[go: up one dir, main page]

CN111664834A - Method/system for estimating elevation position of indoor moving body, storage medium, and apparatus - Google Patents

Method/system for estimating elevation position of indoor moving body, storage medium, and apparatus Download PDF

Info

Publication number
CN111664834A
CN111664834A CN201910172168.3A CN201910172168A CN111664834A CN 111664834 A CN111664834 A CN 111664834A CN 201910172168 A CN201910172168 A CN 201910172168A CN 111664834 A CN111664834 A CN 111664834A
Authority
CN
China
Prior art keywords
current
data
motion state
state
noise covariance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910172168.3A
Other languages
Chinese (zh)
Inventor
张榜
徐正蓺
魏建明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Advanced Research Institute of CAS
University of Chinese Academy of Sciences
Original Assignee
Shanghai Advanced Research Institute of CAS
University of Chinese Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Advanced Research Institute of CAS, University of Chinese Academy of Sciences filed Critical Shanghai Advanced Research Institute of CAS
Priority to CN201910172168.3A priority Critical patent/CN111664834A/en
Publication of CN111664834A publication Critical patent/CN111664834A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • G01C5/06Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels by using barometric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)

Abstract

本发明公开了室内移动体的高程估算方法/系统、存储介质及设备,利用采集的状态数据对被测移动体的状态进行判断识别,根据判断识别结果估算被测移动体的高程位置,有利于提高估算精度;且当被测移动体被识别判断为非平面运动时,将状态数据中的各种数据结合扩展卡尔曼算法融合估算被测移动体的高程位置进行估算,能够进一步提高室内被测移动体的高程位置估算精度。

Figure 201910172168

The invention discloses an elevation estimation method/system, storage medium and equipment for an indoor moving body. The collected state data is used to judge and identify the state of the detected moving body, and the elevation position of the detected moving body is estimated according to the judgment and identification result, which is beneficial to Improve the estimation accuracy; and when the measured moving body is identified and judged to be non-planar motion, the various data in the state data are combined with the extended Kalman algorithm to estimate the elevation position of the measured moving body, which can further improve the indoor measured Elevation position estimation accuracy for moving objects.

Figure 201910172168

Description

室内移动体的高程位置估算方法/系统、存储介质及设备Elevation position estimation method/system, storage medium and device for indoor moving objects

技术领域technical field

本发明涉及一种高程位置估算方法,尤其涉及一种室内移动单元的高程位置估算方法。The present invention relates to a method for estimating an elevation position, in particular to a method for estimating an elevation position of an indoor mobile unit.

背景技术Background technique

在室内定位领域,竖直方向上的高度位置信息是实现三维空间定位的重要手段。目前,室内高度的估算方法主要由气压测高法和惯性积分法,均是通过采集室内移动单元(如人员)的传感器中的数据进行估算。其中,气压测高法是利用气压变化与高度的关系估计被测移动单元在运动中的高度位移,该方法虽然技术简单、可操作性高,但是由于气压和高度的关系十分复杂,在转化过程中会引起较大误差,且气压还会受到环境因素的影响,估算出的高程位置误差较大;而惯性积分法通过利用加速度在竖直方向上的分量计算竖直方向上的高度变化,该方法虽然在估算精度虽然有所提高,但长期使用后累计误差较大,会导致估算的高程位置精度随着运行时间的增加明显降低。In the field of indoor positioning, the height position information in the vertical direction is an important means to achieve three-dimensional spatial positioning. At present, the estimation methods of indoor height mainly include barometric altimetry and inertial integration, both of which are estimated by collecting data from sensors of indoor mobile units (such as personnel). Among them, the barometric altimetry method uses the relationship between the air pressure change and the height to estimate the height displacement of the mobile unit to be measured in motion. Although this method is simple in technology and high in operability, the relationship between air pressure and height is very complicated. In addition, the air pressure will be affected by environmental factors, and the estimated elevation position has a large error; while the inertial integration method calculates the vertical height change by using the component of the acceleration in the vertical direction. Although the estimation accuracy of the method has been improved, the accumulated error is large after long-term use, which will lead to a significant decrease in the estimated elevation position accuracy with the increase of running time.

发明内容SUMMARY OF THE INVENTION

鉴于上述现有技术的缺点,本发明的主要目的在于提供一种室内人员高程位置的估算方法,以提高对室内移动体的高程位置的估算精度。In view of the above-mentioned shortcomings of the prior art, the main purpose of the present invention is to provide a method for estimating the elevation position of an indoor person, so as to improve the estimation accuracy of the elevation position of an indoor moving body.

为实现上述目的及其他相关目的,本发明技术方案如下:For achieving the above-mentioned purpose and other related purposes, the technical scheme of the present invention is as follows:

一种室内移动体的高程位置计算方法,包括:A method for calculating the elevation position of an indoor moving body, comprising:

以一指定频率实时采集被测移动体的状态数据,所述状态数据至少包括气压数据和竖直方向上的加速度数据;Collect real-time state data of the moving object under test at a specified frequency, the state data at least include air pressure data and acceleration data in the vertical direction;

将所述加速度数据在竖直方向上的加速度分量数据和所述状态数据中的其余数据按时序平均分割形成若干指定时长的第一子数据集;dividing the acceleration component data in the vertical direction of the acceleration data and the remaining data in the state data according to time series to form a first sub-data set of several specified durations;

将所述被测移动体在当前所述指定时长内的所述第一子数据集输入预先生成的运动状态识别分类器,并根据所述第一子数据集判定识别所述被测移动体的运动状态处于平地运动状态和非平地运动状态中的哪一种状态,Input the first sub-data set of the moving object under test within the current specified time period into a pre-generated motion state recognition classifier, and determine the identification of the moving object under test according to the first sub-data set. Which state of the motion state is the flat motion state and the non-flat motion state?

若所述被测移动体处于所述平地运动状态,则当前所述指定时长对应的当前输出高度等于前一所述指定时长对应的前一输出高度,If the moving object to be tested is in the flat ground motion state, the current output height corresponding to the current specified duration is equal to the previous output height corresponding to the previous specified duration,

若所述被测移动体处于所述非平地运动状态,则通过扩展卡尔曼滤波法融合所有所述第一子数据估算所述当前输出高度。If the measured moving body is in the non-flat motion state, the current output height is estimated by fusing all the first sub-data through an extended Kalman filter method.

可选的,所述运动状态识别分类器识别所述被测移动体运动状态的方法包括:Optionally, the method for identifying the motion state of the moving body under test by the motion state recognition classifier includes:

提取所述第一子数据集的分类特征,extracting categorical features of the first sub-data set,

根据每类所述分类特征识别所述被测移动体的运动状态。The motion state of the tested moving body is identified according to the classification feature of each category.

可选的,所述运动状态识别分类器的训练方法包括:Optionally, the training method of the motion state recognition classifier includes:

以所述指定频率采集被测移动体在所述平地运动状态和所述非平地运动状态的所述状态数据作为训练数据,The state data of the moving object under test in the flat ground motion state and the non-flat ground motion state are collected at the specified frequency as training data,

将训练数据中的所述加速度数据在竖直分量的加速度分量数据和所述训练数据中的其余数据按时序平均分割形成若干所述指定时长的第二子数据集;Dividing the acceleration data in the training data, the acceleration component data of the vertical component and the rest of the data in the training data, evenly in time series to form a plurality of second sub-data sets of the specified duration;

提取各所述第二子数据集的所述分类特征,形成训练样本;extracting the classification features of each of the second sub-data sets to form training samples;

将所述训练样本输入一支持向量机模型中进行训练,优化所述支持向量机模型的参数,使经参数优化的所述支持向量机模型形成所述运动状态识别分类器。The training samples are input into a support vector machine model for training, the parameters of the support vector machine model are optimized, and the parameter-optimized support vector machine model forms the motion state recognition classifier.

可选的,所述分类特征包括竖直方向加速度均值、竖直方向加速度方差、气压差及气压方差。Optionally, the classification features include the mean value of acceleration in the vertical direction, the variance of the acceleration in the vertical direction, the difference in air pressure, and the variance in air pressure.

可选的,所述平地运动的状态包括静止、走和慢跑,所述非平地运动状态包括上楼和下楼。Optionally, the state of the flat ground movement includes stillness, walking and jogging, and the non-flat ground movement state includes upstairs and downstairs.

可选的,通过扩展卡尔曼滤波法融合所述第一子数据集估算所述当前输出高度值的方法包括:Optionally, the method for estimating the current output height value by fusing the first sub-data set with the extended Kalman filter method includes:

通过所述竖直方向的加速度分量数据构建一系统状态方程,计算当前先验高度;A system state equation is constructed by using the acceleration component data in the vertical direction, and the current prior height is calculated;

根据所述竖直方向的加速度分量数据和前一后验噪声协方差矩阵构建先验噪声协方差矩阵计算公式,计算当前先验噪声协方差矩阵;Construct a priori noise covariance matrix calculation formula according to the acceleration component data in the vertical direction and the previous a posteriori noise covariance matrix, and calculate the current priori noise covariance matrix;

通过所述气压数据构建一系统测量方程,计算当前测量高度;Construct a system measurement equation through the air pressure data to calculate the current measurement altitude;

根据所述先验噪声协方差矩阵构建卡尔曼增益计算式,计算当前卡尔曼增益;Build a Kalman gain calculation formula according to the prior noise covariance matrix, and calculate the current Kalman gain;

根据所述当前先验高度、所述当前测量高度和所述当前卡尔曼增益构建当前输出高度融合计算方程,计算所述当前输出高度;Construct a current output height fusion calculation equation according to the current prior height, the current measured height and the current Kalman gain, and calculate the current output height;

根据所述当前卡尔曼增益更新所述当前先验噪声协方差矩阵获得当前后验噪声协方差矩阵。The current a priori noise covariance matrix is obtained by updating the current prior noise covariance matrix according to the current Kalman gain.

可选的,所述系统状态方程为:Optionally, the system state equation is:

Figure BDA0001988427790000021
Figure BDA0001988427790000021

其中,i是指当前所述指定时长,i-1是指前一所述指定时长,

Figure BDA0001988427790000022
是当前先验高度,
Figure BDA0001988427790000023
是前一所述指定时长对应的所述前一输出高度,
Figure BDA0001988427790000031
是相对高度计算函数,所述高度计算函数中的变量sai=[a1,a2,…,an]T,a1,a2,…,an是指当前所述指定时长内所述第一子数据集中按时序排列的所述竖直方向上的加速度数据,表n示当前所述指定时长内采集所述竖直方向上的加速度数据的总次数,a1表示当前所述指定时长内的第一个所述竖直方向上的加速度数据;an表示当前所述指定时长内的最后一个所述竖直方向上的加速度数据;Among them, i refers to the current specified duration, i-1 refers to the previous specified duration,
Figure BDA0001988427790000022
is the current prior height,
Figure BDA0001988427790000023
is the previous output height corresponding to the previous specified duration,
Figure BDA0001988427790000031
is the relative height calculation function, the variables sa i =[a 1 ,a 2 ,...,a n ] T in the height calculation function, a 1 ,a 2 ,...,a n refers to the The acceleration data in the vertical direction arranged in time series in the first sub-data set, n represents the total number of times the acceleration data in the vertical direction is collected within the current specified time period, and a 1 represents the current specified time period. the first acceleration data in the vertical direction within the duration; an represents the last acceleration data in the vertical direction within the current specified duration;

所述先验噪声协方差矩阵计算公式为:The calculation formula of the prior noise covariance matrix is:

Figure BDA0001988427790000032
Figure BDA0001988427790000032

其中,

Figure BDA0001988427790000033
是当前所述指定时长对应的当前先验噪声协方差矩阵,
Figure BDA0001988427790000034
是前一所述指定时长对应的后验噪声协方差矩阵,
Figure BDA0001988427790000035
是系统状态方程中所述相对高度计算函数
Figure BDA0001988427790000036
的雅可比矩阵,
Figure BDA0001988427790000037
Figure BDA0001988427790000038
Figure BDA0001988427790000039
的转置矩阵,Q是过程噪声协方差;in,
Figure BDA0001988427790000033
is the current prior noise covariance matrix corresponding to the current specified duration,
Figure BDA0001988427790000034
is the posterior noise covariance matrix corresponding to the specified duration described in the previous section,
Figure BDA0001988427790000035
is the relative height calculation function described in the system state equation
Figure BDA0001988427790000036
The Jacobian matrix of ,
Figure BDA0001988427790000037
Figure BDA0001988427790000038
Yes
Figure BDA0001988427790000039
The transpose matrix of , Q is the process noise covariance;

所述系统测量方程为:The system measurement equation is:

Figure BDA00019884277900000310
Figure BDA00019884277900000310

其中,

Figure BDA00019884277900000311
表示当前测量高度,Pi表示当前气压值,P1表示初始气压值,P0表示标准大气压;in,
Figure BDA00019884277900000311
represents the current measurement altitude, P i represents the current air pressure value, P 1 represents the initial air pressure value, and P 0 represents the standard atmospheric pressure;

当前卡尔曼增益计算式为:The current Kalman gain calculation formula is:

Figure BDA00019884277900000312
Figure BDA00019884277900000312

其中,Ki表示当前卡尔曼增益,RQ表示测量方差,

Figure BDA00019884277900000313
Figure BDA00019884277900000314
Figure BDA00019884277900000315
分别为加速度和气压计的噪声方差;where K i represents the current Kalman gain, R Q represents the measurement variance,
Figure BDA00019884277900000313
Figure BDA00019884277900000314
and
Figure BDA00019884277900000315
are the noise variances of the accelerometer and barometer, respectively;

当前输出高度融合计算方程为:The current output height fusion calculation equation is:

Figure BDA00019884277900000316
Figure BDA00019884277900000316

根据所述当前卡尔曼增益更新所述当前先验噪声协方差矩阵获得当前后验噪声协方差矩阵的公式为:The formula for updating the current prior noise covariance matrix to obtain the current posterior noise covariance matrix according to the current Kalman gain is:

Figure BDA00019884277900000317
Figure BDA00019884277900000317

一种室内移动体的高程位置估算系统,包括:An elevation position estimation system for an indoor moving body, comprising:

状态数据采集模块,其用于实时采集被测移动体的状态数据,所述状态数据至少包括气压数据和竖直方向上的加速度数据;a state data acquisition module, which is used for real-time acquisition of the state data of the moving object under test, the state data at least including air pressure data and acceleration data in the vertical direction;

数据预处理模块,用于将所述加速度数据在竖直方向上的加速度分量数据和所述状态数据中的其余数据按时序平均分割形成若干指定时长的第一子数据集;a data preprocessing module, configured to equally divide the acceleration component data in the vertical direction of the acceleration data and the remaining data in the state data according to time series to form a first sub-data set of several specified durations;

运动状态识别分类器,用于读取所述被测移动体在当前所述指定时长内的所述第一子数据集,并根据所述第一子数据集判定识别所述被测移动体的运动状态处于平地运动状态和非平地运动状态中的哪一种状态;The motion state recognition classifier is used to read the first sub-data set of the tested moving body within the current specified time period, and determine the identification of the tested moving body according to the first sub-data set. Which state of the motion state is in the flat ground motion state and the non-flat ground motion state;

输出高度计算模块,其用于根据运动状态识别分类器的识别结果计算当前所述指定时长对应的当前输出高度,An output height calculation module, which is used to calculate the current output height corresponding to the current specified duration according to the recognition result of the motion state recognition classifier,

若所述被测移动体处于所述平地运动状态,则所述输出高度计算模块输出前一所述指定时长对应的前一输出高度作为当前输出高度;If the measured moving body is in the flat ground motion state, the output height calculation module outputs the previous output height corresponding to the previous specified duration as the current output height;

若所述被测移动体处于所述非平地运动状态,则所述输出高度计算模块通过扩展卡尔曼滤波法融合所有所述第一子数据估算所述当前输出高度。If the moving object under test is in the non-flat motion state, the output height calculation module estimates the current output height by fusing all the first sub-data through an extended Kalman filter method.

可选的,所述运动状态识别分类器包括:Optionally, the motion state recognition classifier includes:

特征处理单元,所述特征处理单元用于提取所述第一子数据集的分类特征;a feature processing unit, the feature processing unit is used to extract the classification features of the first sub-data set;

状态判定单元,所述判定单元用于根据每类所述分类特征识别所述被测移动体的运动状态。A state determination unit, which is used for identifying the motion state of the moving object under test according to the classification feature of each type.

可选的,所述分类特征包括竖直方向加速度均值、竖直方向加速度方差、气压差及气压方差。Optionally, the classification features include the mean value of acceleration in the vertical direction, the variance of the acceleration in the vertical direction, the difference in air pressure, and the variance in air pressure.

可选的,所述平地运动的状态包括静止、走和慢跑,所述非平地运动状态包括上楼和下楼。Optionally, the state of the flat ground movement includes stillness, walking and jogging, and the non-flat ground movement state includes upstairs and downstairs.

可选的,所述输出高度计算模块包括:Optionally, the output height calculation module includes:

当前先验高度计算单元,其用于根据所述竖直方向的加速度分量数据计算当前先验高度;A current prior height calculation unit, configured to calculate the current prior height according to the acceleration component data in the vertical direction;

当前先验噪声协方差矩阵计算单元,其用于根据所述竖直方向的加速度分量数据及前一后验噪声协方差矩阵计算当前先验噪声协方差矩阵;A current priori noise covariance matrix calculation unit, configured to calculate the current priori noise covariance matrix according to the acceleration component data in the vertical direction and the previous a posteriori noise covariance matrix;

当前测量高度计算单元,其用于根据气压数据计算当前测量高度;The current measurement altitude calculation unit, which is used to calculate the current measurement altitude according to the air pressure data;

当前卡尔曼增益计算单元,其用于根据所述当前噪声协方差计算当前卡尔曼增益;A current Kalman gain calculation unit, configured to calculate the current Kalman gain according to the current noise covariance;

当前输出高度融合计算单元,其用于根据所述当前先验高度、所述当前测量高度和所述当前卡尔曼增益融合计算所述当前输出高度;A current output height fusion calculation unit, configured to fuse and calculate the current output height according to the current prior height, the current measured height and the current Kalman gain;

后验噪声协方差更新单元,其用于根据所述当前卡尔曼增益更新所述当前先验噪声协方差矩阵获得当前后验噪声协方差矩阵。A posteriori noise covariance updating unit, configured to update the current priori noise covariance matrix according to the current Kalman gain to obtain a current posteriori noise covariance matrix.

可选的,所述状态数据采集模块包括加速度计和气压计。Optionally, the state data acquisition module includes an accelerometer and a barometer.

一种存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一种所述的室内移动体的高程位置估算方法。A storage medium having a computer program stored thereon, when the program is executed by a processor, implements any one of the above-mentioned methods for estimating the elevation position of an indoor moving body.

一种设备,包括处理器及存储器,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器存储的计算机程序,以使所述设备执行上述任一种所述的室内移动体的高程位置估算方法。A device, comprising a processor and a memory, the memory is used to store a computer program, the processor is used to execute the computer program stored in the memory, so that the device executes any one of the above-mentioned indoor mobile objects. Elevation location estimation method.

本发明的室内移动体的高程估算方法/系统、存储介质及设备,利用采集的状态数据对被测移动体的状态进行判断识别,根据判断识别结果估算被测移动体的高程位置,有利于提高估算精度;且当被测移动体被识别判断为非平面运动时,将状态数据中的各种数据结合扩展卡尔曼算法融合估算被测移动体的高程位置进行估算,能够进一步提高室内被测移动体的高程位置估算精度。The method/system, storage medium and device for estimating the elevation of an indoor moving body of the present invention use the collected state data to judge and identify the state of the moving body under test, and estimate the elevation position of the moving body under test according to the judgment and identification result, which is beneficial to improve Estimation accuracy; and when the measured moving body is identified and judged to be non-planar motion, various data in the state data are combined with the extended Kalman algorithm to estimate the elevation position of the measured moving body, which can further improve the indoor measured movement. Elevation position estimation accuracy of the volume.

附图说明Description of drawings

图1显示为本发明的室内移动体的高程位置估算方法的流程图;FIG. 1 is a flow chart of the method for estimating the elevation position of an indoor moving body according to the present invention;

图2显示为本发明中通过扩展卡尔曼算法融合估算所述当前输出高度值的流程图;Fig. 2 shows the flow chart of estimating the current output height value by the extended Kalman algorithm fusion in the present invention;

图3显示为本发明的室内移动体的高程位置估算系统的网络结构图;Fig. 3 shows the network structure diagram of the elevation position estimation system of the indoor moving body of the present invention;

图4显示为本发明中输出高度计算模块的网络结构图。FIG. 4 is a network structure diagram of the output height calculation module in the present invention.

具体实施方式Detailed ways

为了使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明具体实施例作进一步的详细描述。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。In order to make the objectives, technical solutions and advantages of the present invention clearer, the specific embodiments of the present invention will be further described in detail below with reference to the accompanying drawings. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.

另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部内容。在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各项操作(或步骤)描述成顺序的处理,但是其中的许多操作可以被并行地、并发地或者同时实施。此外,各项操作的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。In addition, it should be noted that, for the convenience of description, the drawings only show some but not all of the contents related to the present invention. Before discussing the exemplary embodiments in greater detail, it should be mentioned that some exemplary embodiments are described as processes or methods depicted as flowcharts. Although a flowchart depicts various operations (or steps) as a sequential process, many of the operations may be performed in parallel, concurrently, or concurrently. Additionally, the order of operations can be rearranged. The process may be terminated when its operation is complete, but may also have additional steps not included in the figures. The processes may correspond to methods, functions, procedures, subroutines, subroutines, and the like.

参见图1,本发明提供的一种室内移动体的高程位置计算方法,包括:Referring to Fig. 1, a method for calculating the elevation position of an indoor moving body provided by the present invention includes:

步骤120,以一指定频率实时采集被测移动体的状态数据,所述状态数据至少包括气压数据和竖直方向上的加速度数据;Step 120, collect the state data of the moving object under test in real time at a specified frequency, and the state data at least include air pressure data and acceleration data in the vertical direction;

步骤140,数据预处理:将所述加速度数据在竖直方向上的加速度分量数据和所述状态数据中的其余数据按时序平均分割形成若干指定时长的第一子数据集;Step 140, data preprocessing: the acceleration component data of the acceleration data in the vertical direction and the rest of the data in the state data are evenly divided according to time series to form a first sub-data set of several specified durations;

步骤160,将所述被测移动体在当前所述指定时长内的所述第一子数据集输入预先生成的运动状态识别分类器,并根据所述第一子数据集判定识别所述被测移动体的运动状态处于平地运动状态和非平地运动状态中的哪一种状态,Step 160: Input the first sub-data set of the moving object under test in the current specified time period into a pre-generated motion state recognition classifier, and determine and identify the tested moving body according to the first sub-data set. Which state of the motion state of the moving body is in the flat motion state and the non-flat motion state?

步骤180B,若所述被测移动体处于所述平地运动状态,则当前所述指定时长对应的当前输出高度等于前一所述指定时长对应的前一输出高度,Step 180B, if the moving object to be tested is in the flat ground motion state, the current output height corresponding to the current specified duration is equal to the previous output height corresponding to the previous specified duration,

步骤180A,若所述被测移动体处于所述非平地运动状态,则通过扩展卡尔曼滤波法融合所有所述第一子数据估算所述当前输出高度。Step 180A, if the moving object under test is in the non-flat motion state, the current output height is estimated by fusing all the first sub-data through an extended Kalman filter method.

在实际实施过程中,该被测移动体可以是人、动物,甚至可以是机器人,本实施例中,该被测移动体是室内人员,当该被测移动体为人或动物时,所述平地运动的状态包括静止、走和慢跑,所述非平地运动状态包括上楼和下楼。在执行上述或下述估算方法时,被测移动体需配备用于采集上述状态数据的数据采集模块,例如:该数据采集模块可以包括采集气压的气压计和采集竖直方向的加速度的加速度计,该竖直方向的加速度分量数据也可以通过分解该总加速度获取,在采用传感器采集状态数据时,可以将该传感器可以嵌入在可穿戴设备内,可以嵌入室内人员携带的移动终端内,其采集的位置可以是被测移动体上的任意部位,例如当被测移动体是室内人员时,可将一嵌有该传感器的可穿戴设备佩戴在脚腕、手腕、腰间、大腿、手臂或室内人员身上其他任何的部位。In the actual implementation process, the moving object to be measured may be a human, an animal, or even a robot. In this embodiment, the moving object to be measured is an indoor person. When the moving object to be measured is a human or an animal, the flat ground The motion states include stationary, walking, and jogging, and the non-level motion states include upstairs and downstairs. When performing the above or the following estimation methods, the moving object under test needs to be equipped with a data acquisition module for acquiring the above state data. For example, the data acquisition module may include a barometer for acquiring air pressure and an accelerometer for acquiring vertical acceleration , the acceleration component data in the vertical direction can also be obtained by decomposing the total acceleration. When a sensor is used to collect state data, the sensor can be embedded in a wearable device or a mobile terminal carried by indoor personnel. The position of the sensor can be any part of the moving body to be tested. For example, when the moving body to be tested is an indoor person, a wearable device embedded with the sensor can be worn on the ankle, wrist, waist, thigh, arm or indoor. any other part of the person's body.

本实施例中,该指定时长可选取为任意长度,该指定频率可选取为任意频率,但该指定时长越短越有利于提高高程位置的估算精度,但该指定时长越短,则数据处理量越大,同理该指定频率越高,越有利于提高高程位置的估算精度,但该指定平率越高,同样也会导致数据处理量增大。例如,该指定时长可以选取为3秒,指定频率可以选取为100Hz,则在当前3秒内,采集该状态数据的次数为300次,也就是有300气压数据和300个加速度数据。In this embodiment, the specified duration can be selected as any length, and the specified frequency can be selected as any frequency, but the shorter the specified duration is, the better the estimation accuracy of the elevation position is improved, but the shorter the specified duration, the greater the amount of data processing The larger the value, the higher the specified frequency, the more conducive to improving the estimation accuracy of the elevation position, but the higher the specified flat rate, which will also lead to an increase in the amount of data processing. For example, the specified duration can be selected as 3 seconds, and the specified frequency can be selected as 100Hz, then in the current 3 seconds, the number of times of collecting the state data is 300 times, that is, there are 300 air pressure data and 300 acceleration data.

本实施例中,为便于理解,将该指定时长定义为t,将该采集次数定义为n,将i定义为当前时刻,此时,一个第一子数据集包括指定时长内在竖直方向上的加速度数据序列和该指定时长内的气压数据序列,则第一子数据集中,该竖直方向上的加速度数据序列可以表示为(a1,a2,…,an),该气压数据序列可以表示为(p1,p2,…,pn),其中,a1表示所述指定时间内按时序采集的第一个竖直方向的加速度分量数据,an表示所述指定时间内按时序采集的最后一个竖直方向的加速度分量数据,p1表示所述指定时间内按时序采集的第一个气压数据,pn表示所述指定时间内按时序采集的最后一个气压数据。In this embodiment, for ease of understanding, the specified duration is defined as t, the number of collection times is defined as n, and i is defined as the current moment. The acceleration data sequence and the air pressure data sequence within the specified time period, the acceleration data sequence in the vertical direction in the first sub-data set can be expressed as (a 1 , a 2 ,...,an ), and the air pressure data sequence can be It is expressed as (p 1 , p 2 ,..., p n ), where a 1 represents the acceleration component data of the first vertical direction collected in the specified time sequence in time series, and an represents the time sequence in the specified time period For the last collected acceleration component data in the vertical direction, p 1 represents the first air pressure data collected in time sequence within the specified time period, and p n represents the last air pressure data collected in time sequence within the specified time period.

本发明的室内移动体的高程估算方法,利用采集的状态数据对被测移动体的状态进行判断识别,根据判断识别结果估算被测移动体的高程位置,有利于提高估算精度;当被测移动体被识别判断为非平面运动时,将状态数据中的各种数据结合扩展卡尔曼算法融合估算被测移动体的高程位置进行估算,能够进一步提高室内被测移动体的高程位置估算精度。The method for estimating the elevation of an indoor moving body of the present invention uses the collected state data to judge and identify the state of the moving body under test, and estimates the elevation position of the moving body under test according to the judgment and identification result, which is beneficial to improve the estimation accuracy; When the object is identified and judged to be non-planar motion, various data in the state data are combined with the extended Kalman algorithm to estimate the elevation position of the moving object under test, which can further improve the estimation accuracy of the elevation position of the indoor moving object under test.

在一些实施例中,所述运动状态识别分类器识别所述被测移动体运动状态的方法包括:In some embodiments, the method for identifying the motion state of the detected moving body by the motion state identification classifier includes:

提取所述第一子数据集的分类特征,extracting categorical features of the first sub-data set,

根据每类所述分类特征识别所述被测移动体的运动状态。The motion state of the tested moving body is identified according to the classification feature of each category.

在一些实施例中,该分类特征包括竖直方向加速度均值、竖直方向加速度方差、气压差及气压方差。In some embodiments, the classification features include vertical acceleration mean, vertical acceleration variance, air pressure difference, and air pressure variance.

该竖直方向加速度均值的计算公式为:The formula for calculating the mean value of the vertical acceleration is:

Figure BDA0001988427790000071
Figure BDA0001988427790000071

其中,

Figure BDA0001988427790000072
为被测移动体在指定时间段t内的竖直方向加速度均值;in,
Figure BDA0001988427790000072
is the mean value of the vertical acceleration of the moving object under test within the specified time period t;

该竖直方向加速度方差的计算公式为:The formula for calculating the vertical acceleration variance is:

Figure BDA0001988427790000073
Figure BDA0001988427790000073

其中,

Figure BDA0001988427790000074
为被测移动体的在指定时间段t内的竖直方向加速度方差;in,
Figure BDA0001988427790000074
is the vertical acceleration variance of the moving object under test within the specified time period t;

该气压差的计算公式为:The formula for calculating the air pressure difference is:

Δp=p1-p2 Δp=p 1 −p 2

其中,Δp表示被测移动体的在指定时间段t内的气压差;Among them, Δp represents the air pressure difference of the moving object under test within the specified time period t;

该气压方差的计算公式为:The formula for calculating the air pressure variance is:

Figure BDA0001988427790000075
Figure BDA0001988427790000075

其中,

Figure BDA0001988427790000076
表示被测移动体的在指定时间段t内的气压方差,
Figure BDA0001988427790000077
表示被测移动体的在指定时间段t内的平均气压,
Figure BDA0001988427790000078
in,
Figure BDA0001988427790000076
represents the air pressure variance of the moving object under test within the specified time period t,
Figure BDA0001988427790000077
Represents the average air pressure of the moving object under test within a specified time period t,
Figure BDA0001988427790000078

在一些实施例中,所述运动状态识别分类器的训练方法包括:In some embodiments, the training method of the motion state recognition classifier includes:

以所述指定频率采集被测移动体在所述平地运动状态和所述非平地运动状态的所述状态数据作为训练数据,The state data of the moving object under test in the flat ground motion state and the non-flat ground motion state are collected at the specified frequency as training data,

将训练数据中的所述加速度数据在竖直分量的加速度分量数据和所述训练数据中的其余数据时序平均分割形成若干所述指定时长的第二子数据集;The acceleration data in the training data is evenly divided in time series between the acceleration component data of the vertical component and the rest of the data in the training data to form a number of second sub-data sets of the specified duration;

提取各所述第二子数据集的所述分类特征,形成训练样本;extracting the classification features of each of the second sub-data sets to form training samples;

将所述训练样本输入一支持向量机模型中进行训练,优化所述支持向量机模型的参数,使经参数优化的所述支持向量机模型形成所述运动状态识别分类器。The training samples are input into a support vector machine model for training, the parameters of the support vector machine model are optimized, and the parameter-optimized support vector machine model forms the motion state recognition classifier.

在一些实施例中,该训练样本为由所述分类特征排列形成的特征矩阵X,定义每个分类特征对应的类标签矢量Y,则在优化所述支持向量机模型时,将特征矩阵X和类标签矢量Y输入支持向量机模型,求解最优参数,最优参数的求解方程如下:In some embodiments, the training sample is a feature matrix X formed by the arrangement of the classification features, and a class label vector Y corresponding to each classification feature is defined, then when optimizing the support vector machine model, the feature matrix X and The class label vector Y is input into the support vector machine model, and the optimal parameters are solved. The solving equations of the optimal parameters are as follows:

Figure BDA0001988427790000081
Figure BDA0001988427790000081

Figure BDA0001988427790000082
Figure BDA0001988427790000082

其中,m表示训练样本的样本数量,xv和xw分别表示第v个样本和第w个样本,yv,yw分别表示样本xv和xw对应的标签,βv和βw为待估计参数向量。Among them, m represents the number of training samples, x v and x w represent the v-th sample and the w-th sample, respectively, y v , y w represent the labels corresponding to the samples x v and x w respectively, β v and β w are A vector of parameters to be estimated.

参见图2,在一些实施例中,通过扩展卡尔曼滤波法融合所述第一子数据集估算所述当前输出高度值的方法包括:Referring to FIG. 2 , in some embodiments, the method for estimating the current output height value by fusing the first sub-data set with an extended Kalman filter method includes:

步骤181,通过所述竖直方向的加速度分量数据构建一系统状态方程,计算当前先验高度;Step 181, constructing a system state equation by using the acceleration component data in the vertical direction, and calculating the current prior height;

步骤182,根据所述竖直方向的加速度分量数据和前一后验噪声协方差矩阵构建先验噪声协方差矩阵计算公式,计算当前先验噪声协方差矩阵;Step 182: Construct a priori noise covariance matrix calculation formula according to the acceleration component data in the vertical direction and the previous a posteriori noise covariance matrix, and calculate the current priori noise covariance matrix;

步骤183,通过所述气压数据构建一系统测量方程,计算当前测量高度;Step 183, constructing a system measurement equation based on the air pressure data, and calculating the current measurement altitude;

步骤184,根据所述先验噪声协方差矩阵构建卡尔曼增益计算式,计算当前卡尔曼增益;Step 184, construct a Kalman gain calculation formula according to the prior noise covariance matrix, and calculate the current Kalman gain;

步骤185,根据所述当前先验高度、所述当前测量高度和所述当前卡尔曼增益构建当前输出高度融合计算方程,计算所述当前输出高度;Step 185, construct a current output height fusion calculation equation according to the current prior height, the current measured height and the current Kalman gain, and calculate the current output height;

步骤186,根据所述当前卡尔曼增益更新所述当前先验噪声协方差矩阵获得当前后验噪声协方差矩阵。Step 186: Update the current prior noise covariance matrix according to the current Kalman gain to obtain a current posterior noise covariance matrix.

在一些实施例中,所述系统状态方程为:In some embodiments, the system state equation is:

Figure BDA0001988427790000083
Figure BDA0001988427790000083

其中,i是指当前所述指定时长,i-1是指前一所述指定时长,

Figure BDA0001988427790000084
是当前先验高度,
Figure BDA0001988427790000085
是前一所述指定时长对应的所述前一输出高度,
Figure BDA0001988427790000091
是相对高度计算函数,所述高度计算函数中的变量sai=[a1,a2,…,an]T,a1,a2,…,an是指当前所述指定时长内所述第一子数据集中按时序排列的所述竖直方向上的加速度数据,表n示当前所述指定时长内采集所述竖直方向上的加速度数据的总次数,a1表示当前所述指定时长内的第一个所述竖直方向上的加速度数据;an表示当前所述指定时长内的最后一个所述竖直方向上的加速度数据;Among them, i refers to the current specified duration, i-1 refers to the previous specified duration,
Figure BDA0001988427790000084
is the current prior height,
Figure BDA0001988427790000085
is the previous output height corresponding to the previous specified duration,
Figure BDA0001988427790000091
is the relative height calculation function, the variables sa i =[a 1 ,a 2 ,...,a n ] T in the height calculation function, a 1 ,a 2 ,...,a n refers to the The acceleration data in the vertical direction arranged in time series in the first sub-data set, n represents the total number of times the acceleration data in the vertical direction is collected within the current specified time period, and a 1 represents the current specified time period. the first acceleration data in the vertical direction within the duration; an represents the last acceleration data in the vertical direction within the current specified duration;

所述先验噪声协方差矩阵计算公式为:The calculation formula of the prior noise covariance matrix is:

Figure BDA0001988427790000092
Figure BDA0001988427790000092

其中,

Figure BDA0001988427790000093
是当前所述指定时长对应的当前先验噪声协方差矩阵,
Figure BDA0001988427790000094
是前一所述指定时长对应的后验噪声协方差矩阵,
Figure BDA0001988427790000095
是系统状态方程中所述相对高度计算函数
Figure BDA0001988427790000096
的雅可比矩阵,
Figure BDA0001988427790000097
Figure BDA0001988427790000098
Figure BDA0001988427790000099
的转置矩阵,Q是过程噪声协方差,Q可以通过观测获得;in,
Figure BDA0001988427790000093
is the current prior noise covariance matrix corresponding to the current specified duration,
Figure BDA0001988427790000094
is the posterior noise covariance matrix corresponding to the specified duration described in the previous section,
Figure BDA0001988427790000095
is the relative height calculation function described in the system state equation
Figure BDA0001988427790000096
The Jacobian matrix of ,
Figure BDA0001988427790000097
Figure BDA0001988427790000098
Yes
Figure BDA0001988427790000099
The transpose matrix of , Q is the process noise covariance, and Q can be obtained by observation;

所述系统测量方程为:The system measurement equation is:

Figure BDA00019884277900000910
Figure BDA00019884277900000910

其中,

Figure BDA00019884277900000911
表示当前测量高度,Pi表示当前气压值,Pi等于当前第一子数据集中的pn,P1表示初始气压值,P0表示标准大气压;in,
Figure BDA00019884277900000911
represents the current measurement altitude, Pi represents the current air pressure value, Pi is equal to pn in the current first sub-data set, P 1 represents the initial air pressure value, and P 0 represents the standard atmospheric pressure ;

当前卡尔曼增益计算式为:The current Kalman gain calculation formula is:

Figure BDA00019884277900000912
Figure BDA00019884277900000912

其中,Ki表示当前卡尔曼增益,RQ表示测量方差,

Figure BDA00019884277900000913
Figure BDA00019884277900000914
Figure BDA00019884277900000915
分别为加速度和气压计的噪声方差;where K i represents the current Kalman gain, R Q represents the measurement variance,
Figure BDA00019884277900000913
Figure BDA00019884277900000914
and
Figure BDA00019884277900000915
are the noise variances of the accelerometer and barometer, respectively;

当前输出高度融合计算方程为:The current output height fusion calculation equation is:

Figure BDA00019884277900000916
Figure BDA00019884277900000916

根据所述当前卡尔曼增益更新所述当前先验噪声协方差矩阵获得当前后验噪声协方差矩阵的公式为:The formula for updating the current prior noise covariance matrix to obtain the current posterior noise covariance matrix according to the current Kalman gain is:

Figure BDA00019884277900000917
Figure BDA00019884277900000917

利用上述方法可以将气压数据和加速度数据结合扩展卡尔曼增益算法估算融合高度,精度高。Using the above method, the air pressure data and acceleration data can be combined with the extended Kalman gain algorithm to estimate the fusion height with high accuracy.

本实施例还公开了一种存储介质,其上存储有上述和下述方法对应的计算机程序,该程序被处理器执行时实现上述任一种室内移动体的高程位置估算方法。This embodiment also discloses a storage medium on which a computer program corresponding to the above and the following methods is stored, and when the program is executed by a processor, implements any of the above methods for estimating the elevation position of an indoor moving body.

本实施例中的存储介质,本领域普通技术人员可以理解:实现本说明书各方法实施例的全部或部分步骤可以通过计算机程序相关的硬件来完成。前述的计算机程序可以存储于一计算机可读存储介质中。该程序在执行时,执行包括本说明书中各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。For the storage medium in this embodiment, those of ordinary skill in the art can understand that all or part of the steps of implementing each method embodiment of this specification can be completed by hardware related to a computer program. The aforementioned computer program may be stored in a computer-readable storage medium. When the program is executed, it executes the steps including the method embodiments in this specification; and the aforementioned storage medium includes: ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

参见图3,对应上述室内移动体的高程位置估计算法,本实施例还提供一种室内移动体的高程位置估算系统,该系统包括:Referring to FIG. 3 , corresponding to the above-mentioned algorithm for estimating the elevation position of an indoor moving body, the present embodiment also provides an elevation position estimation system for an indoor moving body, and the system includes:

状态数据采集模块2,其用于实时采集被测移动体的状态数据,所述状态数据至少包括气压数据和竖直方向上的加速度数据;a state data acquisition module 2, which is used for real-time acquisition of the state data of the moving object under test, the state data at least including air pressure data and acceleration data in the vertical direction;

数据预处理模块4,用于将所述加速度数据在竖直方向上的加速度分量数据和所述状态数据中的其余数据按时序平均分割形成若干指定时长的第一子数据集;a data preprocessing module 4, configured to equally divide the acceleration component data in the vertical direction of the acceleration data and the remaining data in the state data according to time series to form a first sub-data set of several specified durations;

运动状态识别分类器6,用于读取所述被测移动体在当前所述指定时长内的所述第一子数据集,并根据所述第一子数据集判定识别所述被测移动体的运动状态处于平地运动状态和非平地运动状态中的哪一种状态;A motion state recognition classifier 6, configured to read the first sub-data set of the tested moving body within the current specified time period, and determine and identify the tested moving body according to the first sub-data set Which state of the motion state is in the flat ground motion state and the non-flat motion state;

输出高度计算模块8,其用于根据运动状态识别分类器的识别结果计算当前所述指定时长对应的当前输出高度,Output height calculation module 8, which is used to calculate the current output height corresponding to the current specified duration according to the recognition result of the motion state recognition classifier,

若所述被测移动体处于所述平地运动状态,则所述输出高度计算模块输出前一所述指定时长对应的前一输出高度作为当前输出高度;If the measured moving body is in the flat ground motion state, the output height calculation module outputs the previous output height corresponding to the previous specified duration as the current output height;

若所述被测移动体处于所述非平地运动状态,则所述输出高度计算模块通过扩展卡尔曼滤波法融合所有所述第一子数据估算所述当前输出高度。If the moving object under test is in the non-flat motion state, the output height calculation module estimates the current output height by fusing all the first sub-data through an extended Kalman filter method.

在一些实施例中,所述运动状态识别分类器可以包括:In some embodiments, the motion state recognition classifier may include:

特征处理单元,所述特征处理单元用于提取所述第一子数据集的分类特征;a feature processing unit, the feature processing unit is used to extract the classification features of the first sub-data set;

状态判定单元,所述判定单元用于根据每类所述分类特征识别所述被测移动体的运动状态。A state determination unit, which is used for identifying the motion state of the moving object under test according to the classification feature of each type.

在另一些实施例中,该特征处理单元也可以布置在数据预处理模块,使得形成的第一子数据集总包含分类特征。In other embodiments, the feature processing unit may also be arranged in the data preprocessing module, so that the formed first sub-data set always includes classification features.

在一些实施例中,所述分类特征包括竖直方向加速度均值、竖直方向加速度方差、气压差及气压方差。In some embodiments, the classification features include vertical acceleration mean, vertical acceleration variance, air pressure difference, and air pressure variance.

在一些实施例中,所述平地运动的状态包括静止、走和慢跑,所述非平地运动状态包括上楼和下楼。In some embodiments, the flat motion states include stationary, walking, and jogging, and the non-flat motion states include upstairs and downstairs.

参见图4,在一些实施例中,所述输出高度计算模块包括:Referring to FIG. 4, in some embodiments, the output height calculation module includes:

当前先验高度计算单元81,其用于根据所述竖直方向的加速度分量数据计算当前先验高度;The current prior height calculation unit 81 is configured to calculate the current prior height according to the acceleration component data in the vertical direction;

当前先验噪声协方差矩阵计算单元82,其用于根据所述竖直方向的加速度分量数据及前一后验噪声协方差矩阵计算当前先验噪声协方差矩阵;The current priori noise covariance matrix calculation unit 82 is configured to calculate the current priori noise covariance matrix according to the acceleration component data in the vertical direction and the previous posterior noise covariance matrix;

当前测量高度计算单元83,其用于根据气压数据计算当前测量高度;The current measurement altitude calculation unit 83, which is used to calculate the current measurement altitude according to the air pressure data;

当前卡尔曼增益计算单元84,其用于根据所述当前噪声协方差计算当前卡尔曼增益;The current Kalman gain calculation unit 84 is configured to calculate the current Kalman gain according to the current noise covariance;

当前输出高度融合计算单元85,其用于根据所述当前先验高度、所述当前测量高度和所述当前卡尔曼增益融合计算所述当前输出高度;The current output height fusion calculation unit 85 is configured to fuse and calculate the current output height according to the current prior height, the current measured height and the current Kalman gain;

后验噪声协方差更新单元86,其用于根据所述当前卡尔曼增益更新所述当前先验噪声协方差矩阵获得当前后验噪声协方差矩阵。A posteriori noise covariance updating unit 86, configured to update the current priori noise covariance matrix according to the current Kalman gain to obtain a current posteriori noise covariance matrix.

在一些实施例中,所述状态数据采集模块包括加速度计和气压计。In some embodiments, the state data acquisition module includes an accelerometer and a barometer.

本发明还提供一种设备,包括处理器及存储器,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器存储的计算机程序,以使所述设备执行上述任一种所述的室内移动体的高程位置估算方法。The present invention also provides a device including a processor and a memory, the memory is used for storing a computer program, and the processor is used for executing the computer program stored in the memory, so that the device can execute any one of the above Elevation position estimation method for indoor moving objects.

本实施例提供的设备,包括处理器、存储器、收发器和通信接口,存储器和通信接口与处理器和收发器连接并完成相互间的通信,存储器用于存储计算机程序,通信接口用于进行通信,处理器和收发器用于运行计算机程序,使设备执行如上的室内移动体的高程位置估算方法中的各步骤。The device provided in this embodiment includes a processor, a memory, a transceiver, and a communication interface. The memory and the communication interface are connected to the processor and the transceiver and communicate with each other. The memory is used for storing computer programs, and the communication interface is used for communication. , the processor and the transceiver are used for running a computer program, so that the device executes each step in the above method for estimating the elevation position of an indoor moving body.

在本实施例中,存储器可能包含随机存取存储器(Random Access Memory,简称RAM),也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。In this embodiment, the memory may include random access memory (Random Access Memory, RAM for short), and may also include non-volatile memory (non-volatile memory), such as at least one disk memory.

上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application SpecificIntegrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。The above-mentioned processor may be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as CPU), a network processor (Network Processor, referred to as NP), etc.; may also be a digital signal processor (Digital Signal Processing, referred to as DSP) , Application Specific Integrated Circuit (ASIC for short), Field-Programmable Gate Array (FPGA for short) or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components.

上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments merely illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can make modifications or changes to the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical idea disclosed in the present invention should still be covered by the claims of the present invention.

Claims (15)

1.一种室内移动体的高程位置估算方法,其特征在于,包括:1. a method for estimating the elevation position of an indoor moving body, is characterized in that, comprising: 以一指定频率实时采集被测移动体的状态数据,所述状态数据至少包括气压数据和加速度数据;Collect real-time state data of the moving object under test at a specified frequency, and the state data at least include air pressure data and acceleration data; 将所述加速度数据在竖直方向上的加速度分量数据和所述状态数据中的其余数据按按时序平均分割形成若干指定时长的第一子数据集;The acceleration component data in the vertical direction of the acceleration data and the remaining data in the state data are equally divided according to time series to form a first sub-data set of several specified durations; 将所述被测移动体在当前所述指定时长内的所述第一子数据集输入预先生成的运动状态识别分类器,并根据所述第一子数据集判定识别所述被测移动体的运动状态处于平地运动状态和非平地运动状态中的哪一种状态,Input the first sub-data set of the moving object under test within the current specified time period into a pre-generated motion state recognition classifier, and determine the identification of the moving object under test according to the first sub-data set. Which state of the motion state is the flat motion state and the non-flat motion state? 若所述被测移动体处于所述平地运动状态,则当前所述指定时长对应的当前输出高度等于前一所述指定时长对应的前一输出高度,If the moving object to be tested is in the flat ground motion state, the current output height corresponding to the current specified duration is equal to the previous output height corresponding to the previous specified duration, 若所述被测移动体处于所述非平地运动状态,则通过扩展卡尔曼滤波法融合所有所述第一子数据集估算所述当前输出高度。If the detected moving body is in the non-flat motion state, the current output height is estimated by fusing all the first sub-data sets through an extended Kalman filter method. 2.根据权利要求1所述的室内移动体的高程位置估算方法,其特征在于,所述运动状态识别分类器所述被测移动体运动状态的方法包括:2. The method for estimating the elevation position of an indoor moving body according to claim 1, wherein the method for identifying the motion state of the measured moving body by the motion state identification classifier comprises: 提取所述第一子数据集的分类特征,extracting categorical features of the first sub-data set, 根据所述分类特征识别所述被测移动体的运动状态。Identify the motion state of the moving object under test according to the classification feature. 3.根据权利要求2所述的室内移动体的高程位置估算方法,其特征在于:所述运动状态识别分类器的训练方法包括:3. The method for estimating the elevation position of an indoor moving object according to claim 2, wherein the training method of the motion state recognition classifier comprises: 以所述指定频率采集被测移动体在所述平地运动状态和所述非平地运动状态的所述状态数据作为训练数据,The state data of the moving object under test in the flat ground motion state and the non-flat ground motion state are collected at the specified frequency as training data, 将训练数据中的所述加速度数据在竖直分量的加速度分量数据和所述训练数据中的其余数据按时序平均分割形成若干所述指定时长的第二子数据集;Dividing the acceleration data in the training data, the acceleration component data of the vertical component and the rest of the data in the training data, evenly in time series to form a plurality of second sub-data sets of the specified duration; 提取各所述第二子数据集的所述分类特征,形成训练样本;extracting the classification features of each of the second sub-data sets to form training samples; 将所述训练样本输入一支持向量机模型中进行训练,优化所述支持向量机模型的参数,使经参数优化的所述支持向量机模型形成所述运动状态识别分类器。The training samples are input into a support vector machine model for training, the parameters of the support vector machine model are optimized, and the parameter-optimized support vector machine model forms the motion state recognition classifier. 4.根据权利要求3所述的室内移动体的高程位置估算方法,其特征在于:所述分类特征包括竖直方向加速度均值、竖直方向加速度方差、气压差及气压方差。4 . The method for estimating the elevation position of an indoor moving object according to claim 3 , wherein the classification features include vertical acceleration mean, vertical acceleration variance, air pressure difference, and air pressure variance. 5 . 5.根据权利要求1所述的室内移动体的高程位置估算方法,其特征在于:所述平地运动的状态包括静止、走和慢跑,所述非平地运动状态包括上楼和下楼。5 . The method for estimating the elevation position of an indoor moving object according to claim 1 , wherein the state of the flat ground motion includes stillness, walking and jogging, and the non-flat ground motion state includes upstairs and downstairs. 6 . 6.根据权利要求1所述的室内移动体的高程位置估算方法,其特征在于:通过扩展卡尔曼滤波法融合所述第一子数据集估算所述当前输出高度值的方法包括:6. The method for estimating the elevation position of an indoor moving object according to claim 1, wherein the method for estimating the current output height value by fusing the first sub-data set with an extended Kalman filter method comprises: 通过所述竖直方向的加速度分量数据构建一系统状态方程,计算当前先验高度;A system state equation is constructed by using the acceleration component data in the vertical direction, and the current prior height is calculated; 根据所述竖直方向的加速度分量数据和前一后验噪声协方差矩阵构建先验噪声协方差矩阵计算公式,计算当前先验噪声协方差矩阵;Construct a priori noise covariance matrix calculation formula according to the acceleration component data in the vertical direction and the previous a posteriori noise covariance matrix, and calculate the current priori noise covariance matrix; 通过所述气压数据构建一系统测量方程,计算当前测量高度;Construct a system measurement equation through the air pressure data to calculate the current measurement altitude; 根据所述先验噪声协方差矩阵构建卡尔曼增益计算式,计算当前卡尔曼增益;Build a Kalman gain calculation formula according to the prior noise covariance matrix, and calculate the current Kalman gain; 根据所述当前先验高度、所述当前测量高度和所述当前卡尔曼增益构建当前输出高度融合计算方程,计算所述当前输出高度;Construct a current output height fusion calculation equation according to the current prior height, the current measured height and the current Kalman gain, and calculate the current output height; 根据所述当前卡尔曼增益更新所述当前先验噪声协方差矩阵获得当前后验噪声协方差矩阵。The current a priori noise covariance matrix is obtained by updating the current prior noise covariance matrix according to the current Kalman gain. 7.根据权利要求6所述的室内移动体的高程位置估算方法,其特征在于:7. The elevation position estimation method of indoor moving body according to claim 6, is characterized in that: 所述系统状态方程为:The state equation of the system is:
Figure FDA0001988427780000021
Figure FDA0001988427780000021
其中,i是指当前所述指定时长,i-1是指前一所述指定时长,
Figure FDA0001988427780000022
是当前先验高度,
Figure FDA0001988427780000023
是前一所述指定时长对应的所述前一输出高度,
Figure FDA0001988427780000024
是相对高度计算函数,所述高度计算函数中的变量sai=[a1,a2,…,an]T,a1,a2,…,an是指当前所述指定时长内所述第一子数据集中按时序排列的所述竖直方向上的加速度数据,表n示当前所述指定时长内采集所述竖直方向上的加速度数据的总次数,a1表示当前所述指定时长内的第一个所述竖直方向上的加速度数据;an表示当前所述指定时长内的最后一个所述竖直方向上的加速度数据;
Among them, i refers to the current specified duration, i-1 refers to the previous specified duration,
Figure FDA0001988427780000022
is the current prior height,
Figure FDA0001988427780000023
is the previous output height corresponding to the previous specified duration,
Figure FDA0001988427780000024
is the relative height calculation function, the variables sa i =[a 1 ,a 2 ,...,a n ] T in the height calculation function, a 1 ,a 2 ,...,a n refers to the The acceleration data in the vertical direction arranged in time series in the first sub-data set, n represents the total number of times the acceleration data in the vertical direction is collected within the current specified time period, and a 1 represents the current specified time period. the first acceleration data in the vertical direction within the duration; an represents the last acceleration data in the vertical direction within the current specified duration;
所述先验噪声协方差矩阵计算公式为:The calculation formula of the prior noise covariance matrix is:
Figure FDA0001988427780000025
Figure FDA0001988427780000025
其中,
Figure FDA0001988427780000026
是当前所述指定时长对应的当前先验噪声协方差矩阵,
Figure FDA0001988427780000027
是前一所述指定时长对应的后验噪声协方差矩阵,
Figure FDA0001988427780000031
是系统状态方程中所述相对高度计算函数
Figure FDA0001988427780000032
的雅可比矩阵,
Figure FDA0001988427780000033
Figure FDA0001988427780000034
Figure FDA0001988427780000035
的转置矩阵,Q是过程噪声协方差;
in,
Figure FDA0001988427780000026
is the current prior noise covariance matrix corresponding to the current specified duration,
Figure FDA0001988427780000027
is the posterior noise covariance matrix corresponding to the specified duration described in the previous section,
Figure FDA0001988427780000031
is the relative height calculation function described in the system state equation
Figure FDA0001988427780000032
The Jacobian matrix of ,
Figure FDA0001988427780000033
Figure FDA0001988427780000034
Yes
Figure FDA0001988427780000035
The transpose matrix of , Q is the process noise covariance;
所述系统测量方程为:The system measurement equation is:
Figure FDA0001988427780000036
Figure FDA0001988427780000036
其中,
Figure FDA0001988427780000037
表示当前测量高度,Pi表示当前气压值,P1表示初始气压值,P0表示标准大气压;当前卡尔曼增益计算式为:
in,
Figure FDA0001988427780000037
represents the current measurement altitude, P i represents the current air pressure value, P 1 represents the initial air pressure value, and P 0 represents the standard atmospheric pressure; the current Kalman gain calculation formula is:
Figure FDA0001988427780000038
Figure FDA0001988427780000038
其中,Ki表示当前卡尔曼增益,RQ表示测量方差,
Figure FDA0001988427780000039
Figure FDA00019884277800000310
Figure FDA00019884277800000311
分别为加速度和气压计的噪声方差;
where K i represents the current Kalman gain, R Q represents the measurement variance,
Figure FDA0001988427780000039
Figure FDA00019884277800000310
and
Figure FDA00019884277800000311
are the noise variances of the accelerometer and barometer, respectively;
当前输出高度融合计算方程为:The current output height fusion calculation equation is:
Figure FDA00019884277800000312
Figure FDA00019884277800000312
根据所述当前卡尔曼增益更新所述当前先验噪声协方差矩阵获得当前后验噪声协方差矩阵的公式为:The formula for updating the current prior noise covariance matrix to obtain the current posterior noise covariance matrix according to the current Kalman gain is:
Figure FDA00019884277800000313
Figure FDA00019884277800000313
8.一种室内移动体的高程位置估算系统,其特征在于,包括:8. A system for estimating an elevation position of an indoor moving body, comprising: 状态数据采集模块,其用于实时采集被测移动体的状态数据,所述状态数据至少包括气压数据和加速度数据;a state data acquisition module, which is used for real-time acquisition of the state data of the moving object under test, the state data at least including air pressure data and acceleration data; 数据预处理模块,用于将所述加速度数据在竖直方向上的加速度分量数据和所述状态数据中的其余数据按时序平均分割形成若干指定时长的第一子数据集;a data preprocessing module, configured to equally divide the acceleration component data in the vertical direction of the acceleration data and the remaining data in the state data according to time series to form a first sub-data set of several specified durations; 运动状态识别分类器,用于读取所述被测移动体在当前所述指定时长内的所述第一子数据集,并根据所述第一子数据集判定识别所述被测移动体的运动状态处于平地运动状态和非平地运动状态中的哪一种状态;The motion state recognition classifier is used to read the first sub-data set of the tested moving body within the current specified time period, and determine the identification of the tested moving body according to the first sub-data set. Which state of the motion state is in the flat ground motion state and the non-flat ground motion state; 输出高度计算模块,其用于根据运动状态识别分类器的识别结果计算当前所述指定时长对应的当前输出高度,An output height calculation module, which is used to calculate the current output height corresponding to the current specified duration according to the recognition result of the motion state recognition classifier, 若所述被测移动体处于所述平地运动状态,则所述输出高度计算模块输出前一所述指定时长对应的前一输出高度作为当前输出高度;If the measured moving body is in the flat ground motion state, the output height calculation module outputs the previous output height corresponding to the previous specified duration as the current output height; 若所述被测移动体处于所述非平地运动状态,则所述输出高度计算模块通过扩展卡尔曼滤波法融合所有所述第一子数据估算所述当前输出高度。If the moving object under test is in the non-flat motion state, the output height calculation module estimates the current output height by fusing all the first sub-data through an extended Kalman filter method. 9.根据权利要求8所述的室内移动体的高程位置估算系统,其特征在于,所述运动状态识别分类器包括:9. The system for estimating the elevation position of an indoor moving object according to claim 8, wherein the motion state recognition classifier comprises: 特征处理单元,所述特征处理单元用于提取所述第一子数据集的分类特征;a feature processing unit, the feature processing unit is used to extract the classification features of the first sub-data set; 状态判定单元,所述判定单元用于根据每类所述分类特征识别所述被测移动体的运动状态。A state determination unit, which is used for identifying the motion state of the moving object under test according to the classification feature of each type. 10.根据权利要求9所述的室内移动体的高程位置估算系统,其特征在于:所述分类特征包括竖直方向加速度均值、竖直方向加速度方差、气压差及气压方差。10 . The system for estimating the elevation position of an indoor moving object according to claim 9 , wherein the classification features include vertical acceleration mean, vertical acceleration variance, air pressure difference, and air pressure variance. 11 . 11.根据权利要求8所述的室内移动体的高程位置估算系统,其特征在于:所述平地运动的状态包括静止、走和慢跑,所述非平地运动状态包括上楼和下楼。11 . The system for estimating the elevation position of an indoor moving object according to claim 8 , wherein the state of the flat ground motion includes stillness, walking and jogging, and the non-flat ground motion state includes upstairs and downstairs. 12 . 12.根据权利要求8所述的室内移动体的高程位置估算系统,其特征在于,所述输出高度计算模块包括:12. The system for estimating the elevation position of an indoor moving body according to claim 8, wherein the output height calculation module comprises: 当前先验高度计算单元,其用于根据所述竖直方向的加速度分量数据计算当前先验高度;A current prior height calculation unit, configured to calculate the current prior height according to the acceleration component data in the vertical direction; 当前先验噪声协方差矩阵计算单元,其用于根据所述竖直方向的加速度分量数据及前一后验噪声协方差矩阵计算当前先验噪声协方差矩阵;A current priori noise covariance matrix calculation unit, configured to calculate the current priori noise covariance matrix according to the acceleration component data in the vertical direction and the previous a posteriori noise covariance matrix; 当前测量高度计算单元,其用于根据气压数据计算当前测量高度;The current measurement altitude calculation unit, which is used to calculate the current measurement altitude according to the air pressure data; 当前卡尔曼增益计算单元,其用于根据所述当前噪声协方差计算当前卡尔曼增益;A current Kalman gain calculation unit, configured to calculate the current Kalman gain according to the current noise covariance; 当前输出高度融合计算单元,其用于根据所述当前先验高度、所述当前测量高度和所述当前卡尔曼增益融合计算所述当前输出高度;A current output height fusion calculation unit, configured to fuse and calculate the current output height according to the current prior height, the current measured height and the current Kalman gain; 后验噪声协方差更新单元,其用于根据所述当前卡尔曼增益更新所述当前先验噪声协方差矩阵获得当前后验噪声协方差矩阵。A posteriori noise covariance updating unit, configured to update the current priori noise covariance matrix according to the current Kalman gain to obtain a current posteriori noise covariance matrix. 13.根据权利要求8所述的室内移动体的高程位置估算系统,其特征在于:所述状态数据采集模块包括加速度计和气压计。13. The system for estimating the elevation position of an indoor moving object according to claim 8, wherein the state data acquisition module comprises an accelerometer and a barometer. 14.一种存储介质,其上存储有计算机程序,其特征在于:该程序被处理器执行时实现权利要求1~7中任一项所述的室内移动体的高程位置估算方法。14. A storage medium on which a computer program is stored, characterized in that: when the program is executed by a processor, the method for estimating the elevation position of an indoor moving body according to any one of claims 1 to 7 is implemented. 15.一种设备,其特征在于:包括处理器及存储器,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器存储的计算机程序,以使所述设备执行如权利要求1~7中任一项所述的室内移动体的高程位置估算方法。15. A device, characterized by comprising a processor and a memory, wherein the memory is used to store a computer program, and the processor is used to execute the computer program stored in the memory, so that the device executes the method according to claim 1 to The method for estimating the elevation position of an indoor moving body according to any one of 7.
CN201910172168.3A 2019-03-07 2019-03-07 Method/system for estimating elevation position of indoor moving body, storage medium, and apparatus Pending CN111664834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910172168.3A CN111664834A (en) 2019-03-07 2019-03-07 Method/system for estimating elevation position of indoor moving body, storage medium, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910172168.3A CN111664834A (en) 2019-03-07 2019-03-07 Method/system for estimating elevation position of indoor moving body, storage medium, and apparatus

Publications (1)

Publication Number Publication Date
CN111664834A true CN111664834A (en) 2020-09-15

Family

ID=72382065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910172168.3A Pending CN111664834A (en) 2019-03-07 2019-03-07 Method/system for estimating elevation position of indoor moving body, storage medium, and apparatus

Country Status (1)

Country Link
CN (1) CN111664834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264315A (en) * 2021-11-24 2022-04-01 青岛迈金智能科技股份有限公司 Parking judgment method based on barometer code meter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379367A (en) * 2006-03-20 2009-03-04 高通股份有限公司 Method and apparatus for determining the altitude of a mobile device
US20090143983A1 (en) * 2007-12-04 2009-06-04 Nemerix Sa Navigation system with dynamically calibrated pressure sensor
US20130325217A1 (en) * 2012-03-30 2013-12-05 Parrot Altitude estimator for a rotary-wing drone with multiple rotors
CN105258675A (en) * 2015-11-30 2016-01-20 北京机械设备研究所 Elevation positioning method for indoor pedestrian navigation device
US20160091309A1 (en) * 2013-05-31 2016-03-31 Asahi Kasei Kabushiki Kaisha Device for identifying change in vertical direction by using air pressure measurement value
CN105865446A (en) * 2016-05-25 2016-08-17 南京航空航天大学 Inertia altitude channel damping Kalman filtering method based on atmosphere assistance
CN106662443A (en) * 2014-10-01 2017-05-10 英特尔公司 Methods and systems for vertical trajectory determination

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379367A (en) * 2006-03-20 2009-03-04 高通股份有限公司 Method and apparatus for determining the altitude of a mobile device
US20090143983A1 (en) * 2007-12-04 2009-06-04 Nemerix Sa Navigation system with dynamically calibrated pressure sensor
US20130325217A1 (en) * 2012-03-30 2013-12-05 Parrot Altitude estimator for a rotary-wing drone with multiple rotors
US20160091309A1 (en) * 2013-05-31 2016-03-31 Asahi Kasei Kabushiki Kaisha Device for identifying change in vertical direction by using air pressure measurement value
CN106662443A (en) * 2014-10-01 2017-05-10 英特尔公司 Methods and systems for vertical trajectory determination
CN105258675A (en) * 2015-11-30 2016-01-20 北京机械设备研究所 Elevation positioning method for indoor pedestrian navigation device
CN105865446A (en) * 2016-05-25 2016-08-17 南京航空航天大学 Inertia altitude channel damping Kalman filtering method based on atmosphere assistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264315A (en) * 2021-11-24 2022-04-01 青岛迈金智能科技股份有限公司 Parking judgment method based on barometer code meter
CN114264315B (en) * 2021-11-24 2024-05-24 青岛迈金智能科技股份有限公司 Parking judgment method based on barometer meter

Similar Documents

Publication Publication Date Title
CN110263870B (en) Motion state identification method and device, intelligent terminal and storage medium
CN103983273B (en) A kind of real-time step-size estimation method based on acceleration transducer
CN103699795B (en) A kind of motor behavior recognition methods, device and exercise intensity monitoring system
EP2925226B1 (en) Method and apparatus for estimating the fall risk of a user
EP2925213B1 (en) Method and apparatus for identifying transitions between sitting and standing postures
CN110334573B (en) A Human Motion State Discrimination Method Based on Densely Connected Convolutional Neural Networks
CN107339992B (en) A Behavior-Based Approach for Indoor Localization and Landmark Semantic Identification
US11039760B2 (en) Detection of walking in measurements of the movement of a user
CN108109336B (en) Human body falling identification method based on acceleration sensor
CN108021888B (en) A fall detection method
CN105678222A (en) Human behavior identification method based on mobile equipment
KR20160031246A (en) Method and apparatus for gait task recognition
CN107358248B (en) Method for improving falling detection system precision
CN104269025B (en) Wearable single node feature and the position choosing method of monitoring is fallen down towards open air
CN107121140B (en) A kind of location acquiring method based on Multiple Source Sensor
WO2025000378A1 (en) Indoor positioning and navigation method based on fusion of wi-fi fingerprint information and inertial sensor information
CN116226727A (en) Motion recognition system based on AI
CN104036283A (en) System and method for determining the activity of a mobile element
CN111664834A (en) Method/system for estimating elevation position of indoor moving body, storage medium, and apparatus
CN202600156U (en) Tumbling detection location system
Howedi et al. Accelerometer-based human fall detection using fuzzy entropy
CN115439934A (en) An Adaptive Step Frequency Detection Method Based on CNN-LSTM Motion Pattern Recognition
CN112933579B (en) Motion quality evaluation method and device and storage medium
CN103826202A (en) Method for improving WiFi positioning result jumping based on cell phone sensor information
CN109692004B (en) Method and device for detecting standing posture of human body

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200915

WD01 Invention patent application deemed withdrawn after publication