[go: up one dir, main page]

CN111668302A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
CN111668302A
CN111668302A CN201910175488.4A CN201910175488A CN111668302A CN 111668302 A CN111668302 A CN 111668302A CN 201910175488 A CN201910175488 A CN 201910175488A CN 111668302 A CN111668302 A CN 111668302A
Authority
CN
China
Prior art keywords
layer
nitride
semiconductor device
barrier layer
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910175488.4A
Other languages
Chinese (zh)
Other versions
CN111668302B (en
Inventor
陈志谚
洪章响
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vanguard International Semiconductor Corp
Original Assignee
Vanguard International Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard International Semiconductor Corp filed Critical Vanguard International Semiconductor Corp
Priority to CN201910175488.4A priority Critical patent/CN111668302B/en
Publication of CN111668302A publication Critical patent/CN111668302A/en
Application granted granted Critical
Publication of CN111668302B publication Critical patent/CN111668302B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/015Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

The invention provides a semiconductor device and a method of manufacturing the same. The semiconductor device includes a via layer disposed over a substrate, a barrier layer disposed over the via layer, and a nitride layer disposed over the barrier layer. The semiconductor device also includes a compound semiconductor layer having an upper portion and a lower portion, wherein the lower portion passes through the nitride layer and a portion of the barrier layer. The semiconductor device also includes a spacer layer conformally disposed on a portion of the barrier layer and extending to the nitride layer. In addition, the semiconductor device further includes a gate electrode disposed over the compound semiconductor layer, and a pair of source/drain electrodes disposed on both sides of the gate electrode. The source/drain electrode extends through the spacer layer, the nitride layer, and at least a portion of the barrier layer.

Description

半导体装置及其制造方法Semiconductor device and method of manufacturing the same

技术领域technical field

本发明实施例是关于半导体装置,且特别是有关于高电子迁移率晶体管及其制造方法。Embodiments of the present invention relate to semiconductor devices, and more particularly, to high electron mobility transistors and methods of fabricating the same.

背景技术Background technique

高电子迁移率晶体管(high electron mobility transistor,HEMT),又称为异质结构场效晶体管(heterostructure FET,HFET)或调变掺杂场效晶体管(modulation-dopedFET,MODFET),为一种场效晶体管(field effect transistor,FET),其由具有不同能隙(energy gap)的半导体材料组成。在邻近不同半导体材料的所形成界面处会产生二维电子气(two dimensional electron gas,2DEG)层。由于二维电子气的高电子移动性,高电子迁移率晶体管可以具有高崩溃电压、高电子迁移率、低导通电阻与低输入电容等优点,因而适合用于高功率器件上。High electron mobility transistor (HEMT), also known as heterostructure FET (HFET) or modulation-doped FET (MODFET), is a field effect transistor A field effect transistor (FET) consists of semiconductor materials with different energy gaps. A two-dimensional electron gas (2DEG) layer is created adjacent to the formed interface of different semiconductor materials. Due to the high electron mobility of the two-dimensional electron gas, high electron mobility transistors can have the advantages of high breakdown voltage, high electron mobility, low on-resistance and low input capacitance, and thus are suitable for high-power devices.

在设计高电子迁移率晶体管时,主要考虑的是低导通电阻(on-resistance,Ron)、以及高开关电压(threshold voltage,Vth)。然而,氮化镓高电子迁移率晶体管的二维电子气并不需要掺杂,其载流子来源主要为表面态(surface state)及非刻意掺杂(unintentional doping),本质上是由缺陷所游离的载流子而来。因此氮化镓高电子迁移率晶体管的二维电子气对于电场变化十分敏感,在开关切换的操作过程中会发生电磁散射(dispersion)。When designing high electron mobility transistors, low on-resistance (R on ) and high switching voltage (V th ) are the main considerations. However, the two-dimensional electron gas of the GaN high electron mobility transistor does not need doping, and its carrier sources are mainly surface states and unintentional doping, which are essentially caused by defects. free charge carriers. Therefore, the two-dimensional electron gas of the GaN high electron mobility transistor is very sensitive to changes in the electric field, and electromagnetic dispersion (dispersion) occurs during the switching operation.

因此,虽然现有氮化镓高电子迁移率晶体管大致上合乎其预期目的,其并非在所有方面都完全令人满意。而如何有效地解决电磁散射对器件性能的影响,是目前的技术发展重点。Therefore, while existing gallium nitride high electron mobility transistors are generally satisfactory for their intended purpose, they are not completely satisfactory in all respects. How to effectively solve the influence of electromagnetic scattering on device performance is the focus of current technology development.

发明内容SUMMARY OF THE INVENTION

本发明实施例提供一种半导体装置。此半导体装置包括设置在基板之上的通道层、设置在通道层之上的阻障层、及设置在阻障层之上的氮化物层。此半导体装置亦包括具有上部及下部的化合物半导体层,其中下部穿过氮化物层及一部分的阻障层。此半导体装置亦包括顺应性地设置在一部分的阻障层上并延伸至氮化物层上的间隔层。此外,上述半导体装置更包括设置在化合物半导体层之上的栅极电极、以及设置在栅极电极两侧的一对源极/漏极电极。上述源极/漏极电极延伸穿过间隔层、氮化物层及至少一部分阻障层。Embodiments of the present invention provide a semiconductor device. The semiconductor device includes a channel layer disposed over a substrate, a barrier layer disposed over the channel layer, and a nitride layer disposed over the barrier layer. The semiconductor device also includes a compound semiconductor layer having an upper portion and a lower portion, wherein the lower portion passes through the nitride layer and a portion of the barrier layer. The semiconductor device also includes a spacer layer compliantly disposed over a portion of the barrier layer and extending over the nitride layer. In addition, the above-mentioned semiconductor device further includes a gate electrode disposed on the compound semiconductor layer, and a pair of source/drain electrodes disposed on both sides of the gate electrode. The source/drain electrodes extend through the spacer layer, the nitride layer and at least a portion of the barrier layer.

本发明实施例提供一种半导体装置的制造方法。此方法包括在基板之上形成通道层、在通道层之上形成阻障层、在阻障层之上形成氮化物层、凹蚀氮化物层及阻障层以形成凹口,其中上述凹口穿过氮化物层及一部分的阻障层、在氮化物层上及在凹口中顺应性地形成间隔层、以及在间隔层之上形成化合物半导体层。上述化合物半导体层具有上部及下部,其中化合物半导体层的下部填入凹口中。此方法更包括在化合物半导体层之上形成栅极电极、以及在栅极电极两侧形成一对源极/漏极电极,其中源极/漏极电极延伸穿过间隔层、氮化物层及至少一部分的阻障层。Embodiments of the present invention provide a method for fabricating a semiconductor device. The method includes forming a channel layer over a substrate, forming a barrier layer over the channel layer, forming a nitride layer over the barrier layer, etching back the nitride layer and the barrier layer to form a recess, wherein the recess A spacer layer is conformally formed over the nitride layer and in the recess through the nitride layer and a portion of the barrier layer, and a compound semiconductor layer is formed over the spacer layer. The compound semiconductor layer described above has an upper portion and a lower portion, wherein the lower portion of the compound semiconductor layer is filled into the recess. The method further includes forming a gate electrode over the compound semiconductor layer, and forming a pair of source/drain electrodes on both sides of the gate electrode, wherein the source/drain electrodes extend through the spacer layer, the nitride layer and at least part of the barrier layer.

以下的实施例与所附的参考图式将提供详细的描述。The following examples and accompanying reference drawings will provide a detailed description.

附图说明Description of drawings

以下将配合所附图式详述本发明的一些实施例。应注意的是,依据在业界的标准做法,各种部件并未按照比例绘制且仅用以说明例示。事实上,可能任意地放大或缩小器件的尺寸,以清楚地表现出本发明实施例的部件。Some embodiments of the present invention will be described in detail below with the accompanying drawings. It should be noted that, in accordance with standard practice in the industry, the various features are not drawn to scale and are for illustration purposes only. In fact, the dimensions of the devices may be arbitrarily enlarged or reduced to clearly represent the components of the embodiments of the invention.

图1-图5根据一些实施例,绘示出用于形成图6的半导体装置的示例方法的各个中间阶段的剖面示意图;1-5 are schematic cross-sectional views illustrating various intermediate stages of an example method for forming the semiconductor device of FIG. 6, according to some embodiments;

图6为半导体装置示意图。FIG. 6 is a schematic diagram of a semiconductor device.

附图标记说明Description of reference numerals

10~半导体装置;10~Semiconductor device;

100~基板;100~substrate;

102~成核层;102~nucleation layer;

104~缓冲层;104~buffer layer;

106~通道层;106 ~ channel layer;

108~阻障层;108 ~ barrier layer;

110~氮化物层;110~Nitride layer;

112~凹口;112~notch;

114~间隔层;114 ~ spacer layer;

116~化合物半导体层;116~compound semiconductor layer;

116a~上部;116a ~ upper part;

116b~下部;116b ~ lower part;

118~栅极电极;118~gate electrode;

120~源极/漏极电极;120~source/drain electrode;

W1、W2~厚度。W1, W2 ~ thickness.

具体实施方式Detailed ways

以下的揭示内容提供许多不同的实施例或范例,以展示本发明实施例的不同部件。以下将揭示本说明书各部件及其排列方式的特定范例,用以简化本发明叙述。当然,这些特定范例并非用于限定本发明。例如,若是本说明书以下的发明内容叙述了将形成第一部件于第二部件的上或上方,即表示其包括了所形成的第一及第二部件是直接接触的实施例,亦包括了尚可将附加的部件形成于上述第一及第二部件之间,则第一及第二部件为未直接接触的实施例。此外,本发明说明中的各式范例可能使用重复的参照符号及/或用字。这些重复符号或用字的目的在于简化与清晰,并非用以限定各式实施例及/或所述配置之间的关系。The following disclosure provides many different embodiments or examples to illustrate different components of embodiments of the invention. The following will disclose specific examples of the various components of the present specification and their arrangement, so as to simplify the description of the present invention. Of course, these specific examples are not intended to limit the invention. For example, if the following description of the invention describes that the first part is formed on or above the second part, it means that it includes the embodiment in which the first and second parts are formed in direct contact, and also includes the embodiment that the formed first and second parts are in direct contact. Additional components may be formed between the first and second components described above, the first and second components being embodiments that are not in direct contact. Furthermore, the various examples in the description may use repeated reference symbols and/or wording. These repeated symbols or words are used for simplicity and clarity, and are not used to limit the relationships between the various embodiments and/or the configurations.

再者,为了方便描述图式中一器件或部件与另一(些)器件或部件的关系,可使用空间相对用语,例如“在…之下”、“下方”、“下部”、“上方”、“上部”及诸如此类用语。除了图式所绘示的方位外,空间相对用语亦涵盖使用或操作中的装置的不同方位。当装置被转向不同方位时(例如,旋转90度或者其他方位),则其中所使用的空间相对形容词亦将依转向后的方位来解释。应可理解的是,于本发明实施例所述的方法之前、之中、及/或之后可提供额外的操作,且在方法的其他实施例中,可替换或省略一些所述的操作。Furthermore, for convenience in describing the relationship of one device or component to another device or component(s) in the figures, spatially relative terms such as "below", "below", "lower", "above" may be used , "upper" and similar terms. In addition to the orientation depicted in the drawings, spatially relative terms also encompass different orientations of the device in use or operation. When the device is turned in a different orientation (eg, rotated 90 degrees or other orientations), the spatially relative adjectives used therein will also be interpreted according to the turned orientation. It should be understood that additional operations may be provided before, during, and/or after the method described in the embodiments of the present invention, and in other embodiments of the method, some of the described operations may be replaced or omitted.

在此,“约”、“大约”、“大抵”的用语通常表示在一给定值或范围的20%之内,较佳是10%之内,且更佳是5%之内,或3%之内,或2%之内,或1%之内,或0.5%之内。应注意的是,说明书中所提供的数量为大约的数量,亦即在没有特定说明“约”、“大约”、“大抵”的情况下,仍可隐含“约”、“大约”、“大抵”的含义。Herein, the terms "about", "approximately", "approximately" generally mean within 20%, preferably within 10%, and more preferably within 5% of a given value or range, or within 3% Within %, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantities provided in the specification are approximate quantities, that is, “about”, “approximately” and “approximately” can still be implied without the specific description of “about”, “approximately” and “approximately”. probably" meaning.

此处描述示例方法及结构的一些变化。本领域具有通常知识者将可容易理解在其他实施例的范围内可做其他的修改。虽然讨论的一些方法实施例以特定顺序进行,各式其他方法实施例可以另一合乎逻辑的顺序进行,且可包括少于或多于此处讨论的步骤。在一些图示中,其中所示的一些组件或部件的器件符号可被省略,以避免与其他组件或部件混淆;此系为了便于描绘此些图示。Several variations of example methods and structures are described herein. Those of ordinary skill in the art will readily appreciate that other modifications can be made within the scope of other embodiments. Although some method embodiments are discussed as being performed in a particular order, various other method embodiments can be performed in another logical order and can include fewer or more steps than those discussed herein. In some figures, the device symbols of some components or parts shown therein may be omitted to avoid confusion with other components or parts; this is for the convenience of depicting such figures.

本发明实施例提供一种半导体装置及其制造方法,特别适用于高电子迁移率晶体管(HEMT)。在本发明一些实施例中,藉由在阻障层上设置氮化物层及间隔层,并在栅极区将这两层截断以形成凹口,可以消除装置的电磁散射(dispersion)问题,同时可让栅极区以外的阻障层厚度较厚以降低导通电阻,亦可降低栅极掺杂而不会降低开关电压。如此一来,即可解除导通电阻(on-resistance,Ron)、开关电压(threshold voltage,Vth)、以及电磁散射三方抵换(tripartite trade-off)的僵局。Embodiments of the present invention provide a semiconductor device and a manufacturing method thereof, which are particularly suitable for high electron mobility transistors (HEMTs). In some embodiments of the present invention, by disposing a nitride layer and a spacer layer on the barrier layer, and truncating the two layers in the gate region to form a notch, the electromagnetic dispersion problem of the device can be eliminated, while the The thickness of the barrier layer outside the gate region can be made thicker to reduce the on-resistance, and the gate doping can also be reduced without reducing the switching voltage. In this way, the deadlock of on-resistance (R on ), switching voltage (threshold voltage, V th ), and tripartite trade-off of electromagnetic scattering can be resolved.

图1-图5根据一些实施例,绘示出用于形成图6的半导体装置10的示例方法的各个中间阶段的剖面示意图。FIGS. 1-5 are schematic cross-sectional views illustrating various intermediate stages of an example method for forming the semiconductor device 10 of FIG. 6 in accordance with some embodiments.

图1根据本发明实施例绘示出形成半导体装置10的方法的起始步骤。如图1所示,提供基板100。接着,在基板100之上形成缓冲层104,在缓冲层104之上形成通道层106,并在通道层106之上形成阻障层108。在一些实施例中,可在基板100与缓冲层104之间形成成核层(nucleation layer)102,如图1所示。FIG. 1 illustrates initial steps of a method of forming a semiconductor device 10 in accordance with an embodiment of the present invention. As shown in FIG. 1, a substrate 100 is provided. Next, a buffer layer 104 is formed on the substrate 100 , a channel layer 106 is formed on the buffer layer 104 , and a barrier layer 108 is formed on the channel layer 106 . In some embodiments, a nucleation layer 102 may be formed between the substrate 100 and the buffer layer 104 , as shown in FIG. 1 .

上述基板100可以为或包括块体半导体(bulk semiconductor)基板、绝缘体上覆半导体(semiconductor-on-insulator,SOI)基板或类似基板,其可为掺杂(例如,使用p-型或n-型掺质(dopant))或未掺杂的。一般而言,绝缘体上覆半导体基板包括形成于绝缘体上的半导体材料的膜层。举例来说,此绝缘层可为,氧化硅(silicon oxide)层、氮化硅(silicon nitride)层、多晶硅(poly-silicon)层、或上述膜层的堆迭组合。提供上述绝缘层于基板上,通常是硅(silicon)或氮化铝(AlN)基板。亦可使用其他基板,例如多层(multi-layered)或梯度(gradient)基板。在一些实施例中,半导体基板的半导体材料可包括含不同晶面的硅,包括Si(111)或Si(110)。在一些实施例中,基板100可以是半导体基底或陶瓷基底,例如氮化镓(GaN)基底、碳化硅(SiC)基底、氮化铝(AlN)基底或蓝宝石(Sapphire)基底。The substrate 100 described above may be or include a bulk semiconductor substrate, a semiconductor-on-insulator (SOI) substrate, or the like, which may be doped (eg, using p-type or n-type) doped (dopant) or undoped. In general, a semiconductor-on-insulator substrate includes a layer of semiconductor material formed on an insulator. For example, the insulating layer may be a silicon oxide (silicon oxide) layer, a silicon nitride (silicon nitride) layer, a poly-silicon (poly-silicon) layer, or a stacked combination of the above-mentioned film layers. The above insulating layer is provided on a substrate, usually a silicon (silicon) or aluminum nitride (AlN) substrate. Other substrates may also be used, such as multi-layered or gradient substrates. In some embodiments, the semiconductor material of the semiconductor substrate may include silicon with different crystal planes, including Si(111) or Si(110). In some embodiments, the substrate 100 may be a semiconductor substrate or a ceramic substrate, such as a gallium nitride (GaN) substrate, a silicon carbide (SiC) substrate, an aluminum nitride (AlN) substrate, or a sapphire (Sapphire) substrate.

上述成核层102可以缓解基板100与上方成长的膜层之间的晶格差异,以提升结晶品质。成核层102是选择性的。在一些实施例中,成核层102的材料可以为或包括氮化铝(AlN)、氮化铝镓(AlGaN)、其他适当的材料、或上述的组合。举例来说,成核层102的厚度可以在约1纳米(nanometer,nm)至约500纳米的范围,例如约200纳米。在一些实施例中,可以藉由沉积工艺来形成此成核层102,例如有机金属化学气相沉积(Metal Organic ChemicalVapor Deposition,MOCVD)、原子层沉积(Atomic Layer Deposition,ALD)、分子束磊晶(Molecular Beam Epitaxy,MBE)、液相磊晶(Liquid Phase Epitaxy,LPE)、其他适当的工艺、或前述的组合。The above-mentioned nucleation layer 102 can alleviate the lattice difference between the substrate 100 and the film layer grown above, so as to improve the crystal quality. The nucleation layer 102 is selective. In some embodiments, the material of the nucleation layer 102 may be or include aluminum nitride (AlN), aluminum gallium nitride (AlGaN), other suitable materials, or a combination thereof. For example, the thickness of the nucleation layer 102 may be in the range of about 1 nanometer (nm) to about 500 nanometers, such as about 200 nanometers. In some embodiments, the nucleation layer 102 may be formed by a deposition process, such as Metal Organic Chemical Vapor Deposition (MOCVD), Atomic Layer Deposition (ALD), Molecular Beam Epitaxy ( Molecular Beam Epitaxy, MBE), Liquid Phase Epitaxy (LPE), other suitable processes, or a combination of the foregoing.

缓冲层104可减缓后续形成于缓冲层104上方的通道层106的应变(strain),以防止缺陷形成于上方的通道层106中,应变是由通道层106与基底102之间的不匹配造成。在另一些实施例中,如先前所提及的,可以不设置成核层102,直接在基底上方形成缓冲层104,以简化工艺步骤,且亦可达到改善的效果。在一些实施例中,缓冲层104的材料可以包含III-V族化合物半导体材料,例如III族氮化物。举例来说,缓冲层104的材料可以为或包括氮化镓(Gallium Nitride,GaN)、氮化铝(AlN)、氮化铝镓(AlGaN)、氮化铝铟(AlInN)、其他适当的材料、或前述的组合。举例来说,缓冲层104的厚度可以在约500纳米至约50000纳米的范围。在一些实施例中,可以藉由沉积工艺来形成缓冲层104,例如有机金属化学气相沉积(MOCVD)、原子层沉积(ALD)、分子束磊晶(MBE)、液相磊晶(LPE)、其他适当的工艺、或上述的组合。The buffer layer 104 may relieve the strain of the channel layer 106 subsequently formed over the buffer layer 104 to prevent defects from forming in the channel layer 106 above, the strain being caused by the mismatch between the channel layer 106 and the substrate 102 . In other embodiments, as mentioned above, the nucleation layer 102 may not be provided, and the buffer layer 104 may be formed directly on the substrate, so as to simplify the process steps and also achieve improved effects. In some embodiments, the material of the buffer layer 104 may include a group III-V compound semiconductor material, such as a group III nitride. For example, the material of the buffer layer 104 may be or include gallium nitride (Gallium Nitride, GaN), aluminum nitride (AlN), aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), other suitable materials , or a combination of the foregoing. For example, the thickness of the buffer layer 104 may range from about 500 nanometers to about 50,000 nanometers. In some embodiments, the buffer layer 104 may be formed by a deposition process, such as metal-organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), molecular beam epitaxy (MBE), liquid phase epitaxy (LPE), Other suitable processes, or a combination of the above.

通过通道层106与阻障层108之间不同晶格常数所引发的压电极化(piezoelectric polarization)效应及各自的自发性极化(spontaneous polarization),可以在通道层106与阻障层108之间的异质界面上形成二维电子气(two-dimensionalelectron gas,2DEG)(未显示)。如图6所示的半导体装置10是利用二维电子气(2DEG)作为导电载流子的高电子迁移率晶体管(high electron mobility transistor,HEMT)。在一些实施例中,通道层106和阻障层108中没有掺质。在一些其他实施例中,通道层106和阻障层108可具有掺质,例如n型掺质或p型掺质。在本发明一特定实施例中,通道层106藉由本身的非刻意掺杂(unintentional doping)作为二维电子气的来源。举例来说,上述非刻意掺杂可以是存在在背景中的缺陷、游离的施主(donor)等。在一些实施例中,上述非刻意掺杂的掺质浓度在约5x1016至约5x1017cm-3的范围。Through the piezoelectric polarization effect and the respective spontaneous polarizations caused by the different lattice constants between the channel layer 106 and the barrier layer 108 , the channel layer 106 and the barrier layer 108 can be formed between the channel layer 106 and the barrier layer 108 . A two-dimensional electron gas (2DEG) (not shown) is formed on the hetero interface between the two. The semiconductor device 10 shown in FIG. 6 is a high electron mobility transistor (HEMT) using two-dimensional electron gas (2DEG) as conductive carriers. In some embodiments, channel layer 106 and barrier layer 108 are free of dopants. In some other embodiments, the channel layer 106 and the barrier layer 108 may have dopants, such as n-type dopants or p-type dopants. In a specific embodiment of the present invention, the channel layer 106 acts as a source of two-dimensional electron gas by its own unintentional doping. For example, the above-mentioned unintentional doping may be a defect present in the background, a free donor, or the like. In some embodiments, the unintentionally doped dopant concentration ranges from about 5× 10 16 to about 5× 10 17 cm −3 .

在一些实施例中,通道层106的材料可以包含一或多种III-V族化合物半导体材料,例如III族氮化物。举例来说,通道层106的材料可以为或包括GaN、AlGaN、AlInN、InGaN、InAlGaN、其他适当的材料、或上述的组合。在一些实施例中,通道层106的厚度可以在约0.05微米(micrometer,μm)和约1微米之间的范围,例如约0.2微米。根据一些实施例,可以藉由沉积工艺来形成通道层106,例如有机金属化学气相沉积(MOCVD)、原子层沉积(ALD)、分子束磊晶(MBE)、液相磊晶(LPE)、其他适当的工艺、或上述的组合。In some embodiments, the material of the channel layer 106 may include one or more group III-V compound semiconductor materials, such as group III nitrides. For example, the material of the channel layer 106 may be or include GaN, AlGaN, AlInN, InGaN, InAlGaN, other suitable materials, or a combination thereof. In some embodiments, the thickness of the channel layer 106 may range between about 0.05 micrometers (micrometer, μm) and about 1 micrometer, eg, about 0.2 micrometers. According to some embodiments, the channel layer 106 may be formed by a deposition process, such as metal organochemical vapor deposition (MOCVD), atomic layer deposition (ALD), molecular beam epitaxy (MBE), liquid phase epitaxy (LPE), others appropriate process, or a combination of the above.

在一些实施例中,阻障层108的材料可以包含III-V族化合物半导体材料,例如III族氮化物。举例来说,阻障层108可以为或包括AlN、AlGaN、AlInN、AlGaInN、其他适当的材料、或上述的组合。阻障层108可以包含单层或多层结构。相较于一般高电子迁移率晶体管,本发明实施例的高电子迁移率晶体管具有较厚的阻障层,因此可显著降低装置的导通电阻(Ron)。举例来说,阻障层108具有最大厚度W1,此最大厚度W1可以在约10纳米至约60纳米的范围,例如约40纳米。在一些实施例中,可以藉由沉积工艺来形成阻障层108,例如有机金属化学气相沉积(MOCVD)、原子层沉积(ALD)、分子束磊晶(MBE)、液相磊晶(LPE)、其他适当的工艺、或前述的组合。In some embodiments, the material of the barrier layer 108 may comprise a III-V compound semiconductor material, such as a III-nitride. For example, the barrier layer 108 may be or include AlN, AlGaN, AlInN, AlGaInN, other suitable materials, or a combination thereof. The barrier layer 108 may comprise a single-layer or multi-layer structure. Compared with the general high electron mobility transistor, the high electron mobility transistor of the embodiment of the present invention has a thicker barrier layer, and thus can significantly reduce the on-resistance (R on ) of the device. For example, the barrier layer 108 has a maximum thickness W1, which may be in the range of about 10 nanometers to about 60 nanometers, such as about 40 nanometers. In some embodiments, the barrier layer 108 may be formed by a deposition process, such as metal organochemical vapor deposition (MOCVD), atomic layer deposition (ALD), molecular beam epitaxy (MBE), liquid phase epitaxy (LPE) , other suitable processes, or a combination of the foregoing.

继续参考图1,在阻障层108之上形成氮化物层110。此氮化物层110可以保护阻障层108免于在后续的工艺中氧化。此外,氮化物层110亦可消除装置的电磁散射问题,细节将于后详述。在一些实施例中,氮化物层110的材料可以为或包括氮化镓(GaN)、氮化铝镓(AlGaN)、氮化铝铟(AlInN)、氮化铝铟镓(AlGaInN)、氮化铟镓(InGaN)、其他适当材料、或上述的组合。在一些实施例中,氮化物层110的厚度可以在约1纳米至约20纳米的范围,例如约5纳米。根据一些实施例,可以藉由沉积工艺来形成氮化物层110,例如有机金属化学气相沉积(MOCVD)、原子层沉积(ALD)、分子束磊晶(MBE)、液相磊晶(LPE)、其他适当的工艺、或上述的组合。With continued reference to FIG. 1 , a nitride layer 110 is formed over the barrier layer 108 . This nitride layer 110 can protect the barrier layer 108 from oxidation in subsequent processes. In addition, the nitride layer 110 can also eliminate the electromagnetic scattering problem of the device, which will be described in detail later. In some embodiments, the material of the nitride layer 110 may be or include gallium nitride (GaN), aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), aluminum indium gallium nitride (AlGaInN), nitride Indium Gallium (InGaN), other suitable materials, or a combination of the above. In some embodiments, the thickness of the nitride layer 110 may range from about 1 nanometer to about 20 nanometers, eg, about 5 nanometers. According to some embodiments, the nitride layer 110 may be formed by a deposition process, such as metal-organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), molecular beam epitaxy (MBE), liquid phase epitaxy (LPE), Other suitable processes, or a combination of the above.

接下来,如图2所示,凹蚀氮化物层110及阻障层108以形成凹口112,其中凹口112穿过氮化物层110及一部分的阻障层108。上述凹口112对应于预定形成栅极电极118(没有绘示于图3中,但可参照下述关于图5的说明)的位置。凹口112的形成使位于凹口112下方的一部分的阻障层108具有减小的厚度W2。此减小的厚度W2位于将于后形成的栅极电极118下方(没有绘示于图2中,但可参照下述关于图5的说明),这有助于提高装置的开关电压(Vth)。在一些实施例中,此减小的厚度W2可以在约5纳米至约15纳米的范围,例如约10纳米。Next, as shown in FIG. 2 , the nitride layer 110 and the barrier layer 108 are etched back to form recesses 112 , wherein the recesses 112 pass through the nitride layer 110 and a portion of the barrier layer 108 . The above-mentioned recesses 112 correspond to the positions where the gate electrodes 118 (not shown in FIG. 3 , but the description of FIG. 5 can be referred to below) are intended to be formed. The notch 112 is formed so that a portion of the barrier layer 108 located below the notch 112 has a reduced thickness W2. This reduced thickness W2 is located below the gate electrode 118 to be formed later (not shown in FIG. 2, but reference is made to the description below with respect to FIG. 5), which helps to increase the switching voltage ( Vth ) of the device ). In some embodiments, this reduced thickness W2 may be in the range of about 5 nanometers to about 15 nanometers, eg, about 10 nanometers.

一般而言,氮化镓高电子迁移率晶体管的二维电子气主要来源有二,一是来自于表面态(surface states)所游离的载流子,二是来自于通道层的非刻意掺杂;而因为阻障层与通道层之间的异质结构和极化电场,通常二维电子气的来源为前者。因此当半导体装置在关闭状态(off state)时,通道层中的载流子会受到表面的高电场牵引而被限制住。当半导体装置由关闭状态切换成开启状态(on state)时,通道层106中被限制住的载流子来不及释放(即,松弛时间(relaxation time)太长),造成电流降低,此即为电磁散射问题。在本发明实施例中,由于氮化物层容纳了绝大部分来自于表面态的游离载流子,迫使下层的通道层必须从非刻意掺杂吸取载流子,因此避免了通道层受关闭状态时的高电场影响。此外,氮化物层110被凹口112截断,因此半导体装置10在开启状态下,氮化物层110不会参与电流导通,故不会有电磁散射问题。如此一来,氮化物层110即可代替通道层116承受表面状态的高电场,以避免半导体装置10的电磁散射问题。Generally speaking, the two-dimensional electron gas of GaN high electron mobility transistors mainly comes from two sources, one is the free carriers from surface states, and the other is unintentional doping from the channel layer. ; and because of the heterostructure and polarization electric field between the barrier layer and the channel layer, the source of the two-dimensional electron gas is usually the former. Therefore, when the semiconductor device is in the off state, the carriers in the channel layer are trapped by the high electric field on the surface. When the semiconductor device is switched from the off state to the on state, the confined carriers in the channel layer 106 cannot be released in time (ie, the relaxation time is too long), resulting in a decrease in current, which is electromagnetic Scattering problem. In the embodiment of the present invention, since the nitride layer accommodates most of the free carriers from the surface state, the channel layer of the lower layer must be forced to absorb carriers from unintentional doping, thus avoiding the closed state of the channel layer. high electric field effects. In addition, the nitride layer 110 is cut off by the notch 112, so when the semiconductor device 10 is turned on, the nitride layer 110 does not participate in current conduction, so there is no electromagnetic scattering problem. In this way, the nitride layer 110 can withstand the high electric field of the surface state instead of the channel layer 116 to avoid the electromagnetic scattering problem of the semiconductor device 10 .

在一些实施例中,可以藉由图案化工艺来凹蚀氮化物层110及阻障层108,以形成凹口112。举例来说,上述图案化工艺可以包括光刻工艺(例如,光阻涂布(photoresistcoating)、软烘烤、遮罩对准(mask aligning)、曝光、曝光后烘烤、光阻显影、其他适当的工艺、或上述的组合)、蚀刻工艺(例如,湿式蚀刻工艺、干式蚀刻工艺、其他适当的工艺、或上述的组合)、其他适当的工艺、或上述的组合。在一些实施例中,可以藉由光刻工艺以在氮化物层110上形成具有对应于凹口112的开口的图案化光阻层(未绘示),接着可以进行蚀刻工艺来去除上述图案化光阻层的开口所露出的部分氮化物层110及阻障层108,以在氮化物层110及阻障层108中形成凹口112。然后,可以通过例如灰化或湿式剥除等工艺移除图案化光阻层。In some embodiments, the nitride layer 110 and the barrier layer 108 may be etched back through a patterning process to form the recess 112 . For example, the patterning process described above may include a photolithography process (eg, photoresist coating, soft bake, mask aligning, exposure, post exposure bake, photoresist development, other suitable process, or a combination of the above), an etching process (eg, a wet etch process, a dry etch process, other suitable processes, or a combination of the above), other suitable processes, or a combination of the above. In some embodiments, a patterned photoresist layer (not shown) having openings corresponding to the notches 112 may be formed on the nitride layer 110 by a photolithography process, and then an etching process may be performed to remove the patterning Parts of the nitride layer 110 and the barrier layer 108 are exposed by the openings of the photoresist layer to form recesses 112 in the nitride layer 110 and the barrier layer 108 . The patterned photoresist layer can then be removed by a process such as ashing or wet strip.

请参考图3,在氮化物层110上及凹口112中顺应性地形成间隔层114,因此间隔层114顺应性地形成于凹口112的底面和侧壁上。在一些实施例中,间隔层114的能隙(bandgap)大于后续形成的化合物半导体层116(没有绘示于图3中,但可参照下述关于图5的说明)。因此,间隔层114可以防止化合物半导体层116中的掺质扩散至半导体装置10的其他组件中,以避免导通电阻的提高及减少装置的电磁散射问题。此外,在后续用于形成化合物半导体层116的蚀刻工艺期间,间隔层114亦可以作为蚀刻停止层(etch stop layer,ESL)以停止蚀刻工艺。Referring to FIG. 3 , the spacer layer 114 is compliantly formed on the nitride layer 110 and in the recess 112 , so the spacer layer 114 is compliantly formed on the bottom surface and sidewalls of the recess 112 . In some embodiments, the bandgap of the spacer layer 114 is larger than that of the subsequently formed compound semiconductor layer 116 (not shown in FIG. 3 , but please refer to the description of FIG. 5 below). Therefore, the spacer layer 114 can prevent the dopants in the compound semiconductor layer 116 from diffusing into other components of the semiconductor device 10 to avoid an increase in on-resistance and reduce the electromagnetic scattering problem of the device. In addition, during the subsequent etching process for forming the compound semiconductor layer 116 , the spacer layer 114 may also serve as an etch stop layer (ESL) to stop the etching process.

间隔层114可由与相邻的膜层或部件(即,化合物半导体层116)中具有不同蚀刻选择性的材料形成。在一些实施例中,间隔层114为含铝氮化物。举例来说,间隔层114的材料可以为或包括AlN、AlGaN、AlInN、AlGaInN、其他适当的材料、或上述的组合。在一特定实施例中,上述间隔层114为AlN。此外,在一些实施例中,间隔层114的厚度可在约1纳米至约7纳米的范围,例如约2纳米。The spacer layer 114 may be formed of a material having a different etch selectivity than that in the adjacent film layer or feature (ie, the compound semiconductor layer 116 ). In some embodiments, the spacer layer 114 is an aluminum-containing nitride. For example, the material of the spacer layer 114 may be or include AlN, AlGaN, AlInN, AlGaInN, other suitable materials, or a combination thereof. In a specific embodiment, the spacer layer 114 described above is AlN. Furthermore, in some embodiments, the thickness of the spacer layer 114 may be in the range of about 1 nanometer to about 7 nanometers, eg, about 2 nanometers.

图4绘示出化合物半导体层116的形成。在一些实施例中,在间隔层114之上顺应性地形成化合物半导体层116,再以光刻蚀刻定义出图形,其中化合物半导体层具有上部116a及下部116b,其中化合物半导体层116的下部116b定义为化合物半导体层116填入凹口112中的部分,如图4所示。换句话说,化合物半导体层116对应于预定形成栅极电极118(没有绘示于图3中,但可参照下述关于图5的说明)的位置。化合物半导体层116可抑制栅极电极118下方的二维电子气(2DEG)的产生,以达成半导体装置的常关(normally-off)状态。FIG. 4 illustrates the formation of the compound semiconductor layer 116 . In some embodiments, the compound semiconductor layer 116 is conformally formed on the spacer layer 114, and then a pattern is defined by photolithography, wherein the compound semiconductor layer has an upper portion 116a and a lower portion 116b, wherein the lower portion 116b of the compound semiconductor layer 116 defines a pattern The portion filled in the recess 112 for the compound semiconductor layer 116 is shown in FIG. 4 . In other words, the compound semiconductor layer 116 corresponds to the position where the gate electrode 118 (not shown in FIG. 3 , but the description of FIG. 5 can be referred to below) is intended to be formed. The compound semiconductor layer 116 can suppress the generation of two-dimensional electron gas (2DEG) under the gate electrode 118 to achieve a normally-off state of the semiconductor device.

在一些实施例中,化合物半导体层116的材料可以是以p型掺杂或n型掺杂的氮化镓(GaN)。举例来说,化合物半导体层116的上部116a的厚度可以在约5至约100纳米的范围,例如约60纳米,并且化合物半导体层116的下部116b的厚度可以在约7至约72纳米的范围,例如约40纳米。在一些实施例中,化合物半导体层116的上部116a的掺杂浓度可与化合物半导体层116的下部116b的掺杂浓度不同。In some embodiments, the material of the compound semiconductor layer 116 may be p-type doped or n-type doped gallium nitride (GaN). For example, the thickness of the upper portion 116a of the compound semiconductor layer 116 may be in the range of about 5 to about 100 nanometers, such as about 60 nanometers, and the thickness of the lower portion 116b of the compound semiconductor layer 116 may be in the range of about 7 to about 72 nanometers, For example about 40 nanometers. In some embodiments, the doping concentration of the upper portion 116a of the compound semiconductor layer 116 may be different from the doping concentration of the lower portion 116b of the compound semiconductor layer 116 .

在一些实施例中,可以藉由沉积工艺以及图案化工艺来形成化合物半导体层116。举例来说,可以藉由沉积工艺在间隔层114上形成沉积的材料层,其中部分的沉积的材料层填入凹口112中。在一些实施例中,图案化工艺包括在沉积的材料层上形成图案化遮罩层(未绘示),然后蚀刻沉积的材料层未被图案化遮罩层覆盖的部分,并且形成化合物半导体层116。In some embodiments, the compound semiconductor layer 116 may be formed by a deposition process and a patterning process. For example, a deposited material layer may be formed on the spacer layer 114 by a deposition process, wherein a portion of the deposited material layer fills the recess 112 . In some embodiments, the patterning process includes forming a patterned mask layer (not shown) on the deposited material layer, then etching portions of the deposited material layer not covered by the patterned mask layer, and forming a compound semiconductor layer 116.

在一些实施例中,沉积工艺可以包含有机金属化学气相沉积(MOCVD)、原子层沉积(ALD)、分子束磊晶(MBE)、液相磊晶(LPE)、类似的工艺或前述的组合。In some embodiments, the deposition process may include metal-organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), molecular beam epitaxy (MBE), liquid phase epitaxy (LPE), similar processes, or combinations of the foregoing.

在一些实施例中,图案化遮罩层可以是光阻,例如正型光阻或负型光阻。在另一些实施例中,图案化遮罩层可以是硬遮罩,例如氧化硅、氮化硅、氮氧化硅、碳化硅、氮碳化硅、类似的材料或前述的组合。在一些实施例中,可以藉由旋转涂布(spin-on coating)、物理气相沉积(physical vapor deposition,PVD)、化学气相沉积(chemical vapordeposition,CVD)、其他适当的工艺、或上述的组合来形成上述图案化遮罩层。In some embodiments, the patterned mask layer may be a photoresist, such as a positive type photoresist or a negative type photoresist. In other embodiments, the patterned mask layer may be a hard mask, such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon nitride carbide, similar materials, or combinations of the foregoing. In some embodiments, spin-on coating (spin-on coating), physical vapor deposition (PVD), chemical vapor deposition (chemical vapor deposition, CVD), other suitable processes, or a combination of the above may be used. The above patterned mask layer is formed.

在一些实施例中,可以藉由干式蚀刻工艺、湿式蚀刻工艺、或前述的组合来蚀刻沉积的材料层。举例来说,沉积的材料层的蚀刻包含反应性离子蚀刻(reactive ion etch,RIE)、感应耦合式电浆(inductively-coupled plasma,ICP)蚀刻、中子束蚀刻(neutralbeam etch,NBE)、电子回旋共振式(electron cyclotron resonance,ERC)蚀刻、其他适当的蚀刻工艺、或上述的组合。In some embodiments, the deposited material layer may be etched by a dry etch process, a wet etch process, or a combination of the foregoing. For example, the etching of the deposited material layer includes reactive ion etch (RIE), inductively-coupled plasma (ICP) etch, neutron beam etch (NBE), electron Electron cyclotron resonance (ERC) etching, other suitable etching processes, or a combination of the above.

在一些实施例中,化合物半导体层116的上部116a可以延伸至间隔层114位于凹口外的表面上,即化合物半导体层116在剖面示意图中具有T形形状,如图4所示。在另一些实施例中,化合物半导体层116的上部116a没有延伸至间隔层114位于凹口外的表面上,则化合物半导体层116在剖面示意图中具有矩形形状(未绘示)。在一些实施例中,化合物半导体层116的上表面可以是不平坦的。在一些实施例中,化合物半导体层116的上部116a延伸至间隔层114位于凹口外的表面上的长度可以是不对称的。In some embodiments, the upper portion 116a of the compound semiconductor layer 116 may extend to the surface of the spacer layer 114 outside the notch, that is, the compound semiconductor layer 116 has a T-shape in a schematic cross-sectional view, as shown in FIG. 4 . In other embodiments, the upper portion 116a of the compound semiconductor layer 116 does not extend to the surface of the spacer layer 114 outside the notch, and the compound semiconductor layer 116 has a rectangular shape (not shown) in the schematic cross-sectional view. In some embodiments, the upper surface of the compound semiconductor layer 116 may be uneven. In some embodiments, the length of the upper portion 116a of the compound semiconductor layer 116 extending to the surface of the spacer layer 114 outside the notch may be asymmetric.

在一些实施例中,化合物半导体层116的形成更包含使用掺质进行掺杂,以提升半导体装置10的开关电压(Vth)。举例来说,对化合物半导体层116的材料为p型掺杂的氮化镓而言,掺质可以包含镁(Mg)。一般而言,在半导体装置的工艺期间,通常会进行多次热处理,使得掺质热扩散至化合物半导体层之外,进入其他组件,进而影响半导体装置的性能,例如提高导通电阻及造成装置的电磁散射问题。然而,在本发明实施例中,由于化合物半导体层116藉由间隔层114与其他组件隔开,因此可防止化合物半导体层116中的掺质热扩散进入其他组件。如此一来,即可避免导通电阻的提高及装置的电磁散射问题,提升半导体装置10的性能。In some embodiments, the formation of the compound semiconductor layer 116 further includes doping with a dopant to increase the switching voltage (V th ) of the semiconductor device 10 . For example, when the material of the compound semiconductor layer 116 is p-type doped gallium nitride, the dopant may include magnesium (Mg). Generally speaking, during the process of a semiconductor device, multiple heat treatments are usually performed, so that the dopants are thermally diffused out of the compound semiconductor layer and into other components, thereby affecting the performance of the semiconductor device, such as increasing the on-resistance and causing the device’s breakdown. Electromagnetic scattering problem. However, in the embodiment of the present invention, since the compound semiconductor layer 116 is separated from other components by the spacer layer 114 , the thermal diffusion of dopants in the compound semiconductor layer 116 can be prevented from entering other components. In this way, the problem of increasing on-resistance and electromagnetic scattering of the device can be avoided, and the performance of the semiconductor device 10 can be improved.

此外,在本发明实施例中,由于位于栅极电极118预定位置下方的阻障层108具有减小的厚度W2(参见图5),此减小的厚度W2有助于提高半导体装置10的开关电压。换句话说,在相同的开关电压下,化合物半导体层116可具有较小的掺质浓度,降低了掺质热扩散至其他组件的影响,这也有助于降低装置的电磁散射问题。In addition, in the embodiments of the present invention, since the barrier layer 108 under the predetermined position of the gate electrode 118 has a reduced thickness W2 (see FIG. 5 ), the reduced thickness W2 helps to improve the switching of the semiconductor device 10 Voltage. In other words, under the same switching voltage, the compound semiconductor layer 116 can have a smaller dopant concentration, which reduces the influence of thermal diffusion of the dopant to other components, which also helps to reduce the electromagnetic scattering problem of the device.

请参考图5,在化合物半导体层116上形成栅极电极118。在一些实施例中,栅极电极118的材料可以为或包括导电材料,例如金属、金属硅化物、半导体材料、或上述的组合。举例来说,金属可以是金(Au)、镍(Ni)、铂(Pt)、钯(Pd)、铱(Ir)、钛(Ti)、铬(Cr)、钨(W)、铝(Al)、铜(Cu)、氮化钛(TiN)、类似材料、上述的合金、上述的多层结构、或上述的组合,并且半导体材料可以是多晶硅(poly-Si)或多晶锗(poly-Ge)。在一些实施例中,形成栅极电极118的步骤可包含在基板100之上全面地沉积用于栅极电极118的导电材料层(未显示),以及对导电材料层执行图案化工艺,以形成栅极电极118于化合物半导体层116之上。形成导电材料的沉积工艺可以是原子层沉积(ALD)、化学气相沉积(CVD)、物理气相沉积(PVD)(例如,溅镀)、前述的组合、或类似工艺。Referring to FIG. 5 , a gate electrode 118 is formed on the compound semiconductor layer 116 . In some embodiments, the material of the gate electrode 118 may be or include a conductive material, such as a metal, a metal silicide, a semiconductor material, or a combination thereof. For example, the metal may be gold (Au), nickel (Ni), platinum (Pt), palladium (Pd), iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W), aluminum (Al) ), copper (Cu), titanium nitride (TiN), similar materials, alloys of the above, multilayer structures of the above, or a combination of the above, and the semiconductor material may be polycrystalline silicon (poly-Si) or polycrystalline germanium (poly- Ge). In some embodiments, the step of forming the gate electrode 118 may include fully depositing a layer of conductive material (not shown) for the gate electrode 118 over the substrate 100, and performing a patterning process on the layer of conductive material to form The gate electrode 118 is on the compound semiconductor layer 116 . The deposition process to form the conductive material may be atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD) (eg, sputtering), a combination of the foregoing, or the like.

接着,请参考图6,在栅极电极118的两侧设置一对源极/漏极电极120,其中此对源极/漏极电极120延伸穿过间隔层114、氮化物层110、及一部分的阻障层108。在一些实施例中,此对源极/漏极120的形成包含执行图案化工艺,以在化合物半导体层116的两侧凹蚀间隔层114、氮化物层110、及一部分的阻障层108,形成穿过间隔层114及氮化物层110并延伸至阻障层108的一对凹口,然后在此对凹口上方沉积导电材料,并对沉积的导电材料执行图案化工艺,以在预期的位置形成此对源极/漏极120。用于形成此对源极/漏极电极120的沉积工艺及材料可以类似于栅极电极118的沉积工艺及材料,于此不再赘述。6, a pair of source/drain electrodes 120 are disposed on both sides of the gate electrode 118, wherein the pair of source/drain electrodes 120 extend through the spacer layer 114, the nitride layer 110, and a portion the barrier layer 108. In some embodiments, the formation of the source/drain 120 pair includes performing a patterning process to etch the spacer layer 114 , the nitride layer 110 , and a portion of the barrier layer 108 on both sides of the compound semiconductor layer 116 , A pair of notches is formed through the spacer layer 114 and the nitride layer 110 and extending to the barrier layer 108, then a conductive material is deposited over the pair of notches, and a patterning process is performed on the deposited conductive material to achieve the desired The location forms the pair of source/drain 120 . The deposition process and materials used to form the pair of source/drain electrodes 120 may be similar to the deposition process and materials of the gate electrode 118 and will not be repeated here.

虽然在图6绘示的实施例中,此对源极/漏极120位于间隔层114上,穿过间隔层114及氮化物层110并延伸至阻障层108,但本发明不限于此,可以依据实际产品所需的特性调整此对源极/漏极120延伸的深度。举例来说,此对源极/漏极120也可以穿过阻障层108并延伸至通道层106中。Although in the embodiment shown in FIG. 6, the source/drain pair 120 is located on the spacer layer 114, passes through the spacer layer 114 and the nitride layer 110 and extends to the barrier layer 108, but the invention is not limited thereto, The extension depth of the pair of source/drain 120 can be adjusted according to the characteristics required by the actual product. For example, the source/drain pair 120 may also extend through the barrier layer 108 and into the channel layer 106 .

虽然在此描述在不同的步骤中形成源极/漏极电极120和栅极电极118,但本发明不限于此。举例来说,可以在形成栅极电极118之前,先形成用于源极/漏极电极120的凹口,再藉由沉积工艺及图案化工艺来同时形成源极/漏极电极120和栅极电极118。并且,源极/漏极电极120和栅极电极118的形成可以独立地包含相同或不同的工艺和材料。此外,源极/漏极电极120和栅极电极118的形状不限于图式中的垂直侧壁,也可以是倾斜的侧壁或具有其他形貌。Although it is described herein that the source/drain electrodes 120 and the gate electrodes 118 are formed in different steps, the invention is not limited thereto. For example, before forming the gate electrode 118, a notch for the source/drain electrode 120 may be formed first, and then the source/drain electrode 120 and the gate electrode may be simultaneously formed by a deposition process and a patterning process electrode 118. Also, the formation of the source/drain electrodes 120 and the gate electrode 118 may independently comprise the same or different processes and materials. In addition, the shapes of the source/drain electrodes 120 and the gate electrodes 118 are not limited to the vertical sidewalls in the drawings, and may also be inclined sidewalls or have other topography.

如图6所示,半导体装置10包括设置于基板100之上的通道层106、设置于通道层106之上的阻障层108、及设置在阻障层108之上的氮化物层110。在一些实施例中,阻障层108具有范围在约10纳米至约60纳米的最大厚度W1。相较于一般高电子迁移率晶体管,半导体装置10具有较厚的阻障层108,因此可显著降低导通电阻(Ron)。此外,上述氮化物层110可以代替通道层116承受表面状态的高电场,进而避免半导体装置10的电磁散射问题。As shown in FIG. 6 , the semiconductor device 10 includes a channel layer 106 disposed on the substrate 100 , a barrier layer 108 disposed on the channel layer 106 , and a nitride layer 110 disposed on the barrier layer 108 . In some embodiments, barrier layer 108 has a maximum thickness W1 ranging from about 10 nanometers to about 60 nanometers. Compared with general high electron mobility transistors, the semiconductor device 10 has a thicker barrier layer 108, and thus can significantly reduce the on-resistance (R on ). In addition, the above-mentioned nitride layer 110 can withstand the high electric field of the surface state instead of the channel layer 116 , thereby avoiding the electromagnetic scattering problem of the semiconductor device 10 .

此半导体装置10亦包括具有上部116a及下部116b的化合物半导体层116,其中下部116b穿过氮化物层110及一部分的阻障层108。此外,半导体装置10亦包括顺应性地设置在化合物半导体层116的下部116b并延伸至氮化物层110上的间隔层114。上述间隔层114可以防止化合物半导体层116中的掺质扩散至半导体装置10的其他组件中,以避免导通电阻的提高及装置的电磁散射问题,进而提升半导体装置10的性能。The semiconductor device 10 also includes a compound semiconductor layer 116 having an upper portion 116a and a lower portion 116b , wherein the lower portion 116b passes through the nitride layer 110 and a portion of the barrier layer 108 . In addition, the semiconductor device 10 also includes a spacer layer 114 compliantly disposed on the lower portion 116 b of the compound semiconductor layer 116 and extending to the nitride layer 110 . The spacer layer 114 can prevent the dopants in the compound semiconductor layer 116 from diffusing into other components of the semiconductor device 10 , thereby avoiding the increase of on-resistance and the problem of electromagnetic scattering of the device, thereby improving the performance of the semiconductor device 10 .

上述半导体装置10更包括设置在化合物半导体层116之上的栅极电极118、以及设置在栅极电极118两侧的一对源极/漏极电极120,上述源极/漏极电极120延伸穿过间隔层114、氮化物层110及至少一部分阻障层108。阻障层108在栅极电极118下方具有减小的厚度W2(参见图5),此减小的厚度W2有助于提高半导体装置10的开关电压(Vth)。换句话说,在相同的开关电压下,化合物半导体层116可具有较小的掺质浓度,降低了掺质热扩散至其他组件的影响,这也有助于降低装置的电磁散射问题。在一些实施例中,此减小的厚度W2范围在约5纳米至约15纳米。The semiconductor device 10 further includes a gate electrode 118 disposed on the compound semiconductor layer 116, and a pair of source/drain electrodes 120 disposed on both sides of the gate electrode 118, the source/drain electrodes 120 extending through through the spacer layer 114 , the nitride layer 110 and at least a portion of the barrier layer 108 . The barrier layer 108 has a reduced thickness W2 (see FIG. 5 ) below the gate electrode 118 , which helps to increase the switching voltage (V th ) of the semiconductor device 10 . In other words, under the same switching voltage, the compound semiconductor layer 116 can have a smaller dopant concentration, which reduces the influence of thermal diffusion of the dopant to other components, which also helps to reduce the electromagnetic scattering problem of the device. In some embodiments, this reduced thickness W2 ranges from about 5 nanometers to about 15 nanometers.

在一些实施例中,半导体装置10更包括位于基板100及通道106之间的缓冲层104,此缓冲层104可减缓后续形成于缓冲层104上方的通道层106的应变(strain),以防止缺陷形成于上方的通道层106中。In some embodiments, the semiconductor device 10 further includes a buffer layer 104 between the substrate 100 and the channel 106 , and the buffer layer 104 can relieve the strain of the channel layer 106 subsequently formed above the buffer layer 104 to prevent defects is formed in the channel layer 106 above.

综上所述,本发明实施例的半导体装置包括设置在在阻障层之上的氮化物层,藉由此氮化物层可以消除半导体装置的电磁散射(dispersion)问题。如此一来,即可解除导通电阻(Ron)、开关电压(Vth)、以及电磁散射三方抵换的僵局。To sum up, the semiconductor device according to the embodiment of the present invention includes the nitride layer disposed on the barrier layer, and the nitride layer can eliminate the electromagnetic dispersion problem of the semiconductor device. In this way, the deadlock of three-way trade-off between on-resistance (R on ), switching voltage (V th ), and electromagnetic scattering can be resolved.

以上概略说明了本发明数个实施例的特征,使所属技术领域内具有通常知识者对于本发明可更为容易理解。任何所属技术领域内具有通常知识者应了解到本说明书可轻易作为其他结构或工艺的变更或设计基础,以进行相同于本发明实施例的目的及/或获得相同的优点。任何所属技术领域内具有通常知识者亦可理解与上述等同的结构或工艺并未脱离本发明的精神及保护范围内,且可在不脱离本发明的精神及范围内,当可作更动、替代与润饰。The features of several embodiments of the present invention are briefly described above, so that those skilled in the art can more easily understand the present invention. Anyone with ordinary knowledge in the art should understand that this specification can easily be used as a basis for modification or design of other structures or processes to achieve the same purpose and/or obtain the same advantages of the embodiments of the present invention. Any person with ordinary knowledge in the technical field can also understand that the structures or processes equivalent to the above do not depart from the spirit and protection scope of the present invention, and can be modified without departing from the spirit and scope of the present invention. Substitution and Retouch.

Claims (22)

1.一种半导体装置,其特征在于,所述装置包括:1. A semiconductor device, characterized in that the device comprises: 一通道层,设置于一基板之上;a channel layer disposed on a substrate; 一阻障层,设置于所述通道层之上;a barrier layer, disposed on the channel layer; 一氮化物层,设置于所述阻障层之上;a nitride layer disposed on the barrier layer; 一化合物半导体层,具有一上部及一下部,其中所述下部穿过所述氮化物层及一部分的所述阻障层;a compound semiconductor layer having an upper portion and a lower portion, wherein the lower portion passes through the nitride layer and a portion of the barrier layer; 一间隔层,顺应性地设置于一部分的阻障层上并延伸至所述氮化物层上;a spacer layer conformably disposed on a portion of the barrier layer and extending onto the nitride layer; 一栅极电极,设置于所述化合物半导体层之上;以及a gate electrode disposed on the compound semiconductor layer; and 一对源极/漏极电极,设置于所述栅极电极两侧,其中所述对源极/漏极电极延伸穿过所述间隔层、所述氮化物层及至少一部分的所述阻障层。a pair of source/drain electrodes disposed on both sides of the gate electrode, wherein the pair of source/drain electrodes extend through the spacer layer, the nitride layer and at least a portion of the barrier Floor. 2.根据权利要求1所述的半导体装置,其特征在于,所述氮化物层包括氮化镓、氮化铝镓、氮化铝铟、氮化铝铟镓、氮化铟镓、或任意组合。2. The semiconductor device of claim 1, wherein the nitride layer comprises gallium nitride, aluminum gallium nitride, aluminum indium nitride, aluminum indium gallium nitride, indium gallium nitride, or any combination thereof . 3.根据权利要求1所述的半导体装置,其特征在于,所述氮化物层的厚度范围在1纳米至20纳米。3 . The semiconductor device of claim 1 , wherein the thickness of the nitride layer ranges from 1 nm to 20 nm. 4 . 4.根据权利要求1所述的半导体装置,其特征在于,所述间隔层具有较所述化合物半导体层及所述氮化物层大的能隙。4. The semiconductor device according to claim 1, wherein the spacer layer has a larger energy gap than the compound semiconductor layer and the nitride layer. 5.根据权利要求4所述的半导体装置,其特征在于,所述间隔层包括氮化铝、氮化铝镓、氮化铝铟、氮化铝铟镓、或任意组合。5. The semiconductor device of claim 4, wherein the spacer layer comprises aluminum nitride, aluminum gallium nitride, aluminum indium nitride, aluminum indium gallium nitride, or any combination thereof. 6.根据权利要求1所述的半导体装置,其特征在于,所述间隔层的厚度范围在1纳米至7纳米。6 . The semiconductor device of claim 1 , wherein the thickness of the spacer layer ranges from 1 nm to 7 nm. 7 . 7.根据权利要求1所述的半导体装置,其特征在于,所述对源极/漏极电极穿过所述阻障层且延伸至所述通道层。7 . The semiconductor device of claim 1 , wherein the pair of source/drain electrodes passes through the barrier layer and extends to the channel layer. 8 . 8.根据权利要求1所述的半导体装置,其特征在于,所述阻障层具有一最大厚度,其中所述最大厚度范围在10纳米至60纳米。8 . The semiconductor device of claim 1 , wherein the barrier layer has a maximum thickness, wherein the maximum thickness ranges from 10 nanometers to 60 nanometers. 9 . 9.根据权利要求8所述的半导体装置,其特征在于,所述阻障层在所述栅极电极下方具有一厚度,所述厚度范围在5纳米至15纳米。9 . The semiconductor device of claim 8 , wherein the barrier layer has a thickness below the gate electrode, and the thickness ranges from 5 nanometers to 15 nanometers. 10 . 10.根据权利要求1所述的半导体装置,其特征在于,还包括一缓冲层,位于所述基板及所述通道层之间。10. The semiconductor device of claim 1, further comprising a buffer layer located between the substrate and the channel layer. 11.根据权利要求1所述的半导体装置,其特征在于,所述化合物半导体层的上部及下部具有不同的掺杂浓度。11 . The semiconductor device of claim 1 , wherein an upper portion and a lower portion of the compound semiconductor layer have different doping concentrations. 12 . 12.一种半导体装置的制造方法,其特征在于,所述方法包括:12. A method of manufacturing a semiconductor device, wherein the method comprises: 在一基板之上形成一通道层;forming a channel layer on a substrate; 在所述通道层之上形成一阻障层;forming a barrier layer over the channel layer; 在所述阻障层之上形成一氮化物层;forming a nitride layer over the barrier layer; 凹蚀所述氮化物层及所述阻障层以形成一凹口,其中所述凹口穿过所述氮化物层及一部分的所述阻障层;etching the nitride layer and the barrier layer to form a notch, wherein the notch passes through the nitride layer and a portion of the barrier layer; 在所述氮化物层上、且于所述凹口中顺应性地形成一间隔层;conformally forming a spacer layer on the nitride layer and in the recess; 在所述间隔层之上形成一化合物半导体层,所述化合物半导体层具有一上部及一下部,其中所述化合物半导体层的下部填入所述凹口中;forming a compound semiconductor layer on the spacer layer, the compound semiconductor layer has an upper portion and a lower portion, wherein the lower portion of the compound semiconductor layer fills the recess; 在所述化合物半导体层之上形成一栅极电极;以及forming a gate electrode over the compound semiconductor layer; and 在所述栅极电极两侧形成一对源极/漏极电极,其中所述对源极/漏极电极延伸穿过所述间隔层、所述氮化物层及至少一部分的所述阻障层。A pair of source/drain electrodes are formed on both sides of the gate electrode, wherein the pair of source/drain electrodes extend through the spacer layer, the nitride layer and at least a portion of the barrier layer . 13.根据权利要求12所述的半导体装置的制造方法,其特征在于,所述氮化物层包括氮化镓、氮化铝镓、氮化铝铟、氮化铝铟镓、氮化铟镓、或任意组合。13. The method for manufacturing a semiconductor device according to claim 12, wherein the nitride layer comprises gallium nitride, aluminum gallium nitride, aluminum indium nitride, aluminum indium gallium nitride, indium gallium nitride, or any combination. 14.根据权利要求12所述的半导体装置的制造方法,其特征在于,所述氮化物层的厚度范围在1纳米至20纳米。14. The method for manufacturing a semiconductor device according to claim 12, wherein the thickness of the nitride layer ranges from 1 nanometer to 20 nanometers. 15.根据权利要求12所述的半导体装置的制造方法,其特征在于,所述间隔层具有较所述化合物半导体层及所述氮化物层大的能隙。15. The method of claim 12, wherein the spacer layer has a larger energy gap than the compound semiconductor layer and the nitride layer. 16.根据权利要求15所述的半导体装置的制造方法,其特征在于,所述间隔层包括氮化铝、氮化铝镓、氮化铝铟、氮化铝铟镓、或任意组合。16. The method of claim 15, wherein the spacer layer comprises aluminum nitride, aluminum gallium nitride, aluminum indium nitride, aluminum indium gallium nitride, or any combination thereof. 17.根据权利要求12所述的半导体装置的制造方法,其特征在于,所述间隔层的厚度范围在1纳米至7纳米。17 . The method for manufacturing a semiconductor device according to claim 12 , wherein the thickness of the spacer layer ranges from 1 nm to 7 nm. 18 . 18.根据权利要求12所述的半导体装置的制造方法,其特征在于,所述对源极/漏极电极穿过所述阻障层且延伸至所述通道层。18 . The method of claim 12 , wherein the pair of source/drain electrodes passes through the barrier layer and extends to the channel layer. 19 . 19.根据权利要求12所述的半导体装置的制造方法,其特征在于,所述阻障层具有一最大厚度,其中所述最大厚度范围在10纳米至60纳米。19 . The method of claim 12 , wherein the barrier layer has a maximum thickness, wherein the maximum thickness ranges from 10 nanometers to 60 nanometers. 20 . 20.根据权利要求19所述的半导体装置的制造方法,其特征在于,所述阻障层在所述栅极电极下方具有一厚度,所述厚度范围在5纳米至15纳米。20 . The method of claim 19 , wherein the barrier layer has a thickness below the gate electrode, and the thickness ranges from 5 nm to 15 nm. 21 . 21.根据权利要求12所述的半导体装置的制造方法,其特征在于,还包括在所述基板及所述通道层之间形成一缓冲层。21. The method of claim 12, further comprising forming a buffer layer between the substrate and the channel layer. 22.根据权利要求12所述的半导体装置的制造方法,其特征在于,所述化合物半导体层的上部及下部具有不同的掺杂浓度。22. The method of manufacturing a semiconductor device according to claim 12, wherein an upper portion and a lower portion of the compound semiconductor layer have different doping concentrations.
CN201910175488.4A 2019-03-08 2019-03-08 Semiconductor device and method for manufacturing the same Active CN111668302B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910175488.4A CN111668302B (en) 2019-03-08 2019-03-08 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910175488.4A CN111668302B (en) 2019-03-08 2019-03-08 Semiconductor device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
CN111668302A true CN111668302A (en) 2020-09-15
CN111668302B CN111668302B (en) 2023-03-14

Family

ID=72382088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910175488.4A Active CN111668302B (en) 2019-03-08 2019-03-08 Semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
CN (1) CN111668302B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100025730A1 (en) * 2008-07-31 2010-02-04 Cree, Inc. Normally-off Semiconductor Devices and Methods of Fabricating the Same
US20140001478A1 (en) * 2012-06-27 2014-01-02 Triquint Semiconductor, Inc. Group iii-nitride transistor using a regrown structure
JP2015073002A (en) * 2013-10-02 2015-04-16 トランスフォーム・ジャパン株式会社 Compound semiconductor device and manufacturing method of the same
US20170092752A1 (en) * 2015-04-10 2017-03-30 Cambridge Electronics, Inc. Iii-nitride semiconductors with recess regions and methods of manufacture
US20180308953A1 (en) * 2014-04-30 2018-10-25 Taiwan Semiconductor Manufacturing Co., Ltd. Sidewall passivation for hemt devices
CN108933177A (en) * 2017-05-26 2018-12-04 瑞萨电子株式会社 The method and semiconductor devices of manufacturing semiconductor devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100025730A1 (en) * 2008-07-31 2010-02-04 Cree, Inc. Normally-off Semiconductor Devices and Methods of Fabricating the Same
US20140001478A1 (en) * 2012-06-27 2014-01-02 Triquint Semiconductor, Inc. Group iii-nitride transistor using a regrown structure
JP2015073002A (en) * 2013-10-02 2015-04-16 トランスフォーム・ジャパン株式会社 Compound semiconductor device and manufacturing method of the same
US20180308953A1 (en) * 2014-04-30 2018-10-25 Taiwan Semiconductor Manufacturing Co., Ltd. Sidewall passivation for hemt devices
US20170092752A1 (en) * 2015-04-10 2017-03-30 Cambridge Electronics, Inc. Iii-nitride semiconductors with recess regions and methods of manufacture
CN108933177A (en) * 2017-05-26 2018-12-04 瑞萨电子株式会社 The method and semiconductor devices of manufacturing semiconductor devices

Also Published As

Publication number Publication date
CN111668302B (en) 2023-03-14

Similar Documents

Publication Publication Date Title
JP7065370B2 (en) Semiconductor devices and their manufacturing methods
US9543391B2 (en) High electron mobility transistor having reduced threshold voltage variation and method of manufacturing the same
CN111509041B (en) Semiconductor device and method for manufacturing the same
US11335797B2 (en) Semiconductor devices and methods for fabricating the same
CN109037323A (en) Normally-off HEMT transistor and its manufacturing method with the 2DEG channel selectively produced
CN113016074A (en) Semiconductor device and method for manufacturing the same
US10700189B1 (en) Semiconductor devices and methods for forming the same
TW201301400A (en) Transistor element and method of manufacturing same
US10804385B2 (en) Semiconductor devices with fluorinated region and methods for forming the same
TWI676290B (en) High electron mobility transistor and method for forming the same
WO2021189182A1 (en) Semiconductor device and manufacturing method therefor
CN111048411A (en) Manufacturing method of semiconductor device
CN113287200B (en) Semiconductor device and method for manufacturing the same
CN115132838A (en) Semiconductor structure
TW202015241A (en) Semiconductor devices and methods for forming same
US11127846B2 (en) High electron mobility transistor devices and methods for forming the same
TWI686873B (en) Semiconductor devices and methods for fabricating the same
CN114975595A (en) Semiconductor device with a plurality of transistors
CN110875383B (en) Semiconductor device and method for manufacturing the same
TWI726282B (en) Semiconductor devices and methods for fabricating the same
US20240222423A1 (en) GaN-BASED SEMICONDUCTOR DEVICE WITH REDUCED LEAKAGE CURRENT AND METHOD FOR MANUFACTURING THE SAME
CN111668302B (en) Semiconductor device and method for manufacturing the same
TWI740058B (en) Semiconductor devices and methods for forming same
CN111092118B (en) Semiconductor device and method for manufacturing the same
CN111987141A (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant