑制制剂或SSA增强剂。Another object of the present invention can be used to reduce or eradicate HBV-infected cells or hepatitis cells expressing HBx gene, reduce the serum virus antigen titer and viral load of HBV carrier patients, and reduce infectivity. The method comprises administering to the patient an effective amount of an ENDOD1 endonuclease inhibitory agent or an SSA enhancer.

在这里,上述ENDOD1核酸内切酶抑制性药物包括任何能在细胞中相对于对 照溶剂,可以减少,降低,阻碍,损伤及预防ENDOD1核酸内切酶活性的药剂; 或者是任何能够减少或降低ENDOD1核酸内切酶基因表达水平和蛋白水平的药 剂。尤其,ENDOD1核酸内切酶蛋白包括不同的蛋白活性调控区域,因此相关药 物还应包括可抑制该区域活性的药剂,蛋白活性区包括信号肽加工、蛋白质剪切、 细胞核、高尔基和核膜的亚细胞定位,以及ENDOD1核酸内切酶降解和泛素化等。 具体的,这些药物还包括可以减少,减缓,损害及预防ENDOD1核酸内切酶活性 蛋白区域的药剂。Here, the above-mentioned ENDOD1 endonuclease inhibitory drugs include any agent that can reduce, reduce, hinder, damage and prevent ENDOD1 endonuclease activity in cells relative to the control solvent; or any agent that can reduce or reduce ENDOD1 Agents of endonuclease gene expression levels and protein levels. In particular, the ENDOD1 endonuclease protein includes different protein activity regulatory regions, so related drugs should also include agents that can inhibit the activity of this region. The protein active region includes signal peptide processing, protein cleavage, subunits of the nucleus, Golgi and nuclear membrane Cellular localization, and ENDOD1 endonuclease degradation and ubiquitination, etc. Specifically, these drugs also include agents that can reduce, slow down, damage and prevent the ENDOD1 endonuclease activity protein region.

ENDOD1核酸内切酶抑制性药物的作用对象是抑制ENDOD1核酸内切酶的功 能,包括减低或彻底消除ENDOD1核酸内切酶基因表达和/或蛋白质水平,或抑制 其核酸内切酶酶活性,干扰其DNA损伤修复功能,阻断其蛋白质剪切、加工和成 熟,破坏其亚细胞定位,破坏其泛素化调控,或者干扰ENDOD1核酸内切酶的蛋 白质剪切和成熟等生物学功能。这些药物还包括可以减少,减缓,损害及预防 ENDOD1核酸内切酶活性蛋白区域的药剂。The target of ENDOD1 endonuclease inhibitory drugs is to inhibit the function of ENDOD1 endonuclease, including reducing or completely eliminating ENDOD1 endonuclease gene expression and/or protein level, or inhibiting its endonuclease activity, interfering with Its DNA damage repair function blocks its protein cleavage, processing and maturation, destroys its subcellular localization, destroys its ubiquitination regulation, or interferes with biological functions such as protein cleavage and maturation of ENDOD1 endonuclease. These drugs also include agents that reduce, slow down, impair or prevent the active protein region of the ENDOD1 endonuclease.

在这里,上述SSA增强剂包括任何能在细胞中相对于对照溶剂,可以上调、 提高单链融合修复(SSA)活性的药剂;或者是任何能够上调减少或降低单链融 合修复(SSA)基因表达水平和蛋白水平的药剂。尤其,SSA增强剂包括不同的 蛋白活性调控区域,因此相关药物还应包括可增强该区域活性的药剂,蛋白活性 区包括蛋白质成熟、细胞核、染色质和DNA断点的亚细胞定位,以及SSA调控因 子的磷酸化、乙酰化、降解和泛素化等。具体的,这些药物还包括可以影响RAD52、 MRE11和RAD54B等单链DNA融合修复(SSA)活性蛋白区域的药剂。ENDOD1核酸 内切酶抑制类药物或SSA增强剂可以是任何形式的小分子、抗体及抗体片段、基 因编辑、多肽,及反义组成物。Here, the above-mentioned SSA enhancer includes any agent that can up-regulate and improve the activity of single-strand fusion repair (SSA) in cells relative to the control solvent; or any agent that can up-regulate and reduce or reduce single-strand fusion repair (SSA) gene expression level and protein level agents. In particular, SSA enhancers include different regulatory regions of protein activity, so related drugs should also include agents that can enhance the activity of this region, including protein maturation, nucleus, subcellular localization of chromatin and DNA breakpoints, and SSA regulation. Phosphorylation, acetylation, degradation and ubiquitination of factors. Specifically, these drugs also include agents that can affect the active protein regions of single-strand DNA fusion repair (SSA) such as RAD52, MRE11 and RAD54B. ENDOD1 endonuclease inhibitory drugs or SSA enhancers can be small molecules, antibodies and antibody fragments, gene editing, polypeptides, and antisense compositions in any form.

具体的,ENDOD1核酸内切酶抑制类药物可以是一类靶向ENDOD1核酸内切酶 mRNA及DNA的分子,作用为减少和预防ENDOD1核酸内切酶蛋白表达。具体的, ENDOD1核酸内切酶相关药物可以干扰ENDOD1核酸内切酶的DNA或RNA的核酸序 列,例如siRNA,shRNA,dsRNA,miRNA,amiRNA,反义寡聚核苷酸,或采用 CRISPR/CAS9或衍生方法实现基因编辑或基因敲除,以降低ENDOD1核酸内切酶 或其调控基因的表达水平。此类药物可以是修饰或未修饰形式。修饰后的此类药 物可能包含修饰后的核苷酸、糖基、修饰后的骨架载体及任何前期修饰。例如修 饰包括但不限于R2’O-Me修饰,核苷酸2'-氟(2’-F)修饰,核苷酸类似物的 替换及骨架磷酸化修饰等。Specifically, the ENDOD1 endonuclease inhibitory drugs can be a class of molecules targeting ENDOD1 endonuclease mRNA and DNA, which function to reduce and prevent the expression of ENDOD1 endonuclease protein. Specifically, ENDOD1 endonuclease-related drugs can interfere with the nucleic acid sequence of DNA or RNA of ENDOD1 endonuclease, such as siRNA, shRNA, dsRNA, miRNA, amiRNA, antisense oligonucleotides, or use CRISPR/CAS9 or Derivative methods enable gene editing or gene knockout to reduce the expression level of the ENDOD1 endonuclease or its regulatory genes. Such drugs may be in modified or unmodified form. Such modified drugs may contain modified nucleotides, sugar groups, modified backbone carriers and any previous modifications. For example, modifications include, but are not limited to, R2'O-Me modification, nucleotide 2'-fluoro (2'-F) modification, substitution of nucleotide analogues, and backbone phosphorylation modification.

本发明也提供了一种抑制ENDOD1基因表达的siRNA或shRNA,为12至100 个核苷酸的单链或双链RNA分子,其中一条链包含12至24个连续或不连续的可 与ENDOD1基因某段核苷酸匹配的序列,优选的,所述抑制ENDOD1基因表达的 siRNA为长度为18至28个核苷酸的单链或双链RNA,更优选的,所述抑制ENDOD1 基因表达的siRNA,其核苷酸序列选自由SEQID No.2-No.353序列组成的组。The present invention also provides an siRNA or shRNA that inhibits the expression of the ENDOD1 gene, which is a single-stranded or double-stranded RNA molecule of 12 to 100 nucleotides, one of which contains 12 to 24 continuous or discontinuous ENDOD1 gene A sequence of nucleotide matches, preferably, the siRNA that inhibits the expression of the ENDOD1 gene is a single-stranded or double-stranded RNA with a length of 18 to 28 nucleotides, more preferably, the siRNA that inhibits the expression of the ENDOD1 gene , whose nucleotide sequence is selected from the group consisting of SEQID No.2-No.353 sequences.

本发明也确定了通过CRISPR/CAS9破坏ENDOD1核酸内切酶基因组结构和基 因表达的核苷酸靶向序列,包括但不限于:The present invention also identifies nucleotide targeting sequences that disrupt ENDOD1 endonuclease genome structure and gene expression by CRISPR/CAS9, including but not limited to:

5’-CCAGCGCGAGCCAGCGCGCGG-3’5'-CCAGCGCGAGCCAGCGCGCGG-3'

5’-CAGCCTCTTCGCCCTGGCTGG-3’5'-CAGCCTCTTCGCCCTGGCTGG-3'

5’-TGTCACATTCGCCAAAGCCGG-3’5'-TGTCACATTCGCCAAAGCCGG-3'

5’-CCCGGGTGCTGTAGAGGGTGG-3’5'-CCCGGGTGCTGTAGAGGGTGG-3'

上述ENDOD1核酸内切酶抑制性药物或SSA增强剂,包括含有的组合物用于 治疗肿瘤及相关疾病。ENDOD1核酸内切酶抑制性药物或SSA增强剂可与具有协 同效果的其他抗肿瘤治疗方法联用(如抗癌药物、手术、移植及放射疗法)中。 进一步的,与其他药物协同使用包括所有联合使用可以增加抗癌效果的药剂及给 药方式。上述产生协同作用的药剂包括任何癌症治疗方式,包括但不限于药剂, 疗法组合方式,用药技术(如手术,放疗等)。具体的抗癌疗法包括但不限于手 术、放疗、化疗、基因疗法、DNA疗法、病毒疗法、RNA疗法、辅助治疗及免疫 治疗的组合及单独使用。The above-mentioned ENDOD1 endonuclease inhibitory drug or SSA enhancer, including the composition contained therein, is used to treat tumors and related diseases. ENDOD1 endonuclease inhibitory drugs or SSA enhancers can be used in combination with other anti-tumor treatments with synergistic effects (such as anti-cancer drugs, surgery, transplantation and radiation therapy). Further, the synergistic use with other drugs includes all agents and administration methods that can increase the anticancer effect when used in combination. The above-mentioned synergistic agents include any cancer treatment methods, including but not limited to agents, therapeutic combinations, and medication techniques (such as surgery, radiotherapy, etc.). Specific anticancer therapies include, but are not limited to, surgery, radiotherapy, chemotherapy, gene therapy, DNA therapy, viral therapy, RNA therapy, adjuvant therapy, and immunotherapy in combination and alone.

所述联合用药可以是两种药物各自先后间隔服用或者同时服用,或者 ENDOD1核酸内切酶抑制性药物或SSA增强剂与其它靶向抗癌药物组成药物组合 物。The combined drug can be that the two drugs are taken at intervals or at the same time, or the ENDOD1 endonuclease inhibitory drug or SSA enhancer and other targeted anticancer drugs form a pharmaceutical composition.

上述ENDOD1核酸内切酶抑制性药物或SSA增强剂的联合用药或组合物,进 一步包括与铂类(包括但不限于顺铂、卡铂、奥沙利铂、塞特博、吡铂、奈达铂、 Triplatin、Lipoplatin)、喜树碱、丝裂霉素等DNA毒性抗癌药物联合用药。所 述联合用药可以是一并服用,也可是一先一后间隔服用。The combination or composition of the above-mentioned ENDOD1 endonuclease inhibitory drugs or SSA enhancers, further including platinums (including but not limited to cisplatin, carboplatin, oxaliplatin, setterbo, picoplatin, neda Platinum, Triplatin, Lipoplatin), camptothecin, mitomycin and other DNA toxic anticancer drugs in combination. The combined medication can be taken together, or taken at intervals one after the other.

上述ENDOD1核酸内切酶抑制性药物或SSA增强剂的联合用药或组合物,进 一步包括PARP抑制剂、DNAPK抑制剂、HDAC抑制剂、ATMi抑制剂、长春花生物 碱、抗肿瘤类生物碱、单抗、抗代谢类药物。所述联合用药可以是一并服用,也 可是一先一后间隔服用。The combination or composition of the above-mentioned ENDOD1 endonuclease inhibitory drugs or SSA enhancers, further including PARP inhibitors, DNAPK inhibitors, HDAC inhibitors, ATMi inhibitors, vinca alkaloids, anti-tumor alkaloids, single Anti- and antimetabolite drugs. The combined medicine can be taken together, or taken at intervals one after the other.

上述ENDOD1核酸内切酶抑制性药物或SSA增强剂的联合用药或组合物,进 一步包括与放射治疗进行联合用药,包括但不限于67Cu,67Ga,90Y,131I,177LU,186Re, 188Re,α_Particle emitter,211At,213Bi,225Ac,Auger-electron emitter, 125I,212Pb,and 111In。所述联合药可以是与放射治疗同时服用,也可是一先一后 间隔服用。The combination or composition of the above-mentioned ENDOD1 endonuclease inhibitory drugs or SSA enhancers, further including combination with radiation therapy, including but not limited to 67 Cu, 67 Ga, 90 Y, 131 I, 177 LU, 186 Re , 188 Re, α_Particle emitter, 211 At, 213 Bi, 225 Ac, Auger-electron emitter, 125 I, 212 Pb, and 111 In. The combined drug can be taken simultaneously with radiation therapy, or taken one after the other at intervals.

进一步的,抗肿瘤的烷基化剂的例子包括但不限于:氮芥、环磷酰胺、甲基 二氧乙基胺或莫司汀(HN2)、乌拉莫司汀或尿嘧啶、芥子气、溶肉瘤素、氯霉素、 异磷酰胺、苯达莫司汀、亚硝基脲类、卡莫司汀、洛莫司汀、链脲佐菌素、烷基 磺酸盐、二甲磺酸丁酯、噻替派、丙嗪、六甲蜜胺、三嗪、达卡巴嗪、米托唑胺 和替莫唑胺。所述联合用药可以是一并服用,也可是一先一后间隔服用。Further, examples of anti-tumor alkylating agents include, but are not limited to: nitrogen mustard, cyclophosphamide, methyldioxyethylamine or mustin (HN2), uramustine or uracil, mustard gas, lysate Sarcomatin, chloramphenicol, ifosfamide, bendamustine, nitrosoureas, carmustine, lomustine, streptozotocin, alkylsulfonates, butyl dimethanesulfonate esters, thiotepa, promethazine, hexamethylmelamine, triazine, dacarbazine, mitozolomide, and temozolomide. The combination medicine can be taken together, or taken one after the other at intervals.

进一步的抗癌单克隆抗体的例子包括,但不限于necitumumab、 dinutuximab、nivolumab、Blinatumab、pembrolizumab、ramucirumab、 obinutuzumab、adotrastuzumabemtansine、pertuzumab、brentuximab、 ipilimumab、ofatumumab、catumaxomab、bevacizumab、cetuximab、 tositumomab-Il31、ibritumomab tiuxetan、alemtuzumab,吉妥珠单抗,曲妥 单抗和利妥昔单抗,长春花生物碱及衍生物类似物。所述联合用药可以是一并服 用,也可是一先一后间隔服用。Examples of further anti-cancer monoclonal antibodies include, but are not limited to, necitumumab, dinutuximab, nivolumab, blinatumab, pembrolizumab, ramucirumab, obinutuzumab, adotrastuzumab emtansine, pertuzumab, brentuximab, ipilimumab, ofatumumab, catumaxomab, bevacizumab, cetuximab, tositumomab , alemtuzumab, gemtuzumab, trastuzumab and rituximab, vinca alkaloids and derivatives analogues. The combined medication can be taken together, or taken at intervals one after the other.

进一步的上述ENDOD1核酸内切酶抑制性药物或SSA增强剂的联合用药或组 合物,包括但不限于抗代谢物药剂。例如药剂包括但不限于氟尿嘧啶,克拉屈滨, 卡培他滨,6巯基嘌呤,培美曲塞,氟达拉滨,吉西他滨,羟基尿,甲胺喋呤, nelarbine,氯法拉滨,阿糖胞苷,地西他滨,脱氮氨基蝶呤,5-氟脲嘧啶脱氧 核苷,6-硫鸟嘌呤。Further combination or composition of the above-mentioned ENDOD1 endonuclease inhibitory drugs or SSA enhancers, including but not limited to anti-metabolite agents. Examples of agents include, but are not limited to, fluorouracil, cladribine, capecitabine, 6-mercaptopurine, pemetrexed, fludarabine, gemcitabine, hydroxyuria, methotrexate, nelarbine, clofarabine, arabine Glycosides, decitabine, deazaaminopterin, 5-fluorouracil deoxynucleoside, 6-thioguanine.

进一步的上述ENDOD1核酸内切酶抑制性药物或SSA增强剂的联合用药或组 合物,包括但不限于细胞免疫疗法,抗体治疗或细胞因子治疗。ENDOD1核酸内 切酶抑制性药物与免疫疗法协同作用。细胞免疫疗法的例子包括但不限于,树突 状细胞疗法和Sipuleucel-T。抗体治疗的例子包括,但不限于necitumumab、 dinutuximab、nivolumab、Blinatumab、pembrolizumab、ramucirumab、 obinutuzumab、adotrastuzumab emtansine、pertuzumab、brentuximab、 ipilimumab、ofatumumab、catumaxomab、bevacizumab、cetuximab、tositumomab-Il31、ibritumomab tiuxetan、alemtuzumab。细胞因子治疗的例 子包括但不限于干扰素(例如,IFNa、IFNp、IFNy、IFNX)和白介素。在一些实 施例中,免疫疗法包括一个或多个免疫检查点抑制剂。免疫检查点蛋白的例子包 括但不限于CTLA-4及其配体CD80和CD86、PD-1及其配体PD-L1和PD-L2以及 4-1BB。所述联合用药可以是一并服用,也可是一先一后间隔服用。Further combination or composition of above-mentioned ENDOD1 endonuclease inhibitory drugs or SSA enhancers, including but not limited to cellular immunotherapy, antibody therapy or cytokine therapy. ENDOD1 endonuclease inhibitory drugs work synergistically with immunotherapy. Examples of cellular immunotherapy include, but are not limited to, dendritic cell therapy and Sipuleucel-T. Examples of antibody therapy include, but are not limited to, necitumumab, dinutuximab, nivolumab, blinatumab, pembrolizumab, ramucirumab, obinutuzumab, adotrastuzumab emtansine, pertuzumab, brentuximab, ipilimumab, ofatumumab, catumaxomab, bevacizumab, cetuximab, tositumomabrit-Il31, tiib. Examples of cytokine therapy include, but are not limited to, interferons (e.g., IFNa, IFNp, IFNy, IFNX) and interleukins. In some embodiments, immunotherapy includes one or more immune checkpoint inhibitors. Examples of immune checkpoint proteins include, but are not limited to, CTLA-4 and its ligands CD80 and CD86, PD-1 and its ligands PD-L1 and PD-L2, and 4-1BB. The combination medicine can be taken together, or taken one after the other at intervals.

进一步的,抗癌疗法的其他示例包括但不限于醋酸二甲酸酯(例如,ZYTIGA)、ABVD、ABVE、ABVE-PC、AC、AC-T、ADE、ado-trastuzumab安坦西纳(例如,KADCYLA)、 阿法替尼二甲酰酸酯(例如,GILOTRIF),aldesleukin(例如PROLEUKIN), 阿仑珠单抗(例如,CAMPATH),阿那曲唑(例如,ARIMIDEX),三氧化砷(例 如,TRISENOX),门冬酰胺酶(例如,ERWINAZE),阿西替尼(例如,INLYTA), 阿扎胞苷(例如,MYLOSAR,VIDAZA),BEACOPP,belinostat(例如,BELEODAQ), 盐酸苯达莫司汀(例如,TREANDA)BEP,bevacizumab(例如,AVASTIN),比 卡鲁胺(例如,CASODEX),布洛霉素(例如,BLENOXANE),blinatumomab (例如,BLINCYTO),硼替佐米(例如,VELCADE),博苏替尼(例如,BOSULIF), 布妥昔单抗(例如,ADCETRIS),白消安(例如,BUSULFEX,MYLERAN),卡巴 他赛(例如,JEVTANA),苹果酸卡博替尼(例如,COMETRIQ),CAF,卡培他滨 (例如,XELODA),CAPOX,卡铂(例如,PARAPLAT,PARAPLATIN),卡铂紫杉 醇,卡非佐米(例如,KYPROLIS),卡霉素(例如,BECENUM,BICNU,CARMUBRIS), 卡霉素植入物(例如,GLIADEL WAFER,GLIADEL),ceritinib(例如,ZYKADIA),西妥昔单抗(例如,ERBITUX),氯霉素(例如,AMBOCHLORIN,AMBOCLORIN, LEUKERAN,LINFOLIZIN),氯霉素泼尼松,CHOP、顺铂(例如,PLATINOL、 PLATINOL-AQ)、氯氟丁(例如,CLOFAREX、CLOLAR)、CMF、COPP、COPP-AB V、 Crizotinib(例如,XALKORI)、CVP、环磷酰胺(例如,CLAFEN,CYTOXAN,NEOSAR)、 阿糖胞苷(CYTOSAR-U,TARABINE PFS)、达拉非尼(例如TAFINLAR)、达卡巴 嗪(例如,DTIC-DOME),放线菌素(例如COSMEGEN),dasatinib(例如,SPRYCEL), daunorubicin hydrochloride(例如,CERUBIDINE),decitabine(例如,DACOGEN),degarelix,denileukin diftitox(例如,ONTAK),denosumab(例 如,PROLIA,XGEVA),Dinutuximab(例如,UNITUXIN),docetaxel(例如, TAXOTERE),doxorubicinhydrochloride(例如,ADRIAMYCIN PFS,ADRIAMYCIN RDF),doxorubicin hydrochlorideliposome(例如,DOXIL,DOX-SL,EV ACET, LIPODOX),enzalutamide(例如,XT ANDI),epirubicin hydrochloride(例如, ELLENCE),EPOCH,erlotinib hydrochloride(例如,TARCEVA),etoposide(例 如,TOPOSAR,VEPESID),etoposide phosphate(例如,ETOPOPHOS),everolimus (例如,AFINITOR DISPERZ,AFINITOR),exemestane(例如,AROMASIN),FEC, fludarabine phosphate(例如,FLUDARA),氟尿嘧啶(例如,ADRUCIL,EFUDEX,FLUOROPLEX),伊立替康,伊立替康联合贝伐珠单抗,伊立替康联合西妥昔单抗, 奥沙利铂三药联合化疗,奥沙利铂,FU-LV,氟维司群(例如,FASLODEX),吉非 替尼(例如,IRESSA),吉非替尼氢氯化物(例如,GEMZAR),吉非替尼联合顺铂, 吉非替尼联合奥沙利铂,goserelinacetate(例如,ZOLADEX),Hyper-CVAD,替 依莫单抗(例如,ZEVALIN),ibrutinib(例如,IMBRUVICA),ICE,idelalisib(例 如,ZYDELIG),ifosfamide(例如,CYFOS,IFEX,IFOSFAMIDUM),imatinib mesylate(例如,GLEEVEC),imiquimod(例如,ALDARA),ipilimumab(例如,YER VO Y),irinotecan hydrochloride(例如,CAMPTOSAR),ixabepilone(例如, IXEMPRA),lanreotide acetate(例如,SOMATULINE DEPOT),lapatinib ditosylate(例如,TYKERB),lenalidomide(例如,REVLIMID),lenvatinib(例如,LENVIMA),letrozole(例如,FEMARA),leucovorin calcium(例如, WELLCOVORIN),leuprolide acetate(例如,LUPRON DEPOT,LUPRON DEPOT-3 MONTH,LUPRON DEPOT-4MONTH,LUPRON DEPOT-PED,LUPRON,VIADUR),liposomal cytarabine(例如,DEPOCYT),lomustine(例如,CEENU),mechlorethamine hydrochloride(例如,MUSTARGEN),megestrolacetate(例如,MEGACE), mercaptopurine(例如,PURINETHOL,PURIXAN),methotrexate(例如, ABITREXATE,FOLEX PFS,FOLEX,METHOTREXATE LPF,MEXATE,MEXATE-AQ),丝 裂霉素C(例如,MITOZYTREX,MUTAMYCIN),mitoxantrone hydrochloride,MOPP, nelarabine(例如,ARRANON),nilotinib(例如,TASIGNA),nivolumab(例如, OPDIVO),obinutuzumab(例如,GAZYVA),OEPA,ofatumumab(例如,ARZERRA), OFF,奥拉帕尼(例如,LYNPARZA),omacetaxine mepesuccinate(例如, SYNRIBO),OPPA,奥沙利铂(例如,ELOXATIN),紫杉醇(例如,TAXOL), paclitaxel SYNRIBO),紫杉醇纳米颗粒药剂(例如,ABRAXANE),PAD,palbociclib(例如,IBRANCE),帕米膦酸二钠(例如,AREDIA),帕尼单抗(例如, VECTIBIX),panobinostat(例如,FARYDAK),pazopanib hydrochloride(例如, VOTRIENT),培门冬酶(例如,ONCASPAR),alfa-2b聚乙二醇干扰素(例如, PEG-INTRON,SYLATRON),pembrolizumab(例如,KEYTRUDA),培美曲塞二钠(例 如,ALIMTA),帕妥珠单抗(例如,PERJETA),plerixafor(例如,MOZOBIL), pomalidomide(例如,POMALYST),ponatinibhydrochloride(例如,ICLUSIG), pralatrexate(例如,FOLOTYN),prednisone,procarbazine hydrochloride(例 如,MATULANE),radium 223dichloride(例如,XOFIGO),raloxifene hydrochloride(例如,EVISTA,KEOXIFENE),ramucirumab(例如,CYRAMZA), R-CHOP,重组人乳头瘤病毒双价疫苗(例如,CERVARIX),重组人乳头瘤病毒(例 如,HPV)单价疫苗(例如,GARD AS IL 9),nonavalent vaccine(例如,HPV)四 价疫苗(g.g.,GARDASIL),alfa-2b重组白细胞干扰素(例如,INTRON A),瑞 格非尼(例如,STIVARGA),利妥昔单抗(例如,RITUXAN),罗米地辛(例如, ISTODAX),ruxolitinib phosphate(例如,JAKAFI),siltuximab(例如, SYLVANT),sipuleucel-t(例如,PROVENGE),甲苯磺酸索拉非尼(例如,NEXAVAR),STANFORD V,苹果酸舒尼替尼(例如,SUTENT),TAC,塔莫西芬枸橼 酸盐(例如,NOVALDEX),替莫唑胺(例如f METHAZOLASTONE,TEMODAR), temsirolimus(例如,TORISEL),酞胺呱啶酮(例如,SYNOVIR,THALOMID), thiotepa,盐酸拓扑替康(例如,HYCAMTIN),托瑞米芬(例如,FARESTON), tositumomab及放射性碘元素(I131)加托西莫单抗(例如,BEXXAR),TPF,曲 美替尼(例如,MEKINIST),曲妥珠单抗(例如,HERCEPTIN),VAMP,vandetanib (例如,CAPRELSA),VEIP,vemurafenib(例如,ZELBORAF),vinblastinesulfate(例如,VELBAN,VELSAR),vincristine sulfate(例如,VINCAS AR PFS),vincristine sulfate liposome(例如,MARQIBO),vinorelbine tartrate(g.g.,NAVELBINE),vismodegib(例如,ERIVEDGE),vorinostat(例如,ZOLINZA), XELIRI,XELOX,ziv-aflibercept(例如,ZALTRAP),zoledronic acid(例如, ZOMETA),或它们的任意组合.Further, other examples of anticancer therapies include, but are not limited to, acetate dicarboxylate (e.g., ZYTIGA), ABVD, ABVE, ABVE-PC, AC, AC-T, ADE, ado-trastuzumab antancina (e.g., KADCYLA), afatinib diformyl ester (eg, GILOTRIF), aldesleukin (eg, PROLEUKIN), alemtuzumab (eg, CAMPATH), anastrozole (eg, ARIMIDEX), arsenic trioxide (eg, TRISENOX), asparaginase (eg, ERWINAZE), axitinib (eg, INLYTA), azacitidine (eg, MYLOSAR, VIDAZA), BEACOPP, belinostat (eg, BELEODAQ), bendamustine hydrochloride (e.g., TREANDA) BEP, bevacizumab (e.g., AVASTIN), bicalutamide (e.g., CASODEX), bleomycin (e.g., BLENOXANE), blinatumomab (e.g., BLINCYTO), bortezomib (e.g., VELCADE), Bosutinib (eg, BOSULIF), brutuximab (eg, ADCETRIS), busulfan (eg, BUSULFEX, MYLERAN), cabazitaxel (eg, JEVTANA), cabozantinib malate (eg, COMETRIQ), CAF, capecitabine (e.g., XELODA), CAPOX, carboplatin (e.g., PARAPLAT, PARAPLATIN), carboplatin paclitaxel, carfilzomib (e.g., KYPROLIS), carbamycin (e.g., BECENUM, BICNU , CARMUBRIS), cardamycin implants (eg, GLIADEL WAFER, GLIADEL), ceritinib (eg, ZYKADIA), cetuximab (eg, ERBITUX), chloramphenicol (eg, AMBOCHLORIN, AMBOCLORIN, LEUKERAN, LINFOLIZIN ), chloramphenicol, prednisone, CHOP, cisplatin (e.g., PLATINOL, PLATINOL-AQ), clofluridine (e.g., CLOFAREX, CLOLAR), CMF, COPP, COPP-AB V, crizotinib (e.g., XALKORI), CVP, cyclophosphamide (eg, CLAFEN, CYTOXAN, NEOSAR), cytarabine (CYTOSAR-U, TARABINE PFS), dabrafenib (eg, TAFINLAR), dacarbazine (eg, DTIC-DOME), actin Bacteroids (such as COSMEGEN), dasatinib (e.g., SPRYCEL), daunorubicin hydrochloride (e.g., CERUBIDINE), decitabine (e.g., DACOGEN), degarelix, denileukin diftitox (e.g., ONTAK), denosumab (e.g., PROLIA, XGEVA), dinutuximab (e.g., UNITUXIN), docetaxel (e.g., , TAXOTERE), doxorubicin hydrochloride (e.g., ADRIAMYCIN PFS, ADRIAMYCIN RDF), doxorubicin hydrochloride liposome (e.g., DOXIL, DOX-SL, EV ACET, LIPODOX), enzalutamide (e.g., XT ANDI), epirubicin hydrochloride (e.g., ELLENCE), EPOCH, erlotinib hydrochloride (e.g., TARCEVA), etoposide (e.g., TOPOSAR, VEPESID), etoposide phosphate (e.g., ETOPOPHOS), everolimus (e.g., AFINITOR DISPERZ, AFINITOR), exemestane (e.g., AROMASIN), FEC, fludarabine phosphate (e.g., FLUDARA ), fluorouracil (eg, ADRUCIL, EFUDEX, FLUOROPLEX), irinotecan, irinotecan plus bevacizumab, irinotecan plus cetuximab, oxaliplatin triplet chemotherapy, oxaliplatin , FU-LV, fulvestrant (eg, FASLODEX), gefitinib (eg, IRESSA), gefitinib hydrochloride (eg, GEMZAR), gefitinib in combination with cisplatin, gefitinib In combination with oxaliplatin, goserelinacetate (e.g., ZOLADEX), Hyper-CVAD, ibrutinib (e.g., ZEVALIN), ibrutinib (e.g., IMBRUVICA), ICE, idelalisib (e.g., ZYDELIG), ifosfamide (e.g., CYFOS, IFEX, IFOSFAMIDUM), imatinib mesylate (eg, GLEEVEC), imiquimod (eg, ALDARA), ipilimumab (eg, YER VO Y), irinotecan hydr ochloride (e.g., CAMPTOSAR), ixabepilone (e.g., IXEMPRA), lanreotide acetate (e.g., SOMATULINE DEPOT), lapatinib ditosylate (e.g., TYKERB), lenalidomide (e.g., REVLIMID), lenvatinib (e.g., LENVIMA), letrozole (e.g., FEMARA ), leucovorin calcium (e.g., WELLCOVORIN), leuprolide acetate (e.g., LUPRON DEPOT, LUPRON DEPOT-3 MONTH, LUPRON DEPOT-4MONTH, LUPRON DEPOT-PED, LUPRON, VIADUR), liposomal cytarabine (e.g., DEPOCYT), lomustine (e.g., , CEENU), mechlorethamine hydrochloride (e.g., MUSTARGEN), megestrolacetate (e.g., MEGACE), mercaptopurine (e.g., PURINETHOL, PURIXAN), methotrexate (e.g., ABITREXATE, FOLEX PFS, FOLEX, METHOTREXATE LPF, MEXATE, MEXATE-AQ), silk Mitomycin C (e.g., MITOZYTREX, MUTAMYCIN), mitoxantrone hydrochloride, MOPP, nelarabine (e.g., ARRANON), nilotinib (e.g., TASIGNA), nivolumab (e.g., OPDIVO), obinutuzumab (e.g., GAZYVA), OEPA, ofatumumab (e.g., , ARZERRA), OFF, olaparib (eg, LYNPARZA), omacetaxine mepesuccinate (eg, SYNRIBO), OPPA, oxaliplatin (eg, ELOXATIN), paclitaxel (eg, TAXOL), paclitaxel (SYNRIBO), paclitaxel nanoparticles Agents (eg, ABRAXANE), PAD, palbociclib (eg, IBRANCE), pamidronate disodium (eg, AREDIA), panitumumab (eg, VECTIBIX), panobinostat (eg, FARYDAK), pazop anib hydrochloride (eg, VOTRIENT), pegaspargase (eg, ONCASPAR), alfa-2b peginterferon (eg, PEG-INTRON, SYLATRON), pembrolizumab (eg, KEYTRUDA), pemetrexed disodium (e.g., ALIMTA), pertuzumab (e.g., PERJETA), plerixafor (e.g., MOZOBIL), pomalidomide (e.g., POMALYST), ponatinib hydrochloride (e.g., ICLUSIG), pralatrexate (e.g., FOLOTYN), prednisone, procarbazine hydrochloride (e.g., For example, MATULANE), radium 223dichloride (for example, XOFIGO), raloxifene hydrochloride (for example, EVISTA, KEOXIFENE), ramucirumab (for example, CYRAMZA), R-CHOP, recombinant human papillomavirus bivalent vaccine (for example, CERVARIX), recombinant human Papillomavirus (eg, HPV) monovalent vaccine (eg, GARD AS IL 9), nonavalent vaccine (eg, HPV) quadrivalent vaccine (g.g., GARDASIL), alfa-2b recombinant leukocyte interferon (eg, INTRON A), Rui Griffinib (e.g., STIVARGA), rituximab (e.g., RITUXAN), romidepsin (e.g., ISTODAX), ruxolitinib phosphate (e.g., JAKAFI), siltuximab (e.g., SYLVANT), sipuleucel-t (e.g., , PROVENGE), sorafenib tosylate (e.g., NEXAVAR), STANFORD V, sunitinib malate (e.g., SUTENT), TAC, tamoxifen citrate (e.g., NOVALDEX), temozolomide (e.g., eg METHAZOLASTONE, TEMODAR), temsirolimus (eg, TORISEL), thalidomide (eg, SYNOVIR, THALOMID), thiotepa, topotecan hydrochloride (eg, HYCAMTIN), toremifene (eg, FARESTON), tositumomab and radioactive iodine (I131) plus tositumomab (eg, BEXXAR), TPF, trametinib (eg, MEKINIST), trastuzumab (eg, HERCEP TIN), VAMP, vandetanib (eg, CAPRELSA), VEIP, vemurafenib (eg, ZELBORAF), vinblastinesulfate (eg, VELBAN, VELSAR), vincristine sulfate (eg, VINCAS AR PFS), vincristine sulfate liposome (eg, MARQIBO), vinorelbine tartrate (g.g., NAVELBINE), vismodegib (eg, ERIVEDGE), vorinostat (eg, ZOLINZA), XELIRI, XELOX, ziv-aflibercept (eg, ZALTRAP), zoledronic acid (eg, ZOMETA), or any combination thereof.

更进一步的,抗癌疗法可以是表观遗传学及转录调控因子中挑选出。例如包 括但不限于DNA甲级转移酶抑制剂,组蛋白乙酰化抑制剂(HDAC抑制剂),赖 氨酸甲基转移酶抑制剂),抗有丝分裂类药物(例如,taxanes and vinca alkaloids),激素受体调节剂(例如,雌激素受体调节剂及雄激素受体调节剂), 细胞信号通路抑制剂,细胞信号通路抑制剂,蛋白稳定调节剂(例如蛋白酶抑制 剂),Hsp90抑制剂,糖皮质激素,反式维甲酸类化合物,及其他促分化因子。Furthermore, anticancer therapies can be selected from epigenetic and transcriptional regulators. Examples include but are not limited to DNA alpha transferase inhibitors, histone acetylation inhibitors (HDAC inhibitors), lysine methyltransferase inhibitors), antimitotic drugs (eg, taxanes and vinca alkaloids), hormones Receptor modulators (eg, estrogen receptor modulators and androgen receptor modulators), cell signaling pathway inhibitors, cell signaling pathway inhibitors, protein stability modulators (eg, protease inhibitors), Hsp90 inhibitors, sugars Corticosteroids, trans retinoids, and other pro-differentiation factors.

具体的,ENDOD1核酸内切酶抑制性药物或SSA增强剂可以独立参与任意一 种抗癌疗法。此抗癌疗法包括但不限于手术,放疗,移植(干细胞移植,骨髓抑 制),免疫疗法及化疗。Specifically, ENDOD1 endonuclease inhibitory drugs or SSA enhancers can independently participate in any anticancer therapy. Such anticancer therapies include, but are not limited to, surgery, radiation therapy, transplantation (stem cell transplantation, myelosuppression), immunotherapy, and chemotherapy.

具体的上述ENDOD1核酸内切酶抑制性药物或SSA增强剂治疗方案可应用的 肿瘤包括但不限于肺癌(例如.,支气管癌,小细胞肺癌(SCLC),非小细胞肺 癌(NSCLC),肺腺癌);肾癌(如成肾肾母细胞瘤,又名威尔姆斯肿瘤,肾细胞 癌);听神经瘤;腺癌;肾上腺癌;肛门癌;血管瘤(例如淋巴血管瘤, lymphangiocndothcliosarcoma,血管肉瘤)附件癌;良性单克隆丙种球蛋白症; 胆囊癌;膀胱癌;乳腺癌(例如,乳腺腺癌,乳腺乳头状癌,乳腺髓样癌);脑癌 (例如,脑膜瘤,胶质细胞瘤,胶质瘤(例如,星状细胞瘤,oligodendroglioma),髓母细胞瘤);支气管癌;类癌肿瘤;宫颈癌(例如宫颈癌腺癌,宫颈癌鳞癌); 胆囊癌;脊索瘤;颅咽管瘤;结直肠癌(如结肠癌、直肠癌、结肠直肠腺癌);结 缔组织癌;上皮癌;室管膜瘤;内皮肉瘤(例如,卡波西肉瘤,多发性特发性出血 性肉瘤);子宫内膜癌(如子宫癌、子宫肉瘤);食管癌(例如,食道腺癌,Barrett 食道腺癌);尤文氏肉瘤;眼癌(如眼内黑色素瘤、视网膜母细胞瘤);嗜酸性 粒细胞增多症;胆囊癌;胃癌(如胃腺癌);胃肠道基质肿瘤(GIST);生殖细胞癌; 头颈部癌症(如头颈部鳞状细胞癌、口腔癌(如口腔鳞状细胞癌)、咽喉癌(如 喉癌、咽癌、鼻咽癌、咽喉癌);重链病(如α链病、γ链病、μ链病;血管母 细胞瘤;下咽癌;炎性肌纤维母细胞瘤;免疫细胞淀粉样变性;肝癌(如肝细胞癌 (HCC),恶性肝细胞瘤);平滑肌肉瘤(LMS);肥大细胞增多症(例如,系统性 肥大细胞增多症);肌肉癌;骨髓增生异常综合征(MDS);间皮瘤;骨髓增生 异常(MPD)(例如,真性红细胞增多症(PV),原发性血小板增多症(ET), 非原发性髓样化生(AMM),骨髓纤维化(MF),慢性特发性骨髓性纤维化, 慢性粒细胞白血病(CML),慢性中性粒细胞白血病(CNL),高嗜酸性粒细胞综 合征(HES),神经母细胞瘤;神经纤维瘤(例如,多发性神经纤维瘤(Nr)1 型或2型,神经鞘瘤病);神经内分泌癌(例如,胃肠道神经内分泌肿瘤(GEP-NET), 良性肿瘤);骨肉瘤(例如,骨癌);卵巢癌(例如卵巢囊腺癌、卵巢胚胎癌、 卵巢腺癌);乳头状腺癌;胰腺癌;导管内乳头状粘液瘤(IPMN);胰岛细胞 瘤;阴茎癌(如阴茎阴囊Paget病);松果体瘤;原始神经外胚层肿瘤;浆细胞 瘤;副肿瘤综合征;上皮内肿瘤;前列腺癌;直肠癌;横纹肌肉瘤;唾液腺癌; 皮肤癌(例如鳞状细胞癌(SCC)、角化棘皮瘤(KA)、黑色素瘤、基底细胞癌 (BCC));小肠癌(例如阑尾癌);软组织肉瘤(例如恶性纤维组织细胞瘤(MFH)、 脂肪肉瘤、恶性周围神经鞘瘤(MPNST)、软骨肉瘤、纤维肉瘤、黏液肉瘤); 皮脂腺癌;小肠癌;汗腺癌;滑膜瘤;睾丸癌(例如精原细胞瘤、睾丸胚胎癌); 甲状腺癌(例如,甲状腺乳头状癌、乳突性甲状腺癌(PTC),甲状腺髓样癌; 尿道癌;阴道癌;外阴癌(如外阴佩吉特病)。Specific tumors that can be applied to the above-mentioned ENDOD1 endonuclease inhibitory drugs or SSA enhancer regimens include but are not limited to lung cancer (e.g., bronchial cancer, small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC), lung adenocarcinoma carcinoma); kidney cancer (eg, nephroblastoma, also known as Wilms tumor, renal cell carcinoma); acoustic neuroma; adenocarcinoma; adrenal carcinoma; anal carcinoma; benign monoclonal gammopathy; gallbladder cancer; bladder cancer; breast cancer (e.g., adenocarcinoma of the breast, papillary carcinoma of the breast, medullary carcinoma of the breast); brain cancer (e.g., meningioma, glial Glioma, glioma (eg, astrocytoma, oligodendroglioma), medulloblastoma); bronchial carcinoma; carcinoid tumor; cervical cancer (eg, adenocarcinoma, squamous carcinoma); gallbladder carcinoma; chordoma; Craniopharyngioma; colorectal cancer (eg, colon, rectal, colorectal adenocarcinoma); connective tissue carcinoma; epithelial carcinoma; ependymoma; endothelial sarcoma (eg, Kaposi's sarcoma, multiple idiopathic hemorrhage endometrial cancer (eg, uterine cancer, uterine sarcoma); esophageal cancer (eg, esophageal adenocarcinoma, Barrett's esophageal adenocarcinoma); Ewing's sarcoma; eye cancer (eg, intraocular melanoma, retinoblastoma) ; eosinophilia; gallbladder cancer; gastric cancer (eg, gastric adenocarcinoma); gastrointestinal stromal tumor (GIST); germ cell carcinoma; head and neck cancer (eg, head and neck squamous cell Squamous cell carcinoma), throat cancer (such as laryngeal cancer, pharyngeal cancer, nasopharyngeal cancer, throat cancer); heavy chain disease (such as alpha chain disease, gamma chain disease, mu chain disease; hemangioblastoma; hypopharyngeal cancer; Inflammatory myofibroblastic tumor; immune cell amyloidosis; liver cancer (eg, hepatocellular carcinoma (HCC), malignant hepatoma); leiomyosarcoma (LMS); mastocytosis (eg, systemic mastocytosis); Muscle cancer; myelodysplastic syndrome (MDS); mesothelioma; myelodysplastic disease (MPD) (eg, polycythemia vera (PV), essential thrombocythemia (ET), nonprimary myeloid Myelofibrosis (AMM), myelofibrosis (MF), chronic idiopathic myelofibrosis, chronic myelogenous leukemia (CML), chronic neutrophil leukemia (CNL), hypereosinophilic syndrome (HES), Neuroblastoma; neurofibroma (eg, neurofibromatosis (Nr) type 1 or 2, schwannomatosis); neuroendocrine carcinoma (eg, gastrointestinal neuroendocrine tumor (GEP-NET), benign tumors); osteosarcoma (eg, bone cancer); ovarian cancer (eg, ovarian cystadenocarcinoma, ovarian embryonal carcinoma, ovarian adenocarcinoma); papillary adenocarcinoma; pancreatic cancer; intraductal papillary myxoma (IPMN); tumor; penile cancer (eg, penoscrotal Paget's disease); pineal tumor; primitive neuroectodermal tumor; Cell tumors; paraneoplastic syndromes; intraepithelial neoplasms; prostate cancer; rectal cancer; rhabdomyosarcoma; salivary gland cancer; (BCC)); small bowel cancer (eg, appendix carcinoma); soft tissue sarcomas (eg, malignant fibrous histiocytoma (MFH), liposarcoma, malignant peripheral nerve sheath tumor (MPNST), chondrosarcoma, fibrosarcoma, myxosarcoma); sebaceous gland carcinoma cancer of the small intestine; cancer of the sweat glands; synovoma; cancer of the testis (eg, seminoma, embryonal carcinoma of the testis); cancer; vaginal cancer; vulvar cancer (eg, Paget's disease of the vulva).

具体的,ENDOD1核酸内切酶抑制性药物或SSA增强剂对癌症的治疗,“治 疗”是指逆转、缓解、延缓癌症的发生或癌症的进展。具体的,治疗可以在疾病 的一个或多个信号或症状已经发展,或已经可以观察到后进行治疗;也可以在无 症状及信号的疾病中进行。例如,可在症状出现前(例如,根据症状史和/或病 原体暴露史)对易感者进行治疗。也可以在症状消失后继续治疗,例如,延迟和 /或防止复发。Specifically, in the treatment of cancer with ENDOD1 endonuclease inhibitory drugs or SSA enhancers, "treatment" refers to reversing, alleviating, or delaying the occurrence of cancer or the progression of cancer. Specifically, the treatment can be performed after one or more signs or symptoms of the disease have developed or can be observed; it can also be performed in asymptomatic and signal diseases. For example, susceptible individuals can be treated pre-symptomatically (eg, based on history of symptoms and/or exposure to the pathogen). Treatment may also be continued after symptoms have resolved, for example, to delay and/or prevent relapse.

具体的,ENDOD1核酸内切酶抑制性药物或SSA增强剂对癌症的治疗中“给 药”是指将本文所述DO抑制性药物或SSA增强剂,或其组成植入、口服、吸收、 注射、吸入或以其他任何方式导入治疗对象体内或体外。Specifically, "administration" of ENDOD1 endonuclease inhibitory drugs or SSA enhancers in the treatment of cancer refers to implanting, oral administration, absorption, injection of DO inhibitory drugs or SSA enhancers, or their components, as described herein , inhaled or introduced into the body or outside the body of the subject in any other way.

在本发明方案中,术语“给药”是指将本文所述ENDOD1核酸内切酶抑制性 药物或SSA增强剂,或其组成植入、口服、吸收、注射、吸入或以其他任何方式 导入治疗对象体内或体外。In the scheme of the present invention, the term "administration" refers to the ENDOD1 endonuclease inhibitory drug or SSA enhancer described herein, or its composition implantation, oral administration, absorption, injection, inhalation or any other way into the treatment inside or outside the subject.

术语“单链DNA融合修复”,即single strand annealing(SSA),是指 主要依赖RAD52介导的,需要单链DNA和同源序列的修复方式。其调控通路还包 括RAD52、MRE11、RAD54B和RPA等因子。The term "single-strand DNA fusion repair", that is, single strand annealing (SSA), refers to a repair method that mainly relies on RAD52-mediated and requires single-stranded DNA and homologous sequences. Its regulatory pathway also includes factors such as RAD52, MRE11, RAD54B and RPA.

术语“抑制”是指化合物降低、减缓、停止和/或阻止细胞内特定生物过程 相对于载体的活性能力。“控制”或“预防”是指活性被抑制,阻碍,控制或预 防,与对照活性相比,其减少程度至少5%.10%.15%.20%.25%.30%,35%.40%. 45%.50%.55%,60%.65%.70%,75%.80%.85%,90%.95%.或100%。具体 的,“抑制,阻碍,控制或预防”是指抑制剂的靶向物表达与对照相比降低至少 5%.10%.15%.20%.25%.30%,35%.40%.45%.50%.55%,60%.65%.70%,75%. 80%.85%,90%.95%.或100%。具体的,“抑制,阻碍,控制或预防”是指抑 制剂的靶向物活性(如生物酶活性)与对照相比降低至少5%.10%.15%.20%.25%. 30%,35%.40%.45%.50%.55%,60%.65%.70%,75%.80%.85%,90%.95%.或 100%。The term "inhibit" refers to the ability of a compound to reduce, slow down, stop and/or prevent the activity of a specific biological process in a cell relative to a carrier. "Control" or "prevention" means that the activity is inhibited, hindered, controlled or prevented by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, compared to the control activity. 40%. 45%. 50%. 55%. 60%. 65%. 70%. 75%. 80%. 85%. 90%. 95%. Or 100%. Specifically, "inhibiting, hindering, controlling or preventing" means that the target expression of the inhibitor is reduced by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40% compared with the control .45%. 50%. 55%. 60%. 65%. 70%. 75%. 80%. 85%. 90%. 95%. Or 100%. Specifically, "inhibit, hinder, control or prevent" means that the target activity (such as biological enzyme activity) of the inhibitor is reduced by at least 5%, 10%, 15%, 20%, 25%, 30% compared with the control , 35%. 40%. 45%. 50%. 55%. 60%. 65%. 70%. 75%. 80%. 85%. 90%. 95%. Or 100%.

“有效剂量”是指能够诱发预期生物学反应的剂量。这种反应可以通过本领 域常规技术所理解。本发明种成分有效剂量可能根据以下因素产生变化:预期的 生物学终点,该化合物的药代动力学,治疗环境,给药方式,治疗对象年龄及健 康因素。有效剂量包括但不限于,减慢,减少,抑制,改善,逆转一种或多种癌 症相关症状的必需剂量。具体的,“有效剂量”是指药剂(如ENDOD1抑制性药 物或SSA增强剂)可导致肿瘤细胞种降低ENDOD1表达或/和活性的剂量。“降低 ENDOD1表达或/和活性“的有效剂量范围包括,2倍到100倍间任意倍数,从100% 到1%之间的任意值。具体的,癌症治疗中的有效剂量是指达到肿瘤细胞中缺乏 表达ENDOD1蛋白或/和其蛋白活性的剂量。"Effective dose" refers to a dose capable of inducing a desired biological response. Such reactions can be understood by conventional techniques in the art. Effective doses of the components of the present invention may vary depending on the following factors: the expected biological endpoint, the pharmacokinetics of the compound, the treatment environment, the mode of administration, the age and health factors of the subject to be treated. Effective dosages include, but are not limited to, dosages necessary to slow, reduce, inhibit, ameliorate, or reverse one or more cancer-related symptoms. Specifically, "effective dose" refers to the dose at which a drug (such as an ENDOD1 inhibitory drug or an SSA enhancer) can cause tumor cells to reduce the expression and/or activity of ENDOD1. The effective dosage range of "reducing the expression or/and activity of ENDOD1" includes any multiple between 2 times and 100 times, and any value between 100% and 1%. Specifically, the effective dose in cancer treatment refers to the dose that achieves the lack of expression of ENDOD1 protein or/and its protein activity in tumor cells.

如果给受试者服用两种或两种以上的抑制剂,有效量可以是联合选择量。当 第一抑制剂与第二且任选地与第三抑制剂一起使用时,第一抑制剂的选择性量可 以不同。当两种或两种以上的抑制剂同时使用时,每种抑制剂的有效量可能与单 独使用时相同或。预期效果如能在较低剂量下实现,每种药物的有效量可以小于 单独使用时的有效量。具体的,当受试者能够更好地耐受一种或多种抑制剂,并 且更高的剂量可以提供更大的治疗益处时,每种药物的有效量可能大于单独使用 时的有效量。具体的,根据一次或多次给药一天或几天(取决于给药方式),一 种化合物的有效量可从约0.001mg/kg变化到约1000mg/kg。在某些实施例中, 有效剂量从约0.001mg/kg到约1000mg/kg,从约0.01mg/kg到约750mg/kg不等。从约0.1mg/kg到约500mg/kg,从约1.0mg/kg到约250mg/kg,从约 10.0mg/kg到约150mg/kg。本领域的普通技术人员能够根据经验确定适当的治 疗有效量。If two or more inhibitors are administered to the subject, the effective amount may be a combined selected amount. When a first inhibitor is used with a second and optionally a third inhibitor, the selective amount of the first inhibitor may vary. When two or more inhibitors are used simultaneously, the effective amount of each inhibitor may be the same as when used alone or. The effective amount of each agent may be less than the effective amount when used alone, provided that the desired effect can be achieved at lower doses. Specifically, when the subject can better tolerate one or more inhibitors, and higher doses can provide greater therapeutic benefit, the effective amount of each drug may be greater than the effective amount when used alone. Specifically, an effective amount of a compound may vary from about 0.001 mg/kg to about 1000 mg/kg, based on one or more administrations over one or several days (depending on the mode of administration). In certain embodiments, the effective dose varies from about 0.001 mg/kg to about 1000 mg/kg, from about 0.01 mg/kg to about 750 mg/kg. From about 0.1 mg/kg to about 500 mg/kg, from about 1.0 mg/kg to about 250 mg/kg, from about 10.0 mg/kg to about 150 mg/kg. An appropriate therapeutically effective amount can be determined empirically by one of ordinary skill in the art.

“受试者”或“患者”或“治疗对象”包括但不限于能够患癌,或任何能够 罹患直接或间接涉及癌症的疾病的人和动物。研究对象包括哺乳动物。如人类、 狗、牛、马、猪、绵羊、山羊、猫、大鼠、兔子、小鼠和转基因非人类动物。具 体的,“受试者”或“患者”或“治疗对象”包括伴侣动物,例如狗、猫、兔子 和大鼠。具体的,“受试者”或“患者”或“治疗对象”包括牲畜,例如牛、猪、 绵羊、山羊和兔子。具体的,“受试者”或“患者”或“治疗对象”包括纯种或展示动物,例如马、猪、牛和兔子。具体的,“受试者”或“患者”或“治疗对 象”是人类,例如,具有或可能具有癌症风险的人类。A "subject" or "patient" or "subject" includes, but is not limited to, humans and animals capable of developing cancer, or any disease capable of directly or indirectly involving cancer. Research subjects include mammals. Such as humans, dogs, cows, horses, pigs, sheep, goats, cats, rats, rabbits, mice and genetically modified non-human animals. Specifically, "subject" or "patient" or "subject for treatment" includes companion animals such as dogs, cats, rabbits and rats. Specifically, "subject" or "patient" or "subject for treatment" includes livestock such as cattle, pigs, sheep, goats and rabbits. Specifically, "subject" or "patient" or "subject for treatment" includes purebred or exhibition animals such as horses, pigs, cows and rabbits. In particular, a "subject" or "patient" or "subject for treatment" is a human being, e.g., a human being who is or may be at risk of cancer.

本专利所述化合物可按任何顺序投与给受试者。第一治疗剂,例如ENDOD1 抑制剂,可以在(例如,5分钟,15分钟,30分钟,45分钟,1小时。2小时, 4小时,6小时。12小时,24小时,48小时,72小时,96小时。1周。2周、3 周、4周、5周、6周、8周或12周前),伴随或随后(例如5分钟,15分钟,30分钟,45分钟,1小时,2小时,4小时,6小时,12小时,24小时,48小 时,72小时,96小时,1周,2周,3周,4周,5周,6周,8周,或12周后) 对受试者施用第二治疗剂。因此,ENDOD1抑制剂可与第二治疗剂(如本文所述 的化学治疗剂)分开、顺序或同时施用。The compounds described in this patent can be administered to a subject in any order. The first therapeutic agent, such as an ENDOD1 inhibitor, can be administered at (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour. 2 hours, 4 hours, 6 hours. 12 hours, 24 hours, 48 hours, 72 hours , 96 hours. 1 week. 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks or 12 weeks ago), with or after (eg 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks later) A second therapeutic agent is administered to the subject. Accordingly, the ENDOD1 inhibitor can be administered separately, sequentially or simultaneously with a second therapeutic agent (such as a chemotherapeutic agent as described herein).

本文所述化合物可通过任何途径投与,包括肠内(例如口服)、肠外、静脉、 肌肉、动脉内、髓内、鞘内、皮下、脑室内、经皮。交互规范。直肠、阴道内、 腹腔内、局部(如粉末、软膏、药膏和/或滴剂)、粘膜、鼻腔、口腔、舌下; 气管内滴注、支气管滴注和/或吸入;和/或口服喷雾剂、鼻腔喷雾剂和/或气雾 剂。具体的,在考虑范围内的途径包括口服、静脉注射(例如全身静脉注射)、 通过血液和/或淋巴供应的区域性给药和/或直接给药到病变或疑似病变部位。具 体的,最合适的给药途径取决于多种因素,包括制剂的性质(例如,在胃肠道环境中的稳定性)和/或受试者的状况(例如。。受试者是否能够耐受口服给药)。 所需化合物的具体量(达到有效量)将因受试者而异,例如,取决于受试者的物 种、年龄和健康情况、副作用或个体生物系统紊乱的严重程度、特定化合物的特 性、给药方式等。所需剂量可每日三次、每日两次、每日一次、每隔一天、每三 天、每周、每两周、每三周或每四周给药。具体的,所需剂量可使用多次给药(例 如两次、三、四、五、六、七、八、九、十、十一、十二、十三、十四或更多次 来给药)。具体的,每天向70kg成人施用一次或多次的有效量的化合物可包含约0.0001mg至约3000mg、约0.0001mg至约2000mg、约0.0001mg至约1000 mg。每单位剂型化合物约0.001mg至约1000mg,约0.01mg至约1000mg,约 0.1mg至约1000mg,约1mg至约1000mg,约1mg至约100mg,约10mg 至约1000mg,或约100mg至约1000mg。The compounds described herein may be administered by any route, including enteral (eg, oral), parenteral, intravenous, intramuscular, intraarterial, intramedullary, intrathecal, subcutaneous, intracerebroventricular, transdermal. interaction specification. Rectal, intravaginal, intraperitoneal, topical (eg, powder, ointment, salves, and/or drops), mucosal, nasal, oral, sublingual; intratracheal instillation, bronchial instillation, and/or inhalation; and/or oral spray spray, nasal spray and/or aerosol. In particular, routes contemplated include oral, intravenous (eg, systemic intravenous), regional administration via the blood and/or lymphatic supply, and/or direct administration to the site of a lesion or suspected lesion. Specifically, the most suitable route of administration depends on a variety of factors, including the nature of the formulation (e.g., stability in the gastrointestinal environment) and/or the condition of the subject (e.g. whether the subject can tolerate administered orally). The specific amount of compound required (to achieve an effective amount) will vary from subject to subject, depending, for example, on the subject's species, age and health, the severity of side effects or disturbances in an individual's biological system, the nature of the particular compound, the medicine, etc. The desired dosage may be administered three times daily, twice daily, once daily, every other day, every third day, every week, every two weeks, every three weeks or every four weeks. Specifically, the required dose can be administered using multiple administrations (such as two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen or more times) medicine). Specifically, the effective amount of the compound administered one or more times per day to a 70 kg adult may comprise about 0.0001 mg to about 3000 mg, about 0.0001 mg to about 2000 mg, about 0.0001 mg to about 1000 mg. From about 0.001 mg to about 1000 mg, from about 0.01 mg to about 1000 mg, from about 0.1 mg to about 1000 mg, from about 1 mg to about 1000 mg, from about 1 mg to about 100 mg, from about 10 mg to about 1000 mg, or from about 100 mg to about 1000 mg, of the compound per unit dosage form.

具体的,本文提供的化合物可以足以从约0.001mg/kg递送至约100mg/kg、 从约0.01mg/kg递送至约50mg/kg、优选从约0.1mg/kg递送至约40mg/kg、 优选从约0.5mg/kg递送至约30mg/kg、从约0.01mg/kg递送至约10mg/kg 的剂量水平递送,从受试者体重的约0.1mg/kg到约10mg/kg,更优选地从约1 mg/kg到约25mg/kg,每天一次或多次,以获得期望的治疗效果。需要注意的是, 如本文所述的剂量范围为向成人施用所提供的药物成分提供指导。具体的给予儿 童或青少年的量可以由医生或本领域技术人员确定,并且可以低于或等于给予成 人的量。Specifically, the compounds provided herein may be sufficient to deliver from about 0.001 mg/kg to about 100 mg/kg, from about 0.01 mg/kg to about 50 mg/kg, preferably from about 0.1 mg/kg to about 40 mg/kg, preferably Delivered at dose levels from about 0.5 mg/kg to about 30 mg/kg, from about 0.01 mg/kg to about 10 mg/kg, from about 0.1 mg/kg to about 10 mg/kg of the subject's body weight, more preferably From about 1 mg/kg to about 25 mg/kg, one or more times a day to obtain the desired therapeutic effect. It is to be noted that the dosage ranges as described herein provide guidance for the administration of the provided pharmaceutical ingredients to an adult. The specific amount administered to a child or adolescent can be determined by a doctor or a person skilled in the art, and may be lower than or equal to the amount administered to an adult.

在本发明方案中,术语“ENDOD1核酸内切酶”是指人ENDOD1核酸内切酶的 基因(NCBI基因ID,23052)、mRNA(NM_015036.3)和蛋白质(NP_055851.1)。。In the present invention, the term "ENDOD1 endonuclease" refers to the gene (NCBI Gene ID, 23052), mRNA (NM_015036.3) and protein (NP_055851.1) of human ENDOD1 endonuclease. .

在本发明方案中,其中所述ENDOD1核酸内切酶抑制性药物可以通过口服或 注射等胃肠外途径给予,也可以通过慢病毒、腺病毒等生物媒介给与。In the scheme of the present invention, the ENDOD1 endonuclease inhibitory drug can be administered through parenteral routes such as oral or injection, or can also be administered through biological media such as lentivirus and adenovirus.

另一方面,本发明的再一目的是确定ENDOD1核酸内切酶抑制性药物的细胞 生物学筛选方法和策略,包括但不限于本发明所述细胞生物学方法,包括离子射 线或化疗药物处理后,利用免疫荧光或荧光融合蛋白测定细胞中功能蛋白质在 DNA断点的聚集能力,如ENDOD1核酸内切酶、MRE11、gH2AX、53BP1和单链DNA 生成等信号减低,RAD52、ATM-pSerine1981、BLM等聚集信号增强。On the other hand, another object of the present invention is to determine the cell biology screening methods and strategies of ENDOD1 endonuclease inhibitory drugs, including but not limited to the cell biology methods described in the present invention, including ion ray or chemotherapeutic drug treatment , using immunofluorescence or fluorescent fusion protein to measure the aggregation ability of functional proteins in cells at DNA breakpoints, such as ENDOD1 endonuclease, MRE11, gH2AX, 53BP1 and single-stranded DNA generation signal reduction, RAD52, ATM-pSerine1981, BLM, etc. Aggregation signal enhancement.

再一方面,本发明的再一目的是确定ENDOD1抑制性药物的筛选方法和策略, 包括本发明所述体外核酸内切酶活性测定方法、细胞水平SSA功能异常的筛选方 法、ENDOD1基因表达抑制剂筛选方法。具体的测定信号包括但不限于荧光、生 物素、吸光度、化学发光、电信号、放射显影等,其衍生测定方法包括酶活性竞 争性抑制法、流式细胞术、闪烁接近检测(SPA)、荧光偏振检测(FPA)、表面 等离子体共振技术等。In yet another aspect, another object of the present invention is to determine the screening methods and strategies for ENDOD1 inhibitory drugs, including the in vitro endonuclease activity assay method of the present invention, the screening method for abnormal function of SSA at the cellular level, and ENDOD1 gene expression inhibitors Screening method. Specific assay signals include but are not limited to fluorescence, biotin, absorbance, chemiluminescence, electrical signals, radiographic imaging, etc. Derivative assay methods include enzyme activity competitive inhibition, flow cytometry, scintillation proximity assay (SPA), fluorescence Polarization detection (FPA), surface plasmon resonance technology, etc.

附图说明Description of drawings

图1、人ENDOD1核酸内切酶基因和蛋白质序列特征Figure 1. Human ENDOD1 endonuclease gene and protein sequence characteristics

(A-B)人ENDOD1核酸内切酶基因(23052)的mRNA(NM_015036.3)和蛋白质 (NP_055851.1)的编码序列;(C)蛋白质结构域包括信号肽、核酸内切酶及活 性位点(残基C190、C224和C269),跨膜区I-III;(D)ENDOD1核酸内切酶基因的 结构,包含2个外显子和1个内含子序列;(E)Genetree软件绘制的ENDOD1核酸内 切酶基因的进化树,其同源基因存在于高等真核生物中,而不存在于酵母、果蝇 和线虫等低等真核生物;(A-B) Coding sequences of mRNA (NM_015036.3) and protein (NP_055851.1) of human ENDOD1 endonuclease gene (23052); (C) protein domain including signal peptide, endonuclease and active site ( Residues C190, C224 and C269), transmembrane region I-III; (D) structure of ENDOD1 endonuclease gene, including 2 exons and 1 intron sequence; (E) ENDOD1 drawn by Genetree software Evolutionary tree of endonuclease genes whose homologs exist in higher eukaryotes but not in lower eukaryotes such as yeast, Drosophila and nematodes;

图2、人ENDOD1核酸内切酶的特性与翻译后修饰Figure 2. Characteristics and post-translational modifications of human ENDOD1 endonuclease

(A)ENDOD1核酸内切酶基因的CRISPR/CAS9基因编辑,gRNA靶点如A1所示,下划 线核苷酸为PAM序列。A2显示所用CAS9-gRNA基因编辑质粒的构造;(B)ENDOD1 核酸内切酶基因沉默所用3条小干扰RNA序列(B1)及沉默效果(B2),si001是本 研究常用siRNA。所示*号为非特异性条带;(C)免疫蛋白质印迹测定RPE-1细胞 中ENDOD1核酸内切酶的蛋白质产物,其主带大小约55Kd(全长,a)。所示*号为 非特异性条带;(D)CAS9-gRNA基因编辑获得的ENDOD1核酸内切酶基因敲除(2F4) 或突变(2F6)的RPE-1细胞系。2F4为完全敲除,蛋白免疫印迹检测不出任何ENDOD1 核酸内切酶蛋白质条带。2F6为蛋白质加工突变,只表达a带,而b、c条带缺失; (E)免疫印迹检测siRNA(si001)基因沉默的RPE-1细胞。ENDOD1核酸内切酶蛋 白条带a、b、c、d、e均减弱;(F)泛素化修饰实验证明ENDOD1核酸内切酶的蛋 白质亚型e是由于泛素化修饰产生,修饰方式包括赖氨酸48(K48)和赖氨酸63 (K63)的多聚泛素化修饰;(G)生物信息学软件(PrediSci)预测的ENDOD1核 酸内切酶信号肽位置(残基22),LEG-RL是可能的蛋白酶切位点;(H)NetSurfP-2.0 软件预测ENDOD1核酸内切酶的低序区(disorder),发现残基300-325是潜在的蛋 白酶切位点,与残基LEG-RL序列的酶切活动共同产生ENDOD1核酸内切酶的b、c、 d亚型;(A) CRISPR/CAS9 gene editing of the ENDOD1 endonuclease gene, the gRNA target is shown in A1, and the underlined nucleotides are PAM sequences. A2 shows the structure of the CAS9-gRNA gene editing plasmid used; (B) 3 small interfering RNA sequences (B1) and silencing effects (B2) used for ENDOD1 endonuclease gene silencing, si001 is a commonly used siRNA in this study. The * number shown is a non-specific band; (C) Western blot assay of the protein product of ENDOD1 endonuclease in RPE-1 cells, the main band size is about 55Kd (full length, a). The marked * is a non-specific band; (D) RPE-1 cell line with ENDOD1 endonuclease gene knockout (2F4) or mutation (2F6) obtained by CAS9-gRNA gene editing. 2F4 is completely knocked out, and Western blotting cannot detect any ENDOD1 endonuclease protein bands. 2F6 is a protein processing mutation, and only expresses band a, while bands b and c are missing; (E) Western blot detection of siRNA (si001) gene silenced RPE-1 cells. ENDOD1 endonuclease protein bands a, b, c, d, and e were all weakened; (F) Ubiquitination experiment proved that the protein subtype e of ENDOD1 endonuclease was produced by ubiquitination modification, and the modification methods included Polyubiquitination modification of lysine 48 (K48) and lysine 63 (K63); (G) ENDOD1 endonuclease signal peptide position (residue 22) predicted by bioinformatics software (PrediSci), LEG -RL is a possible protease cleavage site; (H) NetSurfP-2.0 software predicts the low sequence region (disorder) of ENDOD1 endonuclease, and finds that residues 300-325 are potential protease cleavage sites, and residues LEG- The cleavage activity of the RL sequence together produces the b, c, d subtypes of the ENDOD1 endonuclease;

图3、人ENDOD1核酸内切酶与DNA损伤位点结合Figure 3. Binding of human ENDOD1 endonuclease to DNA damage sites

(A)免疫荧光显示,ENDOD1核酸内切酶在正常生长的细胞中主要定位于细胞浆 和核膜。在DNA损伤后(离子射线照射),ENDOD1核酸内切酶可在40分钟进入DNA 断点形成ENDOD1核酸内切酶聚集点,并持续存在到照射后2小时。细胞核DNA用 DAPI反染;(B)免疫荧光显示,ENDOD1核酸内切酶在喜树碱(CPT)和羟基脲(HU) 处理后也可以进入DNA断点形成聚集点;(C)免疫荧光显示,ENDOD1核酸内切酶 在离子射线照射后可与γH2AX在DNA损伤聚集点共定位,如箭头所示;(D)染色质 免疫共沉淀实验证明ENDOD1核酸内切酶在距离DNA断点处0.5、1和2.5Kb处结合; (E)单链DNA结合因子(RPA32)的染色质免疫共沉淀实验证明RPA32在ENDOD1 核酸内切酶沉默后没有明显缺陷,但是在同源重组修复因子(WDR70)共沉默的 条件下,可以消除RPA在DNA断点的结合;(F)染色质分离实验证明ENDOD1核酸内 切酶的a、b、c、d形式可与染色质紧密结合;(A) Immunofluorescence shows that the ENDOD1 endonuclease is mainly localized in the cytoplasm and nuclear membrane in normal growing cells. After DNA damage (irradiation with ion rays), ENDOD1 endonuclease can enter the DNA breakpoint in 40 minutes to form ENDOD1 endonuclease aggregation point, and persist until 2 hours after irradiation. Nuclear DNA was counterstained with DAPI; (B) Immunofluorescence showed that ENDOD1 endonuclease could also enter DNA breakpoints to form aggregation points after treatment with camptothecin (CPT) and hydroxyurea (HU); (C) Immunofluorescence showed , ENDOD1 endonuclease can co-localize with γH2AX at the DNA damage accumulation point after ion ray irradiation, as shown by the arrow; (D) Chromatin immunoprecipitation experiment proves that ENDOD1 endonuclease is located at a distance of 0.5, Binding at 1 and 2.5Kb; (E) Chromatin immunoprecipitation assay of single-strand DNA binding factor (RPA32) proved that RPA32 has no obvious defect after ENDOD1 endonuclease silencing, but co-expression in homologous recombination repair factor (WDR70) Under silencing conditions, the binding of RPA at DNA breakpoints can be eliminated; (F) Chromatin separation experiments prove that the a, b, c, and d forms of ENDOD1 endonuclease can tightly bind to chromatin;

图4、人ENDOD1核酸内切酶参与DNA修复Figure 4. Human ENDOD1 endonuclease participates in DNA repair

(A)RPE-1细胞中沉默ENDOD1核酸内切酶基因后,通过I-Sce1诱导pcDNA3-NHEJ、pcDNA3-HR、pcDNA3-SSA质粒上的DNA断裂,测定DNA断点修复效率。ENDOD1核酸 内切酶基因沉默可以略微抑制非同源末端链接(NHEJ)和同源重组(HR)修复功 能,更主要的是促进单链DNA融合(SSA)的功能;(B)如图A,在RPE-1野生型、 2F4和2F6细胞中测试DNA断裂修复效率;(C)在ENDOD1核酸内切酶基因敲除的2F4 细胞中转染多西环素诱导的野生型ENDOD1核酸内切酶质粒(Wt),可纠正上述修 复异常;而引入核酸内切酶失活的ENDOD1核酸内切酶质粒(ND,nuclease dead; ΔEND:endonuclease deleted)则没有纠正功能。说明ENDOD1核酸内切酶依赖 其核酸内切酶活性调控DNA修复;(D)RPE-1细胞沉默ENDOD1核酸内切酶和/或SSA 功能基因(RAD52),测试DNA断裂修复效率。RAD52沉默可以逆转ENDOD1核酸内切 酶缺陷导致的SSA功能亢进;(E-F)免疫荧光显示RPE-1细胞敲除(E)或沉默(F) ENDOD1核酸内切酶基因可以提高RAD52向DNA断点的聚集,说明ENDOD1核酸内切酶 通过降低RAD52向DNA损伤位点的招募而抑制SSA修复效率。与野生型RPE-1相比, 2F4和2F6均有RAD52功能亢进的缺陷。E1、F1:免疫荧光染色图片,白色圆圈表 示细胞核的位置。E2、F2:RAD52在损伤位点聚集的计数。细胞DNA用DAPI反染。 文中所述统计学方法若无特别说明均使用双尾T检验验证P值,P≤0.05认为有显 著差异。NS:无统计学差异;(A) After silencing the ENDOD1 endonuclease gene in RPE-1 cells, I-Sce1 induced DNA breaks on pcDNA3-NHEJ, pcDNA3-HR, and pcDNA3-SSA plasmids to measure DNA breakpoint repair efficiency. ENDOD1 endonuclease gene silencing can slightly inhibit the repair function of non-homologous end joining (NHEJ) and homologous recombination (HR), and more importantly, promote the function of single-strand DNA fusion (SSA); (B) As shown in A, DNA break repair efficiency was tested in RPE-1 wild-type, 2F4 and 2F6 cells; (C) Doxycycline-induced wild-type ENDOD1 endonuclease plasmid was transfected in ENDOD1 endonuclease gene knockout 2F4 cells (Wt), can correct the above repair abnormalities; while the introduction of endonuclease inactive ENDOD1 endonuclease plasmid (ND, nuclease dead; ΔEND: endonuclease deleted) has no correction function. It shows that ENDOD1 endonuclease depends on its endonuclease activity to regulate DNA repair; (D) RPE-1 cells silence ENDOD1 endonuclease and/or SSA functional gene (RAD52), and test DNA break repair efficiency. RAD52 silencing can reverse the hyperfunction of SSA caused by ENDOD1 endonuclease deficiency; (E-F) Immunofluorescence shows that knockdown (E) or silencing (F) of the ENDOD1 endonuclease gene in RPE-1 cells can enhance the binding of RAD52 to DNA breakpoints clustering, indicating that the ENDOD1 endonuclease inhibits SSA repair efficiency by reducing the recruitment of RAD52 to sites of DNA damage. Both 2F4 and 2F6 were defective in RAD52 hyperfunction compared with wild-type RPE-1. E1, F1: Immunofluorescence staining pictures, the white circles indicate the position of the nucleus. E2, F2: counts of RAD52 aggregated at the injury site. Cellular DNA was counterstained with DAPI. Unless otherwise specified, the statistical methods described in the article use the two-tailed T test to verify the P value, and P≤0.05 is considered to have a significant difference. NS: no statistical difference;

图5、ENDOD1核酸内切酶对其他DNA修复因子的调控机制Figure 5. The regulation mechanism of ENDOD1 endonuclease on other DNA repair factors

(A)沉默ENDOD1核酸内切酶基因表达抑制IR诱导的γH2AX和53BP1的聚集点;(B)敲除或突变ENDOD1核酸内切酶的RPE-1细胞(2F4和2F6)不能形成IR诱导的FK2 聚集点;(C)沉默ENDOD1核酸内切酶基因表达增强IR诱导的ATM自身磷酸化 (pS1981)的聚集点;(D-E)沉默ENDOD1核酸内切酶基因表达抑制IR诱导的BLM (D)和MRE11(E)的聚集点;(A) Silencing ENDOD1 endonuclease gene expression inhibits IR-induced aggregation of γH2AX and 53BP1; (B) RPE-1 cells (2F4 and 2F6) with knockout or mutant ENDOD1 endonuclease cannot form IR-induced FK2 Focal point; (C) Silencing ENDOD1 endonuclease gene expression enhances IR-induced ATM autophosphorylation (pS1981) focal point; (D-E) Silencing ENDOD1 endonuclease gene expression inhibits IR-induced BLM (D) and MRE11 (E) gathering point;

图6、ENDOD1核酸内切酶对损伤DNA的切割效应Figure 6. Cutting effect of ENDOD1 endonuclease on damaged DNA

(A)BL21细菌纯化的ENDOD1核酸内切酶-STREP标签蛋白质。包括ENDOD1核酸内 切酶全长(FL),残基22-233和1-344的片段。SN:细胞裂解液;Pu:纯化后ENDOD1 核酸内切酶的成分;(B)0.5微克纯化的ENDOD1核酸内切酶核酸内切酶结构域片 段(22-344残基)加入0.37微克DNA双链片段或DNA/RNA杂交链,在酶切缓冲液 (100mM NaCl,50mM Tris-HCl,10mM MgCl2,100μg/ml BSA,pH 7.9)。DNA 双链包括平末端(30bp)、3’(28bp)和5’-overhang(28bp)三种形式;(C) 0.5微克纯化ENDOD1核酸内切酶的蛋白质加入0.2微克各种处理的pEGFP-C3质 粒DNA,在酶切缓冲液中进行体外消化反应(37℃,16小时)。ENDOD1核酸内切酶 可以切割带有结构损伤的质粒,如紫外线损伤、DNA双链断裂(5’和3’overhang)、氧化损伤(过氧化氢处理)。HTRA2纯化蛋白质作为无核酸酶活性的对照;(A) ENDOD1 endonuclease-STREP tagged protein purified from BL21 bacteria. Includes the full length (FL) of the ENDOD1 endonuclease, a fragment of residues 22-233 and 1-344. SN: cell lysate; Pu: fraction of purified ENDOD1 endonuclease; (B) 0.5 μg of purified ENDOD1 endonuclease endonuclease domain fragment (22-344 residues) added to 0.37 μg of double-stranded DNA Fragments or DNA/RNA hybrid strands in digestion buffer (100mM NaCl, 50mM Tris-HCl, 10mM MgCl2, 100μg/ml BSA, pH 7.9). DNA double strands include three forms of blunt end (30bp), 3'(28bp) and 5'-overhang(28bp); (C) 0.5 μg of purified ENDOD1 endonuclease protein was added to 0.2 μg of variously treated pEGFP-C3 Plasmid DNA, in vitro digestion reaction (37°C, 16 hours) in restriction buffer. ENDOD1 endonuclease can cleave plasmids with structural damage, such as UV damage, DNA double-strand breaks (5' and 3' overhang), oxidative damage (hydrogen peroxide treatment). HTRA2 purified protein was used as a control without nuclease activity;

图7、ENDOD1核酸内切酶基因敲除或沉默不影响正常非肿瘤细胞的增殖Figure 7. ENDOD1 endonuclease gene knockout or silencing does not affect the proliferation of normal non-tumor cells

(A)正常体细胞(RPE-1、MRC-5、GES-1和L02)细胞沉默ENDOD1核酸内切酶基 因(siEN),并测定其增殖曲线;(B)ENDOD1核酸内切酶野生型和基因编辑的RPE-1 细胞(2F4和2F6)的增殖曲线;(A) Normal somatic cells (RPE-1, MRC-5, GES-1 and L02) cells silenced the ENDOD1 endonuclease gene (siEN), and measured its proliferation curve; (B) ENDOD1 endonuclease wild-type and Proliferation curves of gene-edited RPE-1 cells (2F4 and 2F6);

图8、ENDOD1核酸内切酶基因沉默抑制肿瘤细胞的增殖Figure 8. ENDOD1 endonuclease gene silencing inhibits the proliferation of tumor cells

(A-B)所示肿瘤细胞中转染ENDOD1核酸内切酶特异性siRNA(si001),测定增殖 速率。肿瘤细胞显示敏感(A)和不敏感(B)两种特征。MDA-MB-231、NCI-H1299和 HL60细胞计算实验终点细胞增殖倍数;(C)在实验终点对部分测试细胞进行结晶 紫染色,深色显示存留的活细胞;(D)免疫印迹显示siENDOD1在不敏感细胞 (HO8910-PM、SW480、GES-1、L02)中的沉默效果;(E)在SKOV3细胞中沉默ENDOD1, 同时多西环素诱导过表达抗siENDOD1的ENDOD1野生型或核酸酶失活(ND),检测 细胞增殖倍数;(F)在SKOV3细胞中同时转染ENDOD1核酸内切酶和RAD52的siRNA, 测定细胞增殖倍数;(A-B) The tumor cells shown in (A-B) were transfected with ENDOD1 endonuclease-specific siRNA (si001), and the proliferation rate was measured. Tumor cells show two characteristics of sensitive (A) and insensitive (B). MDA-MB-231, NCI-H1299 and HL60 cells were calculated to calculate the cell proliferation ratio at the end point of the experiment; (C) Part of the test cells were stained with crystal violet at the end point of the experiment, and the dark color showed the remaining living cells; (D) Western blot showed that siENDOD1 was in Silencing effect in insensitive cells (HO8910-PM, SW480, GES-1, L02); (E) Silencing of ENDOD1 in SKOV3 cells, while doxycycline induced ENDOD1 wild-type or nuclease inactivation overexpressing anti-siENDOD1 (ND), detection of cell proliferation multiples; (F) simultaneous transfection of siRNA of ENDOD1 endonuclease and RAD52 in SKOV3 cells, determination of cell proliferation multiples;

图9、ENDOD1核酸内切酶与DNA损伤应答和同源重组修复基因的联合致死效应Figure 9. Joint lethal effect of ENDOD1 endonuclease and DNA damage response and homologous recombination repair genes

(A)RPE-1和2F4细胞经DNA损伤应答因子抑制剂或基因沉默处理后,测定其增殖能力。活细胞由结晶紫染色;(B)ENDOD1核酸内切酶与BRCA1、BRCA2、BLM、MRE11、 CTIP、EXO1、ARID1A/RID1B和WDR70等同源重组修复基因共沉默后,测定其增殖 能力和联合致死效应;(C)ENDOD1核酸内切酶与所示DNA修复基因共沉默后的联 合致死效应定量图。纵轴表示实验终点(12天)细胞的增殖倍数;(D)3条不同 的ENDOD1核酸内切酶siRNA与BRCA1基因共沉默对RPE-1细胞的联合致死效应; (E)敲除细胞(2F4)中沉默BRCA1、FANCD2或FANCC基因,测定其联合致死效应;(A) RPE-1 and 2F4 cells were treated with DNA damage response factor inhibitors or gene silencing, and their proliferation ability was determined. Viable cells were stained by crystal violet; (B) ENDOD1 endonuclease was co-silenced with homologous recombination repair genes such as BRCA1, BRCA2, BLM, MRE11, CTIP, EXO1, ARID1A/RID1B, and WDR70, and its proliferation ability and joint lethality were determined Effects; (C) Quantification of joint lethal effects after co-silencing of the ENDOD1 endonuclease and the indicated DNA repair genes. The vertical axis represents the multiplication factor of the cells at the end of the experiment (12 days); (D) the joint lethal effect of 3 different ENDOD1 endonuclease siRNAs and BRCA1 gene co-silencing on RPE-1 cells; (E) knockout cells (2F4 ) to silence BRCA1, FANCD2 or FANCC genes, and determine their combined lethal effects;

图10、ENDOD1核酸内切酶与抑癌基因的联合致死效应Figure 10. The joint lethal effect of ENDOD1 endonuclease and tumor suppressor gene

(A)在沉默ENDOD1核酸内切酶的RPE-1细胞或2F4细胞中沉默TP53基因,12天后 对存活细胞进行结晶紫染色;(B)对TP53高水平的肿瘤细胞系(HO8910-PM)同 时沉默ENDOD1核酸内切酶和TP53,测定实验终点的增殖倍数和结晶紫染色;(C) 在沉默ENDOD1基因的带有TP53基因纯和突变的细胞(NCI-H1975)中同时转染野 生型TP53表达质粒(oeTP53),进行基因回补,测定实验终点的增殖倍数和结晶 紫染色;(D)在RPE-1和2F4细胞中沉默抑癌基因PTEN,测定实验终点的增殖倍数 和结晶紫染色;(A) TP53 gene was silenced in RPE-1 cells or 2F4 cells that silenced ENDOD1 endonuclease, and the surviving cells were stained with crystal violet after 12 days; (B) The tumor cell line with high level of TP53 (HO8910-PM) was simultaneously Silencing of ENDOD1 endonuclease and TP53, determination of proliferation multiples and crystal violet staining at the end of the experiment; (C) Simultaneous transfection of wild-type TP53 expression in TP53 pure and mutant cells (NCI-H1975) with silenced ENDOD1 gene Plasmid (oeTP53), carry out gene complementation, determine the multiplication factor and crystal violet staining at the end point of the experiment; (D) silence the tumor suppressor gene PTEN in RPE-1 and 2F4 cells, determine the multiplication factor and crystal violet staining at the end point of the experiment;

图11、肿瘤细胞基因突变与ENDOD1核酸内切酶基因沉默细胞毒的相关性分析Figure 11. Correlation analysis between tumor cell gene mutation and ENDOD1 endonuclease gene silencing cytotoxicity

(A)免疫印迹实验检测所示正常及肿瘤细胞系中ENDOD1核酸内切酶的蛋白质水平;(B)Human Protein Atlas数据库中显示的正常人体组织中ENDOD1核酸内切 酶的蛋白质水平;(C)Human Protein Atlas数据库中ENDOD1核酸内切酶在各种 来源的人肿瘤组织中的表达水平;(D)ENDOD1核酸内切酶基因沉默对带有TP53 及其他基因突变(如BRCA1、BRCA2等)的肿瘤细胞抑制效果显著高于非突变的肿 瘤细胞。组间差异使用双尾T检验验证,P≤0.05认为有显著差异;(A) Protein levels of ENDOD1 endonuclease in normal and tumor cell lines detected by Western blot; (B) Protein levels of ENDOD1 endonuclease in normal human tissues shown in the Human Protein Atlas database; (C) Expression levels of ENDOD1 endonuclease in Human Protein Atlas database in human tumor tissues from various sources; (D) Effect of ENDOD1 endonuclease gene silencing on tumors with TP53 and other gene mutations (such as BRCA1, BRCA2, etc.) The cytostatic effect was significantly higher than that of non-mutated tumor cells. Differences between groups were verified by two-tailed T-test, and P≤0.05 was considered significant difference;

图12、ENDOD1核酸内切酶基因沉默的对化学治疗的增敏作用Figure 12. The sensitization effect of ENDOD1 endonuclease gene silencing on chemotherapy

正常细胞(RPE-1)和肿瘤细胞(A549)细胞在沉默ENDOD1核酸内切酶后进行CPT、顺铂和DNAPK等靶向抑制剂处理,测定其增殖曲线;Normal cells (RPE-1) and tumor cells (A549) were treated with targeted inhibitors such as CPT, cisplatin, and DNAPK after silencing ENDOD1 endonuclease, and their proliferation curves were measured;

图13.ENDOD1核酸内切酶基因沉默对小鼠荷瘤模型的治疗作用Figure 13. The therapeutic effect of ENDOD1 endonuclease gene silencing on tumor-bearing mice

(A)建立SKOV3、HCC1937和OVCAR-8TR细胞的裸鼠皮下肿瘤模型,每周两次体内 注射对照或ENDOD1核酸内切酶特异性siRNA(si001),测定肿瘤体积。三种细胞 系均带有TP53或BRCA1基因突变;(B)沉默ENDOD1基因对3种肿瘤模型的抑制率(T/C%);(A) Nude mouse subcutaneous tumor models of SKOV3, HCC1937 and OVCAR-8TR cells were established, and control or ENDOD1 endonuclease-specific siRNA (si001) was injected in vivo twice a week to measure tumor volume. The three cell lines all carry TP53 or BRCA1 gene mutation; (B) the inhibition rate (T/C%) of silencing the ENDOD1 gene on the three tumor models;

图14、ENDOD1核酸内切酶功能抑制与活动性乙肝病毒对细胞的联合致死效应Figure 14. Combined lethal effect of ENDOD1 endonuclease function inhibition and active hepatitis B virus on cells

(A)ENDOD1核酸内切酶和WDR70共沉默对HBV阴性肝细胞(L02)的联合致死效应;(B)在HBV阳性(T43)或阴性细胞(L02)中沉默ENDOD1核酸内切酶基因,测定 其增殖能力。PARP抑制剂(奥拉帕尼,0.5uM)作为T43细胞毒的阳性对照;(C) 建立T43的裸鼠皮下肿瘤模型,每周两次体内注射对照或ENDOD1核酸内切酶 siRNA,测定肿瘤体积(C1)。实验终点解剖并分离对照和沉默ENDOD1的肿瘤,显 示一组实验终点的肿瘤解剖样本(C2);(D)裸鼠尾静脉接种HepG2.2.15,ELISA 方法测定所示时间点的血清中HBV抗原(HBsAg)的滴度;(E)裸鼠尾静脉接种 HepG2.2.15,使用利用荧光定量PCR确定血液中HBV拷贝数方法测定所示时间点的 血清中HBV病毒DNA的滴度;(A) Combined lethal effect of ENDOD1 endonuclease and WDR70 co-silencing on HBV-negative hepatocytes (L02); (B) silencing of the ENDOD1 endonuclease gene in HBV-positive (T43) or negative cells (L02), assay its proliferative capacity. PARP inhibitor (olaparib, 0.5uM) was used as a positive control for T43 cytotoxicity; (C) T43 subcutaneous tumor model was established in nude mice, and the control or ENDOD1 endonuclease siRNA was injected twice a week to measure the tumor volume (C1). The control and ENDOD1-silenced tumors were dissected and isolated at the end of the experiment, showing a group of tumor anatomy samples at the end of the experiment (C2); (D) Nude mice were inoculated with HepG2.2.15 in the tail vein, and the HBV antigens in the serum at the indicated time points were measured by ELISA ( HBsAg) titer; (E) nude mice were inoculated with HepG2.2.15 through the tail vein, and the titer of HBV virus DNA in the serum of the indicated time point was measured by using the method of utilizing fluorescent quantitative PCR to determine the HBV copy number in the blood;

图15、体外ENDOD1核酸内切酶活性滴定Figure 15. Titration of ENDOD1 endonuclease activity in vitro

竞争性抑制法筛选ENDOD1核酸内切酶活性小分子抑制剂流程图:在384孔PCR 裙边板中加入ENDOD1蛋白质、线性双链DNA底物及小分子抑制剂库,进行酶切 反应后加入包含引物的荧光定量PCR预混液,进行荧光定量PCR检测DNA底物剩 余量及酶切效率,筛选有效的小分子抑制剂。Flowchart of screening small molecule inhibitors of ENDOD1 endonuclease activity by competitive inhibition method: add ENDOD1 protein, linear double-stranded DNA substrate and small molecule inhibitor library to a 384-well PCR skirt plate, perform enzyme digestion reaction and add the containing Fluorescent quantitative PCR master mix of primers, and perform fluorescent quantitative PCR to detect the remaining amount of DNA substrate and enzyme cutting efficiency, and screen effective small molecule inhibitors.

具体实施方式detailed description

以下非限制性实施例用来进一步阐明和理解本发明的实质。应当理解的 是,所示组分的比例变化和操作方法对本领域技术人员而言是显而易见的, 因此也落入本发明的范围内。The following non-limiting examples serve to further clarify and understand the essence of the present invention. It should be understood that variations in the proportions of the components shown and methods of manipulation will be obvious to those skilled in the art and thus fall within the scope of the present invention.

本发明在研究DNA损伤应答机理的过程中,意外地发现ENDOD1核酸内切酶基 因编码的核酸内切酶具有抑制RAD52介导的SSA修复的功能,对其他DNA修复机制 的影响较小。文献报道认为ENDOD1核酸内切酶是一个抑癌基因,沉默该基因功能 可以促进肿瘤增殖(参见:Qiu,J.,et al.,Identification of endonuclease domain-containing 1as a noveltumor suppressor in prostate cancer.BMC Cancer,2017.17(1):p.360.)。但是,我们的研究意外地发现抑制ENDOD1核 酸内切酶功能可以与DNA损伤应答缺陷(如ATM、CHK1)、DNA修复缺陷(如BRCA1、 BRCA2、MRE11、FANC和乙型肝炎病毒阳性等)表现强烈的合成致死效应,也可以 与带有抑癌基因突变(如TP53、PTEN)的细胞合成致死,并可以有效地杀伤带有这些缺陷的肿瘤细胞;在带有所述基因突变或功能缺陷的体内肿瘤模型中,抑制 ENDOD1核酸内切酶功能可以遏制这些肿瘤的进展。与之相反,在DNA损伤应答、 DNA修复机制和TP53等抑癌基因功能正常的非肿瘤细胞中,抑制ENDOD1核酸内切 酶功能,甚至完全敲除ENDOD1核酸内切酶基因,则完全没有合成致死的效应,不 影响这些细胞的增殖。并且,抑制ENDOD1核酸内切酶表达或功能可以让有或没有 上述缺陷的肿瘤细胞对细胞毒性治疗(放疗或化疗)更加敏感,具有协同增敏的 作用,而相同药物处理对正常细胞没有毒性作用。因此,这些研究证明ENDOD1 核酸内切酶可以与DNA损伤应答、DNA修复机制和抑癌基因的缺陷联合致死肿瘤细 胞,是一个全新的广谱抗肿瘤药物靶点。In the process of studying the DNA damage response mechanism, the present invention unexpectedly finds that the endonuclease encoded by the ENDOD1 endonuclease gene has the function of inhibiting the SSA repair mediated by RAD52, and has less impact on other DNA repair mechanisms. According to literature reports, ENDOD1 endonuclease is a tumor suppressor gene, and silencing the function of this gene can promote tumor proliferation (see: Qiu, J., et al., Identification of endonuclease domain-containing 1 as a noveltumor suppressor in prostate cancer. BMC Cancer , 2017.17(1): p.360.). However, our study unexpectedly found that inhibition of ENDOD1 endonuclease function can be strongly associated with DNA damage response defects (such as ATM, CHK1), DNA repair defects (such as BRCA1, BRCA2, MRE11, FANC and hepatitis B virus positivity, etc.) Synthetic lethal effect, can also be synthetically lethal with cells with tumor suppressor gene mutations (such as TP53, PTEN), and can effectively kill tumor cells with these defects; in vivo with the gene mutations or functional defects In tumor models, inhibition of ENDOD1 endonuclease function curbs the progression of these tumors. In contrast, in non-tumor cells with normal DNA damage response, DNA repair mechanisms, and tumor suppressor genes such as TP53, inhibition of ENDOD1 endonuclease function, or even complete knockout of the ENDOD1 endonuclease gene, resulted in no synthetic lethality at all. effect without affecting the proliferation of these cells. Moreover, inhibiting the expression or function of ENDOD1 endonuclease can make tumor cells with or without the above-mentioned defects more sensitive to cytotoxic treatment (radiotherapy or chemotherapy), and has a synergistic sensitization effect, while the same drug treatment has no toxic effect on normal cells . Therefore, these studies prove that ENDOD1 endonuclease can be combined with defects in DNA damage response, DNA repair mechanism and tumor suppressor genes to kill tumor cells, and it is a new broad-spectrum anti-tumor drug target.

下列实施例中细胞系种类及来源如表一所示,其来源为ATCC、中国科学 院典型培养物保藏委员会细胞库或成都中科院生物研究所等合作单位转 赠)。ENDOD1核酸内切酶基因编辑的RPE-1细胞(2F4和2F6)由四川大学华 西第二医院刘聪实验室构建。裸鼠(BALB/c-Nude品系,SPF级,雌性,来源 于四川大学实验动物中心)为本发明中实验用。The types and sources of the cell lines in the following examples are shown in Table 1, and the sources are donated by ATCC, the Cell Bank of the Type Culture Collection Committee of the Chinese Academy of Sciences or the Chengdu Institute of Biology of the Chinese Academy of Sciences). ENDOD1 endonuclease gene-edited RPE-1 cells (2F4 and 2F6) were constructed by Cong Liu’s laboratory at West China Second Hospital, Sichuan University. Nude mice (BALB/c-Nude strain, SPF grade, female, from Experimental Animal Center of Sichuan University) are used in experiments in the present invention.

实施例中所用细菌菌株为DH5a和BL21等常用菌株。ENDOD1核酸内切酶 分子克隆和细胞表达所用pET28a、pLVX-IRES-ZsGreen1、pcDNA3、 pLVX-Tet3G、pLVX-TRE3G等质粒,以及各种野生型和突变体均由四川大学 华西第二医院刘聪实验室制造。I-Sce1DNA断裂诱导体系的质粒由浙江大学陈 军教授提供。所用CRISPR/CAS9基因编辑体系由北京唯尚立德生物科技有限 公司公司构建。小干扰RNA(siRNA)由上海锐博生物技术有限公司公司合成。分子克隆引物由成都擎科梓熙生物技术有限公司公司合成。The bacterial strains used in the examples are common bacterial strains such as DH5a and BL21. The pET28a, pLVX-IRES-ZsGreen1, pcDNA3, pLVX-Tet3G, pLVX-TRE3G and other plasmids used for molecular cloning and cell expression of ENDOD1 endonuclease, as well as various wild-type and mutants were all experimented by Liu Cong, West China Second Hospital, Sichuan University. room manufacturing. The plasmid of the I-Sce1 DNA break induction system was provided by Professor Chen Jun of Zhejiang University. The CRISPR/CAS9 gene editing system used was constructed by Beijing Weishang Lide Biotechnology Co., Ltd. Small interfering RNA (siRNA) was synthesized by Shanghai Ruibo Biotechnology Co., Ltd. Molecular cloning primers were synthesized by Chengdu Qingke Zixi Biotechnology Co., Ltd.

实施例中使用的Lipofectamine 3000(Invitrogen,L3000015)、兔抗人 ENDOD1核酸内切酶抗体(Abcam,Ab121293)、RAD52(LSBio, LS-C176555/122111)、ATM-pSerine1981(Cell Signaling,526S)、FK2(Enzo, BML-PW8810)、53BP1(bethyl,A300-272A)、γH2AX(Millipore,05-636)、 MRE11(Cell Signaling,4895)、BLM(Bethyl,A300-110A-2)、BRCA1(Bethyl,A300-001A)、RPA32-pSerine33(Novus,NB100-544)、顺铂 (131102,SupertrackBio-pharmaceutical)、羟喜树碱(Selleck,S2423)、羟 基脲(Selleck,S1896)、ATM抑制剂(Ku55933,Selleck,S1092)、MRE11抑制剂 (Mirin,Selleck,S8096)、CHK2抑制剂(BML-277,Selleck,S8632)、DNAPK抑制 剂(NU7026,Selleck,S2893)、CGK733(Selleck,S7136)、ATR抑制剂(Caffeine, Sigma,C1778-5VL)、4-OHT((Z)-4-羟三苯氧胺)及其他各种试剂均为本发明中 实验用。常用试剂剂量:IR,8Gy;CPT,0.0125uM;HU,0.2mM;顺铂, 2ug/mL;4-OHT,300nM。转染质粒剂量为0.25ug/10万细胞;转染siRNA 剂量为0.2ug/10万细胞。Lipofectamine 3000 (Invitrogen, L3000015), rabbit anti-human ENDOD1 endonuclease antibody (Abcam, Ab121293), RAD52 (LSBio, LS-C176555/122111), ATM-pSerine1981 (Cell Signaling, 526S), FK2 used in the examples (Enzo, BML-PW8810), 53BP1 (bethyl, A300-272A), γH2AX (Millipore, 05-636), MRE11 (Cell Signaling, 4895), BLM (Bethyl, A300-110A-2), BRCA1 (Bethyl, A300 -001A), RPA32-pSerine33 (Novus, NB100-544), cisplatin (131102, Supertrack Bio-pharmaceutical), hydroxycamptothecin (Selleck, S2423), hydroxyurea (Selleck, S1896), ATM inhibitor (Ku55933, Selleck , S1092), MRE11 inhibitor (Mirin, Selleck, S8096), CHK2 inhibitor (BML-277, Selleck, S8632), DNAPK inhibitor (NU7026, Selleck, S2893), CGK733 (Selleck, S7136), ATR inhibitor ( Caffeine, Sigma, C1778-5VL), 4-OHT ((Z)-4-hydroxy tamoxifen) and various other reagents are used in experiments in the present invention. Doses of common reagents: IR, 8Gy; CPT, 0.0125uM; HU, 0.2mM; cisplatin, 2ug/mL; 4-OHT, 300nM. The dose of transfected plasmid is 0.25ug/100,000 cells; the dose of transfected siRNA is 0.2ug/100,000 cells.

实施例中所提到细胞系基因组突变位点的信息均由文献或ATCC提供。The information on the genome mutation sites of the cell lines mentioned in the examples is provided by literature or ATCC.

乙型肝炎病毒表面抗原诊断试剂盒(S10910113,上海科华生物工程股份有 限公司),乙型肝炎病毒(HBV)核酸扩增(PCR)荧光定量检测试剂盒(S20030059, 海科华生物工程股份有限公司)及其他各种试剂均为本发明中实验用,不作他 用。Hepatitis B virus surface antigen diagnostic kit (S10910113, Shanghai Kehua Bioengineering Co., Ltd.), hepatitis B virus (HBV) nucleic acid amplification (PCR) fluorescence quantitative detection kit (S20030059, Haikehua Bioengineering Co., Ltd. company) and other various reagents are used for experiments in the present invention, and are not used for other purposes.

表1、所用细胞系及培养条件Table 1. Cell lines and culture conditions used

Figure BDA0002452133780000291
Figure BDA0002452133780000291

Figure BDA0002452133780000301
Figure BDA0002452133780000301

本发明所涉及基因名称、ID、基因组和染色体定位如表2所示。The gene name, ID, genome and chromosome location involved in the present invention are shown in Table 2.

表2、基因列表Table 2. Gene list

Figure BDA0002452133780000302
Figure BDA0002452133780000302

Figure BDA0002452133780000311
Figure BDA0002452133780000311

以下实施例中所用术语或缩写如下:The terms or abbreviations used in the following examples are as follows:

IRIF(ionizing radiation-induced foci):放射线诱导的灶点,即DNA损伤位点;IRIF (ionizing radiation-induced foci): radiation-induced focus, that is, DNA damage site;

AA(amino acid):氨基酸(残基);AA (amino acid): amino acid (residue);

Kb(kilobase):千碱基对;Kb (kilobase): kilobase pairs;

bp(base pair):碱基对bp(base pair): base pair

ul:微升;ul: microliter;

nM:纳摩尔;nM: Nanomole;

uM:微摩尔;uM: micromole;

Kd:千道尔顿;Kd: kilodalton;

Input:内对照;Input: internal control;

ChIP:染色质免疫共沉淀;ChIP: chromatin immunoprecipitation;

Ub:泛素;Ub: ubiquitin;

siScramble:随机siRNA对照;siScramble: random siRNA control;

NHEJ:非同源末端链接;NHEJ: non-homologous end joining;

HR:同源重组;HR: homologous recombination;

SSA:单链DNA融合;SSA: single-stranded DNA fusion;

Ctrl:对照;Ctrl: control;

实施例1、人ENDOD1核酸内切酶基因和蛋白质特征。Example 1. Human ENDOD1 endonuclease gene and protein characteristics.

实验方法:通过NCBI数据库搜索ENDOD1核酸内切酶基因和蛋白质序列,利 用生物信息学软件绘制ENDOD1核酸内切酶基因在不同物种的进化树和 ENDOD1核酸内切酶的蛋白质功能结构域。采用CRISPR/CAS9技术编辑ENDOD1 核酸内切酶基因,获得ENDOD1核酸内切酶基因敲除或突变细胞株;采用siRNA 技术沉默ENDOD1核酸内切酶基因,以敲低ENDOD1核酸内切酶基因表达。提 取RPE-1细胞的蛋白质,通过SDS-PAGE电泳分离蛋白质,转移至聚偏二氟 乙烯膜,采用特异性的兔抗人ENDOD1核酸内切酶和羊抗兔HRP二抗检测ENDOD1核酸内切酶蛋白质水平。Experimental method: Search the ENDOD1 endonuclease gene and protein sequence through the NCBI database, and use bioinformatics software to draw the phylogenetic tree of the ENDOD1 endonuclease gene in different species and the protein functional domain of the ENDOD1 endonuclease. Use CRISPR/CAS9 technology to edit the ENDOD1 endonuclease gene to obtain ENDOD1 endonuclease gene knockout or mutant cell lines; use siRNA technology to silence the ENDOD1 endonuclease gene to knock down the expression of the ENDOD1 endonuclease gene. Extract the protein from RPE-1 cells, separate the protein by SDS-PAGE electrophoresis, transfer to polyvinylidene fluoride membrane, and use specific rabbit anti-human ENDOD1 endonuclease and goat anti-rabbit HRP secondary antibody to detect ENDOD1 endonuclease protein levels.

CRISPR/CAS9基因编辑CRISPR/CAS9 Gene Editing

设计位于ENDOD1核酸内切酶基因一号外显子的gRNA靶点序列: 5’-CAGCCTCTTCGCCCTGGCTGG-3’,并克隆至pCAG1-CAS9-U6-sgRNA载体上, 利用lipo3000转染试剂盒转染至RPE-1细胞,48小时后加入3μg/mL嘌呤 霉素筛选转染阳性细胞。分离阳性细胞单克隆并通过蛋白质免疫印迹筛选 ENDOD1核酸内切酶基因敲除或突变细胞株。Design the gRNA target sequence located in Exon 1 of the ENDOD1 endonuclease gene: 5'-CAGCCTCTTCGCCCTGGCTGG-3', clone it into the pCAG1-CAS9-U6-sgRNA vector, and transfect it into RPE- 1 cell, 48 hours later, add 3 μg/mL puromycin to select transfected positive cells. Positive cell clones were isolated and ENDOD1 endonuclease gene knockout or mutant cell lines were screened by Western blotting.

siRNA干扰技术siRNA interference technology

设计并合成ENDOD1核酸内切酶基因的RNA干扰(RNAi)靶点:Design and synthesis of RNA interference (RNAi) targets for the ENDOD1 endonuclease gene:

siENDOD1-001:5’-GCAAGCGGATTGGCTACAA-3’;siENDOD1-001: 5'-GCAAGCGGATTGGCTACAA-3';

siENDOD1-002:5’-GGATGAAGAACGAATGGTA-3’;siENDOD1-002: 5'-GGATGAAGAACGAATGGTA-3';

siENDOD1-003:5’-GTGGCCACATTTACTCTCA-3’;siENDOD1-003: 5'-GTGGCCACATTTACTCTCA-3';

ENDOD1核酸内切酶基因细胞内沉默具体实施如下:超纯水 (Invitrogen,10977-015)溶解ENDOD1核酸内切酶siRNA粉剂及对照siRNA粉 剂(广州锐博),配制成储存液(5nM)置于-40℃保存。24孔板每孔转染混合液 具体配制如下:30ul无血清培养基opti-MEM中依次加入5ul siRNA(5nM)及3 ul Lipofectin 3000(Invitrogen,L300015),混匀后静置15min,均匀滴加进24 孔板中。24孔板细胞事先加入470ul完全培养基。转染24小时后换液为1ml 完全培养基。48小时后收样,细胞溶于SDS sample buffer,通过蛋白质免 疫印迹检测沉默效率。The specific implementation of ENDOD1 endonuclease gene intracellular silencing is as follows: Ultrapure water (Invitrogen, 10977-015) dissolves ENDOD1 endonuclease siRNA powder and control siRNA powder (Guangzhou Ruibo), and prepares the stock solution (5nM) in Store at -40°C. The specific preparation of the transfection mixture in each well of the 24-well plate is as follows: 5ul siRNA (5nM) and 3ul Lipofectin 3000 (Invitrogen, L300015) were sequentially added to 30ul serum-free medium opti-MEM, mixed evenly and left to stand for 15min, then evenly added dropwise into a 24-well plate. Add 470ul complete medium to the 24-well plate cells in advance. 24 hours after transfection, the medium was changed to 1ml of complete medium. After 48 hours, the samples were collected, the cells were dissolved in SDS sample buffer, and the silencing efficiency was detected by western blotting.

蛋白质免疫印迹western blot

收集等量的细胞(约50万),PBS洗涤两次,每次500x g离心,收集 细胞沉淀。加入100微升SDS上样缓冲液(50mM Tris-HCl[pH6.8],2%SDS, 0.1%溴酚蓝,100%甘油,5%β-巯基乙醇)裂解细胞并于100℃金属浴处 理5分钟。通过聚丙烯酰胺凝胶电泳分离蛋白质(80伏/15分钟后150伏/55 分钟),再将蛋白质印迹至聚偏二氟乙烯膜(150毫安/3小时)上。将膜置 于封闭缓冲液(10mM Tris-HCl[pH7.5],150mM NaCl,0.1%Tween,5%BSA) 中封闭1小时,加入兔抗人ENDOD1核酸内切酶抗体(1:1000),室温孵育4 小时后用洗涤缓冲液(10mM Tris-HCl[pH7.5],150mM NaCl,0.1%Tween) 洗涤3次,每次十分钟。继续将膜置于含有羊抗兔HRP二抗(1:3000)的封 闭缓冲液中孵育1小时,洗涤3次,每次十分钟。利用ECL发光液显色,通 过BIO-RAD凝胶成像系统(chemidoc XRS)采集图像。Collect an equal amount of cells (about 500,000), wash twice with PBS, and centrifuge at 500x g each time to collect the cell pellet. Add 100 microliters of SDS loading buffer (50mM Tris-HCl [pH6.8], 2% SDS, 0.1% bromophenol blue, 100% glycerol, 5% β-mercaptoethanol) to lyse the cells and treat them in a metal bath at 100°C 5 minutes. Proteins were separated by polyacrylamide gel electrophoresis (80 volts/15 minutes followed by 150 volts/55 minutes) and blotted onto polyvinylidene fluoride membranes (150 mA/3 hours). Place the membrane in blocking buffer (10mM Tris-HCl [pH7.5], 150mM NaCl, 0.1% Tween, 5% BSA) for blocking for 1 hour, add rabbit anti-human ENDOD1 endonuclease antibody (1:1000), After incubation at room temperature for 4 hours, wash with washing buffer (10 mM Tris-HCl [pH 7.5], 150 mM NaCl, 0.1% Tween) three times, ten minutes each time. Continue to incubate the membrane in blocking buffer containing goat anti-rabbit HRP secondary antibody (1:3000) for 1 hour, wash 3 times, ten minutes each time. The color was developed using ECL luminescent liquid, and the image was collected by BIO-RAD gel imaging system (chemidoc XRS).

实验结果:Experimental results:

1、人ENDOD1核酸内切酶基因的mRNA序列如图1A所示,编码区(ORF)共1503 个核苷酸。ENDOD1核酸内切酶蛋白质序列如图1B所示,共501个氨基酸。ENDOD1 核酸内切酶蛋白质结构域如图1C所示,包括信号肽(1-22氨基酸残基(AA)), 核酸内切酶结构域(49-257AA),3个跨膜序列(I:345-364AA,II:411-435AA 和III:455-482AA)。半胱氨酸C190、C224和C269是His-Cys核酸内切酶家族 的保守活性位点。ENSEMBL数据库显示ENDOD1核酸内切酶基因组位点含有两个 外显子和一个内含子(图1D)。Genetree软件分析ENDOD1核酸内切酶基因在不 同物种的进化关系,发现其同源基因存在于珊瑚、鱼类、脊椎动物和人等高等真 核生物中,而不存在于酵母、果蝇和线虫等低等真核生物(图1E)。1. The mRNA sequence of the human ENDOD1 endonuclease gene is shown in Figure 1A, and the coding region (ORF) has a total of 1503 nucleotides. The protein sequence of ENDOD1 endonuclease is shown in Figure 1B, with a total of 501 amino acids. ENDOD1 endonuclease protein domain as shown in Figure 1C, including signal peptide (1-22 amino acid residues (AA)), endonuclease domain (49-257AA), 3 transmembrane sequences (I:345 -364AA, II:411-435AA and III:455-482AA). Cysteine C190, C224 and C269 are the conserved active sites of the His-Cys endonuclease family. The ENSEMBL database shows that the ENDOD1 endonuclease genomic locus contains two exons and one intron (Fig. 1D). Genetree software analyzed the evolutionary relationship of the ENDOD1 endonuclease gene in different species, and found that its homologous genes exist in higher eukaryotes such as corals, fish, vertebrates and humans, but not in yeast, fruit flies and nematodes, etc. lower eukaryotes (Fig. 1E).

2、人ENDOD1核酸内切酶的特性与翻译后修饰。2. The characteristics and post-translational modification of human ENDOD1 endonuclease.

免疫蛋白质印迹测定RPE-1细胞中ENDOD1核酸内切酶的蛋白质产物(图2C), 其主带电泳大小约55Kd。蛋白质电泳显示ENDOD1核酸内切酶的蛋白质有4种修饰 或剪切亚型,分别为47Kd(残基23-500,b)、42Kd(残基23-340,c)、35Kd(残 基23-290,d)和>90Kd的共价修饰形式(e)。和>90Kd的共价修饰形式(e)。 CISPR/CAS9基因编辑(图2A)或siRNA基因沉默(图2B)后,ENDOD1核酸内切酶 的各种电泳形式均消失或减少(图2D-E)。将泛素(ubiquitin)或其K48R、K63R 突变体与信号肽缺失的ENDOD1核酸内切酶表达质粒(Flag-ΔN22-ENDOD1核酸内 切酶)转入RPE-1细胞,发现ENDOD1核酸内切酶亚型e是由于泛素化共价修饰产生 (图2F)。通过PrediSci和NetSurfP-2.0等生物信息学软件解析ENDOD1核酸内切酶的蛋白质结构特征,发现残基300-325是蛋白质低序区,也是潜在的蛋白酶切 位点(图2G-H),可与残基22附近的LEG-RL信号肽序列的酶切活动共同产生ENDOD1 核酸内切酶蛋白质的b、c、d亚型。The protein product of ENDOD1 endonuclease in RPE-1 cells was determined by western blotting ( FIG. 2C ), and the electrophoresis size of its main band was about 55Kd. Protein electrophoresis showed that the ENDOD1 endonuclease protein had four modified or cut isoforms, which were 47Kd (residues 23-500, b), 42Kd (residues 23-340, c), 35Kd (residues 23- 290, d) and the >90Kd covalently modified form (e). and >90Kd covalently modified form (e). After CISPR/CAS9 gene editing (Fig. 2A) or siRNA gene silencing (Fig. 2B), all electrophoretic forms of ENDOD1 endonuclease disappeared or decreased (Fig. 2D-E). The ubiquitin (ubiquitin) or its K48R, K63R mutants and the ENDOD1 endonuclease expression plasmid (Flag-ΔN22-ENDOD1 endonuclease) with the deletion of the signal peptide were transferred into RPE-1 cells, and it was found that the ENDOD1 endonuclease Type e is due to covalent modification by ubiquitination (Fig. 2F). Analyzing the protein structure characteristics of ENDOD1 endonuclease by using bioinformatics software such as PrediSci and NetSurfP-2.0, it was found that residues 300-325 are low-order regions of the protein and potential protease cleavage sites (Figure 2G-H), which can be compared with The cleavage activity of the LEG-RL signal peptide sequence near residue 22 co-generates b, c, d isoforms of the ENDOD1 endonuclease protein.

实施例2、人ENDOD1核酸内切酶参与DNA修复。Example 2. Human ENDOD1 endonuclease is involved in DNA repair.

实验方法:采用免疫荧光、染色质免疫共沉淀(ChIP)和核质分离的方法表征ENDOD1核酸内切酶蛋白质的亚细胞定位和分布。ChIP实验在DiVA细胞中开展,由 4-OHT诱导AsiSI-ER核酸内切酶的表达,在染色体Chr1:89,458,595-89,458,603 处产生DNA断裂。4-OHT诱导4小时后,利用特异性抗体(抗ENDOD1核酸内切酶或 抗Flag)沉淀相应蛋白质。通过PCR扩增确定蛋白质在DNA断裂位点处的富集水平。 细胞成分分离实验(细胞浆/核膜/染色质)参照文献描述的方法(参见:Yu,Z., Z.Huang,and M.J.B.P.Lung,SubcellularFractionation of Cultured Human Cell Lines.Bio Protocol,2013.3(9)),增加0.1%Triton-X100溶解核膜和高 尔基体的步骤。Experimental methods: Immunofluorescence, chromatin immunoprecipitation (ChIP) and nucleocytoplasmic separation were used to characterize the subcellular localization and distribution of the ENDOD1 endonuclease protein. ChIP experiments were carried out in DiVA cells, and the expression of AsiSI-ER endonuclease was induced by 4-OHT to generate DNA breaks at chromosome Chr1:89,458,595-89,458,603. After 4 hours of 4-OHT induction, the corresponding proteins were precipitated using specific antibodies (anti-ENDOD1 endonuclease or anti-Flag). Protein enrichment levels at DNA break sites were determined by PCR amplification. The cell component separation experiment (cytoplasm/nuclear membrane/chromatin) refers to the method described in the literature (see: Yu, Z., Z. Huang, and M.J.B.P. Lung, Subcellular Fractionation of Cultured Human Cell Lines. Bio Protocol, 2013.3 (9)) , add 0.1% Triton-X100 to dissolve the nuclear membrane and Golgi apparatus step.

免疫荧光Immunofluorescence

通过常规细胞培养将细胞固定培养于玻璃扒片上,利用4%PFA固定细胞10 分钟,PBS洗涤后用0.3%Triton/PBS打孔细胞。将一抗按比例稀释于封闭缓 冲液(2%BSA,0.3%Triton/PBS)中,37℃孵育细胞3分钟后PBS洗涤2次。将 二抗按比例稀释于封闭缓冲液(2%BSA,0.3%Triton/PBS)中,再次于37℃ 孵育细胞30分钟后PBS洗涤2次。利用含有DAPI的抗淬灭染料(Vector Laboratories)封片后于正置荧光显微镜(奥林巴斯,BX51)下观察,采集图片。 计数细胞核中(DAPI染色)灶点个数,Graphpad Prism(v8.4.0.671)软件可 视化计数结果,组间差异使用双尾T检验,P≤0.05认为存在显著差异。Cells were fixed and cultured on glass griddles by conventional cell culture, cells were fixed with 4% PFA for 10 minutes, washed with PBS and then punched with 0.3% Triton/PBS. The primary antibody was diluted proportionally in blocking buffer (2% BSA, 0.3% Triton/PBS), incubated at 37°C for 3 minutes, and then washed twice with PBS. The secondary antibody was diluted proportionally in blocking buffer (2% BSA, 0.3% Triton/PBS), and the cells were incubated at 37°C for 30 minutes and washed twice with PBS. The slides were mounted with DAPI-containing antifade dye (Vector Laboratories) and observed under an upright fluorescent microscope (Olympus, BX51) to collect pictures. The number of foci in the nuclei (DAPI staining) was counted, and the counting results were visualized by Graphpad Prism (v8.4.0.671) software. Differences between groups were performed using a two-tailed T test, and P≤0.05 was considered to be significantly different.

染色质免疫共沉淀(ChIP)Chromatin immunoprecipitation (ChIP)

收集约500万细胞于终浓度1%甲醛中交联15min,加入2.5M甘氨酸终止交联, PBS洗涤两次后重悬于300ul ChIP裂解液(50mM HEPES[pH 7.4];140mM NaCl;1% TritonX100;0.1%NaDeoxycholate;protease inhibitors)中,4℃裂解30 分钟,10000x g离心后将沉淀于1ml ChIP裂解液中洗涤一次,重新重悬于300ul ChIP裂解液中,Biorupter超声破碎仪打断DNA于500bp左右,21000x g离心弃去 沉淀,抗体孵育1h后加入protein G磁珠(invitrogen),或直接加入anti-Flag M2 磁珠(Sigma),4℃过夜孵育。依次用ChIP裂解液、ChIP高盐裂解液(50mM HEPES [pH 7.4];500mM NaCl;1%Triton X100;0.1%NaDeoxycholate)、ChIP洗 涤液(10mM Tris[pH 8.0];250mM LiCl;0.5%NP-40;0.5%NaDeoxycholate; 1mM EDTA)、TE缓冲液(10mM Tris-HCl[pH 8.0];1mM EDTA)洗涤磁珠2次后 加入ChIP洗脱缓冲液(50mM Tris[pH 8.0];1%SDS;10mM EDTA)于65℃逆交 联1小时,洗脱的液体采用DNA纯化试剂盒(Omega)纯化回收于30ul水中,取5ul 进行定量分析。About 5 million cells were collected and cross-linked in 1% formaldehyde for 15 min, then 2.5M glycine was added to terminate the cross-linking, washed twice with PBS and resuspended in 300ul ChIP lysate (50mM HEPES[pH 7.4]; 140mM NaCl; 1% TritonX100 ; 0.1% NaDeoxycholate; protease inhibitors), lyse at 4°C for 30 minutes, centrifuge at 10000x g, wash the pellet once in 1ml ChIP lysate, resuspend in 300ul ChIP lysate, and break the DNA at 500bp with a Biorupter ultrasonic breaker About, centrifuge at 21000x g to discard the precipitate, add protein G magnetic beads (invitrogen) after antibody incubation for 1 hour, or directly add anti-Flag M2 magnetic beads (Sigma), and incubate overnight at 4°C. ChIP lysate, ChIP high salt lysate (50mM HEPES [pH 7.4]; 500mM NaCl; 1% Triton X100; 0.1% NaDeoxycholate), ChIP washing solution (10mM Tris [pH 8.0]; 250mM LiCl; 0.5% NP- 40; 0.5% NaDeoxycholate; 1mM EDTA), TE buffer (10mM Tris-HCl [pH 8.0]; 1mM EDTA) to wash the magnetic beads twice, then add ChIP elution buffer (50mM Tris [pH 8.0]; 1% SDS; 10 mM EDTA) at 65° C. for 1 hour, the eluted liquid was purified by a DNA purification kit (Omega) and recovered in 30 ul of water, and 5 ul was taken for quantitative analysis.

核质分离nucleoplasm separation

收集约200万细胞,PBS洗涤两次后重悬于200μL裂解液A(10mM HEPES[pH 7.9],10mM KCl,1.5mM MgCl2,0.34M sucrose,10%glycerol,1mM DTT,0.1% Triton,proteaseinhibitor)中,冰上孵育5分钟后1500x g离心5分钟,分别 收集上清和沉淀。上清部分为细胞膜及胞浆蛋白,直接加入50μL 5X SDS上样 缓冲液抽提蛋白质。沉淀于1mL不含Triton的裂解液A中洗涤一次,1500x g离心 5分钟后重悬于200μL裂解液A中,冰上孵育5-10分钟后1500x g离心5分钟。上 清部分为核膜部分,直接加入50μL 5X SDS上样缓冲液抽提蛋白质。沉淀于1mL 不含Triton的裂解液A中洗涤一次,1500x g离心5分钟后重悬于200μL裂解液B(3mM EDTA,0.2mM EGTA,1mM dithiothreitol,protease inhibitor)中, 冰上孵育10分钟,2000x g离心5分钟。上清部分为可溶性细胞核蛋白,直接加 入50μL 5X SDS上样缓冲液抽提蛋白质。沉淀于1mL裂解液B中洗涤一次,13000 x g离心1分钟,弃去上清,沉淀溶解于100μL SDS上样缓冲液中。将所有样品于 100℃金属浴处理5分钟,利用蛋白质免疫印迹检测。Total:细胞总蛋白,上样 量为总量的2.5%;Membrane:核膜及高尔基体等,上样量为总量的10%;Chromatin: 染色质蛋白,上样量为总量的10%。Collect about 2 million cells, wash twice with PBS and resuspend in 200 μL Lysis Solution A (10mM HEPES[pH 7.9], 10mM KCl, 1.5mM MgCl2, 0.34M sucrose, 10% glycerol, 1mM DTT, 0.1% Triton, protease inhibitor) After incubation on ice for 5 minutes, centrifuge at 1500x g for 5 minutes, and collect the supernatant and pellet respectively. The supernatant is the cell membrane and cytoplasmic proteins, directly add 50 μL 5X SDS loading buffer to extract the proteins. The pellet was washed once in 1 mL of Triton-free lysate A, centrifuged at 1500x g for 5 minutes, then resuspended in 200 μL of lysate A, incubated on ice for 5-10 minutes, and then centrifuged at 1500x g for 5 minutes. The supernatant part is the nuclear membrane part, and 50 μL of 5X SDS sample buffer is directly added to extract the protein. The pellet was washed once in 1 mL of Triton-free Lysis Solution A, centrifuged at 1500x g for 5 minutes, then resuspended in 200 μL of Lysis Solution B (3mM EDTA, 0.2mM EGTA, 1mM dithiothreitol, protease inhibitor), incubated on ice for 10 minutes, 2000x Centrifuge at g for 5 minutes. The supernatant is soluble nuclear protein, directly add 50μL 5X SDS loading buffer to extract protein. The pellet was washed once in 1 mL of lysate B, centrifuged at 13,000 x g for 1 minute, the supernatant was discarded, and the pellet was dissolved in 100 μL of SDS loading buffer. All samples were treated in a metal bath at 100°C for 5 minutes and detected by western blot. Total: total cell protein, the loading amount is 2.5% of the total; Membrane: nuclear membrane and Golgi apparatus, etc., the loading amount is 10% of the total; Chromatin: chromatin protein, the loading amount is 10% of the total .

实验结果:Experimental results:

为了解析ENDOD1核酸内切酶的生物学功能,本发明通过一系列生物学实验证 实ENDOD1核酸内切酶在DNA损伤位点聚集并活化,参与DNA修复,保证遗传物质的 稳定性。In order to analyze the biological function of ENDOD1 endonuclease, the present invention confirmed through a series of biological experiments that ENDOD1 endonuclease aggregates and activates at DNA damage sites, participates in DNA repair, and ensures the stability of genetic material.

1、人ENDOD1核酸内切酶直接结合于DNA损伤位点1. Human ENDOD1 endonuclease binds directly to DNA damage sites

当DNA受到损伤时,参与DNA修复的蛋白质会活化,并聚集到损伤位点,这种 聚集可以通过免疫荧光染色的方法,显示各种信号和修复因子在DNA损伤后的定 位改变。免疫荧光显示,ENDOD1核酸内切酶在正常生长的细胞中主要定位于细胞 浆和核膜。在DNA损伤后(离子射线照射),ENDOD1核酸内切酶可在40分钟内进入 DNA断点形成ENDOD1核酸内切酶聚集点,并持续存在到照射后2小时(图3A)。ENDOD1核酸内切酶也可以在DNA复制毒物(CPT和HU)处理后形成聚集点,说明 ENDOD1核酸内切酶也参与DNA复制错误的清除(图3B)。并且,ENDOD1核酸内切酶 在DNA断裂处的聚集点,可以与DNA损伤位点的经典标记蛋白(γH2AX)共定位(图 3C),说明DNA损伤后,ENDOD1核酸内切酶作为修复因子积极地招募到DNA断点。When DNA is damaged, the proteins involved in DNA repair will be activated and aggregated to the damaged site. This aggregation can be used to show the localization changes of various signals and repair factors after DNA damage by immunofluorescent staining. Immunofluorescence showed that ENDOD1 endonuclease was mainly localized in the cytoplasm and nuclear membrane in normal growing cells. After DNA damage (irradiation with ion rays), ENDOD1 endonuclease can enter DNA breakpoints within 40 minutes to form ENDOD1 endonuclease aggregation sites, which persist until 2 hours after irradiation (Figure 3A). ENDOD1 endonuclease could also form aggregates after treatment with DNA replication poisons (CPT and HU), suggesting that ENDOD1 endonuclease is also involved in the clearance of DNA replication errors (Fig. 3B). Moreover, the aggregation point of ENDOD1 endonuclease at the DNA break can co-localize with the classical marker protein (γH2AX) at the site of DNA damage (Fig. 3C), indicating that after DNA damage, ENDOD1 endonuclease actively acts as a repair factor Recruitment to DNA breakpoints.

2、ENDOD1核酸内切酶直接结合DNA断点末端2. ENDOD1 endonuclease directly binds to the end of the DNA breakpoint

ChIP实验中,ENDOD1核酸内切酶在距离DNA断点0.5Kb、1Kb和2.5Kb处结 合(图3D),进一步证明ENDOD1核酸内切酶向DNA损伤位点末端的直接聚集。ChIP 实验还证明,ENDOD1核酸内切酶在DNA断点的功能之一是参与DNA末端回切(end resection):虽然ENDOD1核酸内切酶单独沉默没有减弱单链DNA结合蛋白(RPA32) 在断点附近的富集,但是在其他末端回切调控因子(如WDR70)缺陷的情况下, ENDOD1核酸内切酶沉默则可以加剧RPA32向DNA断点的富集,导致RPA32的招募被 完全抑制(图3E)。这些实验说明同源重组修复和ENDOD1核酸内切酶功能同时缺 失导致严重的DNA修复缺陷。In the ChIP experiment, ENDOD1 endonuclease was bound at 0.5Kb, 1Kb and 2.5Kb from the DNA breakpoint (Figure 3D), further demonstrating the direct accumulation of ENDOD1 endonuclease to the end of the DNA damage site. ChIP experiments also demonstrated that one of the functions of ENDOD1 endonuclease at DNA breakpoints is to participate in DNA end resection: although silencing ENDOD1 endonuclease alone did not weaken the single-stranded DNA binding protein (RPA32) at the breakpoint However, in the absence of other terminal back-cutting regulators (such as WDR70), ENDOD1 endonuclease silencing can exacerbate the enrichment of RPA32 to DNA breakpoints, resulting in complete inhibition of RPA32 recruitment (Fig. 3E ). These experiments demonstrate that simultaneous loss of homologous recombination repair and ENDOD1 endonuclease function results in severe DNA repair defects.

通过细胞浆-核膜-染色质成分的分离实验,证明ENDOD1核酸内切酶蛋白质的 a、b、c、d形式可与染色质紧密结合,ENDOD1核酸内切酶在染色质上的分布占总 蛋白的25%(图3F)。Through the separation experiments of cytoplasm-nuclear membrane-chromatin components, it was proved that the a, b, c, and d forms of ENDOD1 endonuclease protein can be tightly combined with chromatin, and the distribution of ENDOD1 endonuclease on chromatin accounts for the total 25% of protein (Fig. 3F).

总之,这些结果表明ENDOD1核酸内切酶蛋白在细胞DNA损伤后积极响应并招 募到DNA断点,参与DNA修复的应答调控。Taken together, these results suggest that the ENDOD1 endonuclease protein actively responds to and recruits DNA breakpoints after cellular DNA damage, participating in the regulation of DNA repair responses.

实施例3、人ENDOD1核酸内切酶抑制SSA修复功能。Example 3. Human ENDOD1 endonuclease inhibits SSA repair function.

实验方法:采用I-Sce1核酸内切酶定点诱导DNA断裂(参见:Liu,J.,et al.,Development of novel visual-plus quantitative analysis systems for studyingDNA double-strand break repairs in zebrafish.J Genet Genomics, 2012.39(9):p.489-502.),荧光定量PCR测定HR,NHEJ和SSA修复的相对效率。 采用可被多西环素诱导表达的野生型(pLVX-TRE3G-ENDOD1核酸内切酶,即ENDOD1 核酸内切酶)或突变型ENDOD1核酸内切酶质粒(pLVX-TRE3G-ENDOD1核酸内切酶 失活,即ND;pLVX-TRE3G-ENDOD1核酸内切酶缺失,即ΔEND)对ENDOD1核酸内切 酶缺陷细胞(2F4)进行功能互补实验(complementation)。通过免疫荧光实验 测定ENDOD1核酸内切酶缺陷的细胞在DNA损伤后(IR),各种相关的DNA修复因子 在DNA损伤位点的聚集能力。Experimental method: I-Sce1 endonuclease was used to induce DNA breakage (see: Liu, J., et al., Development of novel visual-plus quantitative analysis systems for studying DNA double-strand break repairs in zebrafish. J Genet Genomics, 2012.39(9):p.489-502.), Fluorescent quantitative PCR was used to determine the relative efficiency of HR, NHEJ and SSA repair. Use doxycycline-induced wild-type (pLVX-TRE3G-ENDOD1 endonuclease, ENDOD1 endonuclease) or mutant ENDOD1 endonuclease plasmid (pLVX-TRE3G-ENDOD1 endonuclease loss live, ie ND; pLVX-TRE3G-ENDOD1 endonuclease deletion, ie ΔEND) for functional complementation experiments (complementation) on ENDOD1 endonuclease deficient cells (2F4). After DNA damage (IR), the aggregation ability of various related DNA repair factors at DNA damage sites was determined by immunofluorescence experiments.

DNA断裂修复效率的测定Determination of DNA break repair efficiency

利用I-Sce1核酸内切酶(NEB)体外酶切pcDNA3-NHEJ、pcDNA3-HR、pcDNA3-SSA 质粒(16℃,16小时),加入2倍体积的无水乙醇和1/20体积的3M醋酸钠沉淀DNA。 将回收的DNA调整至浓度1μg/μL。细胞首先通过siRNA或其他处理,24小时后将 线性化的pcDNA3-NHEJ、pcDNA3-HR、pcDNA3-SSA质粒分别转染(Lipo3000)至不 同处理的细胞中,继续培养24小时后收集细胞(约100万),利用高纯度DNA提取 试剂盒(Roche)回收细胞总DNA,进行实时荧光定量PCR(BIO-RAD),并分析不 同修复途径的效率。Use I-Sce1 endonuclease (NEB) to digest pcDNA3-NHEJ, pcDNA3-HR, pcDNA3-SSA plasmids in vitro (16°C, 16 hours), add 2 times the volume of absolute ethanol and 1/20 volume of 3M acetic acid Sodium precipitates DNA. Adjust the recovered DNA to a concentration of 1 μg/μL. The cells were first treated with siRNA or other methods, and 24 hours later, the linearized pcDNA3-NHEJ, pcDNA3-HR, and pcDNA3-SSA plasmids were transfected (Lipo3000) into differently treated cells, and the cells were collected after 24 hours of culture (about 100 10,000), using a high-purity DNA extraction kit (Roche) to recover the total DNA of cells, perform real-time fluorescent quantitative PCR (BIO-RAD), and analyze the efficiency of different repair pathways.

ENDOD1核酸内切酶及其突变质粒的构建和表达Construction and expression of ENDOD1 endonuclease and its mutant plasmid

ENDOD1核酸内切酶基因及其相应突变体ND和ΔEND均通过DNA合成的方式获 得(上海生工生物工程股份有限公司),PCR扩增后通过EcoR1位点亚克隆到 pLVX-TRE3G载体上。将相应的质粒与pLVX-Tet3G共转染(Lipo3000)至细胞内, 培养24小时后利用多西环素(200ng/mL)诱导相应基因的表达。The ENDOD1 endonuclease gene and its corresponding mutants ND and ΔEND were obtained by DNA synthesis (Shanghai Sangon Bioengineering Co., Ltd.), and subcloned into the pLVX-TRE3G vector through the EcoR1 site after PCR amplification. The corresponding plasmid and pLVX-Tet3G were co-transfected (Lipo3000) into the cells, and doxycycline (200 ng/mL) was used to induce the expression of the corresponding gene after 24 hours of culture.

实验结果:Experimental results:

DNA断裂损伤主要通过非同源末端链接(NHEJ)、同源重组(HR)和单链DNA 融合(SSA)三种途径进行修复,并受到多种修复因子的调控,其中,DNA末端回 切形成单链DNA的程度是选择这些修复途径的重要调控事件。在实施例2中发现的 基础上,更多的实验证明ENDOD1核酸内切酶直接募集到DNA断点并调控DNA末端回 切,是调控修复途径选择的重要分子。DNA breaks are mainly repaired through three pathways: non-homologous end joining (NHEJ), homologous recombination (HR) and single-strand DNA fusion (SSA), and are regulated by a variety of repair factors. The degree of single-stranded DNA is an important regulatory event in the selection of these repair pathways. On the basis of the findings in Example 2, more experiments have proved that the ENDOD1 endonuclease is directly recruited to the DNA breakpoint and regulates the back cutting of the DNA end, which is an important molecule regulating the selection of the repair pathway.

1、ENDOD1核酸内切酶抑制SSA修复通路1. ENDOD1 endonuclease inhibits the SSA repair pathway

通过体外I-Sce1酶切pcDNA3-NHEJ、pcDNA3-HR、pcDNA3-SSA质粒形成带有位 点特异性DNA断裂的线性化质粒,并转染至沉默ENDOD1核酸内切酶基因的RPE-1 细胞中,可以测定DNA断点三种途径的修复效率。发现ENDOD1核酸内切酶基因沉 默可以略微抑制非同源末端链接(NHEJ)和同源重组(HR)修复功能,更主要的 是促进单链DNA融合(SSA)的功能(图4A)。同样地,在RPE-1野生型、2F4和2F6 细胞中测试I-Sce1诱导DNA断裂的修复效率,也发现ENDOD1核酸内切酶缺陷的2F4 和2F6细胞株中SSA的修复效率比野生型RPE-1细胞显著升高(图4B)。这些结果说 明ENDOD1核酸内切酶因子在DNA损伤位点可以抑制SSA的修复通路。pcDNA3-NHEJ, pcDNA3-HR, pcDNA3-SSA plasmids were digested with I-Sce1 in vitro to form linearized plasmids with site-specific DNA fragmentation, and transfected into RPE-1 cells that silenced the ENDOD1 endonuclease gene , the repair efficiency of the three pathways of DNA breakpoints can be determined. It was found that ENDOD1 endonuclease gene silencing could slightly inhibit non-homologous end joining (NHEJ) and homologous recombination (HR) repair functions, and more importantly, promote single-strand DNA fusion (SSA) functions (Fig. 4A). Similarly, the repair efficiency of I-Sce1-induced DNA breaks was tested in RPE-1 wild-type, 2F4 and 2F6 cells, and it was also found that the repair efficiency of SSA in ENDOD1 endonuclease-deficient 2F4 and 2F6 cell lines was higher than that of wild-type RPE- 1 cells were significantly elevated (Fig. 4B). These results suggest that the ENDOD1 endonuclease factor can inhibit the repair pathway of SSA at the site of DNA damage.

2、ENDOD1核酸内切酶通过其核酸内切酶功能有效抑制SSA修复通路2. ENDOD1 endonuclease effectively inhibits the SSA repair pathway through its endonuclease function

在ENDOD1核酸内切酶基因敲除的2F4细胞中转染可被多西环素诱导表达的野 生型ENDOD1核酸内切酶质粒(Wt),可减低SSA水平至正常细胞的水平;而引入核 酸内切酶失活的ENDOD1核酸内切酶突变质粒(ND和ΔEND)则没有相应的纠正功 能(图4C),说明ENDOD1核酸内切酶依赖其核酸内切酶活性抑制SSA修复通路。Transfection of the wild-type ENDOD1 endonuclease plasmid (Wt) that can be induced by doxycycline in 2F4 cells knocked out of the ENDOD1 endonuclease gene can reduce the level of SSA to the level of normal cells; and the introduction of nucleic acid The nickase-inactive ENDOD1 endonuclease mutant plasmids (ND and ΔEND) had no corresponding correction function (Fig. 4C), indicating that ENDOD1 endonuclease inhibited the SSA repair pathway dependent on its endonuclease activity.

3、ENDOD1核酸内切酶通过调控RAD52抑制SSA功能3. ENDOD1 endonuclease inhibits SSA function by regulating RAD52

RAD52是调控SSA修复的重要蛋白,为分析ENDOD1核酸内切酶参与SSA通路的 具体功能,在RPE-1细胞沉默ENDOD1核酸内切酶和/或SSA功能基因(RAD52),测 试二者在I-Sce1诱导DNA断裂后的修复功能,发现RAD52沉默可以彻底逆转ENDOD1 核酸内切酶缺陷导致的SSA功能亢进(图4D),说明ENDOD1核酸内切酶抑制SSA的 功能依赖于RAD52.RAD52 is an important protein that regulates SSA repair. In order to analyze the specific function of ENDOD1 endonuclease involved in the SSA pathway, ENDOD1 endonuclease and/or SSA functional gene (RAD52) was silenced in RPE-1 cells, and the two were tested in I- Sce1 induced the repair function after DNA breaks, and found that RAD52 silencing could completely reverse the hyperfunction of SSA caused by ENDOD1 endonuclease deficiency (Figure 4D), indicating that the function of ENDOD1 endonuclease to inhibit SSA was dependent on RAD52.

免疫荧光实验显示ENDOD1核酸内切酶基因敲除(图4E)或沉默(图4F)的RPE-1 细胞表现处较高水平的IR诱导的RAD52聚集点的形成,进一步证明ENDOD1核酸内 切酶抑制RAD52在DNA断点的修复功能。与野生型RPE-1相比,2F4和2F6均有RAD52 功能亢进的缺陷,说明除了ENDOD1核酸内切酶蛋白质的主带(55Kd),其翻译后 加工和b、c、d亚型也参与了RAD52和SSA的调控。Immunofluorescence experiments showed that ENDOD1 endonuclease gene knockout (Fig. 4E) or silenced (Fig. 4F) RPE-1 cells showed a higher level of IR-induced RAD52 aggregation, further proving that ENDOD1 endonuclease inhibited The repair function of RAD52 at DNA breakpoints. Compared with wild-type RPE-1, both 2F4 and 2F6 are defective in RAD52 hyperfunction, indicating that in addition to the main band (55Kd) of the ENDOD1 endonuclease protein, its post-translational processing and b, c, d subtypes are also involved Regulation of RAD52 and SSA.

4、ENDOD1核酸内切酶对其他DNA修复因子的调控作用4. The regulatory effect of ENDOD1 endonuclease on other DNA repair factors

在RPE-1细胞中沉默ENDOD1核酸内切酶基因表达48小时进行IR处理,测定各 种DNA修复因子在损伤位点的聚集水平。发现γH2AX/53BP1(图5A)、FK2(图5B)、 BLM(图5D)和MRE11(图5E)的聚集水平在沉默或编辑了ENDOD1核酸内切酶的RPE-1 细胞中低于野生型细胞,而ATM自身磷酸化的聚集能力反而在缺陷细胞中增高(图 5C)。这些结果说明ENDOD1核酸内切酶与MRE11、FK2、BLM、γH2AX和53BP1共同调 控DNA修复,而与ATM的自身磷酸化功能互相拮抗。Silence the expression of ENDOD1 endonuclease gene in RPE-1 cells for 48 hours and perform IR treatment to measure the aggregation level of various DNA repair factors at the damage site. The aggregation levels of γH2AX/53BP1 (Fig. 5A), FK2 (Fig. 5B), BLM (Fig. 5D) and MRE11 (Fig. 5E) were found to be lower in RPE-1 cells silenced or edited for the ENDOD1 endonuclease than in wild-type cells , while the aggregation ability of ATM autophosphorylation was increased in the defective cells (Fig. 5C). These results indicate that ENDOD1 endonuclease cooperates with MRE11, FK2, BLM, γH2AX and 53BP1 to regulate DNA repair, and antagonizes the autophosphorylation function of ATM.

由此可见,ENDOD1核酸内切酶的主要功能是参与DNA断裂修复,和MRE11、 γH2AX和53BP1等协同作用,抑制RAD52调控的SSA途径,并且该过程依赖于其核酸 内切酶活性。It can be seen that the main function of ENDOD1 endonuclease is to participate in DNA break repair, cooperate with MRE11, γH2AX and 53BP1, etc. to inhibit the SSA pathway regulated by RAD52, and this process depends on its endonuclease activity.

实施例4、ENDOD1核酸内切酶具有核酸内切酶活性。Example 4, ENDOD1 endonuclease has endonuclease activity.

实验方法:experimental method:

ENDOD1核酸内切酶-STREP蛋白的表达与纯化Expression and purification of ENDOD1 endonuclease-STREP protein

ENDOD1核酸内切酶基因全长及其突变体通过PCR扩增后亚克隆到 pGEX4T1-2strep载体上,并转化至BL21大肠杆菌菌株中。将带有ENDOD1核酸内切 酶质粒的细菌在37℃培养至对数生长期(OD=0.6),加入1mM IPTG诱导蛋白表达, 18℃继续培养16小时后离心收集细菌。将菌体重悬于NETN裂解液(100mM NaCl, 20mM Tris-Cl[pH 8.0],0.5mM EDTA0.5%Nonidet P-40)中,利用超声破碎 细胞后21000x g离心,收集上清。在上清中加入NETN裂解液预先洗涤过的 Strep-Tactin XT磁珠(iba),4℃中孵育2小时后弃去上清,利用NETN裂解液洗 涤磁珠5次,加入SDS上样缓冲液提取纯化蛋白。通过蛋白质免疫印迹检测纯化的 蛋白。The full length of the ENDOD1 endonuclease gene and its mutants were amplified by PCR and subcloned into the pGEX4T1-2strep vector, and transformed into BL21 Escherichia coli strain. The bacteria carrying the ENDOD1 endonuclease plasmid were cultured at 37°C to the logarithmic growth phase (OD=0.6), 1mM IPTG was added to induce protein expression, and the bacteria were collected by centrifugation after continuing to culture at 18°C for 16 hours. The bacteria were resuspended in NETN lysate (100mM NaCl, 20mM Tris-Cl [pH 8.0], 0.5mM EDTA0.5% Nonidet P-40), and the cells were disrupted by ultrasonication and centrifuged at 21000xg to collect the supernatant. Add Strep-Tactin XT magnetic beads (iba) pre-washed with NETN lysate to the supernatant, incubate at 4°C for 2 hours, discard the supernatant, wash the beads 5 times with NETN lysate, and add SDS loading buffer Extract purified protein. Purified proteins were detected by western blot.

DNA体外切割反应DNA in vitro cleavage reaction

DNA双链片段(28-30bp)或DNA/RNA杂交链(30bp)由上海生工生物工程有 限公司合成。利用限制性内切酶ApaI、BamHI和SmaI切割pEGFP质粒获得带有DNA 双链断裂(5’、3’overhang和平末端)的质粒,并通过紫外线(1200J/m2)和 过氧化氢(0.03%,1h)处理得到损伤质粒。利用DNA纯化试剂盒回收处理后的 DNA,并进行酶切反应,反应总体积共20微升:50mM Tris-HCl[pH 7.9]、100mM NaCl、10mM MgCl2、100μg/ml BSA、0.5μg ENDOD1蛋白质,0.2μg(质粒) 或0.4μg(合成双链DNA片段)底物,37℃体外消化16小时(质粒)或4小时(合成双链DNA片段)后进行琼脂糖凝胶或测序胶电泳,利用Gel-Stain染料对DNA 染色并采集图像。DNA double-stranded fragments (28-30bp) or DNA/RNA hybrid strands (30bp) were synthesized by Shanghai Sangon Bioengineering Co., Ltd. The pEGFP plasmid was cut with restriction endonucleases ApaI, BamHI and SmaI to obtain a plasmid with DNA double-strand breaks (5', 3'overhang and blunt ends), and the plasmid was passed through ultraviolet light (1200J/m 2 ) and hydrogen peroxide (0.03% , 1h) treatment to obtain the damaged plasmid. The treated DNA was recovered using a DNA purification kit and subjected to an enzyme digestion reaction. The total reaction volume was 20 microliters: 50mM Tris-HCl [pH 7.9], 100mM NaCl, 10mM MgCl2, 100μg/ml BSA, 0.5μg ENDOD1 protein, 0.2 μg (plasmid) or 0.4 μg (synthetic double-stranded DNA fragments) substrate, digested in vitro at 37°C for 16 hours (plasmids) or 4 hours (synthetic double-stranded DNA fragments), then performed agarose gel or sequencing gel electrophoresis, using Gel -Stain dye to stain DNA and acquire images.

实验结果:ENDOD1核酸内切酶具有经典的核酸内切酶结构域,为验证其核酸内切酶的活性,我们利用细菌表达并纯化了ENDOD1核酸内切酶-STREP蛋白质,包括 ENDOD1核酸内切酶全长(FL)和多肽片段(1-344、22-344)(图6A),并检测其 对不同类型DNA的酶切反应。0.5微克ENDOD1的核酸内切酶结构域片段(22-344 残基)与0.37微克DNA双链片段(平末端、3’和5’-overhang)或DNA/RNA杂交 链,在酶切缓冲液中进行体外消化反应(37℃,2小时)。该ENDOD1片段可以切割 这些核酸底物,形成较小的片段(图6B)。0.5微克纯化ENDOD1核酸内切酶(1-344 残基和全长(FL))加入0.2微克各种pEGFP-C3质粒DNA,在缓冲液中进行体外消 化反应(37℃,16小时)结果表明ENDOD1核酸内切酶可以切割带有结构损伤的DNA分子,如紫外线损伤、DNA双链断裂(5’和3’overhang)、氧化损伤(过氧化氢 处理),而对完整质粒没有切割效应(图6C)。Experimental results: ENDOD1 endonuclease has a classic endonuclease domain. In order to verify its endonuclease activity, we expressed and purified ENDOD1 endonuclease-STREP protein in bacteria, including ENDOD1 endonuclease Full-length (FL) and polypeptide fragments (1-344, 22-344) (Figure 6A), and their enzyme cleavage reactions to different types of DNA were detected. 0.5 μg endonuclease domain fragment (22-344 residues) of ENDOD1 with 0.37 μg DNA double-stranded fragment (blunt-ended, 3' and 5'-overhang) or DNA/RNA hybrid strand in cleavage buffer An in vitro digestion reaction (37°C, 2 hours) was performed. The ENDOD1 fragment can cleave these nucleic acid substrates to form smaller fragments (Fig. 6B). Add 0.5 μg of purified ENDOD1 endonuclease (1-344 residues and full-length (FL)) to 0.2 μg of various pEGFP-C3 plasmid DNA, and perform in vitro digestion reaction in buffer (37°C, 16 hours). The results show that ENDOD1 Endonucleases can cleave DNA molecules with structural damage, such as UV damage, DNA double-strand breaks (5' and 3' overhang), oxidative damage (hydrogen peroxide treatment), but have no cutting effect on intact plasmids (Figure 6C ).

实施例5、ENDOD1核酸内切酶基因功能抑制特异性攻击肿瘤细胞,但不影响正 常非肿瘤细胞的增殖。Example 5, ENDOD1 endonuclease gene function inhibition specifically attacks tumor cells, but does not affect the proliferation of normal non-tumor cells.

实验方法:在正常或肿瘤细胞中敲除或沉默ENDOD1核酸内切酶基因,并将细胞连续传代或沉默,测定其增殖曲线,多数细胞实验周期为21天。在所示时间点和实 验终点计算存活细胞数并存图记录。根据细胞计数结果计算增值率:增值率 =(Nt-N0)/Nt*100%,其中Nt是实验终点细胞计数绝对值,N0是初始细胞接种数。所 有测定细胞系对照组与实验组实验终点增值率进行双尾t-test检验。P<0.05认为 有显著统计学差异。Experimental method: Knock out or silence the ENDOD1 endonuclease gene in normal or tumor cells, and continuously passage or silence the cells, and measure their proliferation curves. The experimental period for most cells is 21 days. The number of surviving cells was counted and recorded graphically at the indicated time points and at the end of the experiment. The value-added rate was calculated according to the cell count results: value-added rate=(N t −N 0 )/N t *100%, where N t is the absolute value of the cell count at the end of the experiment, and N 0 is the initial cell inoculation number. All measured cell line control group and experimental group experimental end-point proliferation rate by two-tailed t-test test. P<0.05 considered significant statistical difference.

结晶紫染色:Crystal Violet Stain:

甲醇溶解10g结晶紫(Solarbio,C8470)粉末配制为10%储存液。细胞实验终 点时用甲醇固定10分钟,晾干。结晶紫存储液按1:10用PBS稀释配制为工作液。 固定完成细胞样本用工作液染色10min,清水洗净,晾干。观察并扫描存图。Dissolve 10 g of crystal violet (Solarbio, C8470) powder in methanol to prepare a 10% stock solution. At the end of the experiment, the cells were fixed with methanol for 10 minutes and dried in the air. The crystal violet stock solution was diluted 1:10 with PBS to prepare the working solution. After fixation, the cell samples were stained with working solution for 10 min, washed with water, and dried in the air. Observe and scan stored images.

实验结果:Experimental results:

DNA损伤应答是真核细胞维持基因组稳定性的重要机制,当损伤不能正常修 复时将导致细胞死亡。实施例3已经证实,ENDOD1核酸内切酶基因的沉默导致 RAD52调控SSA通路异常,影响DNA修复,可能影响细胞的存活。因此,我们利用 细胞增殖实验测定ENDOD1核酸内切酶对不同种类细胞增殖能力的影响,发现了 ENDOD1核酸内切酶基因沉默对肿瘤细胞的特异性抑制作用,但不影响正常细胞的 生存,表明ENDOD1核酸内切酶功能抑制具有潜在的肿瘤治疗效果。具体结果如下:DNA damage response is an important mechanism for eukaryotic cells to maintain genome stability. When the damage cannot be repaired normally, it will lead to cell death. Example 3 has confirmed that the silencing of the ENDOD1 endonuclease gene leads to abnormal regulation of the SSA pathway by RAD52, affects DNA repair, and may affect cell survival. Therefore, we used cell proliferation assays to determine the effect of ENDOD1 endonuclease on the proliferation of different types of cells, and found that ENDOD1 endonuclease gene silencing had a specific inhibitory effect on tumor cells, but did not affect the survival of normal cells, indicating that ENDOD1 Inhibition of endonuclease function has potential tumor therapeutic effects. The specific results are as follows:

1、ENDOD1核酸内切酶基因敲除或沉默不影响正常非肿瘤细胞的增殖1. Knockout or silencing of the ENDOD1 endonuclease gene does not affect the proliferation of normal non-tumor cells

正常体细胞(RPE-1、MRC-5、GES-1和L02)在沉默或敲除ENDOD1核酸内切酶 基因表达后,测定其21天的增殖曲线(图7A-B)。可见ENDOD1核酸内切酶野生型 与基因功能抑制的非肿瘤细胞的增殖速率没有统计学差异(NS)。Normal somatic cells (RPE-1, MRC-5, GES-1 and L02) were measured for their 21-day proliferation curves after silencing or knocking out ENDOD1 endonuclease gene expression (Fig. 7A-B). It can be seen that there is no statistical difference (NS) in the proliferation rate of ENDOD1 endonuclease wild-type and gene function-inhibited non-tumor cells.

2、ENDOD1核酸内切酶基因沉默抑制肿瘤细胞的增殖2. ENDOD1 endonuclease gene silencing inhibits the proliferation of tumor cells

图8A所示各种肿瘤细胞沉默ENDOD1核酸内切酶后,其增殖表现出完全或部分抑制,甚至细胞死亡,并具有统计学差异;少部分肿瘤在ENDOD1核酸内切酶沉默后 其增殖不受影响(图8A-C)。并且,可以证明在对ENDOD1核酸内切酶不敏感的细 胞(HO8910-PM、SW480、GES-1和L02)中,ENDOD1基因表达可以被有效沉默(图 8D),说明这些细胞不是由于基因转染的困难对siENDOD1体现出抗性,而是由于 其他遗传学的机制表现出生存差异。As shown in Figure 8A, after the ENDOD1 endonuclease was silenced, the proliferation of various tumor cells was completely or partially inhibited, and even cell death was statistically different; Effect (Fig. 8A-C). Moreover, it could be demonstrated that in cells insensitive to ENDOD1 endonuclease (HO8910-PM, SW480, GES-1 and L02), ENDOD1 gene expression could be effectively silenced (Fig. 8D), indicating that these cells were not due to gene transfection The difficulty in showing resistance to siENDOD1 is rather due to other genetic mechanisms showing differences in survival.

3、ENDOD1核酸内切酶功能减低对肿瘤细胞的毒性依赖于核酸内切酶活性3. ENDOD1 endonuclease function reduces toxicity to tumor cells depending on endonuclease activity

在SKOV3细胞中沉默ENDOD1核酸内切酶(si001),同时转染多西环素诱导的 并且抗si001的ENDOD1核酸内切酶野生型或核酸内切酶突变体(ND),发现ENDOD1 核酸内切酶野生型质粒可以拯救si001的细胞毒,而核酸内切酶功能缺失的 ENDOD1核酸内切酶质粒则没有拯救能力(图8E),说明ENDOD1核酸内切酶对肿瘤 细胞的毒性需要功能性的ENDOD1核酸内切酶活性。Silencing ENDOD1 endonuclease (si001) in SKOV3 cells, while transfecting doxycycline-induced and si001-resistant ENDOD1 endonuclease wild-type or endonuclease mutant (ND), found that ENDOD1 endonuclease The cytotoxicity of si001 could be rescued by the enzyme wild-type plasmid, but not by the ENDOD1 endonuclease plasmid with loss of endonuclease function (Fig. 8E), indicating that the toxicity of ENDOD1 endonuclease to tumor cells requires functional ENDOD1 Endonuclease activity.

4、ENDOD1核酸内切酶功能减低对肿瘤细胞的毒性依赖于SSA活性的增高4. The toxicity of ENDOD1 endonuclease function to tumor cells depends on the increase of SSA activity

在SKOV3细胞中发现同时沉默RAD52基因表达可以减低ENDOD1沉默对SKOV3的 毒性(图8F)。说明ENDOD1核酸内切酶对肿瘤细胞的毒性依赖于RAD52的功能,也 说明SSA功能的亢进可以介导的ENDOD1核酸内切酶对肿瘤细胞的毒性。In SKOV3 cells, it was found that simultaneous silencing of RAD52 gene expression could reduce the toxicity of ENDOD1 silencing on SKOV3 (Fig. 8F). It shows that the toxicity of ENDOD1 endonuclease to tumor cells depends on the function of RAD52, and also shows that the hyperactivity of SSA function can mediate the toxicity of ENDOD1 endonuclease to tumor cells.

因此,实施例5说明可以通过给治疗对象服用足够剂量的ENDOD1核酸内切酶 抑制性药物,可以特异性地治疗或预防肿瘤,但对正常非肿瘤细胞没有杀伤作用。 同样的原理也适用于可以提高SSA活性的药物(SSA增强剂),因为可以预测ENDOD1 抑制性药物能够有效增强SSA的活性,杀伤肿瘤依赖于SSA(如RAD52)活性的增 高,并且增高SSA修复水平也可以获得与抑制ENDOD1核酸内切酶功能或基因表达 相似的细胞毒效应。因此可以推断其他SSA增强剂也应该具有同样的治疗效果。Therefore, Example 5 illustrates that by administering sufficient doses of ENDOD1 endonuclease inhibitory drugs to the treated subjects, tumors can be specifically treated or prevented, but there is no killing effect on normal non-tumor cells. The same principle also applies to drugs that can increase the activity of SSA (SSA enhancers), because it can be predicted that ENDOD1 inhibitory drugs can effectively enhance the activity of SSA, killing tumors depends on the increase of SSA (such as RAD52) activity, and increase the level of SSA repair Cytotoxic effects similar to inhibition of ENDOD1 endonuclease function or gene expression can also be obtained. Therefore, it can be inferred that other SSA enhancers should also have the same therapeutic effect.

实施例6、ENDOD1核酸内切酶与DNA损伤应答和同源重组修复基因的联合致死效应。Example 6. Joint lethal effect of ENDOD1 endonuclease with DNA damage response and homologous recombination repair genes.

实验方法:在RPE-1和2F4细胞中将ENDOD1核酸内切酶与其他功能基因共同沉默,或与酶抑制剂连用,采用细胞计数或结晶紫染色方法测定细胞增殖能力。Experimental method: In RPE-1 and 2F4 cells, ENDOD1 endonuclease was co-silenced with other functional genes, or used in conjunction with enzyme inhibitors, and the cell proliferation ability was measured by cell counting or crystal violet staining.

实验结果:Experimental results:

大多数肿瘤细胞存在DNA损伤修复的缺陷,为研究ENDOD1核酸内切酶基因缺 失特异性抑制肿瘤细胞增殖的机制,本发明利用基因沉默或酶抑制剂干扰DNA损 伤应答或修复因子的功能,模拟肿瘤细胞内的DNA应答缺陷,发现ENDOD1核酸内 切酶基因沉默与包括ATM、CHK1和同源重组修复因子在内的大多数DNA损伤应答因 子的缺陷联合致死,具体结果如下:Most tumor cells have defects in DNA damage repair. In order to study the mechanism by which ENDOD1 endonuclease gene deletion specifically inhibits tumor cell proliferation, the present invention uses gene silencing or enzyme inhibitors to interfere with DNA damage response or the function of repair factors to simulate tumors. Intracellular DNA response defects, found that ENDOD1 endonuclease gene silencing combined lethality with defects in most DNA damage response factors including ATM, CHK1 and homologous recombination repair factors, the specific results are as follows:

1、ENDOD1核酸内切酶基因沉默与DNA损伤应答因子联合致死。1. ENDOD1 endonuclease gene silencing combined with DNA damage response factor lethality.

RPE-1和2F4细胞加入DNA损伤应答因子的抑制剂,包括ATM激酶抑制剂 (Ku55933,20uM);PIKK抑制剂(CGK733,1ug/ml);ATR抑制剂(Caffeine, 10ug/ml);DNAPK激酶抑制剂(NU7026,1uM);CHK2激酶抑制剂(BML-277,1uM); MRE11核酸酶抑制剂(Mirin 20uM);或用siRNA沉默CHK1表达。12天后进行活细 胞染色,发现ENDOD1核酸内切酶基因沉默与ATM抑制剂、MRE抑制剂和CHK1沉默对 RPE-1细胞联合致死(图9A)。提示ENDOD1核酸内切酶功能抑制可以针对ATM、MRE11 和CHK1基因突变或功能障碍的肿瘤产生选择性治疗作用。Add inhibitors of DNA damage response factors to RPE-1 and 2F4 cells, including ATM kinase inhibitor (Ku55933, 20uM); PIKK inhibitor (CGK733, 1ug/ml); ATR inhibitor (Caffeine, 10ug/ml); DNAPK kinase Inhibitor (NU7026, 1uM); CHK2 kinase inhibitor (BML-277, 1uM); MRE11 nuclease inhibitor (Mirin 20uM); or silence CHK1 expression with siRNA. Live cell staining was performed 12 days later and it was found that ENDOD1 endonuclease gene silencing combined with ATM inhibitor, MRE inhibitor and CHK1 silencing was lethal to RPE-1 cells (Fig. 9A). It is suggested that inhibition of ENDOD1 endonuclease function can produce selective therapeutic effect on tumors with mutation or dysfunction of ATM, MRE11 and CHK1 genes.

因此,可以通过给治疗对象服用足够剂量的ENDOD1核酸内切酶抑制性药物ENDOD1或SSA增强剂,用于治疗或预防带有DNA应答缺陷的肿瘤,包括带有ATM、ATR、CHK1、 CHK2、DNAPK基因突变、基因表达或功能缺陷,或者带有CDC25A、CDC25B、CDC25C、 Cyclin E、Cyclin B1、Cyclin D1过表达特征的肿瘤。Therefore, it can be used to treat or prevent tumors with DNA response defects, including those with ATM, ATR, CHK1, CHK2, DNAPK Gene mutations, gene expression or function defects, or tumors with CDC25A, CDC25B, CDC25C, Cyclin E, Cyclin B1, Cyclin D1 overexpression characteristics.

2、ENDOD1核酸内切酶基因沉默与同源重组修复因子联合致死。2. ENDOD1 endonuclease gene silencing combined with homologous recombination repair factors to kill.

RPE-1细胞中沉默ENDOD1核酸内切酶基因表达,同时沉默BRCA1、BRCA2、BLM、MRE11、CTIP、EXO1、MSH1、ARID1A/RID1B和WDR70等DNA修复基因,测定其增殖 能力(图9B-C)。ENDOD1核酸内切酶与BRCA1、BRCA2、CTIP、EXO1、ARID1A/RID1B 和WDR70基因共同沉默表现出联合致死,但与BLM没有显著联合的致死效应。此外, 3条特异性的ENDOD1核酸内切酶siRNA均可与siBRCA1产生联合致死效应(图9D), ENDOD1核酸内切酶敲除的2F4细胞也与BRCA1和FANCD2/FANCC基因沉默联合致死 (图9E)。进一步证实了ENDOD1核酸内切酶与同源重组修复因子的联合致死效应。 这些证据说明抑制ENDOD1核酸内切酶基因表达或蛋白质功能可以针对带有 BRCA1、BRCA2、FANC、CTIP、EXO1、ARID1A/RID1B和WDR70等同源重组基因突变 或功能障碍的肿瘤有选择性治疗作用。In RPE-1 cells, the expression of ENDOD1 endonuclease gene was silenced, and DNA repair genes such as BRCA1, BRCA2, BLM, MRE11, CTIP, EXO1, MSH1, ARID1A/RID1B and WDR70 were silenced at the same time, and their proliferation ability was determined (Fig. 9B-C) . Co-silencing of the ENDOD1 endonuclease with BRCA1, BRCA2, CTIP, EXO1, ARID1A/RID1B, and WDR70 genes showed joint lethality, but no significant combined lethal effect with BLM. In addition, the three specific ENDOD1 endonuclease siRNAs can all produce a joint lethal effect with siBRCA1 (Figure 9D), and the ENDOD1 endonuclease knockout 2F4 cells are also lethal in combination with BRCA1 and FANCD2/FANCC gene silencing (Figure 9E ). The joint lethal effect of ENDOD1 endonuclease and homologous recombination repair factors was further confirmed. These evidences suggest that inhibition of ENDOD1 endonuclease gene expression or protein function can have a selective therapeutic effect on tumors with homologous recombination gene mutations or dysfunctions such as BRCA1, BRCA2, FANC, CTIP, EXO1, ARID1A/RID1B, and WDR70.

因此,可以通过给治疗对象服用足够剂量的ENDOD1核酸内切酶抑制性药物或 SSA增强剂,用于治疗或预防带有DNA损伤修复缺陷的肿瘤,包括同源重组修复缺 陷、碱基切除修复缺陷、核苷酸切除缺陷、单链DNA断裂修复的缺陷,以及带有 与这些修复机制相关的基因突变或功能缺陷的肿瘤。这些肿瘤包括但不限于如下 特征:DNA连接酶I、DNA连接酶II、DNA连接酶III、DNA连接酶IV、BRCA1、BRCA2、 PTIP、WRN、Fanconi、EMSY、ARID1A、ARID1B和WDR70等基因突变、基因表达或 功能缺陷;或抑制DNA修复功能的癌基因过表达,如CDK12;或带有乙型肝炎病毒 感染和病毒基因表达的肝癌或胆管细胞癌。Therefore, it can be used to treat or prevent tumors with DNA damage repair defects, including homologous recombination repair defects, base excision repair defects, by administering sufficient doses of ENDOD1 endonuclease inhibitory drugs or SSA enhancers , nucleotide excision defects, single-strand DNA break repair defects, and tumors with genetic mutations or functional defects associated with these repair mechanisms. These tumors include but are not limited to the following characteristics: DNA ligase I, DNA ligase II, DNA ligase III, DNA ligase IV, BRCA1, BRCA2, PTIP, WRN, Fanconi, EMSY, ARID1A, ARID1B and WDR70 and other gene mutations, Defects in gene expression or function; or overexpression of oncogenes that inhibit DNA repair function, such as CDK12; or liver or cholangiocarcinoma with hepatitis B virus infection and viral gene expression.

实施例7、ENDOD1核酸内切酶与抑癌基因的联合致死效应。Example 7. Combined lethal effect of ENDOD1 endonuclease and tumor suppressor gene.

实验方法:在RPE-1或肿瘤细胞中将ENDOD1核酸内切酶与TP53功能基因共同沉默,测定细胞增殖能力。将TP53表达质粒转入肿瘤细胞,同时沉默ENDOD1核酸内切酶 基因表达,细胞计数或者结晶紫染色测定恢复功能的TP53基因对ENDOD1核酸内切 酶细胞毒性的拯救效应。Experimental method: co-silence ENDOD1 endonuclease and TP53 functional gene in RPE-1 or tumor cells, and measure cell proliferation ability. The TP53 expression plasmid was transferred into the tumor cells, and the expression of the ENDOD1 endonuclease gene was silenced simultaneously, and the cell count or crystal violet staining was used to determine the rescue effect of the TP53 gene recovering the function on the cytotoxicity of the ENDOD1 endonuclease.

实验结果:Experimental results:

1、ENDOD1核酸内切酶与抑癌基因TP53联合致死效应1. The joint lethal effect of ENDOD1 endonuclease and tumor suppressor gene TP53

大量的研究表明,TP53、PTEN等是重要的抑癌基因,在60-80%的人类肿瘤中 存在突变或失活。为进一步了解ENDOD1核酸内切酶基因沉默特异性抑制肿瘤细胞 增殖的机制,在RPE-1野生型中沉默ENDOD1核酸内切酶和TP53基因,或和ENDOD1 核酸内切酶基因敲除(2F4)细胞中沉默TP53后测定细胞存活。发现ENDOD1核酸 内切酶功能障碍导致细胞对TP53基因功能的丢失高度敏感(图10A)。同样的,在 TP53高水平的细胞系(HO8910-PM)中同时沉默ENDOD1核酸内切酶和TP53,发现 细胞丧失活力和增殖能力(图10B)。说明完整的ENDOD1核酸内切酶基因功能在 TP53突变或功能丢失的肿瘤细胞中是维持活力的必需因子。A large number of studies have shown that TP53, PTEN, etc. are important tumor suppressor genes, which are mutated or inactivated in 60-80% of human tumors. To further understand the mechanism by which ENDOD1 endonuclease gene silencing specifically inhibits tumor cell proliferation, ENDOD1 endonuclease and TP53 genes were silenced in RPE-1 wild-type, or ENDOD1 endonuclease gene knockout (2F4) cells Cell survival was determined after silencing TP53 in the medium. It was found that ENDOD1 endonuclease dysfunction resulted in cells that were highly sensitive to loss of TP53 gene function (Fig. 10A). Similarly, simultaneous silencing of ENDOD1 endonuclease and TP53 in a cell line with high levels of TP53 (HO8910-PM) revealed loss of cell viability and proliferation (Fig. 10B). These data suggest that intact ENDOD1 endonuclease gene function is an essential factor for maintaining viability in TP53 mutant or loss-of-function tumor cells.

2、在TP53突变细胞中恢复TP53功能可以抑制沉默ENDOD1核酸内切酶的细胞毒效应2. Restoring TP53 function in TP53 mutant cells can inhibit the cytotoxic effect of silencing ENDOD1 endonuclease

进一步地,通过质粒转染表达野生型TP53,发现带有TP53基因纯合突变、且 对ENDOD1核酸内切酶基因沉默敏感的细胞系(NCI-H1975)变得不再敏感,说明 恢复TP53的功能可以有效地消除ENDOD1核酸内切酶功能抑制对丢失TP53功能的 肿瘤细胞的细胞毒性作用(图10C)。这些实验进一步说明TP53基因功能的缺失直 接导致肿瘤细胞对ENDOD1核酸内切酶功能抑制的敏感性,也提示ENDOD1核酸内切 酶功能抑制可以针对TP53基因突变或功能障碍的肿瘤有选择性治疗作用。Further, the wild-type TP53 was expressed by plasmid transfection, and it was found that the cell line (NCI-H1975) with a homozygous mutation of the TP53 gene and sensitive to ENDOD1 endonuclease gene silencing became insensitive, indicating that the function of TP53 was restored The cytotoxic effect of inhibition of ENDOD1 endonuclease function on tumor cells that lost TP53 function could be effectively abrogated ( FIG. 10C ). These experiments further illustrate that the loss of TP53 gene function directly leads to the sensitivity of tumor cells to the inhibition of ENDOD1 endonuclease function, and also suggests that the inhibition of ENDOD1 endonuclease function can have a selective therapeutic effect on tumors with TP53 gene mutation or dysfunction.

4、其他抑癌基因与ENDOD1核酸内切酶基因沉默的联合致死效应4. Combined lethal effect of other tumor suppressor genes and ENDOD1 endonuclease gene silencing

在RPE-1和2F4细胞中沉默PTEN抑癌基因,发现2F4对PTEN沉默具有相对较高 的敏感性(图10D)。说明抑制除TP53之外的抑癌基因也可以与抑制ENDOD1核酸内 切酶功能联合致死。The PTEN tumor suppressor gene was silenced in RPE-1 and 2F4 cells, and it was found that 2F4 had relatively high sensitivity to PTEN silencing (Fig. 10D). It shows that inhibition of tumor suppressor genes other than TP53 can also be lethal in combination with inhibition of ENDOD1 endonuclease function.

因此,可以通过给治疗对象服用足够剂量的ENDOD1核酸内切酶抑制性药物或 SSA增强剂,用于治疗或预防带有TP53、PTEN等抑癌基因突变、基因表达或功能 缺陷的肿瘤。Therefore, it can be used to treat or prevent tumors with TP53, PTEN and other tumor suppressor gene mutations, gene expression or function defects by taking sufficient doses of ENDOD1 endonuclease inhibitory drugs or SSA enhancers to the treated subjects.

实施例8、肿瘤细胞基因突变与ENDOD1核酸内切酶基因沉默细胞毒的相关性分析。Example 8. Correlation analysis between tumor cell gene mutation and ENDOD1 endonuclease gene silencing cytotoxicity.

实验方法:experimental method:

采用免疫印迹检测人正常和肿瘤细胞系的ENDOD1核酸内切酶的蛋白质水平。 从Human Protein Atlas数据库中收集正常和肿瘤组织中ENDOD1核酸内切酶的蛋 白质丰度。Protein levels of ENDOD1 endonuclease in human normal and tumor cell lines were detected by immunoblotting. The protein abundance of the ENDOD1 endonuclease in normal and tumor tissues was collected from the Human Protein Atlas database.

增殖抑制率的计算Calculation of Proliferation Inhibition Rate

表3所示肿瘤细胞增殖的抑制率的计算公式:抑制率=(1-Nt/Nc)%;其中Nt 表示实验终点用药组细胞计数,Nc表示实验终点对照组细胞计数。The formula for calculating the inhibition rate of tumor cell proliferation shown in Table 3: inhibition rate=(1-Nt/Nc)%; wherein Nt represents the cell count of the drug group at the end of the experiment, and Nc represents the cell count of the control group at the end of the experiment.

实验结果:Experimental results:

1、免疫印迹检测到ENDOD1核酸内切酶蛋白质在不同组织来源的正常(RPE-1、) 和肿瘤细胞系(SKOV-3、NCI-H1975、NCI-H1299、HL60、MRC-5、RPE-1、MDA-MB-231、 U2OS、MDA-MB-468、Raji、OVCAR-8TR)中普遍表达(图11A)。1. Western blotting detected ENDOD1 endonuclease protein in different tissue sources of normal (RPE-1,) and tumor cell lines (SKOV-3, NCI-H1975, NCI-H1299, HL60, MRC-5, RPE-1 , MDA-MB-231, U2OS, MDA-MB-468, Raji, OVCAR-8TR) were ubiquitously expressed ( FIG. 11A ).

2、Human Protein Atlas数据库显示ENDOD1核酸内切酶在多数正常组织中呈现中高水平的蛋白质表达(图11B);ENDOD1核酸内切酶在半数以上的肿瘤组织中 也有显著的蛋白质表达水平(图11C),包括神经胶质瘤、甲状腺癌、直肠癌、 头颈癌、胃癌、胰腺癌、肺癌、肾癌、前列腺癌、乳腺癌、子宫内膜癌、卵巢癌、 黑色素瘤和皮肤癌等。ENDOD1核酸内切酶在个别肿瘤中(如睾丸癌和淋巴瘤) 则表达比例偏低。2. The Human Protein Atlas database shows that ENDOD1 endonuclease has a medium to high level of protein expression in most normal tissues (Figure 11B); ENDOD1 endonuclease also has a significant protein expression level in more than half of tumor tissues (Figure 11C) , including glioma, thyroid cancer, rectal cancer, head and neck cancer, gastric cancer, pancreatic cancer, lung cancer, kidney cancer, prostate cancer, breast cancer, endometrial cancer, ovarian cancer, melanoma and skin cancer. The expression ratio of ENDOD1 endonuclease is low in individual tumors (such as testicular cancer and lymphoma).

3、表3显示ENDOD1核酸内切酶对所测试25种肿瘤细胞的细胞毒性以及细胞所携带的基因突变。统计学分析显示,带有TP53或其他基因突变(BRCA1、BRCA2,或者 带有HBV、HPV病毒等)的肿瘤细胞,对ENDOD1核酸内切酶基因沉默的敏感性远远 高于没有携带这些变异的肿瘤细胞(图11D)。进一步利用SPSS软件分析TP53突变 及其他类型的肿瘤基因突变与ENDOD1基因沉默抑制率之间的Pearson相关系数, 发现二者存在高度相关性(PearsonCorrelation:0.708,p<0.0001),表明带有 这些变异的肿瘤细胞对ENDOD1基因沉默的敏感性远远高于非突变细胞。3. Table 3 shows the cytotoxicity of ENDOD1 endonuclease to 25 kinds of tumor cells tested and the gene mutation carried by the cells. Statistical analysis showed that tumor cells with TP53 or other gene mutations (BRCA1, BRCA2, or with HBV, HPV viruses, etc.) were much more sensitive to ENDOD1 endonuclease gene silencing than those without these mutations Tumor cells (Fig. 11D). SPSS software was further used to analyze the Pearson correlation coefficient between TP53 mutation and other types of tumor gene mutations and ENDOD1 gene silencing inhibition rate, and found that there was a high correlation between the two (PearsonCorrelation: 0.708, p<0.0001), indicating that patients with these mutations Tumor cells are far more sensitive to ENDOD1 gene silencing than non-mutated cells.

表3、各种人正常及肿瘤细胞系的有关突变特征和ENDOD1核酸内切酶基因沉默后对细胞增殖的抑制率。(wt:野生型;mu:突变型;null:全缺失突变;homo: 纯和突变)Table 3. The relevant mutation characteristics of various human normal and tumor cell lines and the inhibition rate of cell proliferation after ENDOD1 endonuclease gene silencing. (wt: wild type; mu: mutant; null: full deletion mutation; homo: pure and mutant)

Figure BDA0002452133780000451
Figure BDA0002452133780000451

Figure BDA0002452133780000461
Figure BDA0002452133780000461

实施例9、ENDOD1核酸内切酶功能抑制对肿瘤化学治疗的增敏作用。Example 9. The sensitization effect of ENDOD1 endonuclease function inhibition on tumor chemotherapy.

实验方法:experimental method:

在24孔板中接种1万细胞(RPE-1或A549),24小时后进行ENDOD1核酸内切酶基 因沉默实验,并进行持续的药物处理(药物浓度见图12)。实验终点(14天)计 算细胞增殖倍数。10,000 cells (RPE-1 or A549) were inoculated in a 24-well plate, and the ENDOD1 endonuclease gene silencing experiment was performed 24 hours later, and continuous drug treatment was performed (see Figure 12 for drug concentration). At the end of the experiment (14 days), the cell proliferation multiple was calculated.

实验结果:Experimental results:

经ENDOD1 siRNA沉默后的正常细胞(RPE-1)对化疗药物、ENDOD1基因沉默 或者联合处理均不敏感(图12,左),但是肿瘤细胞(A549)细胞对化疗药物较 为敏感,并且在沉默ENDOD1核酸内切酶后对喜树碱(CPT)、顺铂(cisplatin)、 DNAPK抑制剂(Nu7062)的敏感性均大为提高(图12,右)。Normal cells (RPE-1) silenced by ENDOD1 siRNA were not sensitive to chemotherapeutic drugs, ENDOD1 gene silencing or combined treatment (Fig. 12, left), but tumor cells (A549) were more sensitive to chemotherapeutic drugs, and silencing ENDOD1 Sensitivity to camptothecin (CPT), cisplatin (cisplatin), and DNAPK inhibitor (Nu7062) were greatly improved after endonuclease (Fig. 12, right).

因此,给治疗对象服用足够剂量的ENDOD1核酸内切酶抑制性药物可以对低剂 量的放化疗起到增敏作用,用于治疗对放射或化疗药物单独治疗无有效临床反应 的肿瘤。潜在的联合治疗药物包括从铂类、丝裂霉素C、喜树碱、PARP抑制剂、 DNAPK抑制剂、放射性同位素、长春花生物碱、抗肿瘤烷基化药物、单克隆抗体、 抗代谢药物。这些治疗方法可以同时或先后使用,体现协同效应,使治疗效果优 于单独使用抑制ENDOD1功能的药物或单独使用抗肿瘤药物的方法。Therefore, administering sufficient doses of ENDOD1 endonuclease inhibitory drugs to the treated subjects can sensitize low-dose chemoradiotherapy for the treatment of tumors that have no effective clinical response to radiation or chemotherapeutic drugs alone. Potential combination therapy drugs include platinum, mitomycin C, camptothecin, PARP inhibitors, DNAPK inhibitors, radioisotopes, vinca alkaloids, anti-tumor alkylating drugs, monoclonal antibodies, antimetabolites . These treatment methods can be used simultaneously or sequentially, reflecting a synergistic effect, so that the therapeutic effect is better than the method of using drugs that inhibit the function of ENDOD1 or using antitumor drugs alone.

实施例10、ENDOD1核酸内切酶基因沉默对小鼠荷瘤模型的治疗作用。Example 10. The therapeutic effect of ENDOD1 endonuclease gene silencing on a mouse tumor-bearing model.

实验方法:experimental method:

裸鼠荷瘤模型Tumor-bearing model in nude mice

临床前动物荷瘤实验在四川大学华西第二医院实验动物中心进行(SPF级)。 周龄的无胸腺雄性裸鼠隔离观察一周后(购于南京模式动物研究中心)随机分为 3组。每只小鼠于腋下及腹股沟处接种肿瘤细胞,接种数量为4x106Preclinical animal tumor-bearing experiments were carried out in the Experimental Animal Center of West China Second Hospital of Sichuan University (SPF level). Week-old athymic male nude mice (purchased from Nanjing Model Animal Research Center) were randomly divided into 3 groups after one week of isolated observation. Each mouse was inoculated with tumor cells in the armpit and groin, and the inoculation amount was 4x10 6 .

体内基因沉默in vivo gene silencing

接种瘤体体积约100mm3时进ENDOD1核酸内切酶体内基因沉默。具体用实施 如下:超纯水(invitrogen,10977-015)溶解ENDOD1核酸内切酶体内siRNA粉剂 及对照siRNA粉剂(广州锐博),配制成工作液(1ug/ul)置于-40℃保存。超纯水 配制10%葡萄糖,过滤,置于-40℃保存备用。体内基因沉默采用尾静脉注射方式 给药,给药频率为2次/周。注射液配制后需立即注射。每只小鼠注射液具体配制 如下:siRNA 50ul与10%葡萄糖50ul混匀制成1液,超纯水25ul与10%葡萄糖50ul 及25ul体内转染试剂(Engreen,18668-11-1)混合制成2液,静置2min,混合1 液与2液,静置15min。When inoculated with a tumor volume of about 100 mm 3 , the ENDOD1 endonuclease gene was silenced in vivo. The specific implementation is as follows: Ultrapure water (invitrogen, 10977-015) dissolves ENDOD1 endonuclease in vivo siRNA powder and control siRNA powder (Guangzhou Ruibo), prepares a working solution (1ug/ul) and stores at -40°C. 10% glucose was prepared with ultrapure water, filtered, and stored at -40°C for later use. In vivo gene silencing was administered by tail vein injection, and the administration frequency was 2 times/week. The injection should be injected immediately after preparation. The injection solution for each mouse was specifically prepared as follows: 50ul of siRNA was mixed with 50ul of 10% glucose to make 1 solution; 25ul of ultrapure water was mixed with 50ul of 10% glucose and 25ul of in vivo transfection reagent (Engreen, 18668-11-1). Make 2 liquids, let stand for 2 minutes, mix 1 liquid and 2 liquids, let stand for 15 minutes.

肿瘤测量和统计学分析Tumor Measurements and Statistical Analysis

自给药起始日开始测量肿瘤大小,测定频率为3-5天。使用游标卡尺测量肿 瘤体表长宽。实验结束后整理数据,根据《细胞毒类抗肿瘤药物非临床研究技术 指导》按以下标准计算并评价用药效果:肿瘤体积计算公式:V=1/2×a×b2。其 中a和b分别表示肿瘤体表长,宽。肿瘤药效评价公式:相对肿瘤增殖率T/C%= TRTV/CRTV*100%。T/C%<40%即可评判该治疗方法有效。T/C%值越低药效越显著。 其中,TRTV表示治疗组RTV;CRTV表示阴性对照组RTV。RTV表示相对肿瘤体积 (relative tumor volume,RTV),其计算公式:RTV=Vt/V0。其中V0为初始肿 瘤体积,Vt观察时间点肿瘤体积。本实验中Vt为设定的实验终点对应小鼠肿瘤体 积。Tumor size was measured from the start day of administration, and the measurement frequency was 3-5 days. The length and width of the tumor body surface were measured using a vernier caliper. After the experiment, the data was sorted out, and the drug effect was calculated and evaluated according to the following standard according to the "Technical Guidance for Non-clinical Research of Cytotoxic Antineoplastic Drugs": Tumor volume calculation formula: V=1/2×a×b2. Where a and b represent the length and width of the tumor body surface, respectively. Tumor efficacy evaluation formula: relative tumor proliferation rate T/C%=TRTV/CRTV*100%. T/C%<40% can be judged that the treatment method is effective. The lower the T/C% value, the more significant the drug effect. Among them, TRTV means the RTV of the treatment group; CRTV means the RTV of the negative control group. RTV stands for relative tumor volume (RTV), and its calculation formula is: RTV=Vt/V0. Where V0 is the initial tumor volume, and Vt is the tumor volume at the observation time point. In this experiment, Vt is the set experimental endpoint corresponding to the tumor volume of the mouse.

本实施例中实验终点对照组与实验组差异比较采用T-test双尾检验,P>0.05 则显示两组间有明显差异。实验周期设定为21天。根据伦理要求,对于未达到21 天实验终点时,小鼠肿瘤体积大于等于2000mm3同样需处死小鼠,终止该样本继 续实验。In this embodiment, the difference between the experimental endpoint control group and the experimental group was compared using T-test two-tailed test, and P>0.05 shows that there is a significant difference between the two groups. The experimental period was set to 21 days. According to ethical requirements, when the end point of the 21-day experiment is not reached, the mouse tumor volume is greater than or equal to 2000mm 3 and the mouse must also be killed, and the sample is terminated to continue the experiment.

实验结果:Experimental results:

ENDOD1核酸内切酶沉默实验组中小鼠肿瘤的生长与对照组相比被明显抑制。 动物模型有效证明ENDOD1核酸内切酶基因沉默对多种TP53缺陷型(SKOV3, HCC1937,OVCAR-8TR)、BRCA1缺陷(HCC1937,BRCA1纯和突变)可产生显著抑 制效果(图13A),其抑制率(T/C%)分别为SKOV3,15.2%;HCC1937,23.7%; OVCAR-8TR,25.7%(T/C%≤40%表明该药物对肿瘤有显著疗效)(图13B)。The growth of mouse tumors in the ENDOD1 endonuclease silencing experimental group was significantly inhibited compared with the control group. Animal models have effectively proved that ENDOD1 endonuclease gene silencing can significantly inhibit a variety of TP53-deficient (SKOV3, HCC1937, OVCAR-8TR) and BRCA1-deficient (HCC1937, BRCA1 pure and mutant) (Figure 13A), and the inhibition rate (T/C%) were SKOV3, 15.2%; HCC1937, 23.7%; OVCAR-8TR, 25.7% (T/C%≤40% indicates that the drug has a significant effect on the tumor) ( FIG. 13B ).

因此,可以通过给治疗对象服用足够剂量的ENDOD1核酸内切酶抑制性药物, 用于治疗带有相应基因、遗传、蛋白质功能缺陷的肿瘤。Therefore, it can be used to treat tumors with corresponding gene, genetic, and protein function defects by administering sufficient doses of ENDOD1 endonuclease inhibitory drugs to the treated subjects.

实施例11、ENDOD1核酸内切酶功能抑制对活动性乙肝病毒的治疗作用。Example 11. The therapeutic effect of ENDOD1 endonuclease function inhibition on active hepatitis B virus.

之前发现表明,乙型肝炎病毒编码癌基因(HBx)通过破坏CRL4WDR70泛素酶 抑制同源重组修复(参见:Ren,L.,et al.,The Antiresection Activity of the X ProteinEncoded by Hepatitis Virus B.Hepatology,2019.69)。本 实施例通过测定HBV阳性细胞对ENDOD1核酸内切酶基因沉默的敏感性,证明 ENDOD1核酸内切酶功能抑制可以控制HBV感染指标。Previous findings suggest that the hepatitis B virus-encoded oncogene (HBx) inhibits homologous recombination repair by disrupting the CRL4WDR70 ubiquitinase (see: Ren, L., et al., The Antiresection Activity of the X Protein Encoded by Hepatitis Virus B. Hepatology ,2019.69). In this example, by measuring the sensitivity of HBV-positive cells to ENDOD1 endonuclease gene silencing, it is proved that inhibition of ENDOD1 endonuclease function can control HBV infection indicators.

实验方法:experimental method:

细胞增殖实验:Cell Proliferation Assay:

在24孔板中接种5万细胞,24小时后开始进行基因沉默实验。实验周期设定 为21天,每隔3天进行传代。每次传代后24小时进行ENDOD1核酸内切酶siRNA转染 实验。传代时用细胞计数器进行准确计数,记录,实验终点绘制增殖曲线。50,000 cells were seeded in 24-well plates, and gene silencing experiments were performed 24 hours later. The experimental cycle was set to 21 days, and subculture was performed every 3 days. ENDOD1 endonuclease siRNA transfection experiments were performed 24 hours after each passage. Accurately count and record with a cell counter during subculture, and draw a proliferation curve at the end of the experiment.

HBV阳性细胞动物模型实验:HBV positive cell animal model experiments:

针对乙型肝炎病毒患者治疗效果评价可以采纳检测血清中病毒拷贝数和表 面抗原(HBsAG)的检测指标。For the evaluation of the treatment effect of patients with hepatitis B virus, the detection index of virus copy number and surface antigen (HBsAG) in serum can be adopted.

采用6周龄的无胸腺雌性裸鼠3只,每只小鼠于腋下及腹股沟处接种 HepG2.2.15细胞,建立HBV小鼠感染模型,细胞接种数量为8x106。接种细胞后 在不同时间点尾静脉血取血,使用乙型肝炎病毒(HBV)核酸扩增(PCR)荧光定量检 测试剂盒监测血液中HBV拷贝数变化情况,待拷贝数升至血清中最高值 4000UI/ml左右时开始体内沉默ENDOD1核酸内切酶基因。Three 6-week-old athymic female nude mice were used, and each mouse was inoculated with HepG2.2.15 cells in the armpit and groin to establish the HBV mouse infection model. The number of inoculated cells was 8x10 6 . After cell inoculation, take blood from the tail vein at different time points, and use the hepatitis B virus (HBV) nucleic acid amplification (PCR) fluorescent quantitative detection kit to monitor the changes in the copy number of HBV in the blood, and wait until the copy number rises to the highest value in the serum 4000UI/ml or so began to silence the ENDOD1 endonuclease gene in vivo.

具体用实施如下:超纯水(invitrogen,10977-015)溶解ENDOD1核酸内切酶 体内siRNA粉剂及对照siRNA粉剂(广州锐博),配制成工作液(1ug/ul)置于-40℃ 保存。超纯水配制10%葡萄糖,过滤,置于-40℃保存备用。体内基因沉默采用尾 静脉注射方式给药,给药频率为2次/周。注射液配制后需立即注射。The specific implementation is as follows: ENDOD1 endonuclease in vivo siRNA powder and control siRNA powder (Guangzhou Ruibo) were dissolved in ultrapure water (invitrogen, 10977-015), prepared into a working solution (1ug/ul) and stored at -40°C. 10% glucose was prepared with ultrapure water, filtered, and stored at -40°C for later use. In vivo gene silencing was administered by tail vein injection, and the administration frequency was 2 times/week. The injection should be injected immediately after preparation.

每只小鼠注射液具体配制如下:siRNA 50ul与10%葡萄糖50ul混匀制成1 液,超纯水25ul与10%葡萄糖50ul及25ul体内转染试剂(Engreen,18668-11-1) 混合制成2液,静置2min,混合1液与2液,静置15min。The specific preparation of each mouse injection is as follows: 50ul of siRNA and 50ul of 10% glucose are mixed to make 1 liquid, 25ul of ultrapure water is mixed with 50ul of 10% glucose and 25ul of in vivo transfection reagent (Engreen, 18668-11-1) Make 2 liquids, let stand for 2 minutes, mix 1 liquid and 2 liquids, let stand for 15 minutes.

1、2、3、4、5、7、9、15、20天尾静脉血取血,监测血清中HBV基因组拷贝 数,并采用ELISA方法检测HBsAg滴度变化。第16天停药后,继续监测血清中拷贝 数及HBsAg滴度五天。结果时间点做滴度曲线图。如无特殊说明,本实施例中细 胞实验与动物学实验所有组间差异计算均采用t-test双尾检验。P>0.05则显示两 组间有明显差异。On days 1, 2, 3, 4, 5, 7, 9, 15, and 20, blood was collected from the tail vein to monitor the copy number of HBV genome in the serum, and ELISA method was used to detect the change of HBsAg titer. After stopping the drug on the 16th day, continue to monitor the copy number and HBsAg titer in the serum for five days. The titer curve was made at the time point of the results. Unless otherwise specified, in this embodiment, the calculation of differences between all groups in cell experiments and zoology experiments adopts t-test two-tailed test. P>0.05 indicates that there is a significant difference between the two groups.

实验结果:Experimental results:

1、同时沉默ENDOD1核酸内切酶与WDR70的联合致死效应1. Simultaneous silencing of the combined lethal effect of ENDOD1 endonuclease and WDR70

在正常肝细胞(L02)中沉默ENDOD1核酸内切酶和/或WDR70,测定细胞增殖 曲线。发现ENDOD1基因沉默对L02细胞没有明显毒性,但可以与siWDR70联合抑制 细胞的增殖(图14A)。说明抑制ENDOD1核酸内切酶与WDR70功能具有联合致死效 应。Cell proliferation curves were determined by silencing ENDOD1 endonuclease and/or WDR70 in normal hepatocytes (L02). It was found that ENDOD1 gene silencing had no obvious toxicity to L02 cells, but it could inhibit cell proliferation in combination with siWDR70 (Fig. 14A). Inhibition of ENDOD1 endonuclease and WDR70 function has a combined lethal effect.

2、沉默ENDOD1核酸内切酶对HBV阳性细胞的细胞毒效应2. Cytotoxic effect of silencing ENDOD1 endonuclease on HBV positive cells

在整合HBV基因组的肝细胞(T43)中沉默ENDOD1核酸内切酶基因表达,测定 细胞克隆形成的能力(图14B),发现ENDOD1基因沉默可以有效清除T43细胞,而 相同处理下的正常肝细胞(L02)的克隆形成则完全不受影响。裸鼠皮下接种T43 建立肿瘤模型,发现ENDOD1基因沉默可以有效抑制T43肿瘤的生长(图14C),说 明抑制ENDOD1核酸内切酶的功能可以清除带有CRL4WDR70功能缺陷的HBV阳性细 胞。Silencing the expression of ENDOD1 endonuclease gene in hepatocytes (T43) integrating the HBV genome, and measuring the ability of cell clone formation (Fig. L02) colony formation was not affected at all. Nude mice were inoculated subcutaneously with T43 to establish a tumor model, and it was found that ENDOD1 gene silencing could effectively inhibit the growth of T43 tumors (Figure 14C), indicating that inhibiting the function of ENDOD1 endonuclease could eliminate HBV-positive cells with CRL4WDR70 functional defects.

3、沉默ENDOD1核酸内切酶降低HBV感染指标3. Silencing ENDOD1 endonuclease reduces HBV infection indicators

裸鼠尾静脉接种HepG2.2.15,ELISA方法测定所示时间点的血清中HBV抗原(HBsAg)的滴度,以及荧光定量PCR方法测定血清中HBV病毒DNA的滴度。实 验发现ENDOD1核酸内切酶的体内沉默可以使模型小鼠血清中的HBV-DNA含量及 HBsAg抗原OD值由~1.5(此时血清中HBsAg抗原含量达到最高值,表示 HepG2.2.15细胞肝癌小鼠模型中,病毒进入稳定的高水平活跃复制期)左右降 至0.05,接近或低于临床阴性(>0.05,此时OD值为检测最低阈值)的指标。 在ENDOD1核酸内切酶体内沉默停止5天内,小鼠血清中HBV拷贝数及HBsAg表 达则一直处于稳定的阴性范围之内。这些细胞学和动物学实验的结果显示: ENDOD1核酸内切酶体内沉默可以持久地清除HBV病毒感染的宿主细胞,提示下 调ENDOD1核酸内切酶的功能可以清除乙肝病毒感染者体内携带HBV或有HBx表 达的肝细胞,实现对乙型肝炎病毒真正的临床治愈。The tail vein of nude mice was inoculated with HepG2.2.15, and the titer of HBV antigen (HBsAg) in the serum at the indicated time points was measured by ELISA method, and the titer of HBV virus DNA in the serum was measured by fluorescent quantitative PCR method. The experiment found that the silencing of ENDOD1 endonuclease in vivo can make the HBV-DNA content and HBsAg antigen OD value in the serum of model mice from ~1.5 (at this time, the HBsAg antigen content in the serum reaches the highest value, indicating that HepG2.2.15 cell liver cancer mice In the model, the virus enters a stable high-level active replication period) and drops to about 0.05, which is close to or lower than the index of clinical negative (>0.05, at which time the OD value is the lowest threshold for detection). Within 5 days after the cessation of ENDOD1 endonuclease silencing in vivo, the HBV copy number and HBsAg expression in mouse serum were always in a stable negative range. The results of these cytology and animal experiments showed that: silencing of ENDOD1 endonuclease in vivo can permanently eliminate HBV virus-infected host cells, suggesting that down-regulating the function of ENDOD1 endonuclease can eliminate HBV or HBx in HBV-infected patients The hepatic cells expressing it can realize a real clinical cure for hepatitis B virus.

因此,可以通过给治疗对象服用足够剂量的ENDOD1核酸内切酶抑制性药物, 减低乙型肝炎病毒血清抗原指标和病毒滴度,根除或控制乙型肝炎病毒的感染。 该治疗方法还可以与多种抗病毒治疗方法联合使用或形成组合物,例如抗病毒代 谢药物、基因治疗、DNA治疗、RNA治疗、靶向治疗、佐剂治疗和免疫治疗等,这 些治疗方法可以同时或先后使用,使治疗效果优于单独使用抑制ENDOD1功能的药 物或单独使用抗病毒药物的方法。Therefore, the hepatitis B virus infection can be eradicated or controlled by taking sufficient doses of ENDOD1 endonuclease inhibitory drugs to the treated subjects to reduce the hepatitis B virus serum antigen index and virus titer. This treatment method can also be used in combination with various antiviral treatment methods or form a composition, such as antiviral metabolic drugs, gene therapy, DNA therapy, RNA therapy, targeted therapy, adjuvant therapy and immunotherapy, etc., these treatment methods can Simultaneous or sequential use, the therapeutic effect is better than that of using drugs that inhibit the function of ENDOD1 or using antiviral drugs alone.

实施例12、ENDOD1核酸内切酶抑制剂的筛选流程。Example 12. Screening process for ENDOD1 endonuclease inhibitors.

实验方法experimental method

通过竞争性抑制法筛选抑制ENDOD1核酸内切酶活性的小分子抑制剂。在384 孔PCR裙边板(Thermo,AB2384B)中加入0.1μg细菌表达的ENDOD1蛋白质、100ng 线性双链DNA底物(序列:Screening of small molecule inhibitors of ENDOD1 endonuclease activity by competitive inhibition method. Add 0.1 μg bacterially expressed ENDOD1 protein, 100ng linear double-stranded DNA substrate (sequence:

ATTCTCAGCCTGAAAGCCAGGTTCTAGAGGATGATTCTGGTTCTCACTTCAGTATGCTATCTCGACACCTTCCTAATCTCCAGACGCACAAAGAAAATCCTGTGTTGGATGTTGTGTCCAATCCTGAACAAACAGCTG GAGAAGAACGAGGAGACGGTAATAGTGGGTTCAATGAACATTTGAAAGAA)以及小分子抑制剂库 或DMSO对照,在Cut Smart缓冲液中37℃反应16小时。利用机械多道移液器(eppendorf)向每孔中加入等体积2x荧光定量PCR预混液(Promega,包含以DNA 底物为模板的特异性引物,序列为F:5’-ATTCTCAGCCTGAAAGCCAGG-3’;R:5’ -TTCTTTCAAATGTTCATTGAA-3’),进行荧光定量PCR检测DNA底物剩余量及酶切效 率,筛选有效的小分子抑制剂。ATTCTCAGCCTGAAAGCCAGGTTCTAGAGGATGATTCTGGTTCTCACTTCAGTATGCTATCTCGACACCTTCCTAATCTCCAGACGCACAAAGAAAATCCTGTGTTGGATGTTGTGTCCAATCCTGAACAAACAGCTGGAGAAGAACGAGGAGACGGTAATAGTGGGTTCAATGAACATTTGAAAGAA) and a library of small molecule inhibitors or DMSO controls were reacted in Cut Smart 1 buffer for 6 hours at 37°C. Using a mechanical multi-channel pipette (eppendorf), add an equal volume of 2x fluorescent quantitative PCR master mix (Promega, containing specific primers using DNA substrates as templates, the sequence is F: 5'-ATTCTCAGCCTGAAAGCCAGG-3'; R: 5'-TTCTTTCAAATGTTCATTGAA-3'), perform fluorescent quantitative PCR to detect the remaining amount of DNA substrate and enzyme digestion efficiency, and screen effective small molecule inhibitors.

实验结果Experimental results

筛选及开发ENDOD1抑制剂,可以通过以下几个方面实现:抑制ENDOD1和/或 其调控基因的表达水平;抑制ENDOD1蛋白质的核酸内切酶活性,阻断其DNA修复 活性,破坏其亚细胞定位,破坏其泛素化、磷酸化等翻译后修饰;干扰ENDOD1 及其调控蛋白质的剪切和信号肽成熟等生物学功能等。Screening and development of ENDOD1 inhibitors can be achieved through the following aspects: inhibiting the expression level of ENDOD1 and/or its regulatory genes; inhibiting the endonuclease activity of ENDOD1 protein, blocking its DNA repair activity, destroying its subcellular localization, Destroy post-translational modifications such as ubiquitination and phosphorylation; interfere with ENDOD1 and its regulatory protein cleavage and signal peptide maturation and other biological functions.

通过抑制ENDOD1蛋白的核酸内切酶活性,如图15所示,为ENDOD1抑制剂 筛选流程图。通过梯度降低ENDOD1蛋白质浓度,利用荧光定量PCR检测酶切效 率,DNA底物剩余量应与ENDOD1蛋白质浓度呈负相关,利用该方法可作为ENDOD1 核酸内切酶的体外药物筛选体系。By inhibiting the endonuclease activity of the ENDOD1 protein, as shown in Figure 15, it is a flow chart for the screening of ENDOD1 inhibitors. The concentration of ENDOD1 protein was decreased by gradient, and the cleavage efficiency was detected by fluorescent quantitative PCR. The remaining amount of DNA substrate should be negatively correlated with the concentration of ENDOD1 protein. This method can be used as an in vitro drug screening system for ENDOD1 endonuclease.

序列表sequence listing

<110> 四川大学华西第二医院<110> West China Second Hospital of Sichuan University

成都吉罗克林生物科技有限公司Chengdu Jiluo Kelin Biotechnology Co., Ltd.

<120> 一种含有抑制核酸内切酶功能的药物及其抗肿瘤的用途<120> A drug containing the function of inhibiting endonuclease and its anti-tumor application

<160> 357<160> 357

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 1<210> 1

<211> 4651<211> 4651

<212> DNA<212>DNA

<213> 人类(Homo sapiens)<213> Human (Homo sapiens)

<400> 1<400> 1

gtagtgcgct ccccgcccag cctgcagagc tcgcgccgcg gcagcccagc cgctcggccc 60gtagtgcgct ccccgcccag cctgcagagc tcgcgccgcg gcagcccagc cgctcggccc 60

cgccgcgctc gcagaggccg ccatgggcac cgcgcgctgg ctcgcgctgg gcagcctctt 120cgccgcgctc gcagaggccg ccatgggcac cgcgcgctgg ctcgcgctgg gcagcctctt 120

cgccctggct gggctgctgg aaggccggct cgtgggcgag gaggaagccg gctttggcga 180cgccctggct gggctgctgg aaggccggct cgtgggcgag gaggaagccg gctttggcga 180

atgtgacaag ttcttctacg ccgggacccc gcctgcgggg ctggcggccg attcccacgt 240atgtgacaag ttcttctacg ccgggacccc gcctgcgggg ctggcggccg attccacgt 240

gaagatctgt cagcgcgcgg agggtgctga gcgcttcgcc accctctaca gcacccggga 300gaagatctgt cagcgcgcgg agggtgctga gcgcttcgcc accctctaca gcacccggga 300

ccgcatcccc gtgtactccg cgttccgcgc cccgcgccct gcgcccggcg gcgccgagca 360ccgcatcccc gtgtactccg cgttccgcgc cccgcgccct gcgcccggcg gcgccgagca 360

gcgatggctg gtggagccgc agatcgatga ccccaacagc aaccttgagg aggcgattaa 420gcgatggctg gtggagccgc agatcgatga ccccaacagc aaccttgagg aggcgattaa 420

tgaggcagag gccatcacct ctgtgaacag cctgggaagc aagcaagcct tgaatacaga 480tgaggcagag gccatcacct ctgtgaacag cctgggaagc aagcaagcct tgaatacaga 480

ttaccttgat tctgattacc aaagaggaca gctttaccca ttctccctta gcagtgatgt 540ttaccttgat tctgattacc aaagaggaca gctttacccca ttctccctta gcagtgatgt 540

ccaggtggcc acatttactc tcacaaattc agccccaatg actcagtcct tccaggaacg 600ccaggtggcc aatttactc tcacaaattc agccccaatg actcagtcct tccaggaacg 600

gtggtatgtg aatctccaca gcctaatgga ccgggctttg accccacagt gtggcagtgg 660gtggtatgtg aatctccaca gcctaatgga ccgggctttg accccacagt gtggcagtgg 660

ggaagaccta tatatcctca caggcacagt gccctcagac tacagagtta aagacaaagt 720ggaagaccta tatatcctca caggcacagt gccctcagac tacagagtta aagacaaagt 720

ggcagtccct gagtttgttt ggctggcagc ctgttgtgct gtccctggag gaggctgggc 780ggcagtccct gagtttgttt ggctggcagc ctgttgtgct gtccctggag gaggctgggc 780

catgggcttt gtcaagcaca cccgggacag tgacatcata gaagatgtga tggtaaaaga 840catgggcttt gtcaagcaca cccgggacag tgacatcata gaagatgtga tggtaaaaga 840

tcttcagaaa ctgcttccat ttaaccctca gctgtttcag aacaactgtg gtgaaactga 900tcttcagaaa ctgcttccat ttaaccctca gctgtttcag aacaactgtg gtgaaactga 900

gcaagacaca gagaaaatga aaaaaatcct ggaagtggtt aaccaaatcc aggatgaaga 960gcaagacaca gagaaaatga aaaaaatcct ggaagtggtt aaccaaatcc aggatgaaga 960

acgaatggta caatctcaaa agagttctag tcccctttct agcaccagga gcaagaggtc 1020acgaatggta caatctcaaa agagttctag tcccctttct agcaccagga gcaagaggtc 1020

tactctgttg cctccagagg catctgaggg aagtagtagc tttttgggaa aactcatggg 1080tactctgttg cctccagagg catctgaggg aagtagtagc tttttgggaa aactcatggg 1080

cttcattgct accccattca tcaagctttt tcaattaatt tattaccttg tggtagcaat 1140cttcattgct accccattca tcaagctttt tcaattaatt tattaccttg tggtagcaat 1140

cctgaagaac attgtctatt tcctgtggtg tgttaccaag caggtgatta atggcataga 1200cctgaagaac attgtctatt tcctgtggtg tgttaccaag caggtgatta atggcataga 1200

aagttgcctt taccgcctgg gctcagccac catctcatac ttcatggcca ttggggaaga 1260aagttgcctt taccgcctgg gctcagccac catctcatac ttcatggcca ttggggaaga 1260

gttggtgagc attccctgga aggtgctcaa ggtcgtggcc aaagtcatca gggctctcct 1320gttggtgagc attccctgga aggtgctcaa ggtcgtggcc aaagtcatca gggctctcct 1320

ccggatcctt tgttgtctgc tgaaggccat ttgccgagtt ctgagcatcc ctgtccgtgt 1380ccggatcctt tgttgtctgc tgaaggccat ttgccgagtt ctgagcatcc ctgtccgtgt 1380

ccttgtggat gtggccactt tccctgtgta caccatgggc gctattccaa ttgtttgcaa 1440ccttgtggat gtggccactt tccctgtgta caccatgggc gctattccaa ttgtttgcaa 1440

ggacattgca ctgggccttg gtggcactgt ctcactgctc tttgacactg cttttggtac 1500ggacattgca ctgggccttg gtggcactgt ctcactgctc tttgacactg cttttggtac 1500

cctgggtggc ctatttcagg tggtttttag tgtctgcaag cggattggct acaaggttac 1560cctgggtggc ctatttcagg tggtttttag tgtctgcaag cggattggct acaaggttac 1560

ttttgacaat tctggggagt tataaactca aaaaactaat agtatccagt cacagtgaat 1620ttttgacaat tctggggagt tataaactca aaaaactaat agtatccagt cacagtgaat 1620

ttgaaagctg gaatagtttg tctttacaat gggtttctgt tcactgtcag ttatcattat 1680ttgaaagctg gaatagtttg tctttacaat gggtttctgt tcactgtcag ttatcattat 1680

attttggcct ttggtgggga tgtctgcttg tttttgcaaa agaagatggc agaatttaga 1740attttggcct ttggtgggga tgtctgcttg tttttgcaaa agaagatggc agaatttaga 1740

cttgacagag gagaaatgct cagggtgaga ttaggtgtag taatctgctg tttacctcca 1800cttgacagag gagaaatgct cagggtgaga ttaggtgtag taatctgctg tttacctcca 1800

gttatatgtg caaactccca agccactaat aacttcagtt atgcactcta acacagacga 1860gttatatgtg caaactccca agccactaat aacttcagtt atgcactcta acacagacga 1860

ccacctgaaa tgcactggta tttatttctg ataattaaaa attacagggg agggaagaac 1920ccacctgaaa tgcactggta tttatttctg ataattaaaa attacagggg agggaagaac 1920

tagaaaaaga acaactttag accaaaggtg tctgagaaaa ggagaaaggg agcttgttct 1980tagaaaaaga acaactttag accaaaggtg tctgagaaaa ggagaaaggg agcttgttct 1980

tcccattgct ctttgtgatt taaggcaaaa cagattaaaa aaaaaatctg cagccaattt 2040tcccattgct ctttgtgatt taaggcaaaa cagattaaaa aaaaaatctg cagccaattt 2040

cttggcattt gcttctcttt ctcctcaact cgactgacct tggtggaatg cagataatgc 2100cttggcattt gcttctcttt ctcctcaact cgactgacct tggtggaatg cagataatgc 2100

ctctttgttg aaataacttt gtgggaatgt acaattttct atatctctta gctttccgtg 2160ctctttgttg aaataacttt gtgggaatgt acaattttct atatctctta gctttccgtg 2160

gttctcaagg atatgtacag ttttcatttt cctccaaagt tgaattttgc tacatttttc 2220gttctcaagg atatgtacag ttttcatttt cctccaaagt tgaattttgc tacatttttc 2220

ttttaggtaa tgataagcat tttttaaaaa atcattttta ggtaatggta agcattttat 2280ttttaggtaa tgataagcat tttttaaaaa atcatttta ggtaatggta agcattttat 2280

gccaaatgtg gcataacaga gtttgaattg aagggcaaag ttttcttttc tttttttttt 2340gccaaatgtg gcataacaga gtttgaattg aagggcaaag ttttcttttc tttttttttt 2340

gggccccttg aatggtataa tacagtcctc tccggtggaa agaagagaag agaaggtgga 2400gggccccttg aatggtataa tacagtcctc tccggtggaa agaagagaag agaaggtgga 2400

cagccctgct cttagtaggt gctgcagatc caaggacatc ttttgtccag cttggattaa 2460cagccctgct cttagtaggt gctgcagatc caaggacatc ttttgtccag cttggattaa 2460

cttgacgtgt atccctgcct gacaaggttg aactgaaaga tctatatgtt aagctaacat 2520cttgacgtgt atccctgcct gacaaggttg aactgaaaga tctatatgtt aagctaacat 2520

gaaaattcat attctgcaac atagtagatt tttctaatgc atgaaataag tacccagcac 2580gaaaattcat attctgcaac atagtagatt tttctaatgc atgaaataag taccccagcac 2580

agtaaaaata ctctgactta tgtccctaaa tggttgtttt gatacaacta tatagaaaag 2640agtaaaaata ctctgactta tgtccctaaa tggttgtttt gatacaacta tatagaaaag 2640

agccacaaaa taaagataaa agttattgtg gccatctctg aaaaaaatat ataaaatatt 2700agccacaaaa taaagataaa agttattgtg gccatctctg aaaaaaatat ataaaatatt 2700

taagaataat tatatcttag gaaattattt ttacagtgtg tttgaggcta caaacataac 2760taagaataat tatatcttag gaaattattt ttacagtgtg tttgaggcta caaacataac 2760

tcccccatta atacaaatta aatgtgagag ctcattctca aaattttttt gatcaagcac 2820tcccccatta atacaaatta aatgtgagag ctcattctca aaattttttt gatcaagcac 2820

ttgtcatttt aaatcttgca ctaaaaaatg gtaacaagag ggaccaaact ttgcttccca 2880ttgtcatttt aaatcttgca ctaaaaaatg gtaacaagag ggaccaaact ttgcttccca 2880

caattgggat ggaatcacct ggatttttct gaatgtttta aagaattgct gagaggtaga 2940caattgggat ggaatcacct ggatttttct gaatgtttta aagaattgct gagaggtaga 2940

aacagccaag tatgaaatac tgatcttggg gctaccgccc aggatcaatc agaaagttat 3000aacagccaag tatgaaatac tgatcttggg gctaccgccc aggatcaatc agaaagttat 3000

atgcaaaaat tcggggtccc aacaaggaga gaacaatatg tcaaccattt gcatggggtc 3060atgcaaaaat tcggggtccc aacaaggaga gaacaatatg tcaaccattt gcatggggtc 3060

gatggatgag aaacatgagc gtagcaagag ttacattttg cagaaaaata gcggaggcac 3120gatggatgag aaacatgagc gtagcaagag ttacattttg cagaaaaata gcggaggcac 3120

acccagagta gaacagcagc cagcaagctg ccatcctgat caatttgtga tgcaaggtta 3180accccagagta gaacagcagc cagcaagctg ccatcctgat caatttgtga tgcaaggtta 3180

gggagtatga gcaccgcatg ggtccatgct agggagatgt gcaccaggct tagctaagaa 3240gggagtatga gcaccgcatg ggtccatgct agggagatgt gcaccaggct tagctaagaa 3240

acttaaagca gtattttacc aactcttgtc ttagggagca taaagtttgg atgtcccttt 3300acttaaagca gtattttacc aactcttgtc ttaggggagca taaagtttgg atgtcccttt 3300

atttcagcag tgtgaaggta aatggaaggg tgagggtttg acttggtact gattggtcaa 3360atttcagcag tgtgaaggta aatggaaggg tgagggtttg acttggtact gattggtcaa 3360

gaatcctgct ggataaagaa aaggaatttt agaagtgacc agagggacag tccagccaaa 3420gaatcctgct ggataaagaa aaggaatttt agaagtgacc agagggacaag tccagccaaa 3420

ctattatttg ataaggaacc caaggccctg ggaggcaaca ggctagccct tagtttcatg 3480ctattatttg ataaggaacc caaggccctg ggaggcaaca ggctagccct tagtttcatg 3480

gctagctgag agcagattag gagccaacgt tgtttgcaca tgtcccatca cacctgagat 3540gctagctgag agcagattag gagccaacgt tgtttgcaca tgtcccatca cacctgagat 3540

gtcagacatg ggaagttcgt gctattattc agttgcctct ctggaccatg gcaagatttc 3600gtcagacatg ggaagttcgt gctattattc agttgcctct ctggaccatg gcaagatttc 3600

ctcattcatc aaacagactc caggccctga caaagcagtt ggatttggca tgtgtgatga 3660ctcattcatc aaacagactc caggccctga caaagcagtt ggatttggca tgtgtgatga 3660

aaacaattag ccatccatgt acaacattat gcttactgca tcccatggaa acttaattcc 3720aaacaattag ccatccatgt acaacattat gcttactgca tcccatggaa acttaattcc 3720

ctcctagcac atatttgcat actgaaaggt ccgaaaaggg catccacggc agcttgagcc 3780ctcctagcac atatttgcat actgaaaggt ccgaaaaggg catccacggc agcttgagcc 3780

ccttagcacc atgtaaggag cacagcatcc aaacggcttc ttgagaacca ttggggaatg 3840ccttagcacc atgtaaggag cacagcatcc aaacggcttc ttgagaacca ttggggaatg 3840

tctttctttt tcacatccaa ttgtttagtg tctatttatt cttgggtggc cagttttgaa 3900tctttctttt tcacatccaa ttgtttagtg tctatttatt cttgggtggc cagttttgaa 3900

acctaaaaag ggacaataaa gcaaaaagta tcagtaagga taggtggctg agacccactg 3960acctaaaaag ggacaataaa gcaaaaagta tcagtaagga taggtggctg agaccactg 3960

ccctgagcta ctagtgtggc tgtgcctgtg ggtctctaga accatctgca ttggacgtga 4020ccctgagcta ctagtgtggc tgtgcctgtg ggtctctaga accatctgca ttggacgtga 4020

agccacagca ggtggctgga ctgctggcct gttcctaatg agctacgctg ggctttgagg 4080agccacagca ggtggctgga ctgctggcct gttcctaatg agctacgctg ggctttgagg 4080

tagaggttgg ggtttatgaa ccccaactct ggcttaaaga tcttgctgtg gctctgttat 4140tagaggttgg ggtttatgaa ccccaactct ggcttaaaga tcttgctgtg gctctgttat 4140

gttctgaggc cttgggatta gcctcttcct cattatggag ctgattttct agtctgtgga 4200gttctgaggc cttgggatta gcctcttcct catttatggag ctgattttct agtctgtgga 4200

tcagctatgc ctttggacac ttctcttttc cattgtgcct tttgaatgtt gtcttctcac 4260tcagctatgc ctttggacac ttctcttttc cattgtgcct tttgaatgtt gtcttctcac 4260

tcagcatcag cacttcgatc taaatgcaga ctaggtagtt gggaggagga accaaagtga 4320tcagcatcag cacttcgatc taaatgcaga ctaggtagtt gggaggagga accaaagtga 4320

accatccttc atttattcag tcattcgttc atctgtcaaa cacgtatttg gacatcaagg 4380accatccttc atttattcag tcattcgttc atctgtcaaa cacgtatttg gacatcaagg 4380

ttgcagagat gaacaatgca tggatttcat ctttgaggag ttcaaaacct agtggagaga 4440ttgcagagat gaacaatgca tggatttcat ctttgaggag ttcaaaacct agtggagaga 4440

acacatggta caatcgtaac acatgaagga caagtaagtg ctgcagtaaa ggtactaata 4500acacatggta caatcgtaac acatgaagga caagtaagtg ctgcagtaaa ggtactaata 4500

acatgttcct tggaacagag gaagaaaaac cacgaaacca tggaaattag ggaagccttt 4560acatgttcct tggaacagag gaagaaaaac cacgaaacca tggaaattag ggaagccttt 4560

acagagggtg tgacaaaact caatttgaca ttttcaagct atgtacaatg atgtgcacct 4620acagagggtg tgacaaaact caatttgaca ttttcaagct atgtacaatg atgtgcacct 4620

tgcagatgct caataaagta attactgaca a 4651tgcagatgct caataaagta attackgaca a 4651

<210> 2<210> 2

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 2<400> 2

aagaacuugu cacauucgcc a 21aagaacuugu cacauucgcc a 21

<210> 3<210> 3

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

gcgaauguga caaguucuuc u 21gcgaauguga caaguucuuc u 21

<210> 4<210> 4

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

agaagaacuu gucacauucg c 21agaagaacuu gucacauucg c 21

<210> 5<210> 5

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 5<400> 5

gaaugugaca aguucuucua c 21gaaugugaca aguucuucua c 21

<210> 6<210> 6

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 6<400> 6

aagguaaucu guauucaagg c 21aagguaaucu guauucaagg c 21

<210> 7<210> 7

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 7<400> 7

cuugaauaca gauuaccuug a 21cuugaauaca gauuaccuug a 21

<210> 8<210> 8

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 8<400> 8

ucagaaucaa gguaaucugu a 21ucagaaucaa gguaaucugu a 21

<210> 9<210> 9

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 9<400> 9

cagauuaccu ugauucugau u 21cagauuaccu ugauucugau u 21

<210> 10<210> 10

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 10<400> 10

aaucagaauc aagguaaucu g 21aaucagaauc aagguaaucu g 21

<210> 11<210> 11

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 11<400> 11

gauuaccuug auucugauua c 21gauuaccuug auucugauua c 21

<210> 12<210> 12

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 12<400> 12

uugguaauca gaaucaaggu a 21uuggaauca gaaucaaggu a 21

<210> 13<210> 13

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 13<400> 13

ccuugauucu gauuaccaaa g 21ccuugauucu gauuaccaaa g 21

<210> 14<210> 14

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 14<400> 14

uuugguaauc agaaucaagg u 21uuuguaauc agaaucaagg u 21

<210> 15<210> 15

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 15<400> 15

cuugauucug auuaccaaag a 21cuugauucug auuaccaaag a 21

<210> 16<210> 16

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 16<400> 16

auuugugaga guaaaugugg c 21auuugugaga guaaaugugg c 21

<210> 17<210> 17

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 17<400> 17

cacauuuacu cucacaaauu c 21cacauuuacu cucacaaauu c 21

<210> 18<210> 18

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 18<400> 18

uuucugaaga ucuuuuacca u 21uuucugaaga ucuuuuacca u 21

<210> 19<210> 19

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 19<400> 19

gguaaaagau cuucagaaac u 21gguaaaagau cuucagaaac u 21

<210> 20<210> 20

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 20<400> 20

uaaauggaag caguuucuga a 21uaaauggaag caguuucuga a 21

<210> 21<210> 21

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 21<400> 21

cagaaacugc uuccauuuaa c 21cagaaacugc uuccauuuaa c 21

<210> 22<210> 22

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 22<400> 22

auuuuuuuca uuuucucugu g 21auuuuuuuca uuuucucugu g 21

<210> 23<210> 23

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 23<400> 23

cagagaaaau gaaaaaaauc c 21cagagaaaau gaaaaaaauc c 21

<210> 24<210> 24

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 24<400> 24

uucuucaucc uggauuuggu u 21uucuucaucc uggauuuggu u 21

<210> 25<210> 25

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 25<400> 25

ccaaauccag gaugaagaac g 21ccaaauccag gaugaagaac g 21

<210> 26<210> 26

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 26<400> 26

uuuugagauu guaccauucg u 21uuuugagauu guaccauucg u 21

<210> 27<210> 27

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 27<400> 27

gaaugguaca aucucaaaag a 21gaaugguaca aucucaaaag a 21

<210> 28<210> 28

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 28<400> 28

acucuuuuga gauuguacca u 21acucuuuuga gauuguacca u 21

<210> 29<210> 29

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 29<400> 29

gguacaaucu caaaagaguu c 21gguacaaucu caaaagaguu c 21

<210> 30<210> 30

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 30<400> 30

aacucuuuug agauuguacc a 21aacucuuuug agauuguacc a 21

<210> 31<210> 31

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 31<400> 31

guacaaucuc aaaagaguuc u 21guacaaucuc aaaagaguuc u 21

<210> 32<210> 32

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 32<400> 32

aguuuuccca aaaagcuacu a 21aguuuuccca aaaagcuacu a 21

<210> 33<210> 33

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 33<400> 33

guagcuuuuu gggaaaacuc a 21guagcuuuuu gggaaaacuc a 21

<210> 34<210> 34

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 34<400> 34

augaguuuuc ccaaaaagcu a 21augaguuuuc ccaaaaagcu a 21

<210> 35<210> 35

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 35<400> 35

gcuuuuuggg aaaacucaug g 21gcuuuuuggg aaaacucaug g 21

<210> 36<210> 36

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 36<400> 36

ugaaaaagcu ugaugaaugg g 21ugaaaaagcu ugaugaaugg g 21

<210> 37<210> 37

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 37<400> 37

cauucaucaa gcuuuuucaa u 21cauucaucaa gcuuuuucaa u 21

<210> 38<210> 38

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 38<400> 38

aauuaauuga aaaagcuuga u 21aauuaauuga aaaagcuuga u 21

<210> 39<210> 39

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 39<400> 39

caagcuuuuu caauuaauuu a 21caagcuuuuu caauuaauuu a 21

<210> 40<210> 40

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 40<400> 40

auaaauuaau ugaaaaagcu u 21auaaauuaau ugaaaaagcu u 21

<210> 41<210> 41

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 41<400> 41

gcuuuuucaa uuaauuuauu a 21gcuuuuucaa uuaauuuauu a 21

<210> 42<210> 42

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 42<400> 42

aauaaauuaa uugaaaaagc u 21aauaaauuaa uugaaaaagc u 21

<210> 43<210> 43

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 43<400> 43

cuuuuucaau uaauuuauua c 21cuuuuucaau uaauuuauua c 21

<210> 44<210> 44

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 44<400> 44

uguucuucag gauugcuacc a 21uguucuucag gauugcuacc a 21

<210> 45<210> 45

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 45<400> 45

guagcaaucc ugaagaacau u 21guagcaaucc ugaagaacau u 21

<210> 46<210> 46

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 46<400> 46

aauagacaau guucuucagg a 21aauagacaau guucuucagg a 21

<210> 47<210> 47

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 47<400> 47

cugaagaaca uugucuauuu c 21cugaagaaca uugucuauuu c 21

<210> 48<210> 48

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 48<400> 48

uuucuaugcc auuaaucacc u 21uuucuaugcc auuaaucacc u 21

<210> 49<210> 49

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 49<400> 49

gugauuaaug gcauagaaag u 21gugauuaaug gcauagaaag u 21

<210> 50<210> 50

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 50<400> 50

acuuucuaug ccauuaauca c 21acuuucuaug ccauuaauca c 21

<210> 51<210> 51

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 51<400> 51

gauuaauggc auagaaaguu g 21gauuaauggc auagaaaguu g 21

<210> 52<210> 52

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 52<400> 52

accaaaagca gugucaaaga g 21accaaaagca gugucaaaga g 21

<210> 53<210> 53

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 53<400> 53

cuuugacacu gcuuuuggua c 21cuuugacacu gcuuuugga c 21

<210> 54<210> 54

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 54<400> 54

aaaaaccacc ugaaauaggc c 21aaaaaccacc ugaaauaggc c 21

<210> 55<210> 55

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 55<400> 55

ccuauuucag gugguuuuua g 21ccuauuucag gugguuuuua g 21

<210> 56<210> 56

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 56<400> 56

uaaaaaccac cugaaauagg c 21uaaaaaccac cugaaauagg c 21

<210> 57<210> 57

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 57<400> 57

cuauuucagg ugguuuuuag u 21cuauuucagg ugguuuuuag u 21

<210> 58<210> 58

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 58<400> 58

ucaaaaguaa ccuuguagcc a 21ucaaaaguaa ccuuguagcc a 21

<210> 59<210> 59

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 59<400> 59

gcuacaaggu uacuuuugac a 21gcuacaaggu uacuuuugac a 21

<210> 60<210> 60

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 60<400> 60

auugucaaaa guaaccuugu a 21auugucaaaa guaaccuugu a 21

<210> 61<210> 61

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 61<400> 61

caagguuacu uuugacaauu c 21caagguuacuuuugacaauu c 21

<210> 62<210> 62

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 62<400> 62

agaauuguca aaaguaaccu u 21agaauuguca aaaguaaccu u 21

<210> 63<210> 63

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 63<400> 63

gguuacuuuu gacaauucug g 21gguuacuuuu gacaauucug g 21

<210> 64<210> 64

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 64<400> 64

uuauaacucc ccagaauugu c 21uuauaacucc ccagaauugu c 21

<210> 65<210> 65

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 65<400> 65

caauucuggg gaguuauaaa c 21caauucuggg gaguuauaaa c 21

<210> 66<210> 66

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 66<400> 66

uuuuugaguu uauaacuccc c 21uuuuugaguu uauaacuccc c 21

<210> 67<210> 67

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 67<400> 67

ggaguuauaa acucaaaaaa c 21ggaguuauaa acucaaaaaa c 21

<210> 68<210> 68

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 68<400> 68

uuuuuugagu uuauaacucc c 21uuuuuugagu uuauaacuccc c 21

<210> 69<210> 69

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 69<400> 69

gaguuauaaa cucaaaaaac u 21gaguuauaaa cucaaaaaac u 21

<210> 70<210> 70

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 70<400> 70

aguuuuuuga guuuauaacu c 21aguuuuuuga guuuauaacu c 21

<210> 71<210> 71

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 71<400> 71

guuauaaacu caaaaaacua a 21guuauaaacu caaaaaacua a 21

<210> 72<210> 72

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 72<400> 72

auacuauuag uuuuuugagu u 21auacuauuag uuuuuugagu u 21

<210> 73<210> 73

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 73<400> 73

cucaaaaaac uaauaguauc c 21cucaaaaaac uaauaguauc c 21

<210> 74<210> 74

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 74<400> 74

uaaagacaaa cuauuccagc u 21uaaagacaaa cuauuccagc u 21

<210> 75<210> 75

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 75<400> 75

cuggaauagu uugucuuuac a 21cuggaauagu uugucuuuac a 21

<210> 76<210> 76

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 76<400> 76

uguaaagaca aacuauucca g 21uguaaagaca aacuauucca g 21

<210> 77<210> 77

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 77<400> 77

ggaauaguuu gucuuuacaa u 21ggaauaguuu gucuuuacaa u 21

<210> 78<210> 78

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 78<400> 78

uuguaaagac aaacuauucc a 21uuguaaagac aaacuauucc a 21

<210> 79<210> 79

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 79<400> 79

gaauaguuug ucuuuacaau g 21gaauaguuug ucuuuacaau g 21

<210> 80<210> 80

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 80<400> 80

acagaaaccc auuguaaaga c 21acagaaaccc auguaaaga c 21

<210> 81<210> 81

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 81<400> 81

cuuuacaaug gguuucuguu c 21cuuuacaaug gguuucuguu c 21

<210> 82<210> 82

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 82<400> 82

aaauauaaug auaacugaca g 21aaauauaaug auaacugaca g 21

<210> 83<210> 83

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 83<400> 83

gucaguuauc auuauauuuu g 21gucaguuauc auuauauuuuu g 21

<210> 84<210> 84

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 84<400> 84

uucuuuugca aaaacaagca g 21uucuuuugca aaaacaagca g 21

<210> 85<210> 85

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 85<400> 85

gcuuguuuuu gcaaaagaag a 21gcuuguuuuu gcaaaagaag a 21

<210> 86<210> 86

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 86<400> 86

uuacuacacc uaaucucacc c 21uuacuacacc uaaucucacc c 21

<210> 87<210> 87

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 87<400> 87

gugagauuag guguaguaau c 21gugagauuag guguaguaau c 21

<210> 88<210> 88

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 88<400> 88

uauaacugga gguaaacagc a 21uauaacugga gguaaacagc a 21

<210> 89<210> 89

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 89<400> 89

cuguuuaccu ccaguuauau g 21cuguuuaccu ccaguuauau g 21

<210> 90<210> 90

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 90<400> 90

uaacugaagu uauuaguggc u 21uaacugaagu uauuaguggc u 21

<210> 91<210> 91

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 91<400> 91

ccacuaauaa cuucaguuau g 21ccacuaauaa cuucaguuau g 21

<210> 92<210> 92

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 92<400> 92

auaacugaag uuauuagugg c 21auaacugaag uuauuagugg c 21

<210> 93<210> 93

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 93<400> 93

cacuaauaac uucaguuaug c 21cacuaauaac uucaguuaug c 21

<210> 94<210> 94

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 94<400> 94

aaauaccagu gcauuucagg u 21aaauaccagu gcauuucagg u 21

<210> 95<210> 95

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 95<400> 95

cugaaaugca cugguauuua u 21cugaaaugca cuggauuuua u 21

<210> 96<210> 96

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 96<400> 96

auaaauacca gugcauuuca g 21auaaauacca gugcauuuca g 21

<210> 97<210> 97

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 97<400> 97

gaaaugcacu gguauuuauu u 21gaaaugcacu gguauuuauu u 21

<210> 98<210> 98

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 98<400> 98

uaucagaaau aaauaccagu g 21uaucagaaau aaauaccagu g 21

<210> 99<210> 99

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 99<400> 99

cugguauuua uuucugauaa u 21cuggauuuua uuucugauaa u 21

<210> 100<210> 100

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 100<400> 100

auuaucagaa auaaauacca g 21auuaucagaa auaaauacca g 21

<210> 101<210> 101

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 101<400> 101

gguauuuauu ucugauaauu a 21gguauuuauu ucugauaauu a 21

<210> 102<210> 102

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 102<400> 102

aauuaucaga aauaaauacc a 21aauuaucaga aauaaauacc a 21

<210> 103<210> 103

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 103<400> 103

guauuuauuu cugauaauua a 21guauuuauuu cugauaauua a 21

<210> 104<210> 104

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 104<400> 104

uguaauuuuu aauuaucaga a 21uguaauuuuu aauuaucaga a 21

<210> 105<210> 105

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 105<400> 105

cugauaauua aaaauuacag g 21cugauaauua aaaauuacag g 21

<210> 106<210> 106

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 106<400> 106

uucuuuuucu aguucuuccc u 21uucuuuuucu aguucuuccc u 21

<210> 107<210> 107

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 107<400> 107

ggaagaacua gaaaaagaac a 21ggaagaacua gaaaaagaac a 21

<210> 108<210> 108

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 108<400> 108

aaaguuguuc uuuuucuagu u 21aaaguuguuc uuuuucuagu u 21

<210> 109<210> 109

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 109<400> 109

cuagaaaaag aacaacuuua g 21cuagaaaaag aacaacuuua g 21

<210> 110<210> 110

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 110<400> 110

ucuaaaguug uucuuuuucu a 21ucuaaaguug uucuuuuuucu a 21

<210> 111<210> 111

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 111<400> 111

gaaaaagaac aacuuuagac c 21gaaaaagaac aacuuuagac c 21

<210> 112<210> 112

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 112<400> 112

aucuguuuug ccuuaaauca c 21aucuguuuug ccuuaaauca c 21

<210> 113<210> 113

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 113<400> 113

gauuuaaggc aaaacagauu a 21gauuuaaggc aaaacagauu a 21

<210> 114<210> 114

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 114<400> 114

uuuuuuaauc uguuuugccu u 21uuuuuuaauc uguuuugccu u 21

<210> 115<210> 115

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 115<400> 115

ggcaaaacag auuaaaaaaa a 21ggcaaaacag auuaaaaaaa a 21

<210> 116<210> 116

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 116<400> 116

uuuuuuuaau cuguuuugcc u 21uuuuuuuaau cuguuuugcc u 21

<210> 117<210> 117

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 117<400> 117

gcaaaacaga uuaaaaaaaa a 21gcaaaacaga uuaaaaaaaa a 21

<210> 118<210> 118

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 118<400> 118

uuuuuuuuaa ucuguuuugc c 21uuuuuuuuaa ucuguuuugc c 21

<210> 119<210> 119

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 119<400> 119

caaaacagau uaaaaaaaaa a 21caaaacagau uaaaaaaaaa a 21

<210> 120<210> 120

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 120<400> 120

agauuuuuuu uuuaaucugu u 21agauuuuuuu uuuaaucugu u 21

<210> 121<210> 121

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 121<400> 121

cagauuaaaa aaaaaaucug c 21cagauuaaaaaaaaaaucug c 21

<210> 122<210> 122

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 122<400> 122

agcaaaugcc aagaaauugg c 21agcaaaugcc aagaaauugg c 21

<210> 123<210> 123

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 123<400> 123

caauuucuug gcauuugcuu c 21caauuucuug gcauuugcuu c 21

<210> 124<210> 124

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 124<400> 124

agaaagagaa gcaaaugcca a 21agaaagagaa gcaaaugcca a 21

<210> 125<210> 125

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 125<400> 125

ggcauuugcu ucucuuucuc c 21ggcauuugcu ucucuuucuc c 21

<210> 126<210> 126

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 126<400> 126

acaaagaggc auuaucugca u 21acaaagaggc auuaucugca u 21

<210> 127<210> 127

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 127<400> 127

gcagauaaug ccucuuuguu g 21gcagauaaug ccucuuuguu g 21

<210> 128<210> 128

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 128<400> 128

aacaaagagg cauuaucugc a 21aacaaagagg cauuaucugc a 21

<210> 129<210> 129

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 129<400> 129

cagauaaugc cucuuuguug a 21cagauaaugc cucuuuguug a 21

<210> 130<210> 130

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 130<400> 130

ucaacaaaga ggcauuaucu g 21ucaacaaaga ggcauuaucu g 21

<210> 131<210> 131

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 131<400> 131

gauaaugccu cuuuguugaa a 21gauaaugccu cuuuguugaa a 21

<210> 132<210> 132

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 132<400> 132

aguuauuuca acaaagaggc a 21aguuauuuca acaaagaggc a 21

<210> 133<210> 133

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 133<400> 133

ccucuuuguu gaaauaacuu u 21ccucuuuguu gaaauaacuu u 21

<210> 134<210> 134

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 134<400> 134

aaguuauuuc aacaaagagg c 21aaguuauuuc aacaaagagg c 21

<210> 135<210> 135

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 135<400> 135

cucuuuguug aaauaacuuu g 21cucuuuguug aaauaacuuu g 21

<210> 136<210> 136

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 136<400> 136

auagaaaauu guacauuccc a 21auagaaaauu guacauuccc a 21

<210> 137<210> 137

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 137<400> 137

ggaauguaca auuuucuaua u 21ggaauguaca auuuucuaua u 21

<210> 138<210> 138

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 138<400> 138

uauagaaaau uguacauucc c 21uauagaaaau uguacauucc c 21

<210> 139<210> 139

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 139<400> 139

gaauguacaa uuuucuauau c 21gaauguacaa uuuucuauau c 21

<210> 140<210> 140

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 140<400> 140

uaagagauau agaaaauugu a 21uaagagauau agaaaauugu a 21

<210> 141<210> 141

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 141<400> 141

caauuuucua uaucucuuag c 21caauuuucua uaucucuuag c 21

<210> 142<210> 142

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 142<400> 142

uguacauauc cuugagaacc a 21uguacauauc cuugagaacc a 21

<210> 143<210> 143

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 143<400> 143

guucucaagg auauguacag u 21guucucaagg auauguacag u 21

<210> 144<210> 144

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 144<400> 144

aaaacuguac auauccuuga g 21aaaacuguac auauccuuga g 21

<210> 145<210> 145

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 145<400> 145

caaggauaug uacaguuuuc a 21caaggauaug uacaguuuuc a 21

<210> 146<210> 146

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 146<400> 146

augaaaacug uacauauccu u 21augaaaacug uacauauccu u 21

<210> 147<210> 147

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 147<400> 147

ggauauguac aguuuucauu u 21ggauauguac aguuuucauu u 21

<210> 148<210> 148

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 148<400> 148

aaugaaaacu guacauaucc u 21aaugaaaacu guacauaucc u 21

<210> 149<210> 149

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 149<400> 149

gauauguaca guuuucauuu u 21gauauguaca guuuucauuu u 21

<210> 150<210> 150

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 150<400> 150

aggaaaauga aaacuguaca u 21aggaaaauga aaacuguaca u 21

<210> 151<210> 151

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 151<400> 151

guacaguuuu cauuuuccuc c 21guacaguuuu cauuuuccuc c 21

<210> 152<210> 152

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 152<400> 152

ucaacuuugg aggaaaauga a 21ucaacuuugg aggaaaauga a 21

<210> 153<210> 153

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 153<400> 153

cauuuuccuc caaaguugaa u 21cauuuuccuc caaaguugaa u 21

<210> 154<210> 154

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 154<400> 154

uagcaaaauu caacuuugga g 21uagcaaaauu caacuuugga g 21

<210> 155<210> 155

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 155<400> 155

ccaaaguuga auuuugcuac a 21ccaaaguuga auuuugcuac a 21

<210> 156<210> 156

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 156<400> 156

aaauguagca aaauucaacu u 21aaauguagca aaauucaacu u 21

<210> 157<210> 157

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 157<400> 157

guugaauuuu gcuacauuuu u 21guugaauuuu gcuacauuuu u 21

<210> 158<210> 158

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 158<400> 158

accuaaaaga aaaauguagc a 21accuaaaaga aaaauguagc a 21

<210> 159<210> 159

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 159<400> 159

cuacauuuuu cuuuuaggua a 21cuacauuuuu cuuuuaggua a 21

<210> 160<210> 160

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 160<400> 160

auuaccuaaa agaaaaaugu a 21auuaccuaaa agaaaaaugu a 21

<210> 161<210> 161

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 161<400> 161

cauuuuucuu uuagguaaug a 21cauuuuucuuuuagguaaug a 21

<210> 162<210> 162

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 162<400> 162

aaaaaugcuu aucauuaccu a 21aaaaaugcuu aucauuaccu a 21

<210> 163<210> 163

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 163<400> 163

gguaaugaua agcauuuuuu a 21gguaaugaua agcauuuuuu a 21

<210> 164<210> 164

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 164<400> 164

aaaaaaugcu uaucauuacc u 21aaaaaaugcu uaucauuacc u 21

<210> 165<210> 165

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 165<400> 165

guaaugauaa gcauuuuuua a 21guaaugauaa gcauuuuuua a 21

<210> 166<210> 166

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 166<400> 166

uuuuuaaaaa augcuuauca u 21uuuuuaaaaa augcuuauca u 21

<210> 167<210> 167

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 167<400> 167

gauaagcauu uuuuaaaaaa u 21gauaagcauu uuuuaaaaaa u 21

<210> 168<210> 168

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 168<400> 168

augauuuuuu aaaaaaugcu u 21augauuuuuu aaaaaaugcu u 21

<210> 169<210> 169

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 169<400> 169

gcauuuuuua aaaaaucauu u 21gcauuuuuua aaaaaucauu u 21

<210> 170<210> 170

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 170<400> 170

aaugauuuuu uaaaaaaugc u 21aaugauuuuu uaaaaaaugc u 21

<210> 171<210> 171

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 171<400> 171

cauuuuuuaa aaaaucauuu u 21cauuuuuuuaa aaaaucauuu u 21

<210> 172<210> 172

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 172<400> 172

uuaccauuac cuaaaaauga u 21uuaccauuac cuaaaaauga u 21

<210> 173<210> 173

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 173<400> 173

cauuuuuagg uaaugguaag c 21cauuuuuagg uaaugguaag c 21

<210> 174<210> 174

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 174<400> 174

uaaaaugcuu accauuaccu a 21uaaaaugcuu accuuaccu a 21

<210> 175<210> 175

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 175<400> 175

gguaauggua agcauuuuau g 21gguaauggua agcauuuuau g 21

<210> 176<210> 176

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 176<400> 176

auaaaaugcu uaccauuacc u 21auaaaaugcu uaccauuacc u 21

<210> 177<210> 177

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 177<400> 177

guaaugguaa gcauuuuaug c 21guaauguaa gcauuuuaug c 21

<210> 178<210> 178

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 178<400> 178

ucuguuaugc cacauuuggc a 21ucuguuaugc cacauuuggc a 21

<210> 179<210> 179

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 179<400> 179

ccaaaugugg cauaacagag u 21ccaaaugugg cauaacagag u 21

<210> 180<210> 180

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 180<400> 180

aauucaaacu cuguuaugcc a 21aauucaaacu cuguuaugcc a 21

<210> 181<210> 181

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 181<400> 181

gcauaacaga guuugaauug a 21gcauaacaga guuugaauug a 21

<210> 182<210> 182

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 182<400> 182

aaacuuugcc cuucaauuca a 21aaacuuugcc cuucaauuca a 21

<210> 183<210> 183

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 183<400> 183

gaauugaagg gcaaaguuuu c 21gaauugaagg gcaaaguuuu c 21

<210> 184<210> 184

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 184<400> 184

aaagaaaaga aaacuuugcc c 21aaagaaaaga aaacuuugcc c 21

<210> 185<210> 185

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 185<400> 185

gcaaaguuuu cuuuucuuuu u 21gcaaaguuuu cuuuuuuuu u 21

<210> 186<210> 186

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 186<400> 186

aaaagaaaag aaaacuuugc c 21aaaagaaaag aaaacuuugc c 21

<210> 187<210> 187

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 187<400> 187

caaaguuuuc uuuucuuuuu u 21caaaguuuuc uuuucuuuuu u 21

<210> 188<210> 188

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 188<400> 188

aaaaaaaaga aaagaaaacu u 21aaaaaaaaga aaagaaaacu u 21

<210> 189<210> 189

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 189<400> 189

guuuucuuuu cuuuuuuuuu u 21guuuucuuuuuuuuuuuuuuuuu 21

<210> 190<210> 190

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 190<400> 190

uguauuauac cauucaaggg g 21uguauuauac cauucaaggg g 21

<210> 191<210> 191

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 191<400> 191

ccuugaaugg uauaauacag u 21ccuugaaugg uauaauacag u 21

<210> 192<210> 192

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 192<400> 192

auagaucuuu caguucaacc u 21auagaucuuu caguucaacc u 21

<210> 193<210> 193

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 193<400> 193

guugaacuga aagaucuaua u 21guugaacuga aagaucuaua u 21

<210> 194<210> 194

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 194<400> 194

uaacauauag aucuuucagu u 21uaacauauag aucuuucagu u 21

<210> 195<210> 195

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 195<400> 195

cugaaagauc uauauguuaa g 21cugaaagauc uauauguuaa g 21

<210> 196<210> 196

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 196<400> 196

uuagcuuaac auauagaucu u 21uuagcuuaac auauagaucu u 21

<210> 197<210> 197

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 197<400> 197

gaucuauaug uuaagcuaac a 21gaucuauaug uuaagcuaac a 21

<210> 198<210> 198

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 198<400> 198

auuuucaugu uagcuuaaca u 21auuuucaugu uagcuuaaca u 21

<210> 199<210> 199

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 199<400> 199

guuaagcuaa caugaaaauu c 21guuaagcuaa caugaaaauu c 21

<210> 200<210> 200

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 200<400> 200

uaugaauuuu cauguuagcu u 21uaugaauuuu cauuguuagcu u 21

<210> 201<210> 201

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 201<400> 201

gcuaacauga aaauucauau u 21gcuaacauga aaauucauau u 21

<210> 202<210> 202

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 202<400> 202

auaugaauuu ucauguuagc u 21auaugaauuu ucauguuagc u 21

<210> 203<210> 203

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 203<400> 203

cuaacaugaa aauucauauu c 21cuaacaugaa aauucauauu c 21

<210> 204<210> 204

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 204<400> 204

uacuauguug cagaauauga a 21uacuauguug cagaauauga a 21

<210> 205<210> 205

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 205<400> 205

cauauucugc aacauaguag a 21cauauucugc aacauaguag a 21

<210> 206<210> 206

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 206<400> 206

agaaaaaucu acuauguugc a 21agaaaaaucu acuauguugc a 21

<210> 207<210> 207

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 207<400> 207

caacauagua gauuuuucua a 21caacauagua gauuuuucua a 21

<210> 208<210> 208

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 208<400> 208

auuagaaaaa ucuacuaugu u 21auuagaaaaa ucuacuaugu u 21

<210> 209<210> 209

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 209<400> 209

cauaguagau uuuucuaaug c 21cauaguagau uuuucuaaug c 21

<210> 210<210> 210

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 210<400> 210

augcauuaga aaaaucuacu a 21augcauuaga aaaaucuacu a 21

<210> 211<210> 211

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 211<400> 211

guagauuuuu cuaaugcaug a 21guagauuuuu cuaaugcaug a 21

<210> 212<210> 212

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 212<400> 212

uacuuauuuc augcauuaga a 21uacuuauuuc augcauuaga a 21

<210> 213<210> 213

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 213<400> 213

cuaaugcaug aaauaaguac c 21cuaaugcaug aaauaaguac c 21

<210> 214<210> 214

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 214<400> 214

aaccauuuag ggacauaagu c 21aaccauuuag ggacauaagu c 21

<210> 215<210> 215

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 215<400> 215

cuuauguccc uaaaugguug u 21cuuauguccc uaaauguug u 21

<210> 216<210> 216

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 216<400> 216

ucaaaacaac cauuuaggga c 21ucaaaacaac cauuuaggga c 21

<210> 217<210> 217

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 217<400> 217

cccuaaaugg uuguuuugau a 21cccuaaaugg uuguuuugau a 21

<210> 218<210> 218

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 218<400> 218

aucaaaacaa ccauuuaggg a 21aucaaaacaa ccauuuaggg a 21

<210> 219<210> 219

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 219<400> 219

ccuaaauggu uguuuugaua c 21ccuaaauggu uguuuugaua c 21

<210> 220<210> 220

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 220<400> 220

uaucaaaaca accauuuagg g 21uaucaaaaca accauuuagg g 21

<210> 221<210> 221

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 221<400> 221

cuaaaugguu guuuugauac a 21cuaaaugguu guuuugauac a 21

<210> 222<210> 222

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 222<400> 222

uaguuguauc aaaacaacca u 21uaguuguauc aaaacaacca u 21

<210> 223<210> 223

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 223<400> 223

gguuguuuug auacaacuau a 21gguuguuuug auacaacuau a 21

<210> 224<210> 224

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 224<400> 224

auaguuguau caaaacaacc a 21auaguuguau caaaacaacc a 21

<210> 225<210> 225

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 225<400> 225

guuguuuuga uacaacuaua u 21guuguuuuga uacaacuaua u 21

<210> 226<210> 226

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 226<400> 226

uauauaguug uaucaaaaca a 21uauauaguug uaucaaaaca a 21

<210> 227<210> 227

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 227<400> 227

guuuugauac aacuauauag a 21guuuugauac aacuauauag a 21

<210> 228<210> 228

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 228<400> 228

uuuucuauau aguuguauca a 21uuuucuauau aguuguauca a 21

<210> 229<210> 229

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 229<400> 229

gauacaacua uauagaaaag a 21gauacaacua uauagaaaag a 21

<210> 230<210> 230

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 230<400> 230

uuauuuugug gcucuuuucu a 21uuauuuugug gcucuuuucu a 21

<210> 231<210> 231

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 231<400> 231

gaaaagagcc acaaaauaaa g 21gaaaagagcc acaaaauaaa g 21

<210> 232<210> 232

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 232<400> 232

uuuuaucuuu auuuuguggc u 21uuuuaucuuu auuuuguggc u 21

<210> 233<210> 233

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 233<400> 233

ccacaaaaua aagauaaaag u 21ccacaaaaua aagauaaaag u 21

<210> 234<210> 234

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 234<400> 234

aacuuuuauc uuuauuuugu g 21aacuuuuauc uuuauuuugu g 21

<210> 235<210> 235

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 235<400> 235

caaaauaaag auaaaaguua u 21caaaauaaag auaaaaguua u 21

<210> 236<210> 236

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 236<400> 236

uuauauauuu uuuucagaga u 21uuauauauuu uuuucagaga u 21

<210> 237<210> 237

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 237<400> 237

cucugaaaaa aauauauaaa a 21cucugaaaaa aauauauaaa a 21

<210> 238<210> 238

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 238<400> 238

uuuuauauau uuuuuucaga g 21uuuuauauau uuuuuucaga g 21

<210> 239<210> 239

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 239<400> 239

cugaaaaaaa uauauaaaau a 21cugaaaaaaa uauauaaaau a 21

<210> 240<210> 240

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 240<400> 240

uauuuuauau auuuuuuuca g 21uauuuuauauauuuuuuuca g 21

<210> 241<210> 241

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 241<400> 241

gaaaaaaaua uauaaaauau u 21gaaaaaaaua uauaaaauau u 21

<210> 242<210> 242

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 242<400> 242

uguuuguagc cucaaacaca c 21uguuuguagc cucaaacaca c 21

<210> 243<210> 243

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 243<400> 243

guguuugagg cuacaaacau a 21guguuugagg cuacaaacau a 21

<210> 244<210> 244

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 244<400> 244

uauuaauggg ggaguuaugu u 21uauuaauggg ggaguuaugu u 21

<210> 245<210> 245

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 245<400> 245

cauaacuccc ccauuaauac a 21cauaacuccc ccauuaauac a 21

<210> 246<210> 246

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 246<400> 246

uuuaauuugu auuaaugggg g 21uuuaauuugu auuaaugggg g 21

<210> 247<210> 247

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 247<400> 247

cccauuaaua caaauuaaau g 21cccauuaaua caaauuaaau g 21

<210> 248<210> 248

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 248<400> 248

auuuaauuug uauuaauggg g 21auuuaauuug uauuaauggg g 21

<210> 249<210> 249

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 249<400> 249

ccauuaauac aaauuaaaug u 21ccauuaauac aaauuaaaug u 21

<210> 250<210> 250

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 250<400> 250

aaaaauuuug agaaugagcu c 21aaaaauuuug agaaugagcu c 21

<210> 251<210> 251

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 251<400> 251

gcucauucuc aaaauuuuuu u 21gcucauucuc aaaauuuuuu u 21

<210> 252<210> 252

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 252<400> 252

aaaaaauuuu gagaaugagc u 21aaaaaauuuu gagaaugagc u 21

<210> 253<210> 253

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 253<400> 253

cucauucuca aaauuuuuuu g 21cucauucuca aaauuuuuuuu g 21

<210> 254<210> 254

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 254<400> 254

ugaucaaaaa aauuuugaga a 21ugaucaaaaa aauuuugaga a 21

<210> 255<210> 255

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 255<400> 255

cucaaaauuu uuuugaucaa g 21cucaaaauuuuuuugaucaa g 21

<210> 256<210> 256

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 256<400> 256

ucuuguuacc auuuuuuagu g 21ucuuguuacc auuuuuuagu g 21

<210> 257<210> 257

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 257<400> 257

cuaaaaaaug guaacaagag g 21cuaaaaaaug guaacaagag g 21

<210> 258<210> 258

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 258<400> 258

aacauucaga aaaauccagg u 21aacauucaga aaaauccagg u 21

<210> 259<210> 259

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 259<400> 259

cuggauuuuu cugaauguuu u 21cuggauuuuu cugaauguuu u 21

<210> 260<210> 260

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 260<400> 260

aaaacauuca gaaaaaucca g 21aaaacauuca gaaaaaucca g 21

<210> 261<210> 261

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 261<400> 261

ggauuuuucu gaauguuuua a 21ggauuuuucu gaauguuuua a 21

<210> 262<210> 262

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 262<400> 262

uaaaacauuc agaaaaaucc a 21uaaaacauuc agaaaaaucc a 21

<210> 263<210> 263

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 263<400> 263

gauuuuucug aauguuuuaa a 21gauuuuucug aauguuuuaa a 21

<210> 264<210> 264

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 264<400> 264

aauucuuuaa aacauucaga a 21aauucuuuaa aacauucaga a 21

<210> 265<210> 265

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 265<400> 265

cugaauguuu uaaagaauug c 21cugaauguuu uaaagaauug c 21

<210> 266<210> 266

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 266<400> 266

aucaguauuu cauacuuggc u 21aucaguauuuuuuacuuggc u 21

<210> 267<210> 267

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 267<400> 267

ccaaguauga aauacugauc u 21ccaaguauga aauacugauc u 21

<210> 268<210> 268

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 268<400> 268

auaacuuucu gauugauccu g 21auaacuuucu gauugauccu g 21

<210> 269<210> 269

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 269<400> 269

ggaucaauca gaaaguuaua u 21ggaucaauca gaaaguuaua u 21

<210> 270<210> 270

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 270<400> 270

uauaacuuuc ugauugaucc u 21uauaacuuuc ugauugaucc u 21

<210> 271<210> 271

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 271<400> 271

gaucaaucag aaaguuauau g 21gaucaaucag aaaguuauau g 21

<210> 272<210> 272

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 272<400> 272

uuuugcauau aacuuucuga u 21uuuugcauau aacuuucuga u 21

<210> 273<210> 273

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 273<400> 273

cagaaaguua uaugcaaaaa u 21cagaaaguua uaugcaaaaa u 21

<210> 274<210> 274

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 274<400> 274

auuuuugcau auaacuuucu g 21auuuuugcau auaacuuucu g 21

<210> 275<210> 275

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 275<400> 275

gaaaguuaua ugcaaaaauu c 21gaaaguuaua ugcaaaaauu c 21

<210> 276<210> 276

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 276<400> 276

auuguucucu ccuuguuggg a 21auuguucucu ccuuguuggg a 21

<210> 277<210> 277

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 277<400> 277

ccaacaagga gagaacaaua u 21ccaacaagga gagaacaaua u 21

<210> 278<210> 278

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 278<400> 278

uuuuucugca aaauguaacu c 21uuuuucugca aaauguaacu c 21

<210> 279<210> 279

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 279<400> 279

guuacauuuu gcagaaaaau a 21guuacauuuu gcagaaaaau a 21

<210> 280<210> 280

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 280<400> 280

uuuaaguuuc uuagcuaagc c 21uuuaaguuuc uuagcuaagc c 21

<210> 281<210> 281

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 281<400> 281

cuuagcuaag aaacuuaaag c 21cuuagcuaag aaacuuaaag c 21

<210> 282<210> 282

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 282<400> 282

aaauacugcu uuaaguuucu u 21aaauacugcu uuaaguuucu u 21

<210> 283<210> 283

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 283<400> 283

gaaacuuaaa gcaguauuuu a 21gaaacuuaaa gcaguauuuu a 21

<210> 284<210> 284

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence (Artificial Sequence)

<400> 284<400> 284

aauaaaggga cauccaaacu u 21aauaaaggga cauccaaacu u 21

<210> 285<210> 285

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 285<400> 285

guuuggaugu cccuuuauuu c 21guuuggaugu cccuuuauuu c 21

<210> 286<210> 286

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 286<400> 286

aaucaguacc aagucaaacc c 21aaucaguacc aagucaaacc c 21

<210> 287<210> 287

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 287<400> 287

guuugacuug guacugauug g 21guuugauug guacugauug g 21

<210> 288<210> 288

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 288<400> 288

auucuugacc aaucaguacc a 21aaucuugacc aaucaguacc a 21

<210> 289<210> 289

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 289<400> 289

guacugauug gucaagaauc c 21guacugauug gucaagaauc c 21

<210> 290<210> 290

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 290<400> 290

auuccuuuuc uuuauccagc a 21auuccuuuuc uuuauccagc a 21

<210> 291<210> 291

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 291<400> 291

cuggauaaag aaaaggaauu u 21cuggauaaag aaaaggaauu u 21

<210> 292<210> 292

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 292<400> 292

aaauuccuuu ucuuuaucca g 21aaauuccuuu ucuuuaucca g 21

<210> 293<210> 293

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 293<400> 293

ggauaaagaa aaggaauuuu a 21ggauaaagaa aaggaauuuu a 21

<210> 294<210> 294

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 294<400> 294

aaaauuccuu uucuuuaucc a 21aaaauuccuu uucuuuaucc a 21

<210> 295<210> 295

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 295<400> 295

gauaaagaaa aggaauuuua g 21gauaaagaaa aggaauuuua g 21

<210> 296<210> 296

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 296<400> 296

acuucuaaaa uuccuuuucu u 21acuucuaaaa uuccuuuuuuu 21

<210> 297<210> 297

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 297<400> 297

gaaaaggaau uuuagaagug a 21gaaaaggaau uuuagaagug a 21

<210> 298<210> 298

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 298<400> 298

uuaucaaaua auaguuuggc u 21uuaucaaauaauaguuuggc u 21

<210> 299<210> 299

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 299<400> 299

ccaaacuauu auuugauaag g 21ccaaacuauuauuugauaag g 21

<210> 300<210> 300

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 300<400> 300

acaacguugg cuccuaaucu g 21acaacguugg cuccuaaucu g 21

<210> 301<210> 301

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 301<400> 301

gauuaggagc caacguuguu u 21gauuaggagc caacguuguu u 21

<210> 302<210> 302

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 302<400> 302

aauaauagca cgaacuuccc a 21aauaauagca cgaacuuccc a 21

<210> 303<210> 303

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 303<400> 303

ggaaguucgu gcuauuauuc a 21ggaaguucgu gcuauuauuc a 21

<210> 304<210> 304

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 304<400> 304

agcauaaugu uguacaugga u 21agcauaaugu uguacaugga u 21

<210> 305<210> 305

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 305<400> 305

ccauguacaa cauuaugcuu a 21ccauguacaa cauuaugcuu a 21

<210> 306<210> 306

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 306<400> 306

aagcauaaug uuguacaugg a 21aagcauaaug uuguacaugg a 21

<210> 307<210> 307

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 307<400> 307

cauguacaac auuaugcuua c 21cauguacaac auuaugcuua c 21

<210> 308<210> 308

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 308<400> 308

ucaguaugca aauaugugcu a 21ucaguaugca aauaugugcu a 21

<210> 309<210> 309

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 309<400> 309

gcacauauuu gcauacugaa a 21gcacauauuu gcauacugaa a 21

<210> 310<210> 310

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 310<400> 310

uucaguaugc aaauaugugc u 21uucaguaugc aaauaugugc u 21

<210> 311<210> 311

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 311<400> 311

cacauauuug cauacugaaa g 21cacauauuug cauacugaaa g 21

<210> 312<210> 312

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 312<400> 312

ucaagaagcc guuuggaugc u 21ucaagaagcc guuuggaugc u 21

<210> 313<210> 313

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 313<400> 313

cauccaaacg gcuucuugag a 21cauccaaacg gcuucuugag a 21

<210> 314<210> 314

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 314<400> 314

acaauuggau gugaaaaaga a 21acaauuggau gugaaaaaga a 21

<210> 315<210> 315

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 315<400> 315

cuuuuucaca uccaauuguu u 21cuuuuucaca uccaauuguu u 21

<210> 316<210> 316

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 316<400> 316

aauagacacu aaacaauugg a 21aauagacacu aaacaauugg a 21

<210> 317<210> 317

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 317<400> 317

caauuguuua gugucuauuu a 21caauuguuua gugucuauuu a 21

<210> 318<210> 318

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 318<400> 318

uuuuagguuu caaaacuggc c 21uuuuagguuu caaaacuggc c 21

<210> 319<210> 319

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 319<400> 319

ccaguuuuga aaccuaaaaa g 21ccaguuuuga aaccuaaaaa g 21

<210> 320<210> 320

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 320<400> 320

uuuuuagguu ucaaaacugg c 21uuuuuagguu ucaaaacugg c 21

<210> 321<210> 321

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 321<400> 321

caguuuugaa accuaaaaag g 21caguuuugaa accuaaaaag g 21

<210> 322<210> 322

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 322<400> 322

uuuauugucc cuuuuuaggu u 21uuuauugucc cuuuuuaggu u 21

<210> 323<210> 323

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 323<400> 323

ccuaaaaagg gacaauaaag c 21ccuaaaaagg gacaauaaag c 21

<210> 324<210> 324

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 324<400> 324

acuuuuugcu uuauuguccc u 21acuuuuugcu uuauuguccc u 21

<210> 325<210> 325

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 325<400> 325

ggacaauaaa gcaaaaagua u 21ggacaauaaa gcaaaaagua u 21

<210> 326<210> 326

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 326<400> 326

uacuuuuugc uuuauugucc c 21uacuuuuugc uuuauugucc c 21

<210> 327<210> 327

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 327<400> 327

gacaauaaag caaaaaguau c 21gacaauaaag caaaaaguau c 21

<210> 328<210> 328

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 328<400> 328

acguguuuga cagaugaacg a 21acguguuuga cagaugaacg a 21

<210> 329<210> 329

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 329<400> 329

guucaucugu caaacacgua u 21guucacugu caaacacgua u 21

<210> 330<210> 330

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 330<400> 330

agaugaaauc caugcauugu u 21agaugaaauc caugcauugu u 21

<210> 331<210> 331

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 331<400> 331

caaugcaugg auuucaucuu u 21caaugcaugg auuucaucuu u 21

<210> 332<210> 332

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 332<400> 332

uuugaacucc ucaaagauga a 21uuugaacucc ucaaagauga a 21

<210> 333<210> 333

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 333<400> 333

caucuuugag gaguucaaaa c 21caucuuugag gaguucaaaa c 21

<210> 334<210> 334

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 334<400> 334

acgauuguac cauguguucu c 21acgauuguac cauuguucu c 21

<210> 335<210> 335

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 335<400> 335

gaacacaugg uacaaucgua a 21gaacacaugg uacaaucgua a 21

<210> 336<210> 336

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 336<400> 336

uuauuaguac cuuuacugca g 21uuauuaguac cuuuacugca g 21

<210> 337<210> 337

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 337<400> 337

gcaguaaagg uacuaauaac a 21gcaguaaagg uacuaauaac a 21

<210> 338<210> 338

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 338<400> 338

auguuauuag uaccuuuacu g 21auguuauuag uaccuuuacu g 21

<210> 339<210> 339

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 339<400> 339

guaaagguac uaauaacaug u 21guaaagguac uaauaacaug u 21

<210> 340<210> 340

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 340<400> 340

aauuuccaug guuucguggu u 21aauuuccaug guuucguggu u 21

<210> 341<210> 341

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 341<400> 341

ccacgaaacc auggaaauua g 21ccacgaaacc auggaaauua g 21

<210> 342<210> 342

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 342<400> 342

ucaaauugag uuuugucaca c 21ucaaauugag uuuugucaca c 21

<210> 343<210> 343

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 343<400> 343

gugacaaaac ucaauuugac a 21gugacaaaac ucaauuugac a 21

<210> 344<210> 344

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 344<400> 344

ugucaaauug aguuuuguca c 21ugucaaauug aguuuuguca c 21

<210> 345<210> 345

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 345<400> 345

gacaaaacuc aauuugacau u 21gacaaaacuc aauuugacau u 21

<210> 346<210> 346

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 346<400> 346

aaugucaaau ugaguuuugu c 21aaugucaaau ugaguuuugu c 21

<210> 347<210> 347

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 347<400> 347

caaaacucaa uuugacauuu u 21caaaacucaa uuugacauuu u 21

<210> 348<210> 348

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 348<400> 348

uugaaaaugu caaauugagu u 21uugaaaaugu caaauugagu u 21

<210> 349<210> 349

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 349<400> 349

cucaauuuga cauuuucaag c 21cucaauuuga cauuuucaag c 21

<210> 350<210> 350

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 350<400> 350

uguacauagc uugaaaaugu c 21uguacauagc uugaaaaugu c 21

<210> 351<210> 351

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 351<400> 351

cauuuucaag cuauguacaa u 21cauuuucaag cuauguacaa u 21

<210> 352<210> 352

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 352<400> 352

aguaauuacu uuauugagca u 21aguaauuacu uuauugagca u 21

<210> 353<210> 353

<211> 21<211> 21

<212> RNA<212> RNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 353<400> 353

gcucaauaaa guaauuacug a 21gcucaauaaa guaauuacug a 21

<210> 354<210> 354

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 354<400> 354

ccagcgcgag ccagcgcgcg g 21ccagcgcgag ccagcgcgcg g 21

<210> 355<210> 355

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 355<400> 355

cagcctcttc gccctggctg g 21cagcctcttc gccctggctg g 21

<210> 356<210> 356

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 356<400> 356

tgtcacattc gccaaagccg g 21tgtcacattc gccaaagccg g 21

<210> 357<210> 357

<211> 21<211> 21

<212> DNA<212>DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 357<400> 357

cccgggtgct gtagagggtg g 21cccgggtgct gtagaggtg g 21

Claims (9)

1.一种治疗或预防肿瘤的药物组合物,含有ENDOD1核酸内切酶抑制性药物,所述抑制性药物能抑制ENDOD1核酸内切酶的基因表达、活性或功能,所述核酸内切酶为ENDOD1基因编码的核酸内切酶,所述ENDOD1基因序列为SEQ.ID No1,所述肿瘤具有TP53、PTIP、WRN、Fanconi、EMSY、MRE11、NBS1、BLM、ARID1A、ARID1B、WDR70、BRCA1或/和BRCA2基因突变以及HBV或者HPV感染,所述肿瘤为肺癌、乳腺癌、大肠癌、肝癌、卵巢癌、宫颈癌、淋巴瘤、白血病或肉瘤,所述抑制性药物为抑制ENDOD1基因表达的双链siRNA,其长度为18至28个核苷酸,且与ENDOD1基因的核苷酸序列互补,其中,所述双链siRNA的一条链的核苷序列选自下列组:1. A pharmaceutical composition for the treatment or prevention of tumors, containing ENDOD1 endonuclease inhibitory drug, said inhibitory drug can inhibit the gene expression, activity or function of ENDOD1 endonuclease, said endonuclease is The endonuclease encoded by the ENDOD1 gene, the ENDOD1 gene sequence is SEQ.ID No1, the tumor has TP53, PTIP, WRN, Fanconi, EMSY, MRE11, NBS1, BLM, ARID1A, ARID1B, WDR70, BRCA1 or/and BRCA2 gene mutation and HBV or HPV infection, the tumor is lung cancer, breast cancer, colorectal cancer, liver cancer, ovarian cancer, cervical cancer, lymphoma, leukemia or sarcoma, and the inhibitory drug is a double-stranded siRNA that inhibits the expression of ENDOD1 gene , which is 18 to 28 nucleotides in length and complementary to the nucleotide sequence of the ENDOD1 gene, wherein the nucleotide sequence of one strand of the double-stranded siRNA is selected from the following groups: 5’-CCAGCGCGAGCCAGCGCGCGG-3’5'-CCAGCGCGAGCCAGCGCGCGG-3' 5’-CAGCCTCTTCGCCCTGGCTGG-3’5'-CAGCCTCTTCGCCCTGGCTGG-3' 5’-TGTCACATTCGCCAAAGCCGG-3’5'-TGTCACATTCGCCAAAGCCGG-3' 5’-CCCGGGTGCTGTAGAGGGTGG-35'-CCCGGGTGCTGTAGAGGGTGG-3 5’-GCAAGCGGATTGGCTACAA-3’5'-GCAAGCGGATTGGCTACAA-3' 5’-GGATGAAGAACGAATGGTA-3’5'-GGATGAAGAACGAATGGTA-3' 5’-GTGGCCACATTTACTCTCA-3’5'-GTGGCCACATTTACTCTCA-3' 5’-CCGCGCGCTGGCTCGCGCTGG-3’5'-CCGCGCGCTGGCTCGCGCTGG-3' 5’-CCGGCTTTGGCGAATGTGACA-3’5'-CCGGCTTTGGCGAATGTGACA-3' 5’-CCACCCTCTACAGCACCCGGG-3’5'-CCACCCTCTACAGCACCCGGG-3' 5’-GACTACAGAGTTAAAGACA-3’5'-GACTACAGAGTTAAAGACA-3' 5’-CCATGGGCTTTGTCAAGCA-3’5'-CCATGGGCTTTGTCAAGCA-3' 5’-GGTAAAAGATCTTCAGAAA-3’5'-GGTAAAAAGATCTTCAGAAA-3' 5’-TACCCTGGGTGGCCTATTT-3’5'-TACCCTGGGTGGCCTATTT-3' 5’-TTCGCCACCCTCTACAGC-3’5'-TTCGCCACCCTCTACAGC-3' 5’-CCAACAGCAACCTTGAGGA-3’5'-CCAACAGCAACCTTGAGGA-3' 5’-CAACCTTGAGGAGGCGATT-3’5'-CAACCTTGAGGAGGCGATT-3' 5’-GGAGGCGATTAATGAGGCA-3’5'-GGAGGCGATTAATGAGGCA-3' 5’-GTCCAGGTGGCCACATTTA-3’5'-GTCCAGGTGGCCACATTTA-3' 5’-GCAGTCCCTGAGTTTGTTT-3’5'-GCAGTCCCTGAGTTTGTTT-3' 5’-CAATGACTCAGTCCTTCCA-3’5'-CAATGACTCAGTCCTTCCA-3' 5’-GACTCAGTCCTTCCAGGAA-3’5'-GACTCAGTCCTTCCAGGAA-3' 5’-CAGCCACCATCTCATACTT-3’5'-CAGCCACCATCTCATACTT-3' 5’-TGTCTGCTGAAGGCCATTT-3’5'-TGTCTGCTGAAGGCCATTT-3' 5’-TGCTGTTTACCTCCAGTTA-3’5'-TGCTGTTTACCTCCAGTTA-3' 5’-GTCCAGCTTGGATTAACTT-3’5'-GTCCAGCTTGGATTAACTT-3' 5’-TCAGCAGTGTGAAGGTAAA-3’5'-TCAGCAGTGTGAAGGTAAA-3' 5’-CACGAAACCATGGAAATTA-3’5'-CACGAAACCATGGAAATTA-3' 5’-CATCCAAACGGCTTCTTGA-3’5'-CATCCAAACGGCTTCTTGA-3' 5’-CCAATTGTTTAGTGTCTAT-3’。5'-CCAATTGTTTAGTGTCTAT-3'. 2.如权利要求1所述的药物组合物,所述肿瘤带有TP53、BRCA1或/和BRCA2基因突变、基因表达或功能缺陷。2. The pharmaceutical composition according to claim 1, said tumor has TP53, BRCA1 or/and BRCA2 gene mutation, gene expression or function defect. 3.如权利要求1所述的药物组合物,所述肿瘤带有乙型肝炎病毒或人乳头瘤病毒的基因组或基因表达。3. The pharmaceutical composition of claim 1, said tumor harbors the genome or gene expression of hepatitis B virus or human papillomavirus. 4.如权利要求1所述的药物组合物,所述核苷序列选自以下序列:4. The pharmaceutical composition as claimed in claim 1, said nucleoside sequence is selected from the following sequences: 5’-CCAGCGCGAGCCAGCGCGCGG-3’5'-CCAGCGCGAGCCAGCGCGCGG-3' 5’-CAGCCTCTTCGCCCTGGCTGG-3’5'-CAGCCTCTTCGCCCTGGCTGG-3' 5’-TGTCACATTCGCCAAAGCCGG-3’5'-TGTCACATTCGCCAAAGCCGG-3' 5’-CCCGGGTGCTGTAGAGGGTGG-3’5'-CCCGGGTGCTGTAGAGGGTGG-3' 5’-GCAAGCGGATTGGCTACAA-3’5'-GCAAGCGGATTGGCTACAA-3' 5’-GGATGAAGAACGAATGGTA-3’5'-GGATGAAGAACGAATGGTA-3' 5’-GTGGCCACATTTACTCTCA-3’。5'-GTGGCCACATTTACTCTCA-3'. 5.如权利要求1-4任一所述的药物组合物,进一步包含药用辅料。5. The pharmaceutical composition according to any one of claims 1-4, further comprising pharmaceutical excipients. 6.如权利要求1-4任一所述的药物组合物,其制剂形式是注射剂。6. The pharmaceutical composition according to any one of claims 1-4, wherein its preparation form is an injection. 7.如权利要求6所述的药物组合物,还包含脂质体核酸递送系统。7. The pharmaceutical composition of claim 6, further comprising a liposomal nucleic acid delivery system. 8.权利要求1-7任一所述的药物组合物在制造用于治疗或预防肿瘤药物中的用途,所述肿瘤包括肺癌、乳腺癌、大肠癌、肝癌、卵巢癌、宫颈癌、淋巴瘤、白血病或肉瘤。8. The pharmaceutical composition of any one of claims 1-7 is used in the manufacture of medicines for treating or preventing tumors, and said tumors include lung cancer, breast cancer, colorectal cancer, liver cancer, ovarian cancer, cervical cancer, lymphoma , leukemia or sarcoma. 9.如权利要求8所述的用途,进一步包括将所述药物组合物与另一种或多种抗肿瘤药物联合使用或组成复方制剂使用,所述另一种或多种抗肿瘤药物选为铂类、喜树碱或DNAPK抑制剂。9. purposes as claimed in claim 8, further comprise that said pharmaceutical composition is used in combination with another or more antineoplastic drugs or form compound preparations, and said another one or more antineoplastic drugs are selected as Platinum, camptothecin, or DNAPK inhibitors.
CN202010295776.6A 2020-04-15 2020-04-15 Medicine containing endonuclease inhibiting function and anti-tumor application thereof Active CN111671904B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202211388535.1A CN115554405B (en) 2020-04-15 2020-04-15 Medicine containing endonuclease inhibiting function and anti-tumor application thereof
CN202211388556.3A CN115998872B (en) 2020-04-15 2020-04-15 A drug containing a compound that inhibits endonuclease function and its anti-tumor use
CN202010295776.6A CN111671904B (en) 2020-04-15 2020-04-15 Medicine containing endonuclease inhibiting function and anti-tumor application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010295776.6A CN111671904B (en) 2020-04-15 2020-04-15 Medicine containing endonuclease inhibiting function and anti-tumor application thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CN202211388535.1A Division CN115554405B (en) 2020-04-15 2020-04-15 Medicine containing endonuclease inhibiting function and anti-tumor application thereof
CN202211388556.3A Division CN115998872B (en) 2020-04-15 2020-04-15 A drug containing a compound that inhibits endonuclease function and its anti-tumor use

Publications (2)

Publication Number Publication Date
CN111671904A CN111671904A (en) 2020-09-18
CN111671904B true CN111671904B (en) 2022-12-06

Family

ID=72451636

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202211388535.1A Active CN115554405B (en) 2020-04-15 2020-04-15 Medicine containing endonuclease inhibiting function and anti-tumor application thereof
CN202010295776.6A Active CN111671904B (en) 2020-04-15 2020-04-15 Medicine containing endonuclease inhibiting function and anti-tumor application thereof
CN202211388556.3A Active CN115998872B (en) 2020-04-15 2020-04-15 A drug containing a compound that inhibits endonuclease function and its anti-tumor use

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202211388535.1A Active CN115554405B (en) 2020-04-15 2020-04-15 Medicine containing endonuclease inhibiting function and anti-tumor application thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202211388556.3A Active CN115998872B (en) 2020-04-15 2020-04-15 A drug containing a compound that inhibits endonuclease function and its anti-tumor use

Country Status (1)

Country Link
CN (3) CN115554405B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108949830B (en) * 2018-08-03 2021-11-26 福州大学 Method for realizing genome editing and accurate site-specific gene knock-in fish
CN115554405B (en) * 2020-04-15 2023-08-01 四川大学华西第二医院 Medicine containing endonuclease inhibiting function and anti-tumor application thereof
CN115466734A (en) * 2022-10-19 2022-12-13 成都普乐密欣生物技术有限公司 A method for efficiently detecting nuclease and its inhibitory effect
CN119193496A (en) * 2024-09-30 2024-12-27 广东省人民医院 A double knockout lung cancer cell line and its construction method and application

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60042245D1 (en) * 1999-11-16 2009-07-02 Oncozyme Pharma Inc PENTAMIDINE FOR THE TREATMENT OF CANCER
WO2013138726A1 (en) * 2012-03-15 2013-09-19 Sabiosciences Corp. Thyroid cancer biomarker
EP2922861A4 (en) * 2012-11-26 2016-09-14 Caris Life Sciences Switzerland Holdings Gmbh Biomarker compositions and methods
CN105331674B (en) * 2015-11-27 2018-12-25 复旦大学附属肿瘤医院 A kind of endonuclease MUS81 detection kit and its detection method and application
WO2019232542A2 (en) * 2018-06-01 2019-12-05 Massachusetts Institute Of Technology Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients
CN115554405B (en) * 2020-04-15 2023-08-01 四川大学华西第二医院 Medicine containing endonuclease inhibiting function and anti-tumor application thereof

Also Published As

Publication number Publication date
CN111671904A (en) 2020-09-18
CN115998872B (en) 2025-03-25
CN115554405A (en) 2023-01-03
CN115554405B (en) 2023-08-01
CN115998872A (en) 2023-04-25

Similar Documents

Publication Publication Date Title
CN111671904B (en) Medicine containing endonuclease inhibiting function and anti-tumor application thereof
US12006508B2 (en) Methods and products for expressing proteins in cells
US20220168419A1 (en) Compositions and methods for treating autoimmune diseases and cancers
US20190055563A1 (en) Polymerase q as a target in hr-deficient cancers
US20160015702A1 (en) Aminoheteroaryl compounds as mth1 inhibitors
WO2021046178A1 (en) Compounds and methods for treating cancer
US12194057B2 (en) NXTAR-derived oligonucleotides and uses thereof
US20240124610A1 (en) Methods for treating her2-negative or her2-low cancer
CN116159131B (en) Application of TRIM21 and promoter thereof in preparation of antitumor biotherapeutic drugs
JP7493460B2 (en) Organic Compounds
US20230391824A1 (en) Rationale, design, synthesis and validation of a small molecule anticancer agent
RU2811918C2 (en) Methods of treating cancer diseases and tumors using pde1 inhibitors
GB2631308A (en) Method for identifying specific cancer patient subgroups and novel cancer therapy for specific cancer patient subgroups
WO2024245445A1 (en) Malt1 tumor inhibitor, and drug containing same and use thereof
Shi Targeting SMAD4 Mutations Using Synthetic Lethality in Colorectal Cancer
WO2021046220A1 (en) Compounds and methods for treating cancer
CN118922191A (en) Organic compound
CA3207288A1 (en) Ep300 degrader and uses thereof in neuroblastoma
HK40048692A (en) Methods and products for expressing proteins in cells
WO2021150770A1 (en) Oncogenic trim37 is a targetable epigenetic driver of metastasis and links chemoresistance and metastatic fate in triple-negative breast cancer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant