CN111649693A - A kind of sample topography measuring device and method - Google Patents
A kind of sample topography measuring device and method Download PDFInfo
- Publication number
- CN111649693A CN111649693A CN202010464683.1A CN202010464683A CN111649693A CN 111649693 A CN111649693 A CN 111649693A CN 202010464683 A CN202010464683 A CN 202010464683A CN 111649693 A CN111649693 A CN 111649693A
- Authority
- CN
- China
- Prior art keywords
- assembly
- sample
- component
- diffraction order
- grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/2531—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object using several gratings, projected with variable angle of incidence on the object, and one detection device
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
本公开提供了一种样品形貌测量装置及方法。所述装置包括:顺次设置的光源组件(101)、照明组件(102)、投影光栅组件(103)、光阑组件(104)、投影光学组件(105),顺次设置的探测光学组件(107)、探测光栅组件(108)、数据采集组件(109),以及设置在投影光学组件(105)和探测光学组件(107)之间光路上的运动台(110),待测样品(106)放置在运动台(110)上。利用光阑组件筛选出低衍射级次信号来测量样品高度,保证测量范围,并根据测量结果选择高衍射级次信号再次测量样品高度,提高测量精度。
The present disclosure provides a sample topography measurement device and method. The device comprises: a light source component (101), an illumination component (102), a projection grating component (103), a diaphragm component (104), a projection optical component (105), and a detection optical component (105) arranged in sequence. 107), a detection grating assembly (108), a data acquisition assembly (109), and a moving stage (110) disposed on the optical path between the projection optical assembly (105) and the detection optical assembly (107), and the sample to be tested (106) Placed on the exercise table (110). The aperture component is used to screen out the low diffraction order signal to measure the sample height to ensure the measurement range, and the high diffraction order signal is selected according to the measurement result to measure the sample height again to improve the measurement accuracy.
Description
技术领域technical field
本公开涉及一种反射式样品形貌测量装置及方法。The present disclosure relates to a reflective sample topography measuring device and method.
背景技术Background technique
在光学加工、光学检测、电子束成像、以及光刻等领域经常需要精确控制样品Z向(高度方向)的位置信息。为了保证样品始终处于理想位置,需要精确测量样品的表面形貌。测量样品表面高精度形貌时,扫描电子显微镜、原子力显微镜虽然测量分辨率高,但是其测量速度较慢,对测量环境的要求苛刻,并不适用于在线测量。光学非接触测量的方式以其测量速度较快、分辨率较高的特点成为在线测量的主要方式。In the fields of optical processing, optical inspection, electron beam imaging, and lithography, it is often necessary to precisely control the position information of the sample in the Z direction (height direction). To ensure that the sample is always in the ideal position, it is necessary to precisely measure the surface topography of the sample. When measuring the high-precision topography of the sample surface, although the scanning electron microscope and the atomic force microscope have high measurement resolution, their measurement speed is slow, and the requirements for the measurement environment are harsh, so they are not suitable for online measurement. Optical non-contact measurement has become the main method of online measurement due to its fast measurement speed and high resolution.
相关技术中,样品表面形貌的光学测量方法中,主要通过投影光栅和成像光栅成像形成莫尔条纹来获得样品形貌信息。该技术中,通过采用周期小的光栅标记来提高测量精度,但是造成测量范围小,为了覆盖到待测样品厚度公差范围,光栅标记的周期不能太小。此外,由于只采用低衍射级次,测量信号的非线性影响较大,尤其在投影光栅误差、成像光学系统像差影响严重的情况下,非线性影响更大。如何在保证测量范围的情况下,降低测量信号非线性,提高测量精度,是目前研究人员关心的问题。In the related art, in the optical measurement method of the surface topography of the sample, the topography information of the sample is mainly obtained by imaging the projection grating and the imaging grating to form moire fringes. In this technology, the measurement accuracy is improved by using grating marks with small periods, but the measurement range is small. In order to cover the thickness tolerance range of the sample to be measured, the period of the grating marks cannot be too small. In addition, since only low diffraction orders are used, the nonlinear effect of the measurement signal is greater, especially when the projection grating error and the aberration of the imaging optical system are seriously affected. How to reduce the nonlinearity of the measurement signal and improve the measurement accuracy under the condition of ensuring the measurement range is a problem that researchers are concerned about at present.
发明内容SUMMARY OF THE INVENTION
(一)要解决的技术问题(1) Technical problems to be solved
鉴于上述问题,本公开提供了一种样品形貌测量装置及方法,利用光阑选择测量所需衍射级次的信号,在保证测量范围的基础上提高了测量精度。In view of the above problems, the present disclosure provides a sample topography measurement device and method, which utilizes a diaphragm to select and measure a signal of a required diffraction order, and improves measurement accuracy on the basis of ensuring the measurement range.
(二)技术方案(2) Technical solutions
本公开一方面提供了一种样品形貌测量装置,所述装置包括:顺次设置的光源组件101、照明组件102、投影光栅组件103、光阑组件104、投影光学组件105,顺次设置的探测光学组件107、探测光栅组件108、数据采集组件109,以及设置在所述投影光学组件105和探测光学组件107之间光路上的运动台110,待测样品106放置在所述运动台110上;其中,所述照明组件102利用所述光源组件101产生的测量光照射所述投影光栅组件103,以生成多衍射级次信号;所述光阑组件104滤除所述多衍射级次信号中的零级信号,并筛选出第一衍射级次信号,所述第一衍射级次信号包括+m衍射级次信号和-m衍射级次信号,m为大于0的整数;所述投影光学组件105将第一衍射级次信号下投影光栅组件103的像成像到待测样品106表面;所述探测光学组件107将携带有待测样品106第一高度信息的投影光栅组件103的像成像到探测光栅组件108上,通过数据采集组件109得到待测样品106的第一高度信息;所述光阑组件104还用于根据所述第一高度信息筛选出第二衍射级次信号,所述第二衍射级次信号包括 +n衍射级次信号和-n衍射级次信号,n>m;所述投影光学组件105还用于将第二衍射级次信号下投影光栅组件103的像成像到待测样品106表面;所述探测光学组件107将携带有待测样品106第二高度信息的投影光栅组件103的像成像到探测光栅组件108上,通过数据采集组件109得到待测样品106的第二高度信息。One aspect of the present disclosure provides a sample topography measurement device, the device includes: a
可选地,所述运动台110用于在垂直于所述待测样品106高度方向的平面内运动,使得所述数据采集组件109得到待测样品106的形貌信息。Optionally, the moving
可选地,所述探测光栅组件108的周期小于所述投影光栅组件103的周期。Optionally, the period of the
可选地,所述探测光栅组件108将携带有待测样品106第一高度信息或第二高度信息的投影光栅组件103的像分离为第一成像和第二成像,所述第一成像和第二成像之间的距离为所述投影光栅组件103的周期的1/4。Optionally, the
可选地,所述探测光栅组件108的中心相对于所述投影光栅组件103 的中心偏移了所述投影光栅组件103的周期的1/8。Optionally, the center of the
可选地,所述投影光学组件105和探测光学组件107为反射型组件或者透射型组件,所述光阑组件104设置在所述投影光学组件105的孔径光阑面上,所述样品形貌测量装置为双远心测量装置。Optionally, the projection
可选地,所述投影光栅组件103为振幅光栅,用于增强所述第一衍射级次信号或第二衍射级次信号的强度。Optionally, the
可选地,所述投影光栅组件103为由多个投影光栅组成的阵列,以同时测量所述待测样品106多个位置处的第一高度信息或第二高度信息。Optionally, the
可选地,照射在所述投影光栅组件103上的测量光的角度θ满足:Optionally, the angle θ of the measurement light irradiated on the
其中,d为所述投影光栅组件103的周期,λ为照射在所述投影光栅组件103上的测量光中的最小波长。Wherein, d is the period of the
本公开另一方面提供了一种利用上述样品形貌测量装置测量待测样品形貌的方法,所述方法包括:Another aspect of the present disclosure provides a method for measuring the topography of a sample to be measured by using the above-mentioned sample topography measuring device, the method comprising:
数据采集组件109根据采集到的探测光栅组件108分离出的两个像的透射强度,计算待测样品106一位置处的第一高度信息,得到的第一高度信息为:The
其中,h1为所述第一高度信息,d为投影光栅组件103的周期,m为光阑组件104筛选出的第一衍射级次信号的衍射级次,α为射入所述待测样品106的光线的角度,I1和I2分别为光阑组件104筛选出第一衍射级次信号时探测光栅组件108分离出的两个像的透射强度;Wherein, h 1 is the first height information, d is the period of the
所述光阑组件104根据所述第一高度信息筛选第二衍射级次信号,数据采集组件109根据采集到的探测光栅组件108分离出的两个像的透射强度,计算待测样品106一位置处的第二高度信息,得到的第二高度信息为:The
其中,h2为所述第二高度信息,n为光阑组件104筛选出的第二衍射级次信号的衍射级次,n>m,I3和I4分别为光阑组件104筛选出第二衍射级次信号时探测光栅组件108分离出的两个像的透射强度;Wherein, h 2 is the second height information, n is the diffraction order of the second diffraction order signal screened by the
在垂直于所述待测样品106高度方向的平面内移动运动台110,数据采集组件109根据采集到的探测光栅组件108分离出的两个像的透射强度,计算待测样品106任一位置处的第二高度信息,得到待测样品106的形貌信息。The moving
(三)有益效果(3) Beneficial effects
本公开实施例提供的样品形貌测量装置及方法,具有以下有益效果:The sample topography measurement device and method provided by the embodiments of the present disclosure have the following beneficial effects:
(1)利用光阑组件筛选出低衍射级次信号来测量样品高度,保证测量范围,并根据测量结果选择高衍射级次信号再次测量样品高度,提高测量精度;(1) Use the diaphragm assembly to screen out the low diffraction order signal to measure the sample height to ensure the measurement range, and select the high diffraction order signal according to the measurement result to measure the sample height again to improve the measurement accuracy;
(2)光阑组件过滤掉零级信号,缩小了投影光栅像的条纹间隔,提高了信号对比度,并通过选择高衍射级次信号进一步缩小了投影光栅像的条纹间隔,提高了测量精度;(2) The aperture component filters out the zero-order signal, reduces the fringe interval of the projected grating image, improves the signal contrast, and further reduces the fringe interval of the projected grating image by selecting the high diffraction order signal, and improves the measurement accuracy;
(3)将探测光栅组件的周期设置为小于投影光栅组件的周期,确保高衍射级次信号发生干涉。(3) The period of the detection grating component is set to be smaller than the period of the projection grating component, so as to ensure the interference of high diffraction order signals.
附图说明Description of drawings
图1示意性示出了本公开一实施例提供的样品形貌测量装置的结构示意图;FIG. 1 schematically shows a schematic structural diagram of a sample topography measurement device provided by an embodiment of the present disclosure;
图2示意性示出了本公开另一实施例提供的样品形貌测量装置的结构示意图;FIG. 2 schematically shows a schematic structural diagram of a sample topography measurement device provided by another embodiment of the present disclosure;
图3A和图3B分别示意性示出了不同衍射级次对应测量信号的示意图。FIG. 3A and FIG. 3B respectively schematically show schematic diagrams of measurement signals corresponding to different diffraction orders.
附图标记说明:Description of reference numbers:
101-光源组件;102-照明组件;103-投影光栅组件;104-光阑组件;105- 投影光学组件;106-待测样品;107-探测光学组件;108-探测光栅组件; 109-数据采集组件;110-运动台。101-light source assembly; 102-illumination assembly; 103-projection grating assembly; 104-diaphragm assembly; 105-projection optical assembly; 106-sample to be tested; 107-detection optical assembly; 108-detection grating assembly; 109-data acquisition Component; 110 - Motion table.
具体实施方式Detailed ways
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。In order to make the objectives, technical solutions and advantages of the present disclosure clearer, the present disclosure will be further described in detail below with reference to the specific embodiments and the accompanying drawings.
图1示意性示出了本公开一实施例提供的样品形貌测量装置的结构示意图。参阅图1,同时结合图2-图3B,对本实施例中的样品形貌测量装置进行详细说明。FIG. 1 schematically shows a schematic structural diagram of a sample topography measurement device provided by an embodiment of the present disclosure. Referring to FIG. 1 , and in conjunction with FIGS. 2 to 3B , the sample topography measuring device in this embodiment will be described in detail.
参阅图1,该样品形貌测量装置包括顺次设置的光源组件101、照明组件102、投影光栅组件103、光阑组件104、投影光学组件105,顺次设置的探测光学组件107、探测光栅组件108、数据采集组件109,以及设置在投影光学组件105和探测光学组件107之间光路上的运动台110,待测样品106放置在运动台110上。Referring to FIG. 1 , the sample topography measurement device includes a
光源组件101用于产生测量光,以为装置提供测量光。光源组件101 产生的测量光的光斑尺寸和数值孔径应满足照明组件102的照射要求,应具有较高的能量稳定性和均匀性。光源组件101例如为高压汞灯、白光发光二极管(Light Emitting Diode,LED)等。The
照明组件102用于将光源组件101产生的测量光照射投影光栅组件 103,以生成多衍射级次信号。多衍射级次信号包括多个衍射级次的光信号,例如包括第0衍射级次信号、第±1衍射级次信号、第±2衍射级次信号、……、第±N衍射级次信号等。The
投影光栅组件103为振幅光栅,用于增强第一衍射级次信号或第二衍射级次信号的强度。第一衍射级次信号和第二衍射级次信号为光阑组件 104筛选出的信号,第一衍射级次信号包括+m衍射级次信号和-m衍射级次信号,m为大于0的整数,第二衍射级次信号包括+n衍射级次信号和-n 衍射级次信号,n>m。振幅光栅是指能使入射光的振幅产生周期性空间调制的光学元件,可以用来增强第一衍射级次信号或第二衍射级次信号的振幅,从而增强第一衍射级次信号或第二衍射级次信号的强度。投影光栅组件103例如用于增强第±5衍射级次信号的强度,该第±5衍射级次信号即为第一衍射级次信号或第二衍射级次信号。The
本实施例中,照射在投影光栅组件103上的测量光的角度θ满足:In this embodiment, the angle θ of the measurement light irradiated on the
其中,d为投影光栅组件103的周期,λ为照射在投影光栅组件103 上的测量光中的最小波长。将测量光的角度θ设置在上述范围内,可以保证各衍射级次信号在光阑组件104处的衍射光斑彼此分开,使得光阑组件 104可以从中选择用于样品形貌测量的±m衍射级次信号或±n衍射级次信号。Wherein, d is the period of the
光阑组件104用于滤除多衍射级次信号中的零级信号(即0衍射级次信号),并筛选出第一衍射级次信号或第二衍射级次信号。本实施例中,利用光阑组件104过滤掉零级信号,缩小了投影光栅的条纹间隔,同时提高了各衍射级次信号的对比度,并通过衍射高衍射级次的第二衍射级次信号进一步缩小了投影光栅的条纹间隔,提高了测量精度。The
投影光学组件105将第一衍射级次信号或第二衍射级次信号下投影光栅组件103的像成像到待测样品106表面。投影光学组件105将第一衍射级次信号或第二衍射级次信号下投影光栅组件103的像成像到待测样品 106表面,经待测样品106反射后,将携带有待测样品106第一高度信息或第二高度信息的信号反射至探测光学组件107。The projection
本实施例中,投影光学组件105为反射型组件或透射型组件。当投影光学组件105为透射型组件时,探测光学组件107也为透射型组件,如图 1所示;当投影光学组件105为反射型组件时,探测光学组件107也为反射型组件,如图2所示。光阑组件104设置在投影光学组件105的孔径光阑面上,样品形貌测量装置为双远心测量装置。In this embodiment, the projection
探测光学组件107将携带有待测样品106第一高度信息或第二高度信息的投影光栅组件103的像成像到探测光栅组件108上。探测光栅组件108 将携带有待测样品106第一高度信息或第二高度信息的投影光栅组件103 的像分离为两个成像,分别为第一成像和第二成像,使得数据采集组件109 根据采集到的第一成像和第二成像计算待测样品106的第一高度信息或第二高度信息。The detection
本实施例中,第一成像和第二成像之间的距离为投影光栅组件103的周期的1/4,探测光栅组件108的中心相对于投影光栅组件103的中心偏移了所述投影光栅组件103周期的1/8,以此来减小光源功率稳定性、环境对测量结果的影响,并且使得数据采集组件109中的算法更为简单。进一步地,探测光栅组件108的周期ddet还应小于投影光栅组件103的周期d,即ddet<d,以保证高衍射级次信号发生干涉,从而保证第一衍射级次信号和第二衍射级次信号存在干涉区域。In this embodiment, the distance between the first imaging and the second imaging is 1/4 of the period of the
运动台110用于在垂直于待测样品106高度方向的平面内运动,即在图1和图2中示出的XY平面内运动,并在运动至一位置(x,y)后固定,等待该样品形貌测量装置测量该位置(x,y)处的第二高度信息,直至待测样品在XY平面内的所有点对应的第二高度信息测量完成,从而得到待测样品106的形貌信息,该形貌信息为待测样品106的三维形貌。The moving
根据本公开的实施例,投影光栅组件103可以为单个投影光栅,也可以为由多个投影光栅组成的阵列。当投影光栅组件103为由多个投影光栅组成的阵列时,投影光学组件105可以将第一衍射级次信号或第二衍射级次信号下各投影光栅的像成像到待测样品106表面的不同位置处,从而使得样品形貌测量装置可以同时测量待测样品106多个位置处的第一高度信息或第二高度信息,提高了测量效率。According to an embodiment of the present disclosure, the
本实施例中,当待测样品106某一位置处对应的高度为h时,投影光栅组件103的像将在探测光栅组件108处产生Δx的偏移,数据采集组件 109采集到的两个成像的透射强度为:In this embodiment, when the height corresponding to a certain position of the
其中,I1和I2分别为光阑组件104筛选出第二衍射级次信号时探测光栅组件108分离出的两个成像的透射强度,E为+m衍射级次信号的振幅, E2为-m衍射级次信号的振幅,k1x为+m衍射级次信号波矢在x方向上的分量,k2x为-m衍射级次信号波矢在x方向上的分量,T(k)为探测光栅组件108 的傅里叶变化。对于任一样品形貌测量装置,其投影光栅组件103、光阑组件104、投影光学组件105、探测光学组件107、探测光栅组件108的参数确定后,E1、E2、k1x、k2x、T(k)均为常数,且理想情况下,E1=E2、k1x=k2x、 T(kx-k1x)=T(kx-k2x),数据采集组件109根据采集到的两个成像的透射强度进行计算,可以得到:Wherein, I 1 and I 2 are the transmission intensities of the two images separated by the
进一步地,根据光学三角法基本原理,可以得到待测样品106该位置处的第一高度信息以及第二高度信息分别为:Further, according to the basic principle of optical triangulation, the first height information and the second height information at the position of the sample to be tested 106 can be obtained as follows:
其中,h1为第一高度信息,h2为第二高度信息,d为投影光栅组件103 的周期,α为射入待测样品106的光线的角度,I3和I4分别为光阑组件104 筛选出第二衍射级次信号时探测光栅组件108分离出的两个像的透射强度。Wherein, h 1 is the first height information, h 2 is the second height information, d is the period of the
数据采集组件109采集到的两个成像的透射强度为正弦函数,当待测 样品106的高度较大时,这两个成像的透射强度I1和I2随高度的变化为非 线性变化,由于光学系统像差以及环境等因素对测量精度影响较大,因此, 通常选择正弦函数中间的线性区域作为有效信号区域,如图3A和3B所 示。结合图3A和图3B,可以看出,信号的衍射级次越高,测得的高度信 息的精度越高;信号的衍射级次越低,测得的高度信息的测量范围越大, 精度越低。The transmission intensities of the two images collected by the
本实施例中的样品形貌测量装置,首先,利用较低衍射级次的第一衍射级次信号测量待测样品106一位置处的第一高度信息,以保证其测量范围,第一衍射级次信号的衍射级次m例如为1;然后,根据第一高度信息选择相应的较高衍射级次的第二衍射级次信号,第二衍射级次信号的衍射级次n例如为5,利用第二衍射级次信号测量待测样品106该位置处的第二高度信息,相对于第一高度信息,第二高度信息具有更高的精度,从而提高了装置的测量精度;移动运动台110,重复上述测量过程,以测量待测样品106每一位置处的第二高度信息,从而获得待测样品106的形貌信息。本公开另一实施例提供了一种如上述图1-图3B所示样品形貌测量装置测量待测样品形貌的方法,方法包括:In the sample topography measuring device in this embodiment, first, the first diffraction order signal of the lower diffraction order is used to measure the first height information at a position of the
首先,数据采集组件109根据采集到的探测光栅组件108分离出的两个成像的透射强度,计算待测样品106一位置处的第一高度信息,得到的第一高度信息为:First, the
其中,h为第一高度信息,d为投影光栅组件103的周期,m为光阑组件104筛选出的第一衍射级次信号的衍射级次,α为射入待测样品106 的光线的角度,I1和I2分别为光阑组件104筛选出第一衍射级次信号时探测光栅组件108分离出的两个像的透射强度。Wherein, h is the first height information, d is the period of the
然后,光阑组件104根据第一高度信息筛选第二衍射级次信号,数据采集组件109根据采集到的探测光栅组件108分离出的两个像的透射强度,计算待测样品106一位置处的第二高度信息,得到的第二高度信息为:Then, the
其中,h2为第二高度信息,n为光阑组件104筛选出的第二衍射级次信号的衍射级次,n>m,I3和I4分别为光阑组件104筛选出第二衍射级次信号时探测光栅组件108分离出的两个像的透射强度。Wherein, h 2 is the second height information, n is the diffraction order of the second diffraction order signal screened by the
最后,在垂直于待测样品106高度方向的平面内移动运动台110,数据采集组件109根据采集到的探测光栅组件108分离出的两个像的透射强度,计算待测样品106任一位置处的第二高度信息,得到待测样品106的形貌信息。Finally, the moving
本实施例中,样品形貌测量装置测量待测样品形貌的方法所执行的操作与前述图1-图3B所示实施例中的样品形貌测量装置的工作过程相同,此处不再赘述。本实施例未尽之细节,请参阅前述图1-图3B所示实施例中的样品形貌测量装置的描述。In this embodiment, the operation performed by the method for measuring the topography of the sample to be measured by the sample topography measuring device is the same as the working process of the sample topography measuring device in the embodiment shown in FIG. 1 to FIG. 3B , which will not be repeated here. . For details not exhausted in this embodiment, please refer to the description of the sample topography measuring device in the embodiment shown in FIG. 1 to FIG. 3B .
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above further describe the purpose, technical solutions and beneficial effects of the present invention in further detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010464683.1A CN111649693B (en) | 2020-05-27 | 2020-05-27 | A kind of sample topography measuring device and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010464683.1A CN111649693B (en) | 2020-05-27 | 2020-05-27 | A kind of sample topography measuring device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111649693A true CN111649693A (en) | 2020-09-11 |
CN111649693B CN111649693B (en) | 2022-02-25 |
Family
ID=72346945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010464683.1A Active CN111649693B (en) | 2020-05-27 | 2020-05-27 | A kind of sample topography measuring device and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111649693B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114674240A (en) * | 2022-03-25 | 2022-06-28 | 中国科学院微电子研究所 | Deformation measurement method and device, electronic equipment and storage medium |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7374287B2 (en) * | 1999-11-01 | 2008-05-20 | Jozef F. Van de Velde | Relaxed confocal catadioptric scanning laser ophthalmoscope |
CN101403608A (en) * | 2008-11-13 | 2009-04-08 | 哈尔滨工程大学 | Accurate measurement apparatus and method for workpiece surface appearance |
US20090231719A1 (en) * | 2008-03-11 | 2009-09-17 | Microvision, Inc. | Eyebox Shaping Through Virtual Vignetting |
CN102155925A (en) * | 2011-01-07 | 2011-08-17 | 中国科学院上海光学精密机械研究所 | Three-dimensional surface topography measuring device based on one-dimensional Dammann grating |
CN104279978A (en) * | 2013-07-12 | 2015-01-14 | 上海微电子装备有限公司 | Three-dimensional figure detecting device and measuring method |
CN109374259A (en) * | 2018-11-07 | 2019-02-22 | 暨南大学 | High-precision online measurement and adjustment device for holographic grating period |
CN110285761A (en) * | 2019-07-03 | 2019-09-27 | 哈尔滨工业大学 | A Compact Diffraction Grating Three-Dimensional Displacement Measuring Device |
-
2020
- 2020-05-27 CN CN202010464683.1A patent/CN111649693B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7374287B2 (en) * | 1999-11-01 | 2008-05-20 | Jozef F. Van de Velde | Relaxed confocal catadioptric scanning laser ophthalmoscope |
US20090231719A1 (en) * | 2008-03-11 | 2009-09-17 | Microvision, Inc. | Eyebox Shaping Through Virtual Vignetting |
CN101403608A (en) * | 2008-11-13 | 2009-04-08 | 哈尔滨工程大学 | Accurate measurement apparatus and method for workpiece surface appearance |
CN102155925A (en) * | 2011-01-07 | 2011-08-17 | 中国科学院上海光学精密机械研究所 | Three-dimensional surface topography measuring device based on one-dimensional Dammann grating |
CN104279978A (en) * | 2013-07-12 | 2015-01-14 | 上海微电子装备有限公司 | Three-dimensional figure detecting device and measuring method |
CN109374259A (en) * | 2018-11-07 | 2019-02-22 | 暨南大学 | High-precision online measurement and adjustment device for holographic grating period |
CN110285761A (en) * | 2019-07-03 | 2019-09-27 | 哈尔滨工业大学 | A Compact Diffraction Grating Three-Dimensional Displacement Measuring Device |
Non-Patent Citations (1)
Title |
---|
孙艳玲: "基于垂直位移扫描的三维表面轮廓测量仪", 《中国仪器仪表》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114674240A (en) * | 2022-03-25 | 2022-06-28 | 中国科学院微电子研究所 | Deformation measurement method and device, electronic equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN111649693B (en) | 2022-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101386057B1 (en) | Optical Apparatus, Method of Scanning, Lithographic Apparatus and Device Manufacturing Method | |
TWI452441B (en) | Measuring method, apparatus and substrate | |
TWI515518B (en) | Method and apparatus for measuring asymmetry of a microsutructure, position measuring method, position measuring apparatus, lithographic apparatus and semiconductor device manufacturing method | |
US8233154B2 (en) | High precision code plates and geophones | |
US7292326B2 (en) | Interferometric analysis for the manufacture of nano-scale devices | |
JP6045588B2 (en) | Metrology method and apparatus and device manufacturing method | |
US11092902B2 (en) | Method and apparatus for detecting substrate surface variations | |
CN108603848B (en) | Method and system for optical three-dimensional topography measurement | |
JP6246330B2 (en) | Alignment sensor, lithographic apparatus and alignment method | |
KR102238969B1 (en) | Methods for inspecting substrates, metrology devices and lithography systems | |
JP7050150B2 (en) | How to determine patterning process parameters | |
US20060114450A1 (en) | Interferometric analysis method for the manufacture of nano-scale devices | |
JP2011243664A (en) | Imprint device and method of manufacturing article | |
JP5967924B2 (en) | Position detection apparatus, imprint apparatus, and device manufacturing method | |
TW201921147A (en) | A method of measuring a parameter and apparatus | |
JP2020525831A (en) | Metrology parameter determination and metrology recipe selection | |
TWI631321B (en) | Illumination source for an inspection apparatus, inspection apparatus and inspection method | |
CN108895986B (en) | Microscopic three-dimensional topography measurement device based on fringe imaging projection | |
JP2020518848A (en) | Metrology parameter determination and metrology recipe selection | |
TW201740215A (en) | Inspection method, inspection apparatus and illumination method and apparatus | |
CN102736428B (en) | Focusing and leveling device and method | |
JP5554164B2 (en) | Defect inspection equipment | |
CN111649693A (en) | A kind of sample topography measuring device and method | |
CN105988309A (en) | Alignment device for lithography equipment and alignment method | |
CN116358447A (en) | Wafer surface morphology measuring device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |