CN111647859B - 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺 - Google Patents
一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺 Download PDFInfo
- Publication number
- CN111647859B CN111647859B CN202010485269.9A CN202010485269A CN111647859B CN 111647859 B CN111647859 B CN 111647859B CN 202010485269 A CN202010485269 A CN 202010485269A CN 111647859 B CN111647859 B CN 111647859B
- Authority
- CN
- China
- Prior art keywords
- coating
- target
- substrate
- nano composite
- magnetron sputtering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明公开了一种还原性气氛中Zr‑Ti‑B‑N纳米复合涂层的制备工艺,属于涂层制备技术领域。采用高功率脉冲和脉冲直流复合磁控溅射技术在基体上沉积Zr‑Ti‑B‑N纳米复合涂层。为提高涂层与基体的结合力,镀膜前先通入Ar气,利用电弧离子镀Cr靶对基体表面进行离子轰击清洗,然后通入N2+H2的混合气体,沉积CrN过渡层。之后关闭Cr靶,依次将TiB2靶和ZrB2靶连接到高功率脉冲磁控溅射阴极和脉冲直流磁控溅射阴极,并在Ar、N2和H2的混合气氛中起辉,开始沉积Zr‑Ti‑B‑N涂层。本发明制备的纳米复合涂层具有较高的硬度和弹性模量,良好的耐磨性能,且组织结构致密、涂层与基体间的结合力强。
Description
技术领域
本发明涉及涂层制备技术领域,具体涉及一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺。
背景技术
近年来,在机械、锻造和成型器件上使用耐磨硬质涂层变得越来越重要,不仅可以提高刀具表面抗氧化性能,使刀具可以承受更高的切削温度,有利于提高切削速度及加工效率,而且减少或消除了切削液对环境的影响,扩大了干切削的应用范围。Zr-B-N三元纳米复合涂层具有高韧性、优异的耐磨损性能和化学稳定性,有望用于切削刀具、模具及机械零部件表面。向Zr-B-N涂层中掺杂Ti元素,可通过固溶强化或第二相沉淀析出机制进一步强化涂层,在Zr-Ti-B-N涂层中,Ti元素含量的多少决定其存在方式。当涂层中Ti含量改变后,涂层组织结构和元素化学键也将随之变化。另外,涂层中杂质O元素的存在常导致涂层高硬度损失,并引入位错和晶界等晶体缺陷,这些都将严重影响涂层的力学性能和摩擦学行为,限制其在刀具表面的应用。
因此,向Zr-B-N涂层中掺杂Ti元素实现涂层强化,如何控制涂层沉积工艺有效去除镀膜室内残余O杂质,从而提高涂层纯度、优化组织结构、改善力学性能和热稳定性,是目前亟待解决的技术问题。
发明内容
本发明的目的在于提供一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺,该工艺在还原性气氛下向涂层中掺杂适量Ti元素,并控制各工艺参数,去除镀膜室内残余O杂质,制备高纯度、结构致密、既硬又韧的纳米复合涂层。
为实现上述目的,本发明所采用的技术方案如下:
一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺,该工艺是采用高功率脉冲磁控溅射和脉冲直流磁控溅射复合技术在金属或合金基体上沉积Zr-Ti-B-N涂层,具体包括如下步骤:
(1)利用电弧离子镀技术蒸发金属Cr靶,对基体表面进行离子轰击清洗;
(2)通入高纯Ar、N2和H2的混合气体,沉积CrN过渡层,沉积完成后关闭Cr靶电源;
(3)在高纯Ar、N2和H2的混合气氛中,利用高功率脉冲磁控溅射和脉冲直流磁控溅射技术分别溅射TiB2靶和ZrB2靶,反应沉积Zr-Ti-B-N纳米复合涂层。上述步骤(1)离子轰击清洗前,先进行辉光放电清洗,具体过程如下:将真空室的本底真空抽至3.0×10-3Pa或以下,然后通入高纯氩气并加载-800V直流偏压对基体表面进行辉光放电清洗,工作压强保持在1.5Pa,放电清洗时间15min。
上述步骤(1)中,所述轰击清洗过程为:向真空室内通入氩气流量100sccm,工作压强保持在6.0×10-1Pa,开启电弧离子镀电源,调节平均输出电流至90A,控制金属Cr靶起弧,输出电压为20~23V,偏压仍保持在-800V,进行离子轰击清洗8min。
上述步骤(2)中,沉积CrN过渡层的过程为:将基体偏压调至-150V,真空室内通入高纯N2、H2和Ar的混合气体,保持气体流量比(N2+H2)/(Ar+N2+H2)=4/5,控制工作压强为9.0×10-1Pa,沉积CrN过渡层10min,之后关闭Cr靶电源。
上述步骤(3)中,沉积Zr-Ti-B-N涂层的过程为:真空室内通入高纯N2、H2和Ar的混合气体,保持气体流量比(N2+H2)/(Ar+N2+H2)=1/11,工作压强调至6.0×10-1Pa;先开启高功率脉冲磁控溅射电源,控制TiB2靶起辉,输出功率0.8kW,靶电流为1.7~1.8A,靶电压为580V;再开启脉冲直流磁控溅射电源,输出功率0.8kW,靶电流为2.5~2.8A,占空比为50%,基体偏压保持为-150V,控制ZrB2靶起辉,开始沉积Zr-Ti-B-N涂层;沉积时间根据涂层厚度要求而定。
上述步骤(2)沉积CrN过渡层过程中,靶基距保持在280mm,沉积温度400℃;步骤(3)沉积Zr-Ti-B-N涂层过程中,靶基距为75mm,沉积温度仍保持在400℃。
上述步骤(2)和步骤(3)沉积过程中,真空室内N2与H2的气体体积比为9:1。所述基体为金属、合金或陶瓷材料。
所制备的Zr-Ti-B-N纳米复合涂层具有较高的硬度和弹性模量,良好的耐磨性能,且组织结构致密、涂层与基体间的结合力强。
本发明设计机理如下:
本发明采用高功率脉冲磁控溅射和脉冲直流磁控溅射复合技术在金属或合金基体上沉积Zr-Ti-B-N纳米复合涂层。将TiB2靶与高功率脉冲电源相连接,利用其较高的脉冲峰值功率(超出传统直流磁控溅射2~3个数量级)和较低的脉冲占空比(50%)来提高TiB2靶材的离化率和溅射粒子的动能,也为强化涂层提供了大量的金属Ti离子。基体表面经高能离子轰击后,产生清洁的活化界面并促进局部表面的外延生长,显著增强涂层的附着力。脉冲直流磁控溅射能有效地抑制靶面电弧产生,进而消除由此产生的涂层缺陷,同时可以提高涂层沉积速率、降低沉积温度。
在Zr-Ti-B-N涂层中,Ti元素含量的多少决定其存在方式,本发明向涂层中加入适量Ti元素,由于Ti-B离子键键能低于Zr-B离子键键能,N离子优先打开Ti-B离子键形成BN,剩余的Ti离子将固溶于晶格引起离子键比例增大和晶格畸变,或偏析于晶界改变涂层的组织结构,从而强化涂层的力学性能。另外,在反应气体N2中混入适量还原性气体H2,镀膜时通过氧化还原反应去除镀膜室内残余O杂质,减少涂层的硬度损失,提高涂层的纯度和性能。再严格控制反应气体流量和各个靶的溅射功率,制备结构致密、既硬又韧的纳米复合涂层。
本发明的优点如下:
1.本发明研制的Zr-Ti-B-N涂层化学性能稳定,不与常见的化学腐蚀介质反应,具有良好的耐腐蚀性能。涂层中的非晶BN相可有效阻挡微裂纹的萌生与拓展,极大地提高了涂层韧性。
2.本发明研制的Zr-Ti-B-N涂层具有较高的硬度和弹性模量,耐磨性能优异。涂层中Ti元素的加入,通过固溶强化或第二相沉淀析出进一步提升了涂层的力学性能,且还原性气氛的引入提高了涂层纯度,减少了氧杂质对涂层硬度的损伤。
3.本发明研制的Zr-Ti-B-N涂层热稳定性和抗热震能力良好。
4.本发明研制的Zr-Ti-B-N涂层厚度均匀且结构致密,与基体结合良好。
5.本发明研制的Zr-Ti-B-N涂层制备工艺重复性好,应用范围广,实用性强,适用于高速切削刀具以及耐磨零部件表面。
附图说明
图1为高功率脉冲磁控溅射和脉冲直流磁控溅射的靶材分布图。
图2为单晶Si片((100)晶面)上沉积Zr-Ti-B-N涂层的表面形貌。
图3为单晶Si片((100)晶面)上沉积Zr-Ti-B-N涂层的断面形貌。
图4为单晶Si片((100)晶面)上沉积Zr-Ti-B-N涂层的X射线衍射谱(XRD)。
图5为硬质合金基体上沉积Zr-Ti-B-N涂层的硬度。
图6为硬质合金基体上沉积Zr-Ti-B-N涂层的划痕形貌。
图7为硬质合金基体上沉积Zr-Ti-B-N涂层的摩擦系数曲线。
具体实施方式
下面通过实施例对本发明作进一步详细说明。
实施例1
本实施例为在已镜面抛光的单晶Si片((100)晶面)上沉积Zr-Ti-B-N涂层,基片尺寸为50mm×10mm×0.7mm。镀膜前先将基片在酒精溶液中超声清洗20分钟,然后用高纯氮气吹干,再正对靶材放置于真空室内试样架上。镀膜过程在V-TECH AS610型高功率脉冲和脉冲直流复合磁控溅射镀膜机上进行,该镀膜机上也配置有电弧离子镀阴极,靶材分别选用金属Cr靶、化合物ZrB2靶和TiB2靶(纯度均为wt.99.9%),前者用于基体表面的轰击清洗和沉积CrN过渡层,后者用于沉积Zr-Ti-B-N涂层;工作气体和反应气体分别选用高纯Ar(纯度99.999%)、N2+H2混合气体(气体体积比9:1),图1为高功率脉冲磁控溅射和脉冲直流磁控溅射的靶材分布图。
先将真空室的本底真空抽至3.0×10-3Pa,然后通入氩气对试样表面进行辉光放电清洗,工作压强保持在1.5Pa,加载-800V直流偏压,放电清洗时间15min;之后降低氩气流量,将工作压强调至6.0×10-1Pa,开启电弧离子镀电源,控制金属Cr靶起弧,平均输出电流为90A,输出电压为20~23V,偏压仍保持-800V,轰击清洗8min;然后降低偏压为-150V,通入N2+H2的混合气体(气体体积比9:1),保持气体流量比(N2+H2)/(Ar+N2+H2)=4/5,调节工作压强为9.0×10-1Pa,沉积CrN过渡层10min,靶基距保持在280mm,沉积温度400℃;随后关闭Cr靶电源,调节真空室内气体流量比至(N2+H2)/(Ar+N2+H2)=1/11,控制节流阀将工作压强调至6.0×10-1Pa,先开启高功率脉冲电源,控制TiB2靶起辉,输出功率0.8kW,靶电流为1.7~1.8A,靶电压为580V;再开启脉冲直流电源,输出功率0.8kW,靶电流为2.5~2.8A,占空比为50%,控制ZrB2靶起辉,开始沉积Zr-Ti-B-N涂层,两磁控溅射靶基距均为75mm,基体偏压仍为-150V;连续镀膜360分钟。
图2和图3分别为Zr-Ti-B-N涂层的表面形貌和截面形貌,从图2可以看出,涂层表面均匀致密,无大颗粒和液滴等缺陷存在。根据Zr-Ti-B-N涂层的截面形貌(图3),可知涂层组织结构均匀致密,呈细小的柱状晶结构,涂层/过渡层/基体界面结合良好。图4为采用本发明工艺制备的Zr-Ti-B-N涂层的X射线衍射分析结果,涂层由沿(111)晶面生长的ZrN相、沿(200)晶面生长的TiN相、沿(110)晶面和(220)晶面生长的Ti2N相,以及多晶ZrB2相组成。其中(001)晶面的ZrB2相和(110)晶面的Ti2N相衍射峰最强,为涂层的择优生长方向。
实施例2
本实施例为在镜面抛光的YG8硬质合金基片上沉积Zr-Ti-B-N涂层,基片尺寸为30mm×30mm×3mm。基片先经金相砂纸研磨、抛光后,再分别用丙酮、脱脂剂、超纯水和酒精溶液超声清洗,用高纯氮气吹干后,正对靶材放置于真空室内试样架上。沉积参数同实施例1。
图5为硬质合金基体上沉积Zr-Ti-B-N涂层的硬度测试结果。可以看出涂层硬度测试值波动较小,在24~27GPa范围内变化,十次测量的平均值为25.4±0.8GPa,涂层硬度较高。涂层与基体的结合强度采用划痕法进行测试,金刚石划头的针尖半径为200μm,法向载荷以2.67N/s的速率由0N逐渐增加到80N,划痕长度15mm,划行速度0.5mm/s。选取不同位置测试7次取平均值,Zr-Ti-B-N涂层的临界载荷为37.1±0.7N。图6为划痕测试后Zr-Ti-B-N涂层上的划痕形貌,当法向载荷逐渐增加至33.7N时,涂层表面开始出现细微裂纹(记为Lc1);继续增加载荷至37.1N时,涂层开始从基体表面剥落(记为Lc2),常用Lc2评价涂层与基体的结合力;进一步增加法向载荷至45.2N时,涂层已被完全划破(记为Lc3)。图7为Zr-Ti-B-N涂层与直径为6mm的氧化铝陶瓷球对摩后的摩擦系数曲线,测试条件:法向载荷1N,滑动速度0.1m/s,采用干摩擦旋转式运动,磨痕轨道半径为6mm。根据摩擦系数曲线,经计算稳定摩擦阶段的平均摩擦系数为0.64,Zr-Ti-B-N涂层的平均磨损率为1.2×10-14m3/N·m,利用本发明制备的涂层具有良好的摩擦磨损性能。
Claims (4)
1.一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺,其特征在于:该工艺是采用高功率脉冲和脉冲直流复合磁控溅射技术在金属或陶瓷材料基体上沉积Zr-Ti-B-N涂层,具体包括如下步骤:
(1)利用电弧离子镀技术蒸发金属Cr靶,对基体表面进行离子轰击清洗;
(2)通入高纯Ar、N2和H2的混合气体,沉积CrN过渡层,沉积CrN过渡层的过程为:将基体偏压调至-150V,真空室内通入高纯Ar、N2和H2的混合气体,保持气体流量比(N2+H2)/(Ar+N2+H2)=4/5,控制工作压强为9.0×10-1Pa,沉积CrN过渡层10min,之后关闭Cr靶电源;
(3)在高纯Ar、N2和H2的混合气氛中,利用高功率脉冲磁控溅射和脉冲直流磁控溅射技术分别溅射TiB2靶和ZrB2靶,反应沉积Zr-Ti-B-N纳米复合涂层;沉积Zr-Ti-B-N涂层的过程为:真空室内通入高纯Ar、N2和H2的混合气体,保持气体流量比(N2+H2)/(Ar+N2+H2)=1/11,工作压强调至6.0×10-1Pa;先开启高功率脉冲磁控溅射电源,控制TiB2靶起辉,输出功率0.8kW,靶电流为1.7~1.8A,靶电压为580V;再开启脉冲直流磁控溅射电源,输出功率0.8kW,靶电流为2.5~2.8A,占空比为50%,基体偏压保持为-150V,控制ZrB2靶起辉,开始沉积Zr-Ti-B-N涂层;沉积时间根据涂层厚度要求而定;
步骤(2)沉积CrN过渡层过程中,靶基距保持在280mm,沉积温度400℃;步骤(3)沉积Zr-Ti-B-N涂层过程中,靶基距为75mm,沉积温度仍保持在400℃;
步骤(2)和步骤(3)沉积涂层过程中,真空室内N2与H2的气体体积比为9:1。
2.根据权利要求1所述的还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺,其特征在于:步骤(1)离子轰击清洗前,先进行辉光放电清洗,具体过程如下:将真空室的本底真空抽至3.0×10-3Pa以下,然后通入高纯氩气并加载-800V直流偏压对基体表面进行辉光放电清洗,工作压强保持在1.5Pa,放电清洗时间15min。
3.根据权利要求1所述的还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺,其特征在于:步骤(1)中,所述轰击清洗过程为:向真空室内通入氩气流量100sccm,工作压强保持在6.0×10-1Pa,开启电弧离子镀电源,调节平均输出电流至90A,控制金属Cr靶起弧,输出电压为20~23V,偏压仍保持在-800V,进行离子轰击清洗8min。
4.根据权利要求1所述的还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺,其特征在于:所制备的Zr-Ti-B-N纳米复合涂层具有较高的硬度和弹性模量,良好的耐磨性能,且组织结构致密、涂层与基体间的结合力强。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010485269.9A CN111647859B (zh) | 2020-06-01 | 2020-06-01 | 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010485269.9A CN111647859B (zh) | 2020-06-01 | 2020-06-01 | 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111647859A CN111647859A (zh) | 2020-09-11 |
CN111647859B true CN111647859B (zh) | 2022-09-06 |
Family
ID=72345054
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010485269.9A Active CN111647859B (zh) | 2020-06-01 | 2020-06-01 | 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111647859B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112267090A (zh) * | 2020-09-30 | 2021-01-26 | 中国航发中传机械有限公司 | 一种基于离子注渗的齿轮钢wc-dlc涂层及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1074715A (zh) * | 1992-01-21 | 1993-07-28 | 大连理工大学 | 弧源-多离子束材料表面改性技术 |
CN105887012A (zh) * | 2016-01-11 | 2016-08-24 | 天津职业技术师范大学 | 一种Zr-B-N纳米复合涂层制备工艺 |
CN106987800A (zh) * | 2017-03-10 | 2017-07-28 | 广东工业大学 | 一种周期性多层结构的二硼化钛‑二硼化锆涂层及其制备方法和应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55144606A (en) * | 1979-04-30 | 1980-11-11 | Matsushita Electric Works Ltd | Method of treating surface of illuminator reflecting plate |
-
2020
- 2020-06-01 CN CN202010485269.9A patent/CN111647859B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1074715A (zh) * | 1992-01-21 | 1993-07-28 | 大连理工大学 | 弧源-多离子束材料表面改性技术 |
CN105887012A (zh) * | 2016-01-11 | 2016-08-24 | 天津职业技术师范大学 | 一种Zr-B-N纳米复合涂层制备工艺 |
CN106987800A (zh) * | 2017-03-10 | 2017-07-28 | 广东工业大学 | 一种周期性多层结构的二硼化钛‑二硼化锆涂层及其制备方法和应用 |
Non-Patent Citations (2)
Title |
---|
"Ti-(Zr)-B-N纳米复合涂层的结构与性能研究";郭玉垚;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技I辑》;20190915;第35-44页 * |
"Zirconium nitride films deposited in Ar+N2+H2 sputtering atmosphere:Optical,structural,and electrical properties";M.A.Signore et al.;《Journal of Vacuum Science & Technology A》;20111007;第1-10页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111647859A (zh) | 2020-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106987816B (zh) | 一种高铝含量超致密Al-Cr-Si-N涂层制备工艺 | |
CN105887012B (zh) | 一种Zr-B-N纳米复合涂层制备工艺 | |
CN107130222B (zh) | 高功率脉冲磁控溅射CrAlSiN纳米复合涂层及其制备方法 | |
CN104928638A (zh) | 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法 | |
CN106893986A (zh) | 一种高硬度AlCrN纳米复合涂层及其制备工艺 | |
CN111647851B (zh) | 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法 | |
CN101775585B (zh) | 一种高硬度氮化锆硬质涂层的制备方法 | |
CN101928916B (zh) | 在硬质合金基体表面制备纳米结构氮钇锆硬质涂层的方法 | |
CN110004409B (zh) | 具有高硬度和高结合力的CrAlN纳米梯度涂层及其制备工艺 | |
CN111349901B (zh) | 一种切削刀具用耐高温氧化铝厚膜涂层的制备方法 | |
CN107916402A (zh) | 一种AlCrTiSiCN涂层结构及其制备方法 | |
CN110453190B (zh) | 一种AlCrSiN/Mo自润滑薄膜的复合磁控溅射制备方法 | |
CN112410728B (zh) | 高Cr含量CrB2-Cr涂层的制备工艺 | |
CN113174570B (zh) | 一种高韧性TiAlNiN涂层及其制备方法和应用 | |
CN108977775A (zh) | 一种TiAlSiN涂层刀具制备工艺 | |
JP2013146839A (ja) | 硬質被覆層がすぐれた耐熱性と耐摩耗性を維持する表面被覆切削工具 | |
CN112501553B (zh) | 一种Mo掺杂型AlCrSiN/Mo自润滑薄膜及其制备方法 | |
CN105463391B (zh) | 一种纳米晶ZrB2超硬涂层及制备方法 | |
CN106868450A (zh) | 一种利用调制高功率脉冲磁控溅射制备AlTiN硬质涂层的方法 | |
CN106893991A (zh) | 一种Zr‑B‑O‑N纳米复合涂层制备工艺 | |
CN103938157A (zh) | 一种ZrNbAlN超晶格涂层及制备方法 | |
CN111647859B (zh) | 一种还原性气氛中Zr-Ti-B-N纳米复合涂层的制备工艺 | |
CN111500990B (zh) | 一种Zr-Ti-B-N纳米复合涂层及其制备方法 | |
CN111471973B (zh) | 一种还原性气氛中制备Zr-B-N纳米复合涂层的工艺 | |
CN112391593B (zh) | 一种高Cr含量、韧性好的CrB2-Cr涂层及其制备工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |