[go: up one dir, main page]

CN111662366A - Preparation method of early-flowering high-yield tomato material - Google Patents

Preparation method of early-flowering high-yield tomato material Download PDF

Info

Publication number
CN111662366A
CN111662366A CN201910167055.4A CN201910167055A CN111662366A CN 111662366 A CN111662366 A CN 111662366A CN 201910167055 A CN201910167055 A CN 201910167055A CN 111662366 A CN111662366 A CN 111662366A
Authority
CN
China
Prior art keywords
plant
protein
plants
yield
flowering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910167055.4A
Other languages
Chinese (zh)
Inventor
李传友
朱强
邓磊
李常保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Genetics and Developmental Biology of CAS
Beijing Academy of Agriculture and Forestry Sciences
Original Assignee
Institute of Genetics and Developmental Biology of CAS
Beijing Academy of Agriculture and Forestry Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Genetics and Developmental Biology of CAS, Beijing Academy of Agriculture and Forestry Sciences filed Critical Institute of Genetics and Developmental Biology of CAS
Priority to CN201910167055.4A priority Critical patent/CN111662366A/en
Publication of CN111662366A publication Critical patent/CN111662366A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physiology (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明公开了一种早花高产番茄材料的制备方法。本发明公开的早花高产番茄材料的制备方法包括:降低受体植物中SlTOE1的活性、降低受体植物中SlTOE1的含量、抑制受体植物中SlTOE1的编码基因的表达或敲除受体植物中SlTOE1的编码基因,得到与受体植物相比开花时间缩短且产量提高的目的植物。本发明可以在1年以内得到一个早花高产植物新品种,而利用传统育种手段需要连续回交、自交,至少需要3‑4年时间,本发明的方法操作简单,成本低,大大加快了育种进程,并且克服了早花与高产难以兼备的不足,极大满足了生产需求,具有广泛的应用前景。The invention discloses a preparation method of early-flowering and high-yield tomato material. The preparation method of the early-flowering and high-yielding tomato material disclosed in the present invention comprises: reducing the activity of SlTOE1 in the recipient plant, reducing the content of SlTOE1 in the recipient plant, inhibiting the expression of the gene encoding SlTOE1 in the recipient plant, or knocking out the SlTOE1 in the recipient plant Compared with the recipient plant, the gene encoding SlTOE1 can obtain the target plant with shortened flowering time and increased yield. The present invention can obtain a new early-flowering and high-yielding plant variety within one year, while using traditional breeding methods requires continuous backcrossing and self-crossing, which takes at least 3-4 years. The method of the present invention is simple to operate, low in cost, and greatly accelerated. The breeding process has been improved, and it has overcome the insufficiency of both early flowering and high yield, which greatly meets the production needs and has broad application prospects.

Description

一种早花高产番茄材料的制备方法A kind of preparation method of early-flowering and high-yield tomato material

技术领域technical field

本发明涉及农业生物技术领域中,一种早花高产番茄材料的制备方法。The invention relates to a preparation method of early-flowering and high-yield tomato material in the field of agricultural biotechnology.

背景技术Background technique

开花时间是影响产量的一个关键因素,一般情况下,晚花会使生育期延长,生物量增加,产量也会随之增加;早花会缩短生育期,但生物量会减少,产量降低。如何实现早花又高产一直是育种上的难题。目前市场上晚花高产的作物品种比较多,早花高产的品种则很少。早花高产相对于晚花高产品种具有在保持高产的前提下缩短生育期,早上市等优势,因此更受农民喜爱,也是育种家追求的目标。Flowering time is a key factor affecting yield. Generally, late flowering will prolong the growth period, increase biomass, and yield will also increase; early flowering will shorten the growth period, but biomass will decrease and yield will decrease. How to achieve early flowering and high yield has always been a difficult problem in breeding. At present, there are many varieties of late-flowering and high-yielding crops on the market, and few varieties with early-flowering and high-yielding. Compared with late-flowering and high-yielding varieties, early-flowering and high-yielding varieties have the advantages of shortening the growth period while maintaining high-yield, and they are more popular with farmers and are also the goal pursued by breeders.

拟南芥TOE1转录因子能够抑制开花,拟南芥TOE1基因功能完全丧失后开花提前,但植株瘦小,种子产量明显降低。The Arabidopsis TOE1 transcription factor can inhibit flowering. When the function of the Arabidopsis TOE1 gene is completely lost, the flowering is advanced, but the plants are thin and the seed yield is significantly reduced.

基因组编辑技术(genome editing)是一种可以在基因组水平上对DNA序列进行改造的遗传操作技术。CRISPR/Cas9系统(clustered regularly interspaced shortpalindromic repeats/Cas9endonuclease)是目前应用最广泛的基因组编辑工具之一。该技术的工作原理是核酸内切酶Cas9蛋白在向导RNA(short guide RNA,sgRNA)的引导下,对目标基因进行切割,导致DNA双链断裂,此时会诱发细胞的DNA修复机制,在修复过程中难免会引入碱基的插入、缺失或替换等变异,从而实现目标基因的定点突变。之后将转基因标记去除,得到的品种与传统育种方法培育出的品种完全相同。Genome editing is a genetic manipulation technique that can modify DNA sequences at the genome level. The CRISPR/Cas9 system (clustered regularly interspaced shortpalindromic repeats/Cas9endonuclease) is one of the most widely used genome editing tools. The working principle of this technology is that the endonuclease Cas9 protein cuts the target gene under the guidance of guide RNA (short guide RNA, sgRNA), resulting in DNA double-strand break, which will induce the DNA repair mechanism of the cell. During the process, variations such as insertion, deletion or substitution of bases will inevitably be introduced, so as to achieve site-directed mutagenesis of the target gene. The transgenic markers are then removed, and the resulting varieties are identical to those bred by traditional breeding methods.

发明内容SUMMARY OF THE INVENTION

本发明所要解决的技术问题是如何提高植物产量并缩短植物开花时间。The technical problem to be solved by the present invention is how to improve the yield of plants and shorten the flowering time of plants.

为解决上述技术问题,本发明首先提供了蛋白质或调控所述蛋白质含量和/或活性的物质的下述任一应用:In order to solve the above-mentioned technical problems, the present invention firstly provides any one of the following applications of proteins or substances regulating the content and/or activity of the proteins:

D1)调控植物开花时间;D1) regulating plant flowering time;

D2)制备调控植物开花时间产品;D2) prepare a product for regulating plant flowering time;

D3)缩短植物开花时间;D3) shorten the flowering time of plants;

D4)制备缩短植物开花时间产品;D4) prepare a product that shortens the flowering time of plants;

D5)调控植物产量;D5) regulating plant yield;

D6)制备调控植物产量产品;D6) prepare the product of regulating and controlling plant yield;

D7)提高植物产量;D7) increase plant yield;

D8)制备提高植物产量产品;D8) preparing a product to improve plant yield;

D9)调控植物开花时间和产量;D9) regulating plant flowering time and yield;

D10)制备调控植物开花时间和产量产品;D10) prepare and control plant flowering time and yield products;

D11)缩短植物开花时间和提高植物产量;D11) shortening plant flowering time and increasing plant yield;

D12)制备缩短植物开花时间和提高植物产量产品;D12) preparation of shortening plant flowering time and improving plant yield products;

D13)植物育种;D13) Plant breeding;

所述蛋白质的名称为SlTOE1,为如下A1)、A2)或A3):Said protein is named SlTOE1 and is A1), A2) or A3) as follows:

A1)氨基酸序列是序列3的蛋白质;A1) the amino acid sequence is the protein of sequence 3;

A2)将序列表中序列3所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;A2) The amino acid sequence shown in SEQ ID NO: 3 in the sequence listing has undergone the substitution and/or deletion and/or addition of one or several amino acid residues and has the same function;

A3)在A1)或A2)的N端或/和C端连接标签得到的融合蛋白质。A3) A fusion protein obtained by linking a tag to the N-terminus or/and C-terminus of A1) or A2).

为了使A1)中的蛋白质便于纯化,可在由序列表中序列3所示的氨基酸序列组成的蛋白质的氨基末端或羧基末端连接上如下表所示的标签。In order to facilitate the purification of the protein in A1), the amino-terminal or carboxyl-terminal of the protein consisting of the amino acid sequence shown in SEQ ID NO: 3 in the sequence listing can be attached with the tags shown in the following table.

表:标签的序列Table: Sequence of tags

标签Label 残基Residues 序列sequence Poly-ArgPoly-Arg 5-6(通常为5个)5-6 (usually 5) RRRRRRRRRR Poly-HisPoly-His 2-10(通常为6个)2-10 (usually 6) HHHHHHHHHHHH FLAGFLAG 88 DYKDDDDKDYKDDDDK Strep-tag IIStrep-tag II 88 WSHPQFEKWSHPQFEK c-mycc-myc 1010 EQKLISEEDLEQKLISEEDL

上述A2)中的SlTOE1蛋白质,为与序列3所示蛋白质的氨基酸序列具有75%或75%以上同一性且具有相同功能的蛋白质。所述具有75%或75%以上同一性为具有75%、具有80%、具有85%、具有90%、具有95%、具有96%、具有97%、具有98%或具有99%的同一性。The SlTOE1 protein in the above A2) is a protein having 75% or more identity to the amino acid sequence of the protein shown in SEQ ID NO: 3 and having the same function. Having 75% or more identity is 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical .

上述A2)中的SlTOE1蛋白质可人工合成,也可先合成其编码基因,再进行生物表达得到。The SlTOE1 protein in the above A2) can be obtained by artificial synthesis, or by first synthesizing its encoding gene and then biologically expressing it.

上述A2)中的SlTOE1蛋白质的编码基因可通过将序列2所示的DNA序列中缺失一个或几个氨基酸残基的密码子,和/或进行一个或几个碱基对的错义突变,和/或在其5′端和/或3′端连上上表所示的标签的编码序列得到。其中,序列2所示的DNA分子编码序列3所示的SlTOE1蛋白质。The coding gene of the S1TOE1 protein in the above-mentioned A2) can be obtained by deleting the codons of one or several amino acid residues in the DNA sequence shown in SEQ ID NO: 2, and/or carrying out missense mutation of one or several base pairs, and / or the coding sequence of the tag shown in the above table is attached to its 5' end and/or 3' end. Wherein, the DNA molecule shown in sequence 2 encodes the SlTOE1 protein shown in sequence 3.

本发明还提供了与SlTOE1相关的生物材料的下述任一应用:The present invention also provides any of the following applications of the biological material related to SlTOE1:

D1)调控植物开花时间;D1) regulating plant flowering time;

D2)制备调控植物开花时间产品;D2) prepare a product for regulating plant flowering time;

D3)缩短植物开花时间;D3) shorten the flowering time of plants;

D4)制备缩短植物开花时间产品;D4) prepare a product that shortens the flowering time of plants;

D5)调控植物产量;D5) regulating plant yield;

D6)制备调控植物产量产品;D6) prepare the product of regulating and controlling plant yield;

D7)提高植物产量;D7) increase plant yield;

D8)制备提高植物产量产品;D8) preparing a product to improve plant yield;

D9)调控植物开花时间和产量;D9) regulating plant flowering time and yield;

D10)制备调控植物开花时间和产量产品;D10) prepare and control plant flowering time and yield products;

D11)缩短植物开花时间和提高植物产量;D11) shortening plant flowering time and increasing plant yield;

D12)制备缩短植物开花时间和提高植物产量产品;D12) preparation of shortening plant flowering time and improving plant yield products;

D13)植物育种;D13) Plant breeding;

所述生物材料为下述B1)至B9)中的任一种:The biological material is any one of the following B1) to B9):

B1)编码SlTOE1的核酸分子;B1) a nucleic acid molecule encoding SlTOE1;

B2)含有B1)所述核酸分子的表达盒;B2) an expression cassette containing the nucleic acid molecule of B1);

B3)含有B1)所述核酸分子的重组载体、或含有B2)所述表达盒的重组载体;B3) a recombinant vector containing the nucleic acid molecule described in B1) or a recombinant vector containing the expression cassette described in B2);

B4)含有B1)所述核酸分子的重组微生物、或含有B2)所述表达盒的重组微生物、或含有B3)所述重组载体的重组微生物;B4) a recombinant microorganism containing the nucleic acid molecule described in B1), or a recombinant microorganism containing the expression cassette described in B2), or a recombinant microorganism containing the recombinant vector described in B3);

B5)含有B1)所述核酸分子的转基因植物细胞系、或含有B2)所述表达盒的转基因植物细胞系;B5) a transgenic plant cell line containing the nucleic acid molecule of B1), or a transgenic plant cell line containing the expression cassette of B2);

B6)含有B1)所述核酸分子的转基因植物组织、或含有B2)所述表达盒的转基因植物组织;B6) a transgenic plant tissue containing the nucleic acid molecule of B1), or a transgenic plant tissue containing the expression cassette of B2);

B7)含有B1)所述核酸分子的转基因植物器官、或含有B2)所述表达盒的转基因植物器官;B7) a transgenic plant organ containing the nucleic acid molecule of B1), or a transgenic plant organ containing the expression cassette of B2);

B8)降低SlTOE1含量和/或活性的核酸分子;B8) nucleic acid molecules that reduce the content and/or activity of SlTOE1;

B9)含有B8)所述核酸分子的表达盒、重组载体、重组微生物或转基因植物细胞系。B9) An expression cassette, recombinant vector, recombinant microorganism or transgenic plant cell line comprising the nucleic acid molecule of B8).

上述应用中,B1)所述核酸分子可为如下b1)-b5)中的任一种:In the above-mentioned application, the nucleic acid molecule of B1) can be any one of the following b1)-b5):

b1)编码序列是序列表中序列2的cDNA分子或DNA分子;b1) The coding sequence is the cDNA molecule or DNA molecule of sequence 2 in the sequence listing;

b2)序列表中序列2所示的cDNA分子或DNA分子;b2) the cDNA molecule or DNA molecule shown in sequence 2 in the sequence listing;

b3)序列表中序列1所示的DNA分子;b3) the DNA molecule shown in sequence 1 in the sequence listing;

b4)与b1)或b2)或b3)限定的核苷酸序列具有75%或75%以上同一性,且编码SlTOE1的cDNA分子或DNA分子;b4) has 75% or more identity with the nucleotide sequence defined in b1) or b2) or b3), and encodes a cDNA molecule or DNA molecule of SlTOE1;

b5)在严格条件下与b1)或b2)或b3)或b4)限定的核苷酸序列杂交,且编码SlTOE1的cDNA分子或DNA分子;b5) hybridizes to a nucleotide sequence defined in b1) or b2) or b3) or b4) under stringent conditions and encodes a cDNA molecule or DNA molecule of SlTOE1;

B8)所述核酸分子为下述c1)-c4)中的任一种:B8) The nucleic acid molecule is any one of the following c1)-c4):

c1)序列表中序列4所示的RNA分子;c1) the RNA molecule shown in sequence 4 in the sequence listing;

c2)转录序列表中序列4所示RNA的DNA分子;c2) DNA molecule of RNA shown in sequence 4 in the transcription sequence table;

c3)与c1)或c2)限定的核苷酸序列具有75%或75%以上同一性,且具有相同功能的RNA分子或DNA分子;c3) RNA molecules or DNA molecules having 75% or more identity with the nucleotide sequence defined in c1) or c2) and having the same function;

c4)在严格条件下与c1)或c2)或c3)限定的核苷酸序列杂交,且具有相同功能的RNA分子或DNA分子。c4) An RNA molecule or a DNA molecule that hybridizes under stringent conditions to the nucleotide sequence defined in c1) or c2) or c3) and has the same function.

其中,所述核酸分子可以是DNA,如cDNA、基因组DNA或重组DNA;所述核酸分子也可以是RNA,如mRNA或hnRNA等。Wherein, the nucleic acid molecule can be DNA, such as cDNA, genomic DNA or recombinant DNA; the nucleic acid molecule can also be RNA, such as mRNA or hnRNA.

本领域普通技术人员可以很容易地采用已知的方法,例如定向进化和点突变的方法,对本发明的编码SLTOE1蛋白质的核苷酸序列进行突变。那些经过人工修饰的,具有与本发明分离得到的SLTOE1蛋白质的核苷酸序列75%或者更高同一性的核苷酸,只要编码SLTOE1蛋白质且具有SLTOE1蛋白质功能,均是衍生于本发明的核苷酸序列并且等同于本发明的序列。Those of ordinary skill in the art can easily mutate the nucleotide sequence encoding the SLTOE1 protein of the present invention using known methods, such as directed evolution and point mutation. Those artificially modified nucleotides with 75% or higher identity to the nucleotide sequence of the SLTOE1 protein isolated by the present invention, as long as they encode the SLTOE1 protein and have the function of the SLTOE1 protein, are all derived from the nucleus of the present invention. nucleotide sequences and are equivalent to the sequences of the present invention.

这里使用的术语“同一性”指与天然核酸序列的序列相似性。“同一性”包括与本发明的编码序列3所示的氨基酸序列组成的蛋白质的核苷酸序列具有75%或更高,或85%或更高,或90%或更高,或95%或更高同一性的核苷酸序列。同一性可以用肉眼或计算机软件进行评价。使用计算机软件,两个或多个序列之间的同一性可以用百分比(%)表示,其可以用来评价相关序列之间的同一性。The term "identity" as used herein refers to sequence similarity to a native nucleic acid sequence. "Identity" includes 75% or higher, or 85% or higher, or 90% or higher, or 95% or Nucleotide sequences of higher identity. Identity can be assessed with the naked eye or with computer software. Using computer software, the identity between two or more sequences can be expressed in percent (%), which can be used to assess the identity between related sequences.

上述应用中,所述严格条件可为如下:50℃,在7%十二烷基硫酸钠(SDS)、0.5MNaPO4和1mM EDTA的混合溶液中杂交,在50℃,2×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,0.5×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,0.1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在65℃,0.1×SSC,0.1%SDS中漂洗;也可为:在6×SSC,0.5%SDS的溶液中,在65℃下杂交,然后用2×SSC,0.1%SDS和1×SSC,0.1%SDS各洗膜一次;也可为:2×SSC,0.1%SDS的溶液中,在68℃下杂交并洗膜2次,每次5min,又于0.5×SSC,0.1%SDS的溶液中,在68℃下杂交并洗膜2次,每次15min;也可为:0.1×SSPE(或0.1×SSC)、0.1%SDS的溶液中,65℃条件下杂交并洗膜。In the above application, the stringent conditions may be as follows: 50°C, hybridization in a mixed solution of 7% sodium dodecyl sulfate (SDS), 0.5M NaPO 4 and 1 mM EDTA, 50°C, 2×SSC, 0.1% Rinse in SDS; also: 50°C, hybridize in a mixed solution of 7% SDS, 0.5M NaPO 4 and 1mM EDTA, rinse at 50°C, 1×SSC, 0.1% SDS; also: 50°C, Hybridize in a mixture of 7% SDS, 0.5M NaPO and 1 mM EDTA, rinse at 50°C in 0.5×SSC, 0.1% SDS; also: 50°C in 7% SDS, 0.5M NaPO and 1 mM Hybridize in a mixed solution of EDTA, rinse in 0.1×SSC, 0.1% SDS at 50°C; also: hybridize in a mixed solution of 7% SDS, 0.5M NaPO 4 and 1mM EDTA at 50°C, at 65°C, Wash in 0.1×SSC, 0.1% SDS; also: in 6×SSC, 0.5% SDS solution, hybridize at 65°C, then use 2×SSC, 0.1%SDS and 1×SSC, 0.1%SDS each Wash the membrane once; it can also be: hybridize in a solution of 2×SSC, 0.1% SDS at 68°C and wash the membrane twice for 5 min each, and then in a solution of 0.5×SSC, 0.1% SDS at 68°C Hybridize and wash the membrane twice at 65°C, each time for 15 min; or in a solution of 0.1×SSPE (or 0.1×SSC) and 0.1% SDS, hybridize and wash the membrane at 65°C.

上述75%或75%以上同一性,可为80%、85%、90%或95%以上的同一性。The above-mentioned 75% or more identity may be 80%, 85%, 90% or more than 95% identity.

上述应用中,B2)所述的含有编码SLTOE1蛋白质的核酸分子的表达盒(SLTOE1基因表达盒),是指能够在宿主细胞中表达SLTOE1蛋白质的DNA,该DNA不但可包括启动SLTOE1基因转录的启动子,还可包括终止SLTOE1基因转录的终止子。进一步,所述表达盒还可包括增强子序列。In above-mentioned application, B2) described expression cassette (SLTOE1 gene expression cassette) containing the nucleic acid molecule of coding SLTOE1 protein, refers to the DNA that can express SLTOE1 protein in host cell, this DNA can not only include the start that starts SLTOE1 gene transcription , and may also include a terminator that terminates transcription of the SLTOE1 gene. Further, the expression cassette may also include enhancer sequences.

可用现有的表达载体构建含有所述SLTOE1基因表达盒的重组载体。The recombinant vector containing the SLTOE1 gene expression cassette can be constructed by using the existing expression vector.

上述应用中,所述载体可为质粒、黏粒、噬菌体或病毒载体。In the above applications, the vector may be a plasmid, cosmid, phage or viral vector.

B9)所述重组载体可为利用crisper/cas9系统制备的可以降低SLTOE1含量的重组载体。所述重组载体可表达靶向B1)所述核酸分子的sgRNA。所述sgRNA的靶序列可为序列表中序列序列1的第317-336位。B9) The recombinant vector can be a recombinant vector prepared by using the crisper/cas9 system that can reduce the content of SLTOE1. The recombinant vector can express sgRNA targeting the nucleic acid molecule of B1). The target sequence of the sgRNA can be positions 317-336 of SEQ ID NO: 1 in the sequence listing.

B9)所述重组载体具体可为利用限制性内切酶BsaI将靶序列的双链DNA插入至pTX041载体中得到的能够转录序列表中序列4所示sgRNA的重组载体。B9) The recombinant vector can specifically be a recombinant vector obtained by inserting the double-stranded DNA of the target sequence into the pTX041 vector using the restriction endonuclease BsaI and capable of transcribing the sgRNA shown in SEQ ID NO: 4 in the sequence listing.

上述应用中,所述微生物可为酵母、细菌、藻或真菌。其中,细菌可为农杆菌,如发根农杆菌LBA4404。In the above applications, the microorganisms may be yeast, bacteria, algae or fungi. Wherein, the bacteria can be Agrobacterium, such as Agrobacterium rhizogenes LBA4404.

上述应用中,所述转基因植物细胞系、转基因植物组织和转基因植物器官均不包括繁殖材料。In the above application, the transgenic plant cell line, transgenic plant tissue and transgenic plant organ do not include propagation material.

本发明还提供了下述任一方法:The present invention also provides any of the following methods:

X1)缩短植物开花时间的方法,包括:降低受体植物中SlTOE1的活性、降低受体植物中SlTOE1的含量、抑制受体植物中SlTOE1的编码基因的表达或敲除受体植物中SlTOE1的编码基因,得到与所述受体植物相比开花时间缩短的目的植物;X1) A method for shortening the flowering time of plants, comprising: reducing the activity of SlTOE1 in recipient plants, reducing the content of SlTOE1 in recipient plants, inhibiting the expression of SlTOE1-encoding genes in recipient plants, or knocking out SlTOE1 encoding in recipient plants A gene to obtain a target plant with a shortened flowering time compared with the recipient plant;

X2)培育开花时间缩短植物的方法,包括:降低受体植物中SlTOE1的活性、降低受体植物中SlTOE1的含量、抑制受体植物中SlTOE1的编码基因的表达或敲除受体植物中SlTOE1的编码基因,得到与所述受体植物相比开花时间缩短的目的植物;X2) A method for cultivating plants with shortened flowering time, comprising: reducing the activity of SlTOE1 in the recipient plant, reducing the content of SlTOE1 in the recipient plant, inhibiting the expression of the gene encoding SlTOE1 in the recipient plant, or knocking out the expression of SlTOE1 in the recipient plant encoding a gene to obtain a target plant with a shortened flowering time compared with the recipient plant;

X3)提高植物产量的方法,包括:降低受体植物中SlTOE1的活性、降低受体植物中SlTOE1的含量、抑制受体植物中SlTOE1的编码基因的表达或敲除受体植物中SlTOE1的编码基因,得到与所述受体植物相比产量提高的目的植物;X3) A method for improving plant yield, comprising: reducing the activity of SlTOE1 in the recipient plant, reducing the content of SlTOE1 in the recipient plant, inhibiting the expression of the gene encoding SlTOE1 in the recipient plant, or knocking out the gene encoding SlTOE1 in the recipient plant , to obtain the target plant with increased yield compared with the recipient plant;

X4)培育产量提高植物的方法,包括:降低受体植物中SlTOE1的活性、降低受体植物中SlTOE1的含量、抑制受体植物中SlTOE1的编码基因的表达或敲除受体植物中SlTOE1的编码基因,得到与所述受体植物相比产量提高的目的植物;X4) A method for cultivating yield-improving plants, comprising: reducing the activity of SlTOE1 in recipient plants, reducing the content of SlTOE1 in recipient plants, inhibiting the expression of a gene encoding SlTOE1 in recipient plants, or knocking out the encoding of SlTOE1 in recipient plants A gene to obtain a target plant with increased yield compared with the recipient plant;

X5)缩短植物开花时间和提高植物产量的方法,包括:降低受体植物中SlTOE1的活性、降低受体植物中SlTOE1的含量、抑制受体植物中SlTOE1的编码基因的表达或敲除受体植物中SlTOE1的编码基因,得到与所述受体植物相比开花时间缩短且产量提高的目的植物;X5) A method for shortening plant flowering time and improving plant yield, comprising: reducing the activity of SlTOE1 in recipient plants, reducing the content of SlTOE1 in recipient plants, inhibiting the expression of genes encoding SlTOE1 in recipient plants, or knocking out recipient plants The encoding gene of SlTOE1 in the middle, obtains the target plant with shortened flowering time and improved yield compared with the recipient plant;

X6)培育开花时间缩短和产量提高植物的方法,包括:降低受体植物中SlTOE1的活性、降低受体植物中SlTOE1的含量、抑制受体植物中SlTOE1的编码基因的表达或敲除受体植物中SlTOE1的编码基因,得到与所述受体植物相比开花时间缩短且产量提高的目的植物。X6) A method for cultivating plants with shortened flowering time and increased yield, comprising: reducing the activity of SlTOE1 in recipient plants, reducing the content of SlTOE1 in recipient plants, inhibiting the expression of genes encoding SlTOE1 in recipient plants, or knocking out recipient plants Compared with the recipient plant, the encoding gene of SlTOE1 can be obtained to obtain the target plant with shortened flowering time and increased yield.

所述受体植物中含有SlTOE1的编码基因。The recipient plant contains the gene encoding SlTOE1.

上述方法中,敲除受体植物中SlTOE1的编码基因可利用CRISPR/Cas9方法实现。In the above method, knockout of the gene encoding SlTOE1 in recipient plants can be achieved by CRISPR/Cas9 method.

所述CRISPR/Cas9方法中所用靶序列为序列表中序列1的第317-336位。The target sequence used in the CRISPR/Cas9 method is positions 317-336 of Sequence 1 in the sequence listing.

所述CRISPR/Cas9方法中所用sgRNA具体可为序列表中序列4所示的RNA。The sgRNA used in the CRISPR/Cas9 method can specifically be the RNA shown in SEQ ID NO: 4 in the sequence listing.

上述方法中,敲除受体植物中SlTOE1的编码基因具体可通过将所述B9)所述重组载体导入植物中实现。In the above method, the knockout of the gene encoding SlTOE1 in the recipient plant can be specifically achieved by introducing the recombinant vector described in B9) into the plant.

所述方法还可包括筛选不含有外源DNA序列的目的植物的步骤。The method may also include the step of screening for plants of interest that do not contain the exogenous DNA sequence.

与所述受体植物相比,所述目的植物中SlTOE1的编码基因发生突变,致使SlTOE1的含量下降和/或SlTOE1功能的丧失。所述突变可为一至多个核苷酸的缺失、插入和/或改变。Compared with the recipient plant, the gene encoding SlTOE1 in the target plant is mutated, resulting in decreased SlTOE1 content and/or loss of SlTOE1 function. The mutation may be a deletion, insertion and/or change of one to more nucleotides.

在本发明的一个实施例中,与所述受体植物相比,所述目的植物中SlTOE1编码基因的对应于序列表中序列2的第320-323位核苷酸缺失。In an embodiment of the present invention, compared with the recipient plant, the nucleotides 320-323 of the gene encoding SlTOE1 in the target plant corresponding to sequence 2 in the sequence listing are deleted.

本发明还提供了具有缩短植物开花时间和/或提高植物产量功能的产品,所述产品含有所述生物材料。The present invention also provides a product having the function of shortening plant flowering time and/or increasing plant yield, said product containing said biological material.

所述产品可以所述生物材料为其活性成分,还可将所述生物材料与具有相同功能的物质组合在一起作为其活性成分。The product may use the biological material as its active ingredient, or may combine the biological material with a substance having the same function as its active ingredient.

利用所述方法制备的目的植物在植物育种中的应用,也属于本发明的保护范围。The application of the target plant prepared by the method in plant breeding also belongs to the protection scope of the present invention.

本发明中,所述植物可为c1)-c4)中的任一种:In the present invention, the plant can be any one of c1)-c4):

c1)管状花目植物;c1) Tubular flowers;

c2)茄科植物;c2) Solanaceae;

c3)番茄属植物;c3) Tomato plants;

c4)番茄。c4) Tomato.

所述具体可产量体现在所述植物的果实上。Said specific yield is reflected in the fruit of said plant.

实验证明,本发明通过利用CRISPR/Cas9方法将植物中TOE1基因敲除后,实现了开花时间的缩短以及产量的提高,成功培育出早花高产植物。本发明可以在1年以内得到一个早花高产植物新品种,而利用传统育种手段需要连续回交、自交,至少需要3-4年时间,本发明的方法操作简单,成本低,大大加快了育种进程,并且克服了早花与高产难以兼备的不足,极大满足了生产需求,具有广泛的应用前景。Experiments show that the present invention achieves shortening of flowering time and improvement of yield after knocking out the TOE1 gene in plants by using the CRISPR/Cas9 method, and successfully cultivates early-flowering and high-yielding plants. The present invention can obtain a new early-flowering and high-yielding plant variety within one year, while using traditional breeding methods requires continuous backcrossing and self-crossing, which takes at least 3-4 years. The method of the present invention is simple to operate, low in cost, and greatly accelerated. The breeding process has been improved, and it has overcome the insufficiency of both early flowering and high yield, which greatly meets the production needs and has broad application prospects.

附图说明Description of drawings

图1为植株2的序列突变情况。Figure 1 shows the sequence mutation of plant 2.

图2为野生型番茄与植株2开花时间表型,以第一序花前叶片数表示开花时间。野生型是指野生型番茄。Figure 2 shows the flowering timetable of wild-type tomato and plant 2, and the flowering time is represented by the number of leaves before the first sequence of flowers. Wild type refers to wild type tomato.

图3为野生型番茄与植株2产量表型,A为表型照片,B为产量统计结果,野生型是指野生型番茄。Figure 3 shows the yield phenotypes of wild-type tomato and plant 2, A is a photo of the phenotype, B is the yield statistics, and wild-type refers to wild-type tomato.

具体实施方式Detailed ways

下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂、仪器等,如无特殊说明,均可从商业途径得到。以下实施例中的定量试验,均设置三次重复实验,结果取平均值。下述实施例中,如无特殊说明,序列表中各核苷酸序列的第1位均为相应DNA/RNA的5′末端核苷酸,末位均为相应DNA/RNA的3′末端核苷酸。The present invention will be further described in detail below with reference to the specific embodiments, and the given examples are only for illustrating the present invention, rather than for limiting the scope of the present invention. The experimental methods in the following examples are conventional methods unless otherwise specified. Materials, reagents, instruments, etc. used in the following examples can be obtained from commercial sources unless otherwise specified. The quantitative tests in the following examples are all set to repeat the experiments three times, and the results are averaged. In the following examples, unless otherwise specified, the first position of each nucleotide sequence in the sequence listing is the 5'-terminal nucleotide of the corresponding DNA/RNA, and the last position is the 3'-terminal nucleus of the corresponding DNA/RNA. Glycosides.

番茄采用番茄常规品种M82(以下也称为野生型番茄),来源于美国番茄遗传资源中心(TGRC,http://tgrc.ucdavis.edu/)。Tomato was a conventional tomato variety M82 (also referred to as wild-type tomato hereinafter), which was obtained from the American Tomato Genetic Resources Center (TGRC, http://tgrc.ucdavis.edu/).

实施例1、利用CRISPR/Cas9方法编辑番茄SlTOE1基因获得早花和高产番茄Example 1. Using CRISPR/Cas9 method to edit tomato SlTOE1 gene to obtain early-flowering and high-yielding tomato

本实施例利用CRISPR/Cas9方法对番茄的TOE1基因(记为SlTOE1基因)进行基因编辑,得到了开花时间提前并且高产的番茄,在野生型番茄中,SlTOE1基因的序列为序列表中序列1,其CDS序列为序列2,编码序列表中序列3所示的蛋白质(记为SlTOE1蛋白质)。具体步骤如下:In this example, the TOE1 gene (referred to as SlTOE1 gene) of tomato was gene-edited by CRISPR/Cas9 method to obtain tomato with early flowering time and high yield. In wild-type tomato, the sequence of the SlTOE1 gene is sequence 1 in the sequence table, Its CDS sequence is sequence 2, which encodes the protein shown in sequence 3 in the sequence listing (denoted as SlTOE1 protein). Specific steps are as follows:

一、重组载体的构建1. Construction of recombinant vector

将序列表中序列1的第317-336位作为靶序列,其序列为5′-ATCGGGTCATTCTCTCCTCC-3′,构建能表达靶向靶序列sgRNA的重组载体。Positions 317-336 of sequence 1 in the sequence listing were used as the target sequence, and the sequence was 5'-ATCGGGTCATTCTCTCCTCC-3' to construct a recombinant vector capable of expressing the targeting target sequence sgRNA.

合成靶序列的双链DNA,利用限制性内切酶BsaI将靶序列的双链DNA插入至CRISPR/Cas9载体(即文献“Deng et al.,Efficient generation of pink-fruitedtomatoes using CRISPR/Cas9system,Journal of Genetics and Genomics 45(2018)51-54”中的pTX041)中,得到重组载体。该重组载体能表达序列表中序列4所示的靶向靶序列的sgRNA。Synthesize the double-stranded DNA of the target sequence, and use the restriction endonuclease BsaI to insert the double-stranded DNA of the target sequence into the CRISPR/Cas9 carrier (that is, the document "Deng et al., Efficient generation of pink-fruited tomatoes using CRISPR/Cas9system, Journal of Genetics and Genomics 45 (2018) 51-54" in pTX041), the recombinant vector was obtained. The recombinant vector can express the sgRNA targeting the target sequence shown in Sequence 4 in the sequence listing.

二、转基因番茄的构建与鉴定2. Construction and identification of transgenic tomato

转基因番茄的构建:将步骤一得到的重组载体导入农杆菌LBA4404菌株中,利用农杆菌介导的转化方法转化野生型番茄构建得到T0转基因番茄。Construction of transgenic tomato: The recombinant vector obtained in step 1 was introduced into Agrobacterium LBA4404 strain, and the wild-type tomato was transformed by Agrobacterium-mediated transformation to construct TO transgenic tomato.

转基因番茄的鉴定:利用正向引物(5′-ATGTTGGATCTCAATGTAAGCG-3′)和反向引物(5′-GACCTTGGGCCTCTCCTACTCT-3′)组成的引物对1对上述转基因植株的基因组DNA进行PCR扩增,得到PCR产物,对得到的PCR产物进行测序,鉴定得到1株SlTOE1基因发生纯合突变的植株,命名为植株2,与野生型番茄相比,该植株中缺失了靶序列的第4-7位(图1),该种缺失导致SlTOE1基因CDS序列从第320位发生移码突变,产生终止密码子,翻译出丧失DNA结合结构域的截短蛋白,以致SlTOE1蛋白质功能的丧失,植株中不含有SlTOE1蛋白质。将植株2种植于温室中,通过自交获得T1代转基因种子。利用PCR方法鉴定出T1代种子中不含有外源序列(即CRISPR/Cas9方法编辑番茄SlTOE1基因过程中所用到的非番茄基因组序列的外源序列)的个体(所用引物对记为引物对2,该引物对序列为:正向引物:5′-TTGACAAGCTGTTCATCCAG-3′;反向引物:5′-CCTTCGTAATCTCGGTGTTC-3′)。从植株2的T1代植株中鉴定出1/4的个体不含外源序列。Identification of transgenic tomato: PCR amplification was performed on the genomic DNA of the above-mentioned transgenic plants by using primer pair 1 consisting of a forward primer (5'-ATGTTGGATCTCAATGTAAGCG-3') and a reverse primer (5'-GACCTTGGGCCTCTCCTACTCT-3') to obtain PCR Product, the obtained PCR product was sequenced, and a plant with a homozygous mutation of the SlTOE1 gene was identified and named as plant 2. Compared with the wild-type tomato, the 4th to 7th positions of the target sequence were missing in this plant (Fig. 1), this kind of deletion leads to a frameshift mutation in the CDS sequence of the SlTOE1 gene from position 320, resulting in a stop codon, and a truncated protein that loses the DNA binding domain is translated, so that the function of the SlTOE1 protein is lost, and the plant does not contain the SlTOE1 protein. . Plant 2 was grown in a greenhouse, and T1 generation transgenic seeds were obtained by selfing. PCR method was used to identify individuals in the seeds of T1 generation that did not contain exogenous sequences (that is, exogenous sequences other than tomato genome sequences used in the process of editing tomato SlTOE1 gene by CRISPR/Cas9 method) (the primer pair used was denoted as primer pair 2, The sequence of the primer pair is: forward primer: 5'-TTGACAAGCTGTTCATCCAG-3'; reverse primer: 5'-CCTTCGTAATCTCGGTGTTC-3'). 1/4 of the individuals identified from the T1 generation of plant 2 did not contain foreign sequences.

通过测序检测鉴定出的不含外源序列的T1代个体的SlTOE1基因是否依然发生纯合突变。利用引物对1PCR扩增SlTOE1基因片段,然后对PCR产物进行测序,将测序结果与野生型番茄SlTOE1基因进行比对,发现在靶序列的位置依然存在纯合突变(即两条染色体中均依然缺失靶序列的第4-7位),说明CRISPR/Cas9产生的突变能够从T0代稳定遗传到T1代。将这些不含外源序列且SlTOE1基因发生纯合突变的T1代植株即为目的SlTOE1基因编辑植株。Whether the SlTOE1 gene of the T1 generation individuals identified without exogenous sequences was still homozygous mutation was detected by sequencing. The SlTOE1 gene fragment was amplified by PCR with primer pair 1, and then the PCR product was sequenced. The sequencing results were compared with the wild-type tomato SlTOE1 gene, and it was found that there was still a homozygous mutation at the position of the target sequence (that is, it was still missing in both chromosomes). 4-7 of the target sequence), indicating that the mutations generated by CRISPR/Cas9 can be stably inherited from the T0 generation to the T1 generation. These T1 generation plants that do not contain foreign sequences and have homozygous mutations in the SlTOE1 gene are the target SlTOE1 gene-edited plants.

三、开花时间及产量测定3. Determination of flowering time and yield

在北京对番茄植株进行开花时间及产量测定,待测植株为步骤二得到的目的SlTOE1基因编辑植株以及野生型番茄(作为对照植株)。The flowering time and yield of tomato plants were measured in Beijing, and the plants to be tested were the target SlTOE1 gene-edited plants obtained in step 2 and wild-type tomato (as control plants).

将待测植株在温室中育苗,25℃、16h光照/8h黑暗条件下光照培养20d。各挑选20棵长势一致的幼苗移栽到温室大棚中,株距、行距在60cm以上,两种材料随机分布。正常的水肥管理,保证所有植株水肥条件基本一致。植株不打岔,让其自然生长。开花后统计第一序花前叶片数,第一序花前的叶片数目可以代表开花时间,数目越多表示开花越晚,反之越早;在目的SlTOE1基因编辑植株80%果实变红以后收获目的SlTOE1基因编辑植株及对照植株的所有果实,单株称量果实重量,并拍照记录,结果如表1所示。The plants to be tested were raised in a greenhouse, and cultivated in the light for 20 d at 25° C. under the conditions of 16 h light/8 h dark. Each selected 20 seedlings with the same growth and transplanted into the greenhouse, the plant spacing and row spacing were more than 60cm, and the two materials were randomly distributed. Normal water and fertilizer management ensures that all plants have basically the same water and fertilizer conditions. The plant is not interrupted and allowed to grow naturally. After flowering, the number of leaves before the first sequence of flowers is counted. The number of leaves before the first sequence of flowers can represent the flowering time. The more the number, the later the flowering, and vice versa. For all the fruits of the SlTOE1 gene-edited plants and the control plants, the fruit weights of each plant were weighed and recorded by taking pictures. The results are shown in Table 1.

表1、各材料的表型Table 1. Phenotype of each material

材料Material 产量(kg/株)Yield (kg/plant) 第一花序前叶片数(个)Number of leaves before the first inflorescence (number) 目的SlTOE1基因编辑植株Objective SlTOE1 gene-edited plants 4.564.56 7.947.94 野生型番茄wild type tomato 3.013.01 6.506.50

结果显示,与野生型番茄相比,目的SlTOE1基因编辑植株的产量显著增加,第一花序前叶片数减少约1.5片,开花时间明显缩短。表明,SlTOE1基因及其编码的蛋白质可以调控番茄的产量和开花时间,SlTOE1基因编辑后可制备番茄的早花高产材料。The results showed that compared with wild-type tomato, the yield of the target SlTOE1 gene-edited plants was significantly increased, the number of leaves before the first inflorescence was reduced by about 1.5, and the flowering time was significantly shortened. It is shown that the SlTOE1 gene and its encoded protein can regulate the yield and flowering time of tomato, and SlTOE1 gene editing can produce early flowering and high-yielding materials of tomato.

<110> 中国科学院遗传与发育生物学研究所、北京市农林科学院<110> Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing Academy of Agriculture and Forestry

<120> 一种早花高产番茄材料的制备方法<120> A kind of preparation method of early-flowering and high-yield tomato material

<160> 4<160> 4

<170> PatentIn version 3.5<170> PatentIn version 3.5

<210> 1<210> 1

<211> 3228<211> 3228

<212> DNA<212> DNA

<213> 番茄(Solanum lycopersicum)<213> Tomato (Solanum lycopersicum)

<400> 1<400> 1

atgttggatc tcaatgtaag cgtaatctac aataatgacc ttccacaagt ttctctactt 60atgttggatc tcaatgtaag cgtaatctac aataatgacc ttccacaagt ttctctactt 60

gatgaatcag ccacctccaa ttcatcctta cgaaatgcgg aagctacaac cagtgccggt 120gatgaatcag ccacctccaa ttcatcctta cgaaatgcgg aagctacaac cagtgccggt 120

gacgaagatt cgtgcgccgg tgagttgttc gctttcaatt ttggaatcct caaagttgaa 180gacgaagatt cgtgcgccgg tgagttgttc gctttcaatt ttggaatcct caaagttgaa 180

ggagctgaga ctagtaggag cagcaacaac gatgatgagg aaggatacgg taagaatcag 240ggagctgaga ctagtaggag cagcaacaac gatgatgagg aaggatacgg taagaatcag 240

agagttactc attctcaatt cgtgactagg cagctgtttc ccgttgatga tggtgagttg 300agagttactc attctcaatt cgtgactagg cagctgtttc ccgttgatga tggtgagttg 300

aaccggaaac aaaccgatcg ggtcattctc tcctccgctc gatccggtac ttctatcggt 360aaccggaaac aaaccgatcg ggtcattctc tcctccgctc gatccggtac ttctatcggt 360

tttggagatg tgcggataat acaacagcaa caaacggagc aaccgaaaca acaagtgaag 420tttggagatg tgcggataat acaacagcaa caaacggagc aaccgaaaca acaagtgaag 420

aagagtagga gaggcccaag gtcaagaagt tcacagtaca gaggtgtcac tttctaccgt 480aagagtagga gaggcccaag gtcaagaagt tcacagtaca gaggtgtcac tttctaccgt 480

agaactggta gatgggaatc acatatatgg ttagttttct aactgatttt ttttttgttg 540agaactggta gatgggaatc acatatatgg ttagttttct aactgatttt ttttttgttg 540

ataggatgat gattaattgg caaatgataa attgtcaatt ttattaatat aactacaatt 600ataggatgat gattaattgg caaatgataa attgtcaatt ttattaatat aactacaatt 600

ggatgcaggg actgtgggaa acaagtatat ttgggtatgg atattgctat tttaaatata 660ggatgcaggg actgtgggaa acaagtatat ttgggtatgg atattgctat tttaaatata 660

cagtttggtt aatttcgttg tttttgtgga ttttggtgct aaagctgtgt ctatactttt 720cagtttggtt aatttcgttg tttttgtgga ttttggtgct aaagctgtgt ctatactttt 720

tgctaatttt tgattgtttt tttttgttgc tttatattag gtggttttga tactgctcac 780tgctaatttt tgattgtttt tttttgttgc tttatattag gtggttttga tactgctcac 780

acagcagcaa ggtaaaataa aagtcatatg agttctcaaa tatacgcgtc atcagatttt 840acagcagcaa ggtaaaataa aagtcatatg agttctcaaa tatacgcgtc atcagatttt 840

tcaaatttat gctatttccc aaatttgatt gtatttgttt tcttctccgt tgtacagagc 900tcaaatttat gctatttccc aaatttgatt gtatttgttt tcttctccgt tgtacagagc 900

ttatgacaga gctgcaatta aatttagggg tgttgatgct gatatcaact ttagcttaag 960ttatgacaga gctgcaatta aatttagggg tgttgatgct gatatcaact ttagcttaag 960

tgattacgag gaggatatgc aacaggttag aaatgcaaag atttaatatg cgcaaatatg 1020tgattacgag gaggatatgc aacaggttag aaatgcaaag atttaatatg cgcaaatatg 1020

ttaaggtcac tgttgagcgc ttctctgggt ttattattgc ttctgtttta attggcatca 1080ttaaggtcac tgttgagcgc ttctctgggt ttattattgc ttctgtttta attggcatca 1080

ataatatgaa tcatatacaa gtattctgaa ctatttggtg gacacctttt tttgatttac 1140ataatatgaa tcatatacaa gtattctgaa ctatttggtg gacacctttt tttgatttac 1140

gcagatgaaa aaccttggta aagaagaatt tgtgcacttg ctgcgacgcc atagcactgg 1200gcagatgaaa aaccttggta aagaagaatt tgtgcacttg ctgcgacgcc atagcactgg 1200

tttctcaaga gggagctcca aattcagagg agtgacgcta cataaatgtg gcagatggga 1260tttctcaaga gggagctcca aattcagagg agtgacgcta cataaatgtg gcagatggga 1260

ggctcggatg ggacagttcc tcgggaaaaa gtaaggaact cactcactca ttgaaattct 1320ggctcggatg ggacagttcc tcgggaaaaa gtaaggaact cactcactca ttgaaattct 1320

cgaagaagta gattacatct tattatagta attggtcaaa aatgggacat acatatgttt 1380cgaagaagta gattacatct tattatagta attggtcaaa aatgggacat acatatgttt 1380

aaattgcgta tttgaagaag aaatcattgg gacaacagta ttcatagtgg ggattgcact 1440aaattgcgta tttgaagaag aaatcattgg gacaacagta ttcatagtgg ggattgcact 1440

gcttatattg caggtatata tatcttgggc tgttcgacag cgaagtagaa gctgcaaggt 1500gcttatattg caggtatata tatcttgggc tgttcgacag cgaagtagaa gctgcaaggt 1500

cctaatgata atgaattacc ctctctctga tgatgaacat ttatcctaaa ttttcaactt 1560cctaatgata atgaattacc ctctctctga tgatgaacat ttatcctaaa ttttcaactt 1560

taattatgtg tcatctaacc ggtatctcct ttattttttt gcaaatcagg gcctacgata 1620taattatgtg tcatctaacc ggtatctcct ttatttttttt gcaaatcagg gcctacgata 1620

aggcggcaat taaaactagc ggaagggaag ctgttaccaa ctttgagcca agtagctatg 1680aggcggcaat taaaactagc ggaagggaag ctgttaccaa ctttgagcca agtagctatg 1680

aaggggaaac aatgtcttta ccacagagtg aaggtttgct caaaagttct tggtcatttc 1740aaggggaaac aatgtcttta ccacagagtg aaggtttgct caaaagttct tggtcatttc 1740

caaactaata tagatacatg caacagtagt atctatatgt ggatctatct catttgtgat 1800caaactaata tagatacatg caacagtagt atctatatgt ggatctatct catttgtgat 1800

gcctatgatg caggtagcca acatgatctt gatctgaact tggggatatc gaccacttct 1860gcctatgatg caggtagcca acatgatctt gatctgaact tggggatatc gaccacttct 1860

tcaaaggaaa atgacaggtt gggaggttct cgctatcatc cttacgatat gcaagacgca 1920tcaaaggaaa atgacaggtt gggaggttct cgctatcatc cttacgatat gcaagacgca 1920

acaaaaccta aggtattagc agagtagctt atatgcttct gttcttgcaa aatcaattgg 1980acaaaaccta aggtattagc agagtagctt atatgcttct gttcttgcaa aatcaattgg 1980

attaaaatgc tctcctttat gttatagtct tctattgtta cttctttcat agataatatg 2040attaaaatgc tctcctttat gttatagtct tctattgtta cttctttcat agataatatg 2040

caagagatct attgcagtaa ttcatgatta ttagttattg gtagtaatat aatctccttt 2100caagagatct attgcagtaa ttcatgatta ttagttattg gtagtaatat aatctccttt 2100

ttgttaattt agatagcttt tcccattcat acataattgt gataaaacat gttcatgagc 2160ttgttaattt agatagcttt tcccattcat acataattgt gataaaacat gttcatgagc 2160

attgttaatc tttcgttttt gtagattgta ataatctatt tgtgctcttt aactatagat 2220attgttaatc tttcgttttt gtagattgta ataatctatt tgtgctcttt aactatagat 2220

ggataaacct ggttcagtaa tagttggaag ttcacatctc aagggactac caatgtcgtc 2280ggataaacct ggttcagtaa tagttggaag ttcacatctc aagggactac caatgtcgtc 2280

ccaacaagct caattgtgga ctggaatcta ttctaatttc tcttccagct atgaggtaaa 2340ccaacaagct caattgtgga ctggaatcta ttctaatttc tcttccagct atgaggtaaa 2340

atactaactc taccatcagt cagaaatttg ggaccaaata cagtgatgaa actccaattt 2400atactaactc taccatcagt cagaaatttg ggaccaaata cagtgatgaa actccaattt 2400

atctctgttt agtcttcttt tcctcactta tcgtcaaatt agcacgtatt cagttgccaa 2460atctctgttt agtcttcttt tcctcactta tcgtcaaatt agcacgtatt cagttgccaa 2460

aatagccata ttcatgcccc cttaccccaa tttccctcaa gtgctgggac catttgtgtt 2520aatagccata ttcatgcccc cttaccccaa tttccctcaa gtgctgggac catttgtgtt 2520

gtatgaaatg ttttaccttt ttccttctag ttctttgcat tgtcttcagt tgccaaaata 2580gtatgaaatg ttttaccttt ttccttctag ttctttgcat tgtcttcagt tgccaaaata 2580

actatctcca tccccgaagc ccaatttctc tgaagtactg aaattatttg tcttgtatga 2640actatctcca tccccgaagc ccaatttctc tgaagtactg aaattatttg tcttgtatga 2640

aacattttac ctttttactt cttgtgtttt ttggggctga taatcagtga tagtatgccc 2700aacattttac ctttttactt cttgtgtttt ttggggctga taatcagtga tagtatgccc 2700

catgacaaat gattatattg ttgtgggatc gtacacccca tgataagatt tatctttaac 2760catgacaaat gattatattg ttgtgggatc gtacacccca tgataagatt tatctttaac 2760

ttaacaaaat ttctttgtac ttagtcaatc atttggataa tcatgagcta tgttatactt 2820ttaacaaaat ttctttgtac ttagtcaatc atttggataa tcatgagcta tgttatactt 2820

ggggtgcata ttctcatgtg tggtcacagc cagtttttca ctgcaaacag ttgtctaaaa 2880ggggtgcata ttctcatgtg tggtcacagc cagtttttca ctgcaaacag ttgtctaaaa 2880

gtcaatgtct ttgttatgcc cttttgtgcc tcttcttaat tgaatgcatc cttagtataa 2940gtcaatgtct ttgttatgcc cttttgtgcc tcttcttaat tgaatgcatc cttagtataa 2940

ccttccaaaa ccctctctct gttaatttaa ctaataatca tatggcaggg aagagcatat 3000ccttccaaaa ccctctctct gttaatttaa ctaataatca tatggcaggg aagagcatat 3000

gacaagagaa aggacacagg ttcatcacaa ggacctccaa attgggcact gcaaatgcct 3060gacaagagaa aggacacagg ttcatcacaa ggacctccaa attgggcact gcaaatgcct 3060

agtcaggttg atacaaacag cccattgaca atgttctgca cggcagcatc atcaggattc 3120agtcaggttg atacaaacag cccattgaca atgttctgca cggcagcatc atcaggattc 3120

ttcattccat ctactacttc tatcacttca tcaacatctg cattagcaac ttcaacaaat 3180ttcattccat ctactacttc tatcacttca tcaacatctg cattagcaac ttcaacaaat 3180

gcctcgcagt gcttttacca gattaatccc cgcctaccac ttccataa 3228gcctcgcagt gcttttacca gattaatccc cgcctaccac ttccataa 3228

<210> 2<210> 2

<211> 1425<211> 1425

<212> DNA<212> DNA

<213> 番茄(Solanum lycopersicum)<213> Tomato (Solanum lycopersicum)

<400> 2<400> 2

atgttggatc tcaatgtaag cgtaatctac aataatgacc ttccacaagt ttctctactt 60atgttggatc tcaatgtaag cgtaatctac aataatgacc ttccacaagt ttctctactt 60

gatgaatcag ccacctccaa ttcatcctta cgaaatgcgg aagctacaac cagtgccggt 120gatgaatcag ccacctccaa ttcatcctta cgaaatgcgg aagctacaac cagtgccggt 120

gacgaagatt cgtgcgccgg tgagttgttc gctttcaatt ttggaatcct caaagttgaa 180gacgaagatt cgtgcgccgg tgagttgttc gctttcaatt ttggaatcct caaagttgaa 180

ggagctgaga ctagtaggag cagcaacaac gatgatgagg aaggatacgg taagaatcag 240ggagctgaga ctagtaggag cagcaacaac gatgatgagg aaggatacgg taagaatcag 240

agagttactc attctcaatt cgtgactagg cagctgtttc ccgttgatga tggtgagttg 300agagttactc attctcaatt cgtgactagg cagctgtttc ccgttgatga tggtgagttg 300

aaccggaaac aaaccgatcg ggtcattctc tcctccgctc gatccggtac ttctatcggt 360aaccggaaac aaaccgatcg ggtcattctc tcctccgctc gatccggtac ttctatcggt 360

tttggagatg tgcggataat acaacagcaa caaacggagc aaccgaaaca acaagtgaag 420tttggagatg tgcggataat acaacagcaa caaacggagc aaccgaaaca acaagtgaag 420

aagagtagga gaggcccaag gtcaagaagt tcacagtaca gaggtgtcac tttctaccgt 480aagagtagga gaggcccaag gtcaagaagt tcacagtaca gaggtgtcac tttctaccgt 480

agaactggta gatgggaatc acatatatgg gactgtggga aacaagtata tttgggtggt 540agaactggta gatgggaatc acatatatgg gactgtggga aacaagtata tttgggtggt 540

tttgatactg ctcacacagc agcaagagct tatgacagag ctgcaattaa atttaggggt 600tttgatactg ctcacacagc agcaagagct tatgacagag ctgcaattaa atttaggggt 600

gttgatgctg atatcaactt tagcttaagt gattacgagg aggatatgca acagatgaaa 660gttgatgctg atatcaactt tagcttaagt gattacgagg aggatatgca acagatgaaa 660

aaccttggta aagaagaatt tgtgcacttg ctgcgacgcc atagcactgg tttctcaaga 720aaccttggta aagaagaatt tgtgcacttg ctgcgacgcc atagcactgg tttctcaaga 720

gggagctcca aattcagagg agtgacgcta cataaatgtg gcagatggga ggctcggatg 780gggagctcca aattcagagg agtgacgcta cataaatgtg gcagatggga ggctcggatg 780

ggacagttcc tcgggaaaaa gtatatatat cttgggctgt tcgacagcga agtagaagct 840ggacagttcc tcgggaaaaa gtatatatat cttgggctgt tcgacagcga agtagaagct 840

gcaagggcct acgataaggc ggcaattaaa actagcggaa gggaagctgt taccaacttt 900gcaagggcct acgataaggc ggcaattaaa actagcggaa gggaagctgt taccaacttt 900

gagccaagta gctatgaagg ggaaacaatg tctttaccac agagtgaagg tagccaacat 960gagccaagta gctatgaagg ggaaacaatg tctttaccac agagtgaagg tagccaacat 960

gatcttgatc tgaacttggg gatatcgacc acttcttcaa aggaaaatga caggttggga 1020gatcttgatc tgaacttggg gatatcgacc acttcttcaa aggaaaatga caggttggga 1020

ggttctcgct atcatcctta cgatatgcaa gacgcaacaa aacctaagat ggataaacct 1080ggttctcgct atcatcctta cgatatgcaa gacgcaacaa aacctaagat ggataaacct 1080

ggttcagtaa tagttggaag ttcacatctc aagggactac caatgtcgtc ccaacaagct 1140ggttcagtaa tagttggaag ttcacatctc aagggactac caatgtcgtc ccaacaagct 1140

caattgtgga ctggaatcta ttctaatttc tcttccagct atgagggaag agcatatgac 1200caattgtgga ctggaatcta ttctaatttc tcttccagct atgagggaag agcatatgac 1200

aagagaaagg acacaggttc atcacaagga cctccaaatt gggcactgca aatgcctagt 1260aagagaaagg acacaggttc atcacaagga cctccaaatt gggcactgca aatgcctagt 1260

caggttgata caaacagccc attgacaatg ttctgcacgg cagcatcatc aggattcttc 1320caggttgata caaacagccc attgacaatg ttctgcacgg cagcatcatc aggattcttc 1320

attccatcta ctacttctat cacttcatca acatctgcat tagcaacttc aacaaatgcc 1380attccatcta ctacttctat cacttcatca acatctgcat tagcaacttc aacaaatgcc 1380

tcgcagtgct tttaccagat taatccccgc ctaccacttc cataa 1425tcgcagtgct tttaccagat taatccccgc ctaccacttc cataa 1425

<210> 3<210> 3

<211> 474<211> 474

<212> PRT<212> PRT

<213> 番茄(Solanum lycopersicum)<213> Tomato (Solanum lycopersicum)

<400> 3<400> 3

Met Leu Asp Leu Asn Val Ser Val Ile Tyr Asn Asn Asp Leu Pro GlnMet Leu Asp Leu Asn Val Ser Val Ile Tyr Asn Asn Asp Leu Pro Gln

1 5 10 151 5 10 15

Val Ser Leu Leu Asp Glu Ser Ala Thr Ser Asn Ser Ser Leu Arg AsnVal Ser Leu Leu Asp Glu Ser Ala Thr Ser Asn Ser Ser Leu Arg Asn

20 25 30 20 25 30

Ala Glu Ala Thr Thr Ser Ala Gly Asp Glu Asp Ser Cys Ala Gly GluAla Glu Ala Thr Thr Ser Ala Gly Asp Glu Asp Ser Cys Ala Gly Glu

35 40 45 35 40 45

Leu Phe Ala Phe Asn Phe Gly Ile Leu Lys Val Glu Gly Ala Glu ThrLeu Phe Ala Phe Asn Phe Gly Ile Leu Lys Val Glu Gly Ala Glu Thr

50 55 60 50 55 60

Ser Arg Ser Ser Asn Asn Asp Asp Glu Glu Gly Tyr Gly Lys Asn GlnSer Arg Ser Ser Asn Asn Asp Asp Glu Glu Gly Tyr Gly Lys Asn Gln

65 70 75 8065 70 75 80

Arg Val Thr His Ser Gln Phe Val Thr Arg Gln Leu Phe Pro Val AspArg Val Thr His Ser Gln Phe Val Thr Arg Gln Leu Phe Pro Val Asp

85 90 95 85 90 95

Asp Gly Glu Leu Asn Arg Lys Gln Thr Asp Arg Val Ile Leu Ser SerAsp Gly Glu Leu Asn Arg Lys Gln Thr Asp Arg Val Ile Leu Ser Ser

100 105 110 100 105 110

Ala Arg Ser Gly Thr Ser Ile Gly Phe Gly Asp Val Arg Ile Ile GlnAla Arg Ser Gly Thr Ser Ile Gly Phe Gly Asp Val Arg Ile Ile Gln

115 120 125 115 120 125

Gln Gln Gln Thr Glu Gln Pro Lys Gln Gln Val Lys Lys Ser Arg ArgGln Gln Gln Thr Glu Gln Pro Lys Gln Gln Val Lys Lys Ser Arg Arg

130 135 140 130 135 140

Gly Pro Arg Ser Arg Ser Ser Gln Tyr Arg Gly Val Thr Phe Tyr ArgGly Pro Arg Ser Arg Ser Ser Gln Tyr Arg Gly Val Thr Phe Tyr Arg

145 150 155 160145 150 155 160

Arg Thr Gly Arg Trp Glu Ser His Ile Trp Asp Cys Gly Lys Gln ValArg Thr Gly Arg Trp Glu Ser His Ile Trp Asp Cys Gly Lys Gln Val

165 170 175 165 170 175

Tyr Leu Gly Gly Phe Asp Thr Ala His Thr Ala Ala Arg Ala Tyr AspTyr Leu Gly Gly Phe Asp Thr Ala His Thr Ala Ala Arg Ala Tyr Asp

180 185 190 180 185 190

Arg Ala Ala Ile Lys Phe Arg Gly Val Asp Ala Asp Ile Asn Phe SerArg Ala Ala Ile Lys Phe Arg Gly Val Asp Ala Asp Ile Asn Phe Ser

195 200 205 195 200 205

Leu Ser Asp Tyr Glu Glu Asp Met Gln Gln Met Lys Asn Leu Gly LysLeu Ser Asp Tyr Glu Glu Asp Met Gln Gln Met Lys Asn Leu Gly Lys

210 215 220 210 215 220

Glu Glu Phe Val His Leu Leu Arg Arg His Ser Thr Gly Phe Ser ArgGlu Glu Phe Val His Leu Leu Arg Arg His Ser Thr Gly Phe Ser Arg

225 230 235 240225 230 235 240

Gly Ser Ser Lys Phe Arg Gly Val Thr Leu His Lys Cys Gly Arg TrpGly Ser Ser Lys Phe Arg Gly Val Thr Leu His Lys Cys Gly Arg Trp

245 250 255 245 250 255

Glu Ala Arg Met Gly Gln Phe Leu Gly Lys Lys Tyr Ile Tyr Leu GlyGlu Ala Arg Met Gly Gln Phe Leu Gly Lys Lys Tyr Ile Tyr Leu Gly

260 265 270 260 265 270

Leu Phe Asp Ser Glu Val Glu Ala Ala Arg Ala Tyr Asp Lys Ala AlaLeu Phe Asp Ser Glu Val Glu Ala Ala Arg Ala Tyr Asp Lys Ala Ala

275 280 285 275 280 285

Ile Lys Thr Ser Gly Arg Glu Ala Val Thr Asn Phe Glu Pro Ser SerIle Lys Thr Ser Gly Arg Glu Ala Val Thr Asn Phe Glu Pro Ser Ser

290 295 300 290 295 300

Tyr Glu Gly Glu Thr Met Ser Leu Pro Gln Ser Glu Gly Ser Gln HisTyr Glu Gly Glu Thr Met Ser Leu Pro Gln Ser Glu Gly Ser Gln His

305 310 315 320305 310 315 320

Asp Leu Asp Leu Asn Leu Gly Ile Ser Thr Thr Ser Ser Lys Glu AsnAsp Leu Asp Leu Asn Leu Gly Ile Ser Thr Thr Ser Ser Lys Glu Asn

325 330 335 325 330 335

Asp Arg Leu Gly Gly Ser Arg Tyr His Pro Tyr Asp Met Gln Asp AlaAsp Arg Leu Gly Gly Ser Arg Tyr His Pro Tyr Asp Met Gln Asp Ala

340 345 350 340 345 350

Thr Lys Pro Lys Met Asp Lys Pro Gly Ser Val Ile Val Gly Ser SerThr Lys Pro Lys Met Asp Lys Pro Gly Ser Val Ile Val Gly Ser Ser

355 360 365 355 360 365

His Leu Lys Gly Leu Pro Met Ser Ser Gln Gln Ala Gln Leu Trp ThrHis Leu Lys Gly Leu Pro Met Ser Ser Gln Gln Ala Gln Leu Trp Thr

370 375 380 370 375 380

Gly Ile Tyr Ser Asn Phe Ser Ser Ser Tyr Glu Gly Arg Ala Tyr AspGly Ile Tyr Ser Asn Phe Ser Ser Ser Tyr Glu Gly Arg Ala Tyr Asp

385 390 395 400385 390 395 400

Lys Arg Lys Asp Thr Gly Ser Ser Gln Gly Pro Pro Asn Trp Ala LeuLys Arg Lys Asp Thr Gly Ser Ser Gln Gly Pro Pro Asn Trp Ala Leu

405 410 415 405 410 415

Gln Met Pro Ser Gln Val Asp Thr Asn Ser Pro Leu Thr Met Phe CysGln Met Pro Ser Gln Val Asp Thr Asn Ser Pro Leu Thr Met Phe Cys

420 425 430 420 425 430

Thr Ala Ala Ser Ser Gly Phe Phe Ile Pro Ser Thr Thr Ser Ile ThrThr Ala Ala Ser Ser Gly Phe Phe Ile Pro Ser Thr Thr Ser Ile Thr

435 440 445 435 440 445

Ser Ser Thr Ser Ala Leu Ala Thr Ser Thr Asn Ala Ser Gln Cys PheSer Ser Thr Ser Ala Leu Ala Thr Ser Thr Asn Ala Ser Gln Cys Phe

450 455 460 450 455 460

Tyr Gln Ile Asn Pro Arg Leu Pro Leu ProTyr Gln Ile Asn Pro Arg Leu Pro Leu Pro

465 470465 470

<210> 4<210> 4

<211> 97<211> 97

<212> RNA<212> RNA

<213> 人工序列<213> Artificial sequences

<400> 4<400> 4

gggaggagag aaugacccga uguuuuagag cuagaaauag caaguuaaaa uaaggcuagu 60gggaggagag aaugacccga uguuuuagag cuagaaauag caaguuaaaa uaaggcuagu 60

ccguuaucaa cuugaaaaag uggcaccgag ucggugc 97ccguuaucaa cuugaaaaag uggcaccgag ucggugc 97

Claims (10)

1. Use of a protein or a substance modulating the content and/or activity of said protein of any one of the following:
D1) regulating and controlling the flowering time of the plants;
D2) preparing products for regulating and controlling the flowering time of plants;
D3) shortening the flowering time of plants;
D4) preparing products for shortening the flowering time of plants;
D5) regulating and controlling the yield of the plant;
D6) preparing a product for regulating and controlling the yield of the plants;
D7) the yield of the plants is improved;
D8) preparing a product for increasing the plant yield;
D9) regulating and controlling the flowering time and yield of the plants;
D10) preparing products for regulating and controlling the flowering time and the yield of plants;
D11) shortening the flowering time of plants and increasing the yield of plants;
D12) preparing products for shortening the flowering time of plants and improving the yield of the plants;
D13) plant breeding;
the protein is A1), A2) or A3) as follows:
A1) the amino acid sequence is the protein of sequence 3;
A2) the protein which is obtained by substituting and/or deleting and/or adding one or more amino acid residues to the amino acid sequence shown in the sequence 3 in the sequence table and has the same function;
A3) a fusion protein obtained by connecting a label to the N-terminal or/and the C-terminal of A1) or A2).
2. Use of a biological material related to a protein according to claim 1, wherein the biological material is selected from the group consisting of:
D1) regulating and controlling the flowering time of the plants;
D2) preparing products for regulating and controlling the flowering time of plants;
D3) shortening the flowering time of plants;
D4) preparing products for shortening the flowering time of plants;
D5) regulating and controlling the yield of the plant;
D6) preparing a product for regulating and controlling the yield of the plants;
D7) the yield of the plants is improved;
D8) preparing a product for increasing the plant yield;
D9) regulating and controlling the flowering time and yield of the plants;
D10) preparing products for regulating and controlling the flowering time and the yield of plants;
D11) shortening the flowering time of plants and increasing the yield of plants;
D12) preparing products for shortening the flowering time of plants and improving the yield of the plants;
D13) plant breeding;
the biomaterial is any one of the following B1) to B9):
B1) a nucleic acid molecule encoding the protein of claim 1;
B2) an expression cassette comprising the nucleic acid molecule of B1);
B3) a recombinant vector containing the nucleic acid molecule of B1) or a recombinant vector containing the expression cassette of B2);
B4) a recombinant microorganism containing B1) the nucleic acid molecule, or a recombinant microorganism containing B2) the expression cassette, or a recombinant microorganism containing B3) the recombinant vector;
B5) a transgenic plant cell line comprising B1) the nucleic acid molecule or a transgenic plant cell line comprising B2) the expression cassette;
B6) transgenic plant tissue comprising the nucleic acid molecule of B1) or transgenic plant tissue comprising the expression cassette of B2);
B7) a transgenic plant organ containing the nucleic acid molecule of B1), or a transgenic plant organ containing the expression cassette of B2);
B8) a nucleic acid molecule that reduces the content and/or activity of the protein of claim 1;
B9) an expression cassette, a recombinant vector, a recombinant microorganism or a transgenic plant cell line comprising the nucleic acid molecule according to B8).
3. Use according to claim 2, characterized in that: B1) the nucleic acid molecule is any one of the following b1) -b 5):
b1) the coding sequence is cDNA molecule or DNA molecule of sequence 2 in the sequence table;
b2) a cDNA molecule or a DNA molecule shown in a sequence 2 in a sequence table;
b3) DNA molecule shown in sequence 1 in the sequence table;
b4) a cDNA or DNA molecule having 75% or more identity with the nucleotide sequence defined in b1) or b2) or b3) and encoding the protein of claim 1;
b5) a cDNA molecule or a DNA molecule which hybridizes under stringent conditions with the nucleotide sequence defined in b1) or b2) or b3) or b4) and encodes the protein of claim 1;
B8) the nucleic acid molecule is any one of c1) -c4) as follows:
c1) RNA molecule shown in sequence 4 in the sequence table;
c2) transcribing a DNA molecule of RNA shown in a sequence 4 in a sequence table;
c3) an RNA molecule or DNA molecule with 75 percent or more than 75 percent of identity with the nucleotide sequence defined by c1) or c2) and the same function;
c4) RNA molecule or DNA molecule which hybridizes with the nucleotide sequence defined by c1) or c2) or c3) under strict conditions and has the same function.
4. Any one of the following methods:
x1) a method for reducing flowering time in plants comprising: reducing the activity of the protein of claim 1 in a recipient plant, reducing the content of the protein of claim 1 in a recipient plant, inhibiting the expression of the gene encoding the protein of claim 1 in a recipient plant, or knocking out the gene encoding the protein of claim 1 in a recipient plant, to obtain a plant of interest with reduced flowering-time as compared to the recipient plant;
x2) method for cultivating plants with reduced flowering time comprising: reducing the activity of the protein of claim 1 in a recipient plant, reducing the content of the protein of claim 1 in a recipient plant, inhibiting the expression of the gene encoding the protein of claim 1 in a recipient plant, or knocking out the gene encoding the protein of claim 1 in a recipient plant, to obtain a plant of interest with reduced flowering-time as compared to the recipient plant;
x3) method for increasing plant yield, comprising: reducing the activity of a protein according to claim 1 in a recipient plant, reducing the content of a protein according to claim 1 in a recipient plant, inhibiting the expression of a gene encoding a protein according to claim 1 in a recipient plant, or knocking out a gene encoding a protein according to claim 1 in a recipient plant, resulting in a plant of interest having an increased yield as compared to the recipient plant;
x4) method for growing plants with increased yield, comprising: reducing the activity of a protein according to claim 1 in a recipient plant, reducing the content of a protein according to claim 1 in a recipient plant, inhibiting the expression of a gene encoding a protein according to claim 1 in a recipient plant, or knocking out a gene encoding a protein according to claim 1 in a recipient plant, resulting in a plant of interest having an increased yield as compared to the recipient plant;
x5) method for reducing flowering time and increasing plant yield in plants comprising: reducing the activity of the protein of claim 1 in a recipient plant, reducing the content of the protein of claim 1 in a recipient plant, inhibiting the expression of the gene encoding the protein of claim 1 in a recipient plant, or knocking out the gene encoding the protein of claim 1 in a recipient plant, to obtain a plant of interest with reduced flowering-time and increased yield as compared to said recipient plant;
x6) method for cultivating plants with reduced flowering-time and increased yield, comprising: reducing the activity of the protein of claim 1 in a recipient plant, reducing the content of the protein of claim 1 in a recipient plant, inhibiting the expression of the gene encoding the protein of claim 1 in a recipient plant, or knocking out the gene encoding the protein of claim 1 in a recipient plant, to obtain a plant of interest with reduced flowering-time and increased yield as compared to said recipient plant.
5. The method of claim 4, wherein: knocking out a gene encoding the protein of claim 1 in a recipient plant is achieved using the CRISPR/Cas9 method.
6. The method of claim 6, wherein: the target sequence used in the CRISPR/Cas9 method is 317-336 th site of sequence 1 in the sequence table.
7. A product having the function of shortening flowering-time and/or increasing plant yield, comprising the biomaterial as claimed in claim 2 or 3.
8. Use according to any one of claims 1 to 3, or a method according to any one of claims 4 to 6, or a product according to claim 7, wherein: the plant is any one of c1) -c 4):
c1) tubular plants of the order florida;
c2) a plant of the Solanaceae family;
c3) a plant of the genus Lycopersicon;
c4) tomato.
9. The use, method or product according to claim 8, wherein: said yield is represented on the fruit of said plant.
10. Use of a plant of interest prepared by the method of any one of claims 4-6 in plant breeding.
CN201910167055.4A 2019-03-06 2019-03-06 Preparation method of early-flowering high-yield tomato material Pending CN111662366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910167055.4A CN111662366A (en) 2019-03-06 2019-03-06 Preparation method of early-flowering high-yield tomato material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910167055.4A CN111662366A (en) 2019-03-06 2019-03-06 Preparation method of early-flowering high-yield tomato material

Publications (1)

Publication Number Publication Date
CN111662366A true CN111662366A (en) 2020-09-15

Family

ID=72381824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910167055.4A Pending CN111662366A (en) 2019-03-06 2019-03-06 Preparation method of early-flowering high-yield tomato material

Country Status (1)

Country Link
CN (1) CN111662366A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113150094A (en) * 2021-04-14 2021-07-23 西南大学 EjAP2L gene related to loquat flower development and encoding protein and application thereof
WO2022199812A1 (en) * 2021-03-24 2022-09-29 Enza Zaden Beheer B.V. Tomato plant having improved insect resistance
CN117003844A (en) * 2023-08-10 2023-11-07 西部(重庆)科学城种质创制大科学中心 Potato tuber regulatory gene StRAP2.7b and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080313756A1 (en) * 1998-09-22 2008-12-18 Mendel Biotechnology, Inc. Plant quality traits
US20130333061A1 (en) * 2008-02-05 2013-12-12 Wei Wu Isolated novel nucleic acid and protein molecules from soy and methods of using those molecules to generate transgenic plants with enhanced agronomic traits
CN109423492A (en) * 2017-08-21 2019-03-05 中国科学院遗传与发育生物学研究所 Application of the SlTOE1 gene in regulation tomato flowering time and yield

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080313756A1 (en) * 1998-09-22 2008-12-18 Mendel Biotechnology, Inc. Plant quality traits
US20130333061A1 (en) * 2008-02-05 2013-12-12 Wei Wu Isolated novel nucleic acid and protein molecules from soy and methods of using those molecules to generate transgenic plants with enhanced agronomic traits
CN109423492A (en) * 2017-08-21 2019-03-05 中国科学院遗传与发育生物学研究所 Application of the SlTOE1 gene in regulation tomato flowering time and yield

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KARLOVA R 等: ""APETALA2-like protein AP2e [Solanum lycopersicum]"", 《GENBANK》 *
杜敏敏 等: ""番茄分子育种现状与展望——从基因克隆到品种改良"", 《园艺学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022199812A1 (en) * 2021-03-24 2022-09-29 Enza Zaden Beheer B.V. Tomato plant having improved insect resistance
CN113150094A (en) * 2021-04-14 2021-07-23 西南大学 EjAP2L gene related to loquat flower development and encoding protein and application thereof
CN113150094B (en) * 2021-04-14 2022-04-12 西南大学 EjAP2L gene related to loquat flower development and encoding protein and application thereof
CN117003844A (en) * 2023-08-10 2023-11-07 西部(重庆)科学城种质创制大科学中心 Potato tuber regulatory gene StRAP2.7b and application thereof
CN117003844B (en) * 2023-08-10 2024-05-14 西部(重庆)科学城种质创制大科学中心 Potato tuber regulatory gene StRAP2.7b and application thereof

Similar Documents

Publication Publication Date Title
CN110804090B (en) Protein CkWRKY33 and coding gene and application thereof
CN114369147B (en) Application of BFNE gene in tomato plant type improvement and biological yield improvement
CN112513275A (en) Application of miR396 or mutant of encoding gene thereof in regulation and control of plant agronomic traits
CN111662366A (en) Preparation method of early-flowering high-yield tomato material
CN106496313B (en) Disease resistance-related protein IbSWEET10 and its encoding gene and application
CN108048481B (en) Application of RLI1 Protein in Regulating Rice Leaf Angle
CN108218968A (en) A kind of plant seed character-related protein and its encoding gene and application
CN100453555C (en) Paddy rice fragile straw controlling gene BC1 and use thereof
CN114106121A (en) FvGR3 protein and its encoding gene and use
CN110129358B (en) Application of rice Os01g32730 gene
CN114230648B (en) Application of rice gene PANDA in improving plant yield
CN112980876B (en) Application of GhGPAT12 Protein and GhGPAT25 Protein in Regulating Cotton Male Reproductive Development
CN112830963B (en) A GhFLA19-D protein that regulates cotton male reproductive development and its encoding gene and application
CN110092820A (en) Bracteal leaf of corn length-adjusting albumin A RR8 and its encoding gene and application
CN111499709B (en) RGN1 protein related to grain number per ear and its encoding gene and application
CN113429467B (en) Application of NPF7.6 Protein in Regulating Nitrogen Tolerance of Legume Root Nodules
CN114456242A (en) PRP protein and coding gene and application thereof
CN109879945B (en) The function and application of the anti-cracking horn gene BnIND in Brassica napus
CN115216488A (en) Method for creating large-long-grain type new rice germplasm or large-long-grain type short-stalk new rice germplasm and application thereof
CN113846120B (en) Application of protein TaTIN103 in regulation and control of wheat tillering
CN113968899B (en) A kind of preparation method of long fruit tomato material
CN111621485B (en) Application of USB1 protein in the regulation of plant yield-related traits
CN107936105B (en) Application of protein GmSCS06 in regulating plant stress resistance
CN117568289A (en) Protein for resisting soybean cyst nematode disease, encoding gene and application thereof
CN107056906B (en) Protein TaTFL1-2D and its coding gene and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200915