CN111651936A - A FOA-GRNN-based modeling and design method for dual-notch ultra-wideband antennas - Google Patents
A FOA-GRNN-based modeling and design method for dual-notch ultra-wideband antennas Download PDFInfo
- Publication number
- CN111651936A CN111651936A CN202010460354.XA CN202010460354A CN111651936A CN 111651936 A CN111651936 A CN 111651936A CN 202010460354 A CN202010460354 A CN 202010460354A CN 111651936 A CN111651936 A CN 111651936A
- Authority
- CN
- China
- Prior art keywords
- grnn
- data
- foa
- ultra
- fruit fly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013461 design Methods 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000012549 training Methods 0.000 claims abstract description 23
- 238000013528 artificial neural network Methods 0.000 claims abstract description 22
- 241000255588 Tephritidae Species 0.000 claims description 32
- 238000012360 testing method Methods 0.000 claims description 12
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 claims description 7
- 238000005457 optimization Methods 0.000 claims description 7
- 238000004088 simulation Methods 0.000 claims description 6
- 238000005094 computer simulation Methods 0.000 claims description 2
- 230000000306 recurrent effect Effects 0.000 claims 2
- 238000009499 grossing Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003062 neural network model Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/20—Ensemble learning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/20—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
- H01Q5/25—Ultra-wideband [UWB] systems, e.g. multiple resonance systems; Pulse systems
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Computer Hardware Design (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及射频微波器件神经网络建模技术领域,尤其涉及一种基于FOA-GRNN的双陷波特性超宽带天线建模设计方法。The invention relates to the technical field of neural network modeling of radio frequency microwave devices, in particular to a modeling and design method for an ultra-wideband antenna with double-notch characteristics based on FOA-GRNN.
背景技术Background technique
随着当今移动通信、无线局域网、射频识别等快速发展,无线通信系统展现出巨大的潜力,其中射频微波器件设计的好坏直接影响着整个通信系统的性能。With the rapid development of today's mobile communication, wireless local area network, radio frequency identification, etc., wireless communication systems show great potential, and the design of radio frequency microwave devices directly affects the performance of the entire communication system.
天线在无线通信技术中发挥着不可或缺的作用,它是承载着发射和接收无线电磁波、完成电磁转换的核心部件。其中,超宽带陷波天线具有尺寸较小、覆盖带宽范围广、辐射效率高,并能避免其他通信系统频段如WIMAX(3.3~3.6GHz)和WLAN(5.2~5.8GHz)的干扰的优点,适用于超宽带无线通信系统。在超宽带陷波天线的设计中,可以采用改变谐振器的尺寸和位置,或采用改变辐射贴片上缝隙的长度、宽度等尺寸实现天线的陷波特性。常用的天线设计与分析方法采用HFSS电磁仿真软件的辅助设计。在设计器件时,一旦天线的某个物理尺寸需要一个微小改变则需要重新优化设计,需要重新完整一个的电磁仿真过程,这样降低了设计速度,加大了设计难度。Antenna plays an indispensable role in wireless communication technology. It is the core component that transmits and receives wireless electromagnetic waves and completes electromagnetic conversion. Among them, the ultra-wideband notch antenna has the advantages of small size, wide coverage bandwidth, high radiation efficiency, and can avoid the interference of other communication system frequency bands such as WIMAX (3.3-3.6GHz) and WLAN (5.2-5.8GHz). in ultra-wideband wireless communication systems. In the design of the ultra-wideband notch antenna, the size and position of the resonator can be changed, or the length and width of the slot on the radiation patch can be changed to realize the notch characteristic of the antenna. The commonly used antenna design and analysis method adopts the aided design of HFSS electromagnetic simulation software. When designing a device, once a certain physical size of the antenna needs a slight change, the design needs to be re-optimized, and an electromagnetic simulation process needs to be re-completed, which reduces the design speed and increases the design difficulty.
发明内容SUMMARY OF THE INVENTION
针对现有技术存在的问题,本发明提供一种基于FOA-GRNN的双陷波特性超宽带天线建模设计方法,具有双陷波特性的天线的射频特性为非线性相关关系,以双陷波超宽带天线回波损耗|S11|与频率f的数据为样本输入,运用果蝇算法对广义回归神经网络的光滑因子进行优化,将均方根误差函数作为适应度函数,寻找最优参数来进行建模设计。In view of the problems existing in the prior art, the present invention provides a FOA-GRNN-based modeling and design method for an ultra-wideband antenna with dual-notch characteristics. The radio frequency characteristics of an antenna with double-notch characteristics are nonlinear correlations. The data of return loss |S11| and frequency f of the notch ultra-wideband antenna are used as sample input, the smooth factor of the generalized regression neural network is optimized by the fruit fly algorithm, and the root mean square error function is used as the fitness function to find the optimal parameters for modeling design.
本发明的技术方案为:The technical scheme of the present invention is:
一种基于FOA-GRNN的双陷波特性超宽带天线建模设计方法,包括下述步骤:A method for modeling and designing an ultra-wideband antenna with dual-notch characteristics based on FOA-GRNN, comprising the following steps:
步骤1:选择样本对象;选择一种具有双陷波特性的超宽带天线,利用其回波损耗|S11|和频率f的关系数据作为模型的输入样本;Step 1: Select the sample object; select an ultra-wideband antenna with double notch characteristics, and use the relationship data of its return loss |S11| and frequency f as the input sample of the model;
所述模型为利用电磁仿真软件对具有双陷波特性的超宽带天线进行射频特性的仿真建模;The model is to use electromagnetic simulation software to carry out the simulation modeling of the radio frequency characteristics of the ultra-wideband antenna with double-notch characteristics;
步骤2:基本参数设置;设置果蝇种群规模sizepop、最大迭代步数maxgen、果蝇初始位置坐标值(X_axis,Y_axis);Step 2: Basic parameter settings; set the sizepop of the fruit fly population, the maximum number of iteration steps maxgen, and the coordinate values of the initial position of the fruit fly (X_axis, Y_axis);
步骤3:提取训练集数据;将输入样本数据分成两组数据,分别为训练集数据和测试集数据,进行交叉训练广义回归神经网络,并以预测样本的均方根误差函数作为适应度函数;Step 3: Extract the training set data; divide the input sample data into two groups of data, namely the training set data and the test set data, perform cross-training of the generalized regression neural network, and use the root mean square error function of the predicted samples as the fitness function;
所述将输入样本数据分成两组数据,将两组数据交替作为训练集数据和测试集数据,交叉训练广义回归神经网络,即GRNN网络结构,以避免算法训练过度;The input sample data is divided into two groups of data, the two groups of data are alternately used as training set data and test set data, and the generalized regression neural network, that is, the GRNN network structure, is cross-trained to avoid overtraining of the algorithm;
所述将预测样本的均方根误差RMSE作为适应度函数,有:The root mean square error RMSE of the predicted sample is used as the fitness function, as follows:
其中M为测试样本数量,为广义回归神经网络预测输出值,yl为实际目标输出值,where M is the number of test samples, is the predicted output value of the generalized regression neural network, y l is the actual target output value,
l=1,2,…,M;l = 1, 2, ..., M;
步骤4:用果蝇算法优化训练广义回归神经网络的光滑因子;Step 4: Optimize the smooth factor of training generalized regression neural network with Drosophila algorithm;
所述步骤4具体包括:The
步骤4.1:随机设置初始果蝇飞行方向与距离;Step 4.1: Randomly set the initial fly direction and distance of the fruit fly;
步骤4.2:计算果蝇与原点之间的距离其中(X(i),Y(i))为果蝇的位置坐标值,其中i表示果蝇种群数量,i=1,2,…sizepop,并计算味道浓度判定值S(i),即为距离之倒数S(i)=1/D(i);Step 4.2: Calculate the distance between the fly and the origin Where (X(i), Y(i)) is the position coordinate value of the fruit fly, where i represents the population of the fruit fly, i=1,2,...sizepop, and calculate the taste concentration judgment value S(i), which is The inverse of the distance S(i)=1/D(i);
步骤4.3:利用GRNN网络预测样本的均方根误差作为Fitness适应度函数,将步骤4.2中求得的味道浓度判定值S(i)代入,求果蝇味道浓度值;Step 4.3: Use the root mean square error of the GRNN network to predict the sample as the fitness fitness function, and substitute the taste concentration judgment value S(i) obtained in step 4.2 into the fruit fly taste concentration value;
步骤4.4:在步骤4.3所得的味道浓度值中,找出果蝇群体中味道浓度的极小值,即为最佳味道浓度值bestSmell,并保留此时的个体位置;Step 4.4: In the taste concentration value obtained in step 4.3, find the minimum value of the taste concentration in the fruit fly population, which is the best taste concentration value bestSmell, and retain the individual position at this time;
步骤4.5:果蝇迭代寻优开始,比较每代的味道浓度值;若当代味道浓度值小于上一代,则更新该味道浓度值为最优值;Step 4.5: Drosophila iterative optimization starts, compare the taste concentration value of each generation; if the current taste concentration value is smaller than the previous generation, update the taste concentration value to the optimal value;
步骤4.6:把是否满足最大迭代步数最为判断是否达到迭代终止的条件,若是,则终止迭代,记录最优果蝇,得出最佳光滑因子,进行FOA-GRNN网络建模;否则返回执行步骤4.1;Step 4.6: Whether the maximum number of iteration steps is met is the most important condition for judging whether the iteration termination is reached. If so, terminate the iteration, record the optimal fruit fly, obtain the optimal smooth factor, and perform FOA-GRNN network modeling; otherwise, return to the execution step 4.1;
步骤5:最后将上述步骤得到的FOA-GRNN网络模型用于具有双陷波特性的超宽带天线的仿真设计当中,运用未参加模型训练的数据对FOA-GRNN网络模型进行测试,得到的输出结果便是天线对应的回波损耗特性数据。Step 5: Finally, the FOA-GRNN network model obtained in the above steps is used in the simulation design of the ultra-wideband antenna with double notch characteristics, and the FOA-GRNN network model is tested with the data that did not participate in the model training, and the obtained output The result is the return loss characteristic data corresponding to the antenna.
本发明的有益效果为:The beneficial effects of the present invention are:
本发明提供一种基于FOA-GRNN的双陷波特性超宽带天线建模设计方法,利用果蝇算法对关键GRNN网络的光滑因子进行寻优,建立的FOA-GRNN模型有良好的预测效果,预测精度和拟合能力都明显优异于GRNN神经网络结构,寻找合适的建模方法及其快速算法,能够缩短设计周期、简化其设计过程,提高CAD软件仿真速度和精度,具有优异的非线性映射能力,为天线仿真设计提供了一个便利的方法。The invention provides a FOA-GRNN-based dual-notch characteristic ultra-wideband antenna modeling design method. The fruit fly algorithm is used to optimize the smooth factor of the key GRNN network, and the established FOA-GRNN model has a good prediction effect. The prediction accuracy and fitting ability are obviously superior to the GRNN neural network structure. Finding a suitable modeling method and its fast algorithm can shorten the design cycle, simplify its design process, improve the speed and accuracy of CAD software simulation, and have excellent nonlinear mapping. capability, which provides a convenient method for antenna simulation design.
附图说明Description of drawings
图1为本发明基于FOA-GRNN的双陷波特性超宽带天线模型流程图;Fig. 1 is the flow chart of the dual-notch characteristic ultra-wideband antenna model based on FOA-GRNN of the present invention;
图2为本发明实施例双陷波特性的超宽带天线的回波损耗曲线图;Fig. 2 is the return loss curve diagram of the ultra-wideband antenna of the double-notch characteristic of the embodiment of the present invention;
图3为本发明实施例GRNN的双陷波特性超宽带天线模型的预测输出和实际输出的对比曲线图;Fig. 3 is the comparison graph of the predicted output and the actual output of the double-notch characteristic ultra-wideband antenna model of the GRNN according to the embodiment of the present invention;
图4为本发明实施例FOA-GRNN的双陷波特性超宽带天线模型的预测输出和实际输出的对比曲线图;Fig. 4 is the comparison graph of the predicted output and the actual output of the double-notch characteristic ultra-wideband antenna model of FOA-GRNN according to the embodiment of the present invention;
图5为本发明实施例两种结构预测输出的对比图;5 is a comparison diagram of two kinds of structure prediction outputs according to an embodiment of the present invention;
图6为本发明实施例GRNN的双陷波特性超宽带天线模型的预测相对误差曲线图;Fig. 6 is the prediction relative error curve diagram of the dual-notch characteristic ultra-wideband antenna model of the GRNN according to the embodiment of the present invention;
图7为本发明实施例FOA-GRNN的双陷波特性超宽带天线模型的预测相对误差曲线图;Fig. 7 is the prediction relative error curve diagram of the dual-notch characteristic ultra-wideband antenna model of FOA-GRNN according to an embodiment of the present invention;
图8为本发明实施例果蝇的飞行轨迹图;8 is a flight trajectory diagram of a fruit fly according to an embodiment of the present invention;
图9为本发明实施例果蝇算法寻优过程图。FIG. 9 is a diagram of an optimization process of the fruit fly algorithm according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合附图和具体实施方式,对本发明作进一步描述。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.
一种基于FOA-GRNN的双陷波特性超宽带天线建模设计方法,在MATLAB平台上,建立FOA-GRNN网络模型,其整体流程图如图1所示,包括下述步骤:A FOA-GRNN-based dual-notch characteristic ultra-wideband antenna modeling and design method, on the MATLAB platform, establishes a FOA-GRNN network model, and its overall flow chart is shown in Figure 1, including the following steps:
步骤1:选择样本对象;选择一种具有双陷波特性的超宽带天线,利用其回波损耗|S11|和频率f的关系数据作为模型的输入样本;Step 1: Select the sample object; select an ultra-wideband antenna with double notch characteristics, and use the relationship data of its return loss |S11| and frequency f as the input sample of the model;
所述模型为利用电磁仿真软件HFSS15.0仿真软件对具有双陷波特性的超宽带天线进行射频特性的仿真建模;回波损耗小于-10dB时,天线带宽为2.8-12.3GHz,设置频率步长0.1GHz,提取天线回波损耗|S11|和频率f的数据140组。The model is to use the electromagnetic simulation software HFSS15.0 simulation software to simulate the radio frequency characteristics of the ultra-wideband antenna with double notch characteristics; when the return loss is less than -10dB, the antenna bandwidth is 2.8-12.3GHz, and the frequency is set. The step size is 0.1 GHz, and 140 groups of data of antenna return loss |S11| and frequency f are extracted.
本实施例中用电磁仿真软件HFSS15.0对具有小型化的双陷波特性的超宽带天线进行了射频特性的建模仿真。如图2所示,天线回波损耗小于-10dB的带宽为2.8-12.3GHz,并且在3.23~3.7GHz 8.01~8.66GHz两个频段产生较好的陷波特性。提取其射频特性曲线的数据,频率步长为0.1GHz,作为输入样本数据分别导入GRNN神经网络和FOA-GRNN神经网络模型中。In this embodiment, the electromagnetic simulation software HFSS15.0 is used to model and simulate the radio frequency characteristics of the ultra-wideband antenna with miniaturized double-notch characteristics. As shown in Figure 2, the bandwidth of the antenna return loss less than -10dB is 2.8-12.3GHz, and it produces better notch characteristics in the two frequency bands of 3.23-3.7GHz and 8.01-8.66GHz. Extract the data of its radio frequency characteristic curve, the frequency step is 0.1GHz, and import it into GRNN neural network and FOA-GRNN neural network model as input sample data respectively.
步骤2:基本参数设置;设置果蝇种群规模sizepop、最大迭代步数maxgen、果蝇初始位置坐标值(X_axis,Y_axis);Step 2: Basic parameter settings; set the sizepop of the fruit fly population, the maximum number of iteration steps maxgen, and the coordinate values of the initial position of the fruit fly (X_axis, Y_axis);
步骤3:提取训练集数据;将输入样本数据分成两组数据,分别为训练集数据和测试集数据,进行交叉训练广义回归神经网络,并以预测样本的均方根误差函数作为适应度函数;Step 3: Extract the training set data; divide the input sample data into two groups of data, namely the training set data and the test set data, perform cross-training of the generalized regression neural network, and use the root mean square error function of the predicted samples as the fitness function;
所述将输入样本数据分成两组数据,每组数据为56组数据,将两组数据交替作为训练集数据和测试集数据,交叉训练广义回归神经网络,即GRNN网络结构,以避免算法训练过度。The input sample data is divided into two groups of data, each group of data is 56 groups of data, and the two groups of data are alternately used as training set data and test set data, and cross-training generalized regression neural network, that is, GRNN network structure, to avoid algorithm overtraining .
所述将预测样本的均方根误差RMSE作为适应度函数,有:The root mean square error RMSE of the predicted sample is used as the fitness function, as follows:
其中 in
其中M为测试样本数量,为广义回归神经网络预测输出值,yl为实际目标输出值,where M is the number of test samples, is the predicted output value of the generalized regression neural network, y l is the actual target output value,
l=1,2,…,M;l = 1, 2, ..., M;
步骤4:用果蝇算法优化训练广义回归神经网络的光滑因子;Step 4: Optimize the smooth factor of training generalized regression neural network with Drosophila algorithm;
所述步骤4具体包括:The
步骤4.1:随机设置初始果蝇飞行方向与距离;Step 4.1: Randomly set the initial fly direction and distance of the fruit fly;
本实施例中随机飞行方向与距离为(-10,10)。In this embodiment, the random flight direction and distance are (-10, 10).
X'(i)=X_axis+20*rand()-10X'(i)=X_axis+20*rand()-10
Y'(i)=Y_axis+20*rand()-10Y'(i)=Y_axis+20*rand()-10
其中X’(i),Y’(i)代表果蝇位置坐标的变换方向;rand()为[0,1]之间的任意随机数。Where X'(i), Y'(i) represent the transformation direction of the fruit fly's position coordinates; rand() is any random number between [0,1].
步骤4.2:计算果蝇与原点之间的距离其中(X(i),Y(i))为果蝇的位置坐标值,其中i表示果蝇种群数量,i=1,2,…sizepop,并计算味道浓度判定值S(i),即为距离之倒数S(i)=1/D(i);Step 4.2: Calculate the distance between the fly and the origin Where (X(i), Y(i)) is the position coordinate value of the fruit fly, where i represents the population of the fruit fly, i=1,2,...sizepop, and calculate the taste concentration judgment value S(i), which is The inverse of the distance S(i)=1/D(i);
步骤4.3:利用GRNN网络预测样本的均方根误差作为Fitness适应度函数,将步骤4.2中求得的味道浓度判定值S(i)代入,求果蝇味道浓度值;Step 4.3: Use the root mean square error of the GRNN network to predict the sample as the fitness fitness function, and substitute the taste concentration judgment value S(i) obtained in step 4.2 into the fruit fly taste concentration value;
Smell(i)=Function(S(i))Smell(i)=Function(S(i))
其中Smell(i)为第i个果蝇所对应的味道浓度,Function(S(i))适应度函数;Where Smell(i) is the taste concentration corresponding to the i-th fruit fly, Function(S(i)) fitness function;
步骤4.4:在步骤4.3所得的味道浓度值中,找出果蝇群体中味道浓度的极小值,即为最佳味道浓度值bestSmell,并保留此时的个体位置;Step 4.4: In the taste concentration value obtained in step 4.3, find the minimum value of the taste concentration in the fruit fly population, which is the best taste concentration value bestSmell, and retain the individual position at this time;
[bestSmell bestindex]=min(Smell)[bestSmell bestindex]=min(Smell)
其中bestindex为最佳味道浓度值bestSmell对应的位置,min(Smell)表示最小均方根误差,即味道浓度最小值;Among them, bestindex is the position corresponding to the best taste concentration value bestSmell, and min(Smell) represents the minimum root mean square error, that is, the minimum value of taste concentration;
步骤4.5:果蝇迭代寻优开始,比较每代的味道浓度值;若优于上一代则记录当次最佳味道浓度值bestSmell和位置坐标;Step 4.5: Drosophila iterative optimization starts, compare the taste concentration value of each generation; if it is better than the previous generation, record the current best taste concentration value bestSmell and position coordinates;
步骤4.6:把是否满足最大迭代步数最为判断是否达到迭代终止的条件,若是,则终止迭代,记录最优果蝇,将优化得到的最佳光滑因子代入训练好的GRNN网络中,并输入60组测试样本对FOA-GRNN模型进行预测。分析测试结果,并与GRNN网络预测模型展开对比研究,评价此模型的性能;否则返回执行步骤4.1;Step 4.6: Whether the maximum number of iteration steps is met is the most important condition for judging whether the iteration termination is reached. If so, terminate the iteration, record the optimal fruit fly, and substitute the optimal smooth factor obtained by optimization into the trained GRNN network, and input 60 A set of test samples is used to predict the FOA-GRNN model. Analyze the test results and conduct a comparative study with the GRNN network prediction model to evaluate the performance of the model; otherwise, return to step 4.1;
步骤5:最后将上述步骤得到的FOA-GRNN网络模型用于具有双陷波特性的超宽带天线的仿真设计当中,运用未参加模型训练的数据对FOA-GRNN网络模型进行测试,得到的输出结果便是天线对应的回波损耗特性数据。Step 5: Finally, the FOA-GRNN network model obtained in the above steps is used in the simulation design of the ultra-wideband antenna with double notch characteristics, and the FOA-GRNN network model is tested with the data that did not participate in the model training, and the obtained output The result is the return loss characteristic data corresponding to the antenna.
将GRNN神经网络和FOA-GRNN神经网络采用相同的训练集和测试集,在MATLAB平台上同时进行神经网络仿真,得出预测结果。如图3为GRNN网络的预测输出和实际输出的对比曲线图。如图4为FOA-GRNN网络的预测输出和实际输出的对比曲线图。如图5为两种结构预测输出的对比图。可以通过比较看出FOA-GRNN在非线性逼近上有更好的效果。The GRNN neural network and the FOA-GRNN neural network use the same training set and test set, and simultaneously conduct neural network simulation on the MATLAB platform to obtain the prediction results. Figure 3 shows the comparison curve between the predicted output and the actual output of the GRNN network. Figure 4 shows the comparison curve between the predicted output and the actual output of the FOA-GRNN network. Figure 5 is a comparison diagram of the prediction outputs of the two structures. It can be seen by comparison that FOA-GRNN has a better effect on nonlinear approximation.
两种神经网络的部分预测值如表1所示。可以看出GRNN的预测误差大于1%,而FOA-GRNN的预测误差基本都在1%之下,更加接近实际数据。Part of the predicted values of the two neural networks are shown in Table 1. It can be seen that the prediction error of GRNN is greater than 1%, while the prediction error of FOA-GRNN is basically below 1%, which is closer to the actual data.
表1部分实测值与预测值对比表Table 1 Part of the comparison table of measured and predicted values
相对误差=(预测值-实测值)/实测值*100%Relative error = (predicted value - measured value) / measured value * 100%
参见图6为GRNN的预测相对误差曲线图。参见图7为FOA-GRNN的预测相对误差曲线图。可得出FOA-GRNN模型的预测精度较高。See Fig. 6 for the prediction relative error curve of GRNN. See Fig. 7 for the prediction relative error curve of FOA-GRNN. It can be concluded that the prediction accuracy of the FOA-GRNN model is higher.
参见图8为果蝇的飞行轨迹,图9为果蝇算法寻优过程,由图可知寻优过程在迭代的第8代开始收敛,到第42代收敛结束,此时的均方根误差值为0.6667。而GRNN预测数据的均方根误差为2.0492。可见FOA-GRNN神经网络在非线性预测上有很强的优势。See Figure 8 for the flight trajectory of the fruit fly, and Figure 9 for the optimization process of the fruit fly algorithm. It can be seen from the figure that the optimization process begins to converge in the 8th generation of the iteration and ends at the 42nd generation. The root mean square error value at this time is 0.6667. The root mean square error of the GRNN prediction data is 2.0492. It can be seen that the FOA-GRNN neural network has a strong advantage in nonlinear prediction.
显然,上述实施例仅仅是本发明的一部分实施例,而不是全部的实施例。上述实施例仅用于解释本发明,并不构成对本发明保护范围的限定。基于上述实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,也即凡在本申请的精神和原理之内所作的所有修改、等同替换和改进等,均落在本发明要求的保护范围内。Obviously, the above-mentioned embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. The above embodiments are only used to explain the present invention, and do not constitute a limitation on the protection scope of the present invention. Based on the above-mentioned embodiments, all other embodiments obtained by those skilled in the art without creative work, that is, all modifications, equivalent replacements and improvements made within the spirit and principle of the present application, are fall within the scope of protection claimed by the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010460354.XA CN111651936A (en) | 2020-05-27 | 2020-05-27 | A FOA-GRNN-based modeling and design method for dual-notch ultra-wideband antennas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010460354.XA CN111651936A (en) | 2020-05-27 | 2020-05-27 | A FOA-GRNN-based modeling and design method for dual-notch ultra-wideband antennas |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111651936A true CN111651936A (en) | 2020-09-11 |
Family
ID=72352179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010460354.XA Pending CN111651936A (en) | 2020-05-27 | 2020-05-27 | A FOA-GRNN-based modeling and design method for dual-notch ultra-wideband antennas |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111651936A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112257373A (en) * | 2020-11-13 | 2021-01-22 | 江苏科技大学 | Snake-shaped PCB antenna return loss prediction method based on three-body training algorithm |
CN113064962A (en) * | 2021-03-16 | 2021-07-02 | 北京工业大学 | A Similarity Analysis Method for Environmental Complaints and Reporting Events |
CN114430107A (en) * | 2022-01-11 | 2022-05-03 | 苏州浪潮智能科技有限公司 | Design method and device for ultra-wideband antenna |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103942625A (en) * | 2014-04-23 | 2014-07-23 | 天津大学 | Hydropower station plant dam structure vibration response prediction method based on FOA-GRNN |
CN107677473A (en) * | 2017-09-23 | 2018-02-09 | 哈尔滨理工大学 | A kind of GRNN rotating machinery fault Forecasting Methodologies based on FOA optimizations |
CN109086531A (en) * | 2018-08-07 | 2018-12-25 | 中南大学 | Antenna design method neural network based |
CN110045237A (en) * | 2019-04-08 | 2019-07-23 | 国网上海市电力公司 | Transformer state parametric data prediction technique and system based on drosophila algorithm optimization |
-
2020
- 2020-05-27 CN CN202010460354.XA patent/CN111651936A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103942625A (en) * | 2014-04-23 | 2014-07-23 | 天津大学 | Hydropower station plant dam structure vibration response prediction method based on FOA-GRNN |
CN107677473A (en) * | 2017-09-23 | 2018-02-09 | 哈尔滨理工大学 | A kind of GRNN rotating machinery fault Forecasting Methodologies based on FOA optimizations |
CN109086531A (en) * | 2018-08-07 | 2018-12-25 | 中南大学 | Antenna design method neural network based |
CN110045237A (en) * | 2019-04-08 | 2019-07-23 | 国网上海市电力公司 | Transformer state parametric data prediction technique and system based on drosophila algorithm optimization |
Non-Patent Citations (4)
Title |
---|
南敬昌 等: "改进果蝇算法优化 GRNN 的双陷波超宽带天线建模", 激光与光电子学进展 * |
王盛慧 等: "基于 FOA-GRNN 的纳米铁粉分解炉温度预测", 中国测试 * |
王英博;聂娜娜;王铭泽;李仲学;: "修正型果蝇算法优化GRNN网络的尾矿库安全预测", 计算机工程 * |
范良;赵国忱;苏运强;: "果蝇算法优化的广义回归神经网络在变形监测预报中的应用", 测绘通报 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112257373A (en) * | 2020-11-13 | 2021-01-22 | 江苏科技大学 | Snake-shaped PCB antenna return loss prediction method based on three-body training algorithm |
CN113064962A (en) * | 2021-03-16 | 2021-07-02 | 北京工业大学 | A Similarity Analysis Method for Environmental Complaints and Reporting Events |
CN113064962B (en) * | 2021-03-16 | 2024-03-15 | 北京工业大学 | Environment complaint reporting event similarity analysis method |
CN114430107A (en) * | 2022-01-11 | 2022-05-03 | 苏州浪潮智能科技有限公司 | Design method and device for ultra-wideband antenna |
CN114430107B (en) * | 2022-01-11 | 2023-07-21 | 苏州浪潮智能科技有限公司 | Design method and device of ultra-wideband antenna |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109086531B (en) | Antenna design method based on neural network | |
CN111651936A (en) | A FOA-GRNN-based modeling and design method for dual-notch ultra-wideband antennas | |
CN108920841B (en) | Antenna design method | |
CN109271695B (en) | Multi-target Antenna Design Method Based on Neural Network | |
CN106021813B (en) | A fast multi-target antenna design method based on dynamic update proxy model | |
CN110941896B (en) | Design method of ultra-wideband antenna based on PGP | |
CN110162847B (en) | Machine learning-assisted antenna design method based on adding feature strategy | |
CN108984985B (en) | Antenna structure design method based on neural network | |
CN111460665B (en) | Antenna design method based on kriging agent model and multi-target genetic algorithm | |
CN109635343A (en) | A kind of antenna fast optimal design method | |
CN111191361A (en) | Random forest based spiral inductance modeling method | |
Jain et al. | Enhancing circular microstrip patch antenna performance using machine learning models | |
CN112149360A (en) | ALO-LMBP neural network-based double-notch characteristic ultra-wideband antenna reverse modeling research method | |
CN115906303A (en) | Planar microwave filter design method and device based on machine learning | |
CN112257373B (en) | Prediction method of return loss of serpentine PCB antenna based on three-body training algorithm | |
CN109117545B (en) | Neural network-based antenna rapid design method | |
CN112615158B (en) | Comprehensive method and device for ultra-wideband scanning sparse array antenna | |
CN110728021B (en) | Microstrip filter antenna design method based on improved binary whale optimization algorithm | |
CN113420496B (en) | Design method and device of multi-band antenna, storage medium, and electronic device | |
CN112861386A (en) | IACO-BRBP neural network-based Koch snowflake type ultra-wideband antenna reverse modeling method | |
CN113076699A (en) | Antenna optimization method based on multi-output Gaussian process Bayesian optimization | |
CN114492253B (en) | Microstrip circuit half-space mapping rapid optimization method combined with Gaussian process | |
Rahmat-Samii | Modern antenna designs using nature inspired optimization techniques: Let Darwin and the bees help designing your multi band MIMO antennas | |
Bibi et al. | Levenberg-Marquardt based ANN for design of rectangular dielectric resonator antenna for LTE application | |
Chen et al. | An Antenna Design Method Based on Guassian Process Surrogate Model and Differential Evolution Algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200911 |
|
RJ01 | Rejection of invention patent application after publication |