[go: up one dir, main page]

CN111640747A - Semiconductor device, electric contact structure and manufacturing method thereof - Google Patents

Semiconductor device, electric contact structure and manufacturing method thereof Download PDF

Info

Publication number
CN111640747A
CN111640747A CN201910926990.4A CN201910926990A CN111640747A CN 111640747 A CN111640747 A CN 111640747A CN 201910926990 A CN201910926990 A CN 201910926990A CN 111640747 A CN111640747 A CN 111640747A
Authority
CN
China
Prior art keywords
contact
boundary
core element
semiconductor device
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910926990.4A
Other languages
Chinese (zh)
Inventor
童宇诚
詹益旺
黄永泰
方晓培
吴少一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Jinhua Integrated Circuit Co Ltd
Original Assignee
Fujian Jinhua Integrated Circuit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Jinhua Integrated Circuit Co Ltd filed Critical Fujian Jinhua Integrated Circuit Co Ltd
Priority to CN201910926990.4A priority Critical patent/CN111640747A/en
Priority to PCT/CN2020/079580 priority patent/WO2021056984A1/en
Publication of CN111640747A publication Critical patent/CN111640747A/en
Priority to US17/320,244 priority patent/US12075609B2/en
Priority to US18/780,504 priority patent/US20240381629A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/34DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/482Bit lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/485Bit line contacts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/488Word lines

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明提供了一种半导体器件及其电接触结构与制造方法,通过使得形成在所述核心元件区的边界处的至少两个接触插塞的顶部相联在一起,来在核心元件区的边界处形成顶部横截面积较大的组合接触结构,由此,为后续在核心元件区的边界处的接触结构上方形成电学结构的工艺提供足够的工艺余量,使得该边界处的所述电学结构的尺寸增大,降低接触阻抗,且通过该边界处尺寸增大的所述电学结构的,缓冲核心元件区和周边电路区之间的电路图案的密度差异,改善光学邻近效应,保证核心元件区边界以内的接触插塞上方的电学结构的一致性,并防止所述边界处的接触插塞上方的电学结构出现坍塌,提高器件性能。

Figure 201910926990

The present invention provides a semiconductor device, an electrical contact structure and a method of manufacturing the same, by connecting the tops of at least two contact plugs formed at the boundary of the core element region together, at the boundary of the core element region A combined contact structure with a larger top cross-sectional area is formed at the boundary of the core element region, thereby providing sufficient process margin for the subsequent process of forming an electrical structure above the contact structure at the boundary of the core element region, so that the electrical structure at the boundary is The size of the electrical structure is increased, the contact resistance is reduced, and the density difference of the circuit pattern between the core component area and the peripheral circuit area is buffered, and the optical proximity effect is improved to ensure the core component area. The electrical structures above the contact plugs within the boundary are consistent, and the electrical structures above the contact plugs at the boundary are prevented from collapsing, thereby improving device performance.

Figure 201910926990

Description

半导体器件及其电接触结构与制造方法Semiconductor device and electrical contact structure and manufacturing method thereof

技术领域technical field

本发明涉及半导体技术领域,特别涉及一种半导体器件及其电接触结构与制造方法。The present invention relates to the technical field of semiconductors, in particular to a semiconductor device, an electrical contact structure and a manufacturing method thereof.

背景技术Background technique

已使用各种技术,在半导体衬底或晶片的有限面积中集成更多电路图案。由于电路图案间距的不同,集成电路一般分为器件密集区(Dense)、器件稀疏区(ISO)及器件孤立区,器件密集区是器件密度较高(即器件比较密集)的区域,器件稀疏区是器件密度较低(即器件比较稀疏)的区域,器件孤立区是相对稀疏区和密集区单独设置的区域。随着半导体器件的临界尺寸不断减小,电路图案的密度和/或器件高度也不断增加,受到曝光机台(optical exposure too1)的分辨率极限以及器件密集区和器件稀疏区之间的密度差异效应(即电路图案的密集/稀疏效应)的影响,在执行光刻工艺和/或蚀刻工艺时的困难也会增大很多(例如,工艺余量减小),进而导致制造出来的半导体器件的性能受到影响。Various techniques have been used to integrate more circuit patterns in the limited area of a semiconductor substrate or wafer. Due to the difference in circuit pattern spacing, integrated circuits are generally divided into device dense area (Dense), device sparse area (ISO) and device isolated area. It is an area with low device density (that is, the device is relatively sparse), and the device isolated area is an area where the relatively sparse area and the dense area are separately set. As the critical dimensions of semiconductor devices continue to decrease, the density of circuit patterns and/or device heights continue to increase, subject to the resolution limit of the optical exposure tool and the difference in density between dense and sparse device regions. Effects (i.e., dense/sparse effects of circuit patterns), the difficulty in performing the photolithography process and/or the etching process is also greatly increased (for example, the process margin is reduced), which in turn leads to the manufacture of semiconductor devices. Performance is affected.

例如,在动态随机存取存储(dynamic random access memory,以下简称为DRAM)装置的情况中,数目庞大的存储单元(memory cell)聚集形成一阵列存储区,而阵列存储区的旁边存在有周边电路区,周边电路区内包含有其他晶体管元件以及接触结构等,阵列存储区作为DRAM的器件密集区,用来存储数据,周边电路区作为DRAM的器件稀疏区,用于提供阵列存储区所需的输入输出信号等。其中,阵列存储区中的每一存储单元可由一金属氧化半导体(metal oxide semiconductor,MOS)晶体管与一电容(capacitor)结构串联组成。其中,电容位于阵列存储区内,其中,所述电容堆叠在位线上方并电耦接至所述电容器对应的存储节点接触部,所述存储节点接触部电耦接至其下的有源区。随着半导体技术的不断发展,器件的临界尺寸不断减小,DRAM装置的存储单元之间的间隙变得更窄,当通过自对准接触(Self Aligned Contact,SAC)工艺形成存储节点接触部时,受到曝光机台(opticalexposure too1)的分辨率极限以及器件密集区和器件稀疏区之间的密度差异效应的影响,阵列存储区内部形成的接触孔不一致,器件密集区边界的接触孔产生异常,进而导致上方形成的电容器与接触孔中的接触插塞接触面积减小、接触阻抗的增加,有可能造成一些存储位因接触插塞的断路或短路问题而失效,以及,阵列存储区边界处的电容器坍塌的问题,这些问题影响和限制了DRAM性能的提高。For example, in the case of a dynamic random access memory (hereinafter referred to as DRAM) device, a huge number of memory cells are aggregated to form an array storage area, and peripheral circuits exist beside the array storage area. The peripheral circuit area contains other transistor elements and contact structures, etc. The array storage area is used as the device dense area of DRAM to store data, and the peripheral circuit area is used as the device sparse area of DRAM to provide the required array storage area. Input and output signals, etc. Wherein, each memory cell in the array memory area can be composed of a metal oxide semiconductor (MOS) transistor connected in series with a capacitor structure. The capacitor is located in the array storage area, wherein the capacitor is stacked above the bit line and is electrically coupled to the storage node contact corresponding to the capacitor, and the storage node contact is electrically coupled to the active area below it . With the continuous development of semiconductor technology, the critical dimension of the device is continuously reduced, and the gap between the memory cells of the DRAM device becomes narrower. When the storage node contact is formed by the Self Aligned Contact (SAC) process , Affected by the resolution limit of the exposure machine (optical exposure too1) and the effect of the density difference between the device dense area and the device sparse area, the contact holes formed inside the array storage area are inconsistent, and the contact holes at the boundary of the device dense area are abnormal. In turn, the contact area between the capacitor formed above and the contact plug in the contact hole is reduced, and the contact resistance is increased, which may cause some storage bits to fail due to the open circuit or short circuit of the contact plug, and the boundary of the array storage area. The problem of capacitor collapse, which affects and limits the improvement of DRAM performance.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提供一种半导体器件及其电接触结构、制造方法,以解决现有的动态随机存取存储器等半导体器件中因光学邻近效应以及电路图案的密集/稀疏效应而导致核心元件区内部的接触插塞上接的电学结构不一致以及核心元件区边界的接触插塞上接的电学结构异常的问题。The object of the present invention is to provide a semiconductor device, an electrical contact structure and a manufacturing method thereof, so as to solve the problem of the core element area caused by the optical proximity effect and the dense/sparse effect of circuit patterns in the existing semiconductor devices such as dynamic random access memory. The electrical structures connected to the internal contact plugs are inconsistent and the electrical structures connected to the contact plugs at the boundary of the core element area are abnormal.

为解决上述技术问题,本发明提供一种半导体器件的电接触结构,所述电接触结构包括:In order to solve the above technical problems, the present invention provides an electrical contact structure for a semiconductor device, the electrical contact structure includes:

多个接触插塞,形成于所述半导体器件的核心元件区的核心元件的上方,且各个所接触插塞的底部与相应的核心元件的有源区接触,a plurality of contact plugs formed above the core elements in the core element region of the semiconductor device, and the bottoms of the respective contact plugs are in contact with the active regions of the corresponding core elements,

其中,形成在所述核心元件区的边界处的至少两个接触插塞的顶部相联在一起,且所述顶部相联在一起的接触插塞中包括边界处最外侧的接触插塞。Wherein, the tops of at least two contact plugs formed at the boundary of the core element region are connected together, and the contact plugs whose tops are connected together include the outermost contact plug at the boundary.

基于同一发明构思,本发明还提供一种半导体器件,包括:Based on the same inventive concept, the present invention also provides a semiconductor device, comprising:

半导体衬底,所述半导体衬底具有核心元件区,所述核心元件区中形成有多个核心元件;a semiconductor substrate, the semiconductor substrate has a core element region, and a plurality of core elements are formed in the core element region;

层间介质层,覆盖在所述半导体衬底上;以及,an interlayer dielectric layer covering the semiconductor substrate; and,

如本发明所述的半导体器件的电接触结构,所述电接触结构形成于所述层间介质层中,所述电接触结构的各个所述接触插塞的底部与相应的核心元件的有源区接触,且所述电接触结构中形成在所述核心元件区的边界处的至少两个接触插塞的顶部相联在一起,且所述顶部相联的所有的接触插塞中包括边界处最外侧的接触插塞。According to the electrical contact structure of a semiconductor device according to the present invention, the electrical contact structure is formed in the interlayer dielectric layer, and the bottom of each of the contact plugs of the electrical contact structure is connected to the active part of the corresponding core element. area contact, and the tops of at least two contact plugs formed at the boundary of the core element area in the electrical contact structure are connected together, and all the contact plugs connected by the tops include the boundary Outermost contact plug.

基于同一发明构思,本发明还提供一种半导体器件的电接触结构的制造方法,包括:Based on the same inventive concept, the present invention also provides a method for manufacturing an electrical contact structure of a semiconductor device, including:

提供半导体衬底,所述半导体衬底具有核心元件区,所述核心元件区中形成有多个核心元件;providing a semiconductor substrate, the semiconductor substrate having a core element region in which a plurality of core elements are formed;

在所述半导体衬底上形成层间介质层,并在所述层间介质层中形成多个接触孔,各个所述接触孔贯穿所述层间介质层并暴露出相应的核心元件的有源区;An interlayer dielectric layer is formed on the semiconductor substrate, and a plurality of contact holes are formed in the interlayer dielectric layer, each of the contact holes penetrates the interlayer dielectric layer and exposes the active elements of the corresponding core elements Area;

在所述接触孔中形成接触插塞,且各个所述接触插塞的底部与相应的核心元件的有源区接触,且形成在所述核心元件区的边界处的至少两个接触插塞的顶部相联在一起,所述顶部相联在一起的所有接触插塞中包括边界处最外侧的接触插塞。Contact plugs are formed in the contact holes, and the bottom of each of the contact plugs is in contact with the active region of the corresponding core element, and at least two contact plugs formed at the boundary of the core element region have The tops are connected together, and all the contact plugs in which the tops are connected include the outermost contact plug at the boundary.

基于同一发明构思,本发明还提供一种半导体器件的制造方法,包括:采用本发明所述的半导体器件的电接触结构的制造方法,在一具有核心元件区的半导体衬底上形成与相应的核心元件电接触的电接触结构。Based on the same inventive concept, the present invention also provides a method for manufacturing a semiconductor device, comprising: using the method for manufacturing an electrical contact structure for a semiconductor device according to the present invention, forming a corresponding contact structure on a semiconductor substrate having a core element region The electrical contact structure for the electrical contact of the core element.

与现有技术相比,本发明的技术方案,具有以下有益效果:Compared with the prior art, the technical scheme of the present invention has the following beneficial effects:

通过使得形成在所述核心元件区的边界处的至少两个接触插塞的顶部相联在一起,来在核心元件区的边界处形成顶部横截面积较大的组合接触结构,由此,一方面,可以为后续在核心元件区的边界处的组合接触结构上方形成电学结构(例如DRAM的电容器的下极板)的工艺提供足够的工艺余量,有利于该边界处的所述电学结构的尺寸增大,避免该边界处的电学结构出现异常或坍塌;另一方面,该边界处的电学结构和所述组合接触结构能具有较大的接触面积,因此接触阻抗减小,有利于提高器件的电学性能;更重要的是,该边界处的所述电学结构的尺寸增大,能够缓冲核心元件区和周边电路区之间的电路图案的密度差异,从而在形成核心元件区中的所有电学结构的光刻工艺和/或蚀刻工艺中能够改善光学邻近效应,减小稀疏/密集负载效应,保证核心元件区边界处以内的接触插塞上方的电学结构的一致性,提高器件性能。By connecting the tops of at least two contact plugs formed at the boundary of the core element region together, a combined contact structure with a larger top cross-sectional area is formed at the boundary of the core element region, whereby a In one aspect, a sufficient process margin can be provided for the subsequent process of forming an electrical structure (such as the lower plate of a capacitor of a DRAM) above the combined contact structure at the boundary of the core element region, which is beneficial to the improvement of the electrical structure at the boundary. The size increases to avoid abnormality or collapse of the electrical structure at the boundary; on the other hand, the electrical structure at the boundary and the combined contact structure can have a larger contact area, so the contact resistance is reduced, which is conducive to improving the device. More importantly, the increased size of the electrical structure at the boundary can buffer the density difference of the circuit pattern between the core element area and the peripheral circuit area, so that all electrical circuits in the core element area are formed The photolithography process and/or etching process of the structure can improve the optical proximity effect, reduce the sparse/dense load effect, ensure the consistency of the electrical structure above the contact plug within the boundary of the core element region, and improve the device performance.

附图说明Description of drawings

图1A~1D是本发明一实施例的半导体器件的电学接触结构的制造方法中的剖面结构示意图;1A-1D are schematic cross-sectional structural views of a method for manufacturing an electrical contact structure of a semiconductor device according to an embodiment of the present invention;

图2A~2D是本发明另一实施例的半导体器件的电学接触结构的制造方法中的剖面结构示意图;2A-2D are schematic cross-sectional structural views of a method for manufacturing an electrical contact structure of a semiconductor device according to another embodiment of the present invention;

图3A是本发明一实施例的半导体器件的制造方法中的俯视结构示意图;3A is a schematic top-view structure diagram of a method for manufacturing a semiconductor device according to an embodiment of the present invention;

图3B~11是本发明一实施例的半导体器件的制造方法中的沿图3A中的aa’线的剖面结构示意图。3B to 11 are schematic cross-sectional structural diagrams taken along the line aa' in FIG. 3A in a method for manufacturing a semiconductor device according to an embodiment of the present invention.

具体实施方式Detailed ways

以下结合附图和具体实施例对本发明提出的技术方案作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。The technical solutions proposed by the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. The advantages and features of the present invention will become more apparent from the following description. It should be noted that, the accompanying drawings are all in a very simplified form and in inaccurate scales, and are only used to facilitate and clearly assist the purpose of explaining the embodiments of the present invention.

图1D是示出本发明一实施例的半导体器件的电接触结构的剖面示意图。请参考图1D,本发明一实施例提供的半导体器件的电接触结构包括多个接触插塞106a、106b,其中,接触插塞106a、106b形成于所述半导体器件的核心元件区I的核心元件(未图示)的上方,且各个所接触插塞106a、106b的底部与相应的核心元件的有源区101接触。其中,核心元件区I包括边界处(或称为边界区、交界区、界面区)I-2以及位于边界处I-2以内的中央区I-1,形成在所述核心元件区I的边界处I-2的至少两个接触插塞106b的顶部相联在一起。核心元件区I为器件密集区,其周围的周边电路区II为器件稀疏区。1D is a schematic cross-sectional view illustrating an electrical contact structure of a semiconductor device according to an embodiment of the present invention. 1D, an electrical contact structure of a semiconductor device provided by an embodiment of the present invention includes a plurality of contact plugs 106a, 106b, wherein the contact plugs 106a, 106b are formed in the core element of the core element region I of the semiconductor device (not shown), and the bottom of each of the contacted plugs 106a, 106b is in contact with the active region 101 of the corresponding core element. Wherein, the core element area I includes a boundary (or called a boundary area, a boundary area, an interface area) I-2 and a central area I-1 located within the boundary I-2, which is formed on the boundary of the core element area I The tops of at least two contact plugs 106b at I-2 are joined together. The core element area I is a device dense area, and the peripheral circuit area II around it is a device sparse area.

每个接触插塞106a、106b、106c可以包括阻挡金属层(未图示)和金属层(未图示),阻挡金属层可以包括例如Ti、Ta、Mo、TixNy、TaxNy、TixZry、TixZryNz、NbxNy、ZrxNy、WxNy、VxNy、HfxNy、MoxNy、RuxNy和/或TixSiyNz。金属层可以包括例如钨、铜和/或铝Each contact plug 106a, 106b, 106c may include a barrier metal layer (not shown) and a metal layer (not shown), the barrier metal layer may include, for example, Ti, Ta , Mo , TixNy , TaxNy , TixZry , TixZryNz , NbxNy , ZrxNy , WxNy , VxNy , HfxNy , MoxNy , RuxNy and / or TixSi y N z . Metal layers may include, for example, tungsten, copper and/or aluminum

核心元件区I的边界处I-2的顶部相联一起的所有接触插塞106b构成倒U形电接触结构或者梳状电接触结构,即核心元件区I的边界处I-2的顶部相联一起的所有接触插塞106b,在边界处I-2构成一个顶部横截面积较大的组合接触结构。All the contact plugs 106b connected with the tops of I-2 at the boundary of the core element region 1 constitute an inverted U-shaped electrical contact structure or a comb-shaped electrical contact structure, that is, the tops of I-2 at the boundary of the core element region 1 are connected All the contact plugs 106b together, at the boundary I-2 form a combined contact structure with a larger top cross-sectional area.

请结合图1D和图11,本实施例中,半导体器件为动态随机存取存储器(dynamicrandom access memory,DRAM),核心元件区为DRAM存储器的存储阵列区,核心元件为存储晶体管,所述电接触结构为存储节点接触部,上接电容结构(即存储节点,storage node)。即核心元件区I的中央区I-1中的每个接触插塞106a上接一个电容结构(如图11中705a所示),核心元件区I的边界处I-2中的一个组合接触结构上接一个电容结构(如图11中705b所示),且所述边界处I-2的电容结构具有第一宽度W1,所述核心元件区I的所述边界处I-2以内(即中央区I-1)的电容结构具有第二宽度W2,由于核心元件区I的边界处I-2形成的顶部横截面积较大的组合接触结构的存在,因此,可以为边界处I-2的电容结构的形成工艺提供足够的工艺余量,以有利于增大该边界处I-2的电容结构的第一宽度W1,使得所述第一宽度W1大于所述第二宽度W2,进而,一方面,避免该边界处形成的电容结构坍塌;另一方面,使得该边界处的电容结构与其下的所述组合接触结构之间能具有较大的接触面积,一减小接触阻抗,有利于提高器件的电学性能;更重要的是,该边界处的所述电容结构的尺寸增大,能够缓冲核心元件区I和周边电路区II之间的电路图案的密度差异,从而在执行光刻工艺和/或蚀刻工艺时能够改善光学邻近效应,减小稀疏/密集负载效应,保证核心元件区I边界处I-2以内的区域(即中央区)I-1的接触插塞106a上方的电容结构的一致性,防止出现核心元件区I内一些位置的接触插塞上方的电容结构出现异常或边界处I-2的接触插塞上方的电容结构出现坍塌的问题。可选地,所述第一宽度W1大于1.5倍的所述第二宽度W2。Referring to FIG. 1D and FIG. 11 , in this embodiment, the semiconductor device is a dynamic random access memory (DRAM), the core element area is a storage array area of the DRAM memory, the core element is a storage transistor, and the electrical contacts The structure is a storage node contact portion, which is connected to a capacitor structure (ie, a storage node, storage node). That is, each contact plug 106a in the central area I-1 of the core element area 1 is connected to a capacitor structure (as shown by 705a in FIG. 11 ), and a combined contact structure in I-2 at the boundary of the core element area 1 A capacitor structure (shown as 705b in FIG. 11 ) is connected on top, and the capacitor structure at I-2 at the boundary has a first width W1, and the boundary at the core element region I is within I-2 (ie, the center The capacitor structure in the region 1-1) has a second width W2. Due to the presence of the combined contact structure with a larger top cross-sectional area formed at the boundary of the core element region 1 at the boundary of the region 1, it can be the width of the capacitor at the boundary of the region 1-2. The formation process of the capacitor structure provides sufficient process margin to facilitate increasing the first width W1 of the capacitor structure of I-2 at the boundary, so that the first width W1 is greater than the second width W2, and further, a On the one hand, the collapse of the capacitor structure formed at the boundary is avoided; on the other hand, a larger contact area can be formed between the capacitor structure at the boundary and the combined contact structure below, which reduces the contact resistance and is conducive to improving the The electrical performance of the device; more importantly, the increased size of the capacitor structure at the boundary can buffer the density difference of the circuit pattern between the core element area I and the peripheral circuit area II, so that the photolithography process and /or during the etching process, the optical proximity effect can be improved, the sparse/dense loading effect can be reduced, and the capacitance structure above the contact plug 106a of the area (ie, the central area) I-1 at the boundary of the core element area I can be guaranteed Consistency prevents the problem of abnormal capacitance structures above the contact plugs at some positions in the core element region I or collapse of the capacitance structures above the contact plugs at the boundary I-2. Optionally, the first width W1 is greater than 1.5 times the second width W2.

请参考图3A和图11,所述半导体器件包括多条字线WL和多条位线BL,每条所述字线WL与所述核心元件区I中的多个所述有源区AA1相交,所述字线WL可以是埋入式字线,所述位线BL形成在核心元件区I的核心元件的上方并与所述字线WL垂直,所述顶部相联一起的所有接触插塞构成的结构(例如倒U形电接触结构或者梳状电接触结构)跨过至少一条所述字线WL并与所述位线BL对准(即平行),例如形成的倒U形电接触结构或者梳状电接触结构跨过核心元件区I最外侧边界(即边界处I-2最靠近周边电路区II的一侧,也就是边界处I-2的最外侧)上的一个有源区AA1中的一条字线WL。需要说明的是,本实施例中,虽然举例所述半导体器件为DRAM,但是本发明的技术方案并不仅仅限定于此,半导体器件还以是任意合适的电学器件,例如其他架构的存储器,此时,所述电容结构可以替代为相应的电学结构,例如电阻器等。3A and FIG. 11 , the semiconductor device includes a plurality of word lines WL and a plurality of bit lines BL, each of the word lines WL intersects with the plurality of the active regions AA1 in the core element region I , the word line WL may be a buried word line, the bit line BL is formed above the core element of the core element region I and is perpendicular to the word line WL, the top is connected with all contact plugs A formed structure (eg, an inverted U-shaped electrical contact structure or a comb-shaped electrical contact structure) spans at least one of the word lines WL and is aligned (ie, parallel to) with the bit line BL, such as an inverted U-shaped electrical contact structure formed Or the comb-shaped electrical contact structure crosses an active area AA1 on the outermost boundary of the core element area I (that is, the side of I-2 at the boundary that is closest to the peripheral circuit area II, that is, the outermost of I-2 at the boundary). One of the word lines WL in . It should be noted that in this embodiment, although the semiconductor device is exemplified as a DRAM, the technical solution of the present invention is not limited to this, and the semiconductor device can also be any suitable electrical device, such as a memory of other architectures. , the capacitance structure can be replaced by a corresponding electrical structure, such as a resistor, etc.

图1A~图1D是示出根据本实施例的半导体器件的电接触结构的制造方法中的器件剖面示意图。请参考图1A~图1D,本实施例还提供一种半导体器件的电接触结构的制造方法,包括以下步骤:1A to 1D are schematic cross-sectional views of the device in the method of manufacturing the electrical contact structure of the semiconductor device according to the present embodiment. Please refer to FIG. 1A to FIG. 1D , this embodiment further provides a method for manufacturing an electrical contact structure of a semiconductor device, including the following steps:

首先,请参照图1A,提供一个半导体衬底100,其包含核心元件区I和周边电路区II,半导体衬底100可以选自硅基板、绝缘体上硅基板(SOI)、锗基板、绝缘体上锗基板(GOI)、硅锗基板等。半导体衬底100中形成有多个浅沟槽隔离结构(未图示),该浅沟槽隔离结构通过刻蚀半导体衬底100以形成沟槽,然后再向沟槽中填入绝缘材料的方式来形成,该浅沟槽隔离结构的材质可为材质可包含氧化硅、氮化硅、或是氮氧化硅等。该浅沟槽隔离结构在二维平面上界定出了核心元件区I和周边电路区II的分界处(即界定出了核心元件区I的边界处I-2),同时还界定出了核心元件区I中的各个核心元件所对应的有源区101以及周边电路区II中的外围元件所对应的有源区101。First, referring to FIG. 1A , a semiconductor substrate 100 is provided, which includes a core element region I and a peripheral circuit region II. The semiconductor substrate 100 can be selected from a silicon substrate, a silicon-on-insulator (SOI) substrate, a germanium substrate, and a germanium-on-insulator substrate. Substrate (GOI), silicon germanium substrate, etc. A plurality of shallow trench isolation structures (not shown) are formed in the semiconductor substrate 100. The shallow trench isolation structures are formed by etching the semiconductor substrate 100 to form trenches, and then filling the trenches with insulating materials. To form, the material of the shallow trench isolation structure may include silicon oxide, silicon nitride, or silicon oxynitride. The shallow trench isolation structure defines the boundary between the core element region I and the peripheral circuit region II on a two-dimensional plane (ie, defines the boundary I-2 of the core element region I), and also defines the core element The active region 101 corresponding to each core element in the region I and the active region 101 corresponding to the peripheral elements in the peripheral circuit region II.

接着,请继续参照图1A,在半导体衬底100上覆盖层间介质层102,层间介质层102可以被设置成具有单层结构或多层结构。层间介质层102可以包括氮化硅、氮氧化硅和低k介电材料中的至少一种。其中,低k介电材料的介电常数k小于氧化硅层的介电常数,并且它可以用作金属间介电(IMD)层,例如为高密度等离子体(HDP)氧化物、原硅酸四乙醋(TEOS)、等离子体增强型TEOS(PE-TEOS)、未掺杂硅酸盐玻璃(USG)、硅酸磷玻璃(PSG)、硅酸棚玻璃(BSG)、硅酸棚磷玻璃(BPSG)、氟化硅酸盐玻璃(FSG)、旋涂式玻璃(SOG)等。另外,可以在半导体衬底100和层间介质层102之间形成蚀刻停止层(未图示),蚀刻停止层可以包括SiN、SiON、SiC、SiCN、BN(氮化棚)或其任何组合。可以使用等离子体增强型CVD(PECVD)、高密度等离子体CVD(HDP-CVD)、大气压CVD(APCVD)和/或旋涂工艺形成蚀刻停止层和层间介质层102。Next, please continue to refer to FIG. 1A , an interlayer dielectric layer 102 is covered on the semiconductor substrate 100 , and the interlayer dielectric layer 102 may be configured to have a single-layer structure or a multi-layer structure. The interlayer dielectric layer 102 may include at least one of silicon nitride, silicon oxynitride, and low-k dielectric materials. Among them, the dielectric constant k of the low-k dielectric material is smaller than that of the silicon oxide layer, and it can be used as an intermetal dielectric (IMD) layer, such as high density plasma (HDP) oxide, orthosilicic acid Tetraethyl acetate (TEOS), plasma enhanced TEOS (PE-TEOS), undoped silicate glass (USG), silicate phosphor glass (PSG), silicate boron glass (BSG), boron silicate glass (BPSG), fluorinated silicate glass (FSG), spin-on glass (SOG), etc. In addition, an etch stop layer (not shown) may be formed between the semiconductor substrate 100 and the interlayer dielectric layer 102, and the etch stop layer may include SiN, SiON, SiC, SiCN, BN (Nitride Gate) or any combination thereof. The etch stop layer and interlayer dielectric layer 102 may be formed using plasma enhanced CVD (PECVD), high density plasma CVD (HDP-CVD), atmospheric pressure CVD (APCVD) and/or spin coating processes.

然后,请继续参照图1A,通过第一次光刻工艺,在层间介质层102上形成第一掩模图案103,该第一掩模图案103定义出各个接触插塞的位置,然后,使用第一掩模图案103作为蚀刻掩模,各向异性地蚀刻层间介质层102,以形成贯穿所述层间介质层102且暴露出下方相应的有源区101的接触孔102a、102b和102c,接触孔102a、102b和102c均相互独立,每个接触孔102a位于在核心元件区I的中央区I-1中并暴露出中央区I-1中的相应核心元件的有源区101,每个接触孔102b位于核心元件区I的边界处I-2且暴露出边界处I-2中的相应核心元件的有源区101,每个接触孔102c位于周边电路区II中并暴露出相应外围元件的有源区101。Then, please continue to refer to FIG. 1A , through the first photolithography process, a first mask pattern 103 is formed on the interlayer dielectric layer 102 , the first mask pattern 103 defines the position of each contact plug, and then, using The first mask pattern 103 is used as an etching mask to anisotropically etch the interlayer dielectric layer 102 to form contact holes 102a, 102b and 102c penetrating the interlayer dielectric layer 102 and exposing the underlying corresponding active regions 101 , the contact holes 102a, 102b and 102c are all independent of each other, each contact hole 102a is located in the central region I-1 of the core element region I and exposes the active region 101 of the corresponding core element in the central region I-1, each The contact holes 102b are located at the boundary I-2 of the core element region I and expose the active region 101 of the corresponding core element in the boundary I-2, and each contact hole 102c is located in the peripheral circuit region II and exposes the corresponding peripheral Active region 101 of the element.

然后,请参考图1B,在形成接触孔102a~102c之后,可以执行灰化工艺或湿式清洗工艺,以去除第一掩模图案103,并填充牺牲层104于各个接触孔102a~102c中。所述牺牲层104可以由旋涂硬掩模(SOH)层或非晶碳层ACL)形成,这样可以使得能够用牺牲层104填充具有高的高宽比的接触孔102a~102c。1B , after the contact holes 102a-102c are formed, an ashing process or a wet cleaning process may be performed to remove the first mask pattern 103 and fill the sacrificial layer 104 in each of the contact holes 102a-102c. The sacrificial layer 104 may be formed of a spin-on hard mask (SOH) layer or an amorphous carbon layer (ACL), which may enable the contact holes 102 a to 102 c having a high aspect ratio to be filled with the sacrificial layer 104 .

接着,请继续参考图1B,可以通过第二次光刻工艺在层间介质层102和牺牲层104上形成第二掩模图案105,第二掩模图案105定义出用于将边界处I-2相应的至少两个接触孔102b的顶部相连的沟槽102d。以第二掩模图案105为掩模,刻蚀边界处I-2处的层间介质层,以形成将边界处相应的至少两个接触孔102b的顶部相连的沟槽102d,沟槽102d至少暴露出边界处I-2最外侧的一个接触孔(例如沟槽102d至少暴露出核边界处I-2最外侧的一列接触孔中的一个)。Next, please continue to refer to FIG. 1B , a second mask pattern 105 can be formed on the interlayer dielectric layer 102 and the sacrificial layer 104 through a second photolithography process. 2. The tops of the corresponding at least two contact holes 102b are connected to the trench 102d. Using the second mask pattern 105 as a mask, the interlayer dielectric layer at the boundary I-2 is etched to form a trench 102d connecting the tops of the corresponding at least two contact holes 102b at the boundary, and the trench 102d is at least The outermost contact hole of I-2 at the boundary is exposed (eg, trench 102d exposes at least one of the outermost contact holes of I-2 at the core boundary).

请参考图1C,可以使用氧、臭氧或紫外线的灰化工艺或者通过湿式清洗工艺去除接触孔102a~102c、102d中的牺牲层104以及第二掩模图案105,以重新暴露出各个接触孔102a~102c和沟槽102d。Referring to FIG. 1C, the sacrificial layer 104 and the second mask pattern 105 in the contact holes 102a-102c and 102d may be removed by an ashing process of oxygen, ozone or ultraviolet light or by a wet cleaning process to re-exposed the respective contact holes 102a ~102c and trench 102d.

请参考图1D,可以在接触孔102a~102c和沟槽102d中形成阻挡金属层(未图示),例如,阻挡金属层可以以均匀的厚度覆盖接触孔和沟槽的内壁与层间介质层102的顶表面。阻挡金属层能够减少或防止设置在接触孔和沟槽中的金属材料扩散到层间介质层102中。例如,所述阻挡金属层可以由Ta、TaN、TaSiN、Ti、Ti N、TiSiN、W、WN或它们的任何组合形成,可以使用化学气相沉积(CVD)、原子层沉积(ALD)或物理气相沉积(PVD)(例如,溅射)等工艺形成。然后,在各个接触孔102a~102c和沟槽102d中填充金属层,以形成接触插塞106a、106c和组合接触结构106b。其中,金属层可以由(一种或多种)难熔金属(例如,钴、铁、镍、钨和/或钼)形成。另外,可以使用具有良好阶梯覆盖性质的沉积工艺形成金属层,例如,使用化学气相沉积(CVD)、原子层沉积(ALD)或物理气相沉积(PVD)(例如,溅射)形成。层间形成的金属层还覆盖在接触孔周围的层间介质层102的表面上,之后,可以采用化学机械抛光(CMP)工艺对沉积的金属层的顶面进行化学机械抛光,直至暴露出出层间介质层102的顶面,以形成位于层间介质层102中的接触插塞106a、106c和组合接触结构106b。Referring to FIG. 1D, a barrier metal layer (not shown) may be formed in the contact holes 102a-102c and the trench 102d. For example, the barrier metal layer may cover the inner walls of the contact holes and trenches and the interlayer dielectric layer with a uniform thickness 102 on the top surface. The barrier metal layer can reduce or prevent metal materials disposed in the contact holes and trenches from diffusing into the interlayer dielectric layer 102 . For example, the barrier metal layer may be formed of Ta, TaN, TaSiN, Ti, TiN, TiSiN, W, WN, or any combination thereof, using chemical vapor deposition (CVD), atomic layer deposition (ALD), or physical vapor deposition Deposition (PVD) (eg, sputtering) and other processes. Then, a metal layer is filled in each of the contact holes 102a-102c and the trench 102d to form the contact plugs 106a, 106c and the combined contact structure 106b. Therein, the metal layer may be formed of refractory metal(s) (eg, cobalt, iron, nickel, tungsten, and/or molybdenum). Additionally, the metal layer may be formed using deposition processes with good step coverage properties, eg, using chemical vapor deposition (CVD), atomic layer deposition (ALD), or physical vapor deposition (PVD) (eg, sputtering). The metal layer formed between the layers also covers the surface of the interlayer dielectric layer 102 around the contact holes. After that, a chemical mechanical polishing (CMP) process may be used to perform chemical mechanical polishing on the top surface of the deposited metal layer until exposed. The top surface of the interlayer dielectric layer 102 to form the contact plugs 106 a and 106 c and the combined contact structure 106 b in the interlayer dielectric layer 102 .

请参考图2D,本发明另一实施例提供一种半导体器件的电接触结构,包括多个接触插塞106,其中,形成于所述半导体器件的核心元件区I的边界处(或称为边界区、交界区、界面区)I-2的至少两个接触插塞106的顶部通过一面积较大的接触垫109b相联在一起。核心元件区I为器件密集区,其周围的周边电路区II为器件稀疏区。核心元件区I的边界处I-2以内的区域(称为中央区)I-1中的接触插塞106的顶部设有独立的接触垫109a,且各个接触垫109a一一对应地与相应的接触插塞106的顶部电接触。Referring to FIG. 2D, another embodiment of the present invention provides an electrical contact structure for a semiconductor device, including a plurality of contact plugs 106, which are formed at the boundary (or referred to as the boundary) of the core element region I of the semiconductor device. The tops of the at least two contact plugs 106 of the region, the interface region, the interface region) I-2 are connected together by a contact pad 109b with a larger area. The core element area I is a device dense area, and the peripheral circuit area II around it is a device sparse area. The tops of the contact plugs 106 in the area (referred to as the central area) I-1 at the boundary of the core element area 1 are provided with independent contact pads 109a, and each contact pad 109a is in a one-to-one correspondence with the corresponding The top of the contact plug 106 is electrically contacted.

核心元件区I的边界处I-2的通过相应的接触垫109b而顶部相联一起的所有接触插塞106构成倒U形电接触结构或者梳状电接触结构,即核心元件区I的边界处I-2的顶部相联一起的所有接触插塞106,在边界处I-2构成一个顶部横截面积较大的组合接触结构。All the contact plugs 106 of the I-2 at the boundary of the core element region 1 connected together at the top through the corresponding contact pads 109b constitute an inverted U-shaped electrical contact structure or a comb-shaped electrical contact structure, that is, at the boundary of the core element region 1 All the contact plugs 106 connected together at the top of I-2 form a combined contact structure with a larger top cross-sectional area at the boundary of I-2.

图1A~图1D所示的方法,能够在相同的光刻次数下,减少沉积工艺的次数,使得顶部相联一起的所有接触插塞106一体成型。The method shown in FIGS. 1A to 1D can reduce the number of deposition processes under the same number of photolithography, so that all the contact plugs 106 connected at the top are integrally formed.

请结合图2D和图11,本发明另一实施例中,半导体器件为动态随机存取存储器(dynamic random access memory,DRAM),核心元件区为DRAM存储器的存储阵列区,核心元件为存储晶体管,所述电接触结构为存储节点接触部,上接电容结构。即核心元件区I的中央区I-1中的每个接触插塞上接一个电容结构(如图11中705a所示),核心元件区I的边界处I-2中的一个组合接触结构上接一个电容结构(如图11中705b所示),且所述边界处的电容结构具有第一宽度W1,所述核心元件区I的所述边界处I-2以内的电容结构具有第二宽度W2,由于核心元件区I的边界处I-2形成的顶部横截面积较大的组合接触结构的存在,因此,可以为边界处的电容结构的形成工艺提供足够的工艺余量,以有利于增大该边界处I-2的电容结构的第一宽度W1,使得所述第一宽度W1大于所述第二宽度W2,进而,一方面,避免该边界处形成的电容结构坍塌;另一方面,使得该边界处的电容结构与其下的所述组合接触结构之间能具有较大的接触面积,一减小接触阻抗,有利于提高器件的电学性能;更重要的是,该边界处的所述电容结构的尺寸增大,能够缓冲核心元件区I和周边电路区II之间的电路图案的密度差异,从而在执行光刻工艺和/或蚀刻工艺时能够改善光学邻近效应,减小稀疏/密集负载效应,保证核心元件区I边界处I-2以内的区域(即中央区)I-1的接触插塞106a上方的电容结构的一致性,防止出现核心元件区I内一些位置的接触插塞上方的电容结构出现异常或边界处I-2的接触插塞上方的电容结构出现坍塌的问题。可选地,所述第一宽度W1大于1.5倍的所述第二宽度W2。Referring to FIG. 2D and FIG. 11 , in another embodiment of the present invention, the semiconductor device is a dynamic random access memory (DRAM), the core element area is a storage array area of the DRAM memory, and the core element is a storage transistor, The electrical contact structure is a storage node contact portion connected to the capacitor structure. That is, each contact plug in the central area I-1 of the core element area I is connected to a capacitor structure (as shown by 705a in FIG. 11 ), and a combined contact structure in I-2 at the boundary of the core element area I is connected A capacitor structure (shown as 705b in FIG. 11) is connected, and the capacitor structure at the boundary has a first width W1, and the capacitor structure within the boundary I-2 of the core element region I has a second width W2, due to the existence of the combined contact structure with a larger top cross-sectional area formed by I-2 at the boundary of the core element region I, it can provide sufficient process margin for the formation process of the capacitor structure at the boundary to facilitate Increasing the first width W1 of the capacitor structure of I-2 at the boundary, so that the first width W1 is greater than the second width W2, and then, on the one hand, the collapse of the capacitor structure formed at the boundary is avoided; , so that the capacitance structure at the boundary and the combined contact structure below can have a larger contact area, reducing the contact resistance, which is conducive to improving the electrical performance of the device; more importantly, all the boundaries at the boundary can have a larger contact area. The size of the capacitor structure is increased, which can buffer the density difference of the circuit pattern between the core element region I and the peripheral circuit region II, so that the optical proximity effect can be improved when the photolithography process and/or the etching process are performed, and the sparse/ The dense load effect ensures the consistency of the capacitance structure above the contact plug 106a of the area (ie, the central area) I-1 at the boundary of the core component area I, and prevents the occurrence of contact plugs at some positions in the core component area I. The capacitor structure above the plug is abnormal or the capacitor structure above the contact plug of I-2 at the boundary collapses. Optionally, the first width W1 is greater than 1.5 times the second width W2.

图2A~图2D是示出本发明另一实施例的半导体器件的电接触结构的制造方法中的器件剖面示意图。请参考图2A~图2D,本实施例还提供一种半导体器件的电接触结构的制造方法,包括以下步骤:2A to 2D are schematic cross-sectional views of a device in a method for manufacturing an electrical contact structure of a semiconductor device according to another embodiment of the present invention. Referring to FIGS. 2A to 2D , the present embodiment further provides a method for manufacturing an electrical contact structure of a semiconductor device, including the following steps:

首先,请参照图2A,提供一个半导体衬底100,其包含核心元件区I和周边电路区II。半导体衬底100中形成有多个浅沟槽隔离结构(未图示),该浅沟槽隔离结构在二维平面上界定出了核心元件区I和周边电路区II的分界处(即界定出了核心元件区I的边界处I-2),同时还界定出了核心元件区I中的各个核心元件所对应的有源区101以及周边电路区II中的外围元件所对应的有源区101。First, referring to FIG. 2A , a semiconductor substrate 100 is provided, which includes a core element region I and a peripheral circuit region II. A plurality of shallow trench isolation structures (not shown) are formed in the semiconductor substrate 100, and the shallow trench isolation structures define the boundary between the core element region I and the peripheral circuit region II on a two-dimensional plane (ie, define the boundary between the core element region I and the peripheral circuit region II). I-2) at the boundary of the core element area I, and also defines the active area 101 corresponding to each core element in the core element area I and the active area 101 corresponding to the peripheral elements in the peripheral circuit area II .

接着,请继续参照图2A,在半导体衬底100上覆盖第一层间介质层102。另外,可以在半导体衬底100和第一层间介质层102之间形成蚀刻停止层(未图示);通过第一次光刻工艺,在第一层间介质层102上形成第一掩模图案103,该第一掩模图案103定义出各个接触插塞的位置,然后,使用第一掩模图案103作为蚀刻掩模,各向异性地蚀刻第一层间介质层102,以形成贯穿所述第一层间介质层102且暴露出下方相应的有源区101的接触孔102a、102b和102c,每个接触孔102a位于在核心元件区I的中央区I-1中并暴露出中央区I-1中的相应核心元件的有源区101,每个接触孔102b位于核心元件区I的边界处I-2且暴露出边界处I-2中的相应核心元件的有源区101,每个接触孔102c位于周边电路区II中并暴露出相应外围元件的有源区101。Next, referring to FIG. 2A , the first interlayer dielectric layer 102 is covered on the semiconductor substrate 100 . In addition, an etch stop layer (not shown) can be formed between the semiconductor substrate 100 and the first interlayer dielectric layer 102; through the first photolithography process, a first mask is formed on the first interlayer dielectric layer 102 pattern 103, the first mask pattern 103 defines the position of each contact plug, and then, using the first mask pattern 103 as an etching mask, the first interlayer dielectric layer 102 is anisotropically etched to form a through-hole The first interlayer dielectric layer 102 is described and exposes the contact holes 102a, 102b and 102c of the corresponding active region 101 below, each contact hole 102a is located in the central region I-1 of the core element region 1 and exposes the central region The active region 101 of the corresponding core element in I-1, each contact hole 102b is located at the boundary of the core element region I at I-2 and exposes the active region 101 of the corresponding core element in the boundary I-2, each The contact holes 102c are located in the peripheral circuit region II and expose the active regions 101 of the corresponding peripheral elements.

然后,请参考图2B,在形成接触孔102a~102c之后,可以执行灰化工艺或湿式清洗工艺,以去除第一掩模图案103,并填充TiN等材质的阻挡金属层(未图示)和钨等材质的金属层(未图示)于各个接触孔102a~102c中,并进一步采用化学机械抛光(CMP)工艺对沉积的金属层的顶面进行化学机械抛光,直至暴露出出第一层间介质层102的顶面,以形成位于层间介质层102中的接触插塞106,核心元件区I中的各个所述接触插塞106的底部与相应的核心元件的有源区101接触。周边电路区II中的各个所述接触插塞106的底部与相应的外围元件的有源区101接触。2B, after the contact holes 102a-102c are formed, an ashing process or a wet cleaning process may be performed to remove the first mask pattern 103, and fill the barrier metal layer (not shown) and A metal layer (not shown) made of tungsten and other materials is placed in each of the contact holes 102a-102c, and a chemical mechanical polishing (CMP) process is used to further chemically mechanically polish the top surface of the deposited metal layer until the first layer is exposed. The top surface of the interlayer dielectric layer 102 is formed to form contact plugs 106 in the interlayer dielectric layer 102. The bottom of each of the contact plugs 106 in the core element region I is in contact with the active region 101 of the corresponding core element. The bottom of each of the contact plugs 106 in the peripheral circuit area II is in contact with the active area 101 of the corresponding peripheral element.

接着,请参考图2C,可以在第一层间介质层102和接触插塞106上形成第二层间介质层107和第二掩模图案105,第二掩模图案105通过第二次光刻工艺形成,定义出用于将边界处I-2相应的至少两个接触接触插塞106的顶部相连的沟槽。以第二掩模图案105为掩模,刻蚀第二层间介质层108,以形成暴露出相应的接触插塞106的顶部的沟槽,其中边界处I-2相应的沟槽108b将至少两个接触插塞106及其之间的间隔的顶部暴露出来,核心元件区I的边界处I-2以内(即中央区I-1)的沟槽108a暴露出相应的接触插塞106的顶部,周边电路区II中的沟槽108c暴露出相应的接触插塞106的顶部。沟槽108b至少暴露出边界处I-2最外侧的一个接触插塞106的顶部。Next, referring to FIG. 2C , a second interlayer dielectric layer 107 and a second mask pattern 105 may be formed on the first interlayer dielectric layer 102 and the contact plugs 106 , and the second mask pattern 105 is subjected to a second photolithography. The process forms a trench that defines a trench for connecting the tops of at least two contact plugs 106 corresponding to I-2 at the boundary. Using the second mask pattern 105 as a mask, the second interlayer dielectric layer 108 is etched to form trenches exposing the tops of the corresponding contact plugs 106, wherein the corresponding trenches 108b at the boundary I-2 will be at least The tops of the two contact plugs 106 and the space therebetween are exposed, and the tops of the corresponding contact plugs 106 are exposed by the trenches 108a within I-2 at the boundary of the core element region 1 (ie, the central region I-1) , the trenches 108c in the peripheral circuit region II expose the tops of the corresponding contact plugs 106 . The trench 108b exposes at least the top of the outermost one of the contact plugs 106 at the boundary I-2.

请参考图2D,可以使用氧、臭氧或紫外线的灰化工艺或者通过湿式清洗工艺去除第二掩模图案105,并在沟槽108a~108c中依次形成阻挡金属层(未图示)和金属层(未图示)。阻挡金属层能够减少或防止设置在接触孔和沟槽中的金属材料扩散到层间介质层102中。然后,在各个接触孔沟槽108a~108c填充金属层,以形成相互独立的接触垫109a、109b、109c。接触垫109a形成在所述核心元件区I的中央区I-1的接触插塞106的顶部,并一一对应地与相应的接触插塞106的顶部电接触,接触垫109b形成在所述核心元件区I的边界处I-2的接触插塞106的顶部,并一一对应地与相应的接触插塞106的顶部电接触,以使得边界处I-2中所述顶部相联一起的所有接触插塞106构成倒U形电接触结构或者梳状电接触结构。Referring to FIG. 2D , the second mask pattern 105 can be removed by an ashing process of oxygen, ozone or ultraviolet rays or by a wet cleaning process, and a barrier metal layer (not shown) and a metal layer are sequentially formed in the trenches 108 a ˜ 108 c (not shown). The barrier metal layer can reduce or prevent metal materials disposed in the contact holes and trenches from diffusing into the interlayer dielectric layer 102 . Then, each of the contact hole trenches 108a-108c is filled with a metal layer to form mutually independent contact pads 109a, 109b, and 109c. The contact pads 109a are formed on the tops of the contact plugs 106 in the central region I-1 of the core element region I, and are in electrical contact with the tops of the corresponding contact plugs 106 in a one-to-one correspondence, and the contact pads 109b are formed on the core The tops of the contact plugs 106 of I-2 at the boundary of the element region 1 are in electrical contact with the tops of the corresponding contact plugs 106 in one-to-one correspondence, so that all the tops in the boundary I-2 are connected together. The contact plugs 106 constitute an inverted U-shaped electrical contact structure or a comb-shaped electrical contact structure.

图2A~图2D所示的方法,能够在相同的光刻次数下,将每个接触插塞(包括顶部相联在一起的接触插塞和独立的接触插塞)均分两段高度来制作,由此可以降低每段高度对应的刻蚀工艺和填充工艺所对应的接触孔或沟槽的深宽比,保证形成的电接触结构的性能。The method shown in FIGS. 2A to 2D can make each contact plug (including the contact plug connected at the top and the independent contact plug) equally divided into two heights under the same number of photolithography Therefore, the aspect ratio of the contact holes or trenches corresponding to the etching process and the filling process corresponding to the height of each section can be reduced, so as to ensure the performance of the formed electrical contact structure.

请参考图1D和图2D,本发明一实施例还提供一种半导体器件,包括半导体衬底100,所述半导体衬底100具有核心元件区I,所述核心元件区I中形成有多个核心元件;层间介质层102,覆盖在所述半导体衬底100上;以及,如本发明各实施例所述的半导体器件的电接触结构,所述电接触结构形成于所述层间介质层102中,所述电接触结构的各个所述接触插塞的底部与相应的核心元件的有源区101接触,且所述电接触结构中形成在所述核心元件区的边界处I-2的至少两个接触插塞的顶部相联在一起。1D and FIG. 2D, an embodiment of the present invention further provides a semiconductor device, including a semiconductor substrate 100, the semiconductor substrate 100 has a core element region I, and a plurality of cores are formed in the core element region I components; an interlayer dielectric layer 102 covering the semiconductor substrate 100 ; and an electrical contact structure of a semiconductor device according to various embodiments of the present invention, the electrical contact structure being formed on the interlayer dielectric layer 102 In the electrical contact structure, the bottom of each of the contact plugs of the electrical contact structure is in contact with the active region 101 of the corresponding core element, and in the electrical contact structure, at least a portion of the electrical contact structure is formed at the boundary of the core element region. The tops of the two contact plugs are joined together.

请结合图2D和图11,所述半导体器件还包括电容结构,形成于所述层间介质层107上且底部与所述电接触结构相接触,所述边界处I-2的电容结构(如图11中的705b所示)具有第一宽度W1,所述核心元件区I的所述边界处I-2以内(即中央区I-1)的电容结构(如图11中的705a所示)具有第二宽度W2,所述第一宽度W1大于所述第二宽度W2。Please refer to FIG. 2D and FIG. 11 , the semiconductor device further includes a capacitor structure, which is formed on the interlayer dielectric layer 107 and whose bottom is in contact with the electrical contact structure. 705b in FIG. 11 ) has a first width W1, and the capacitance structure within I-2 at the boundary of the core element region I (ie, the central region I-1) (as shown in 705a in FIG. 11 ) Having a second width W2, the first width W1 is greater than the second width W2.

需要说明的是,本发明的技术方案并不仅仅限定于上述的电接触结构的形成方法,能够用于形成独立的接触插塞和顶部相联在一起的接触插塞的方法均可以适用于本发明的技术方案,例如在本发明的又一示例中,在形成图1A的结构并去除掩膜图案103之后,不再填充牺牲层,而是直接填充接触插塞的材料(包括阻挡金属层和金属层),来形成独立的接触插塞,然后在层间介质层102和独立的接触插塞上形成图1B中的掩膜图案105,并进一步刻蚀层间介质层102,以形成暴露出边界处I-2处的至少两个接触插塞102b的顶部侧壁的沟槽102d,之后在沟槽102d中填充导电材料,以形成接触垫(未图示),该接触垫将沟槽102d暴露出的接触插塞102b的顶部相联在一起。It should be noted that the technical solution of the present invention is not limited to the above-mentioned method for forming an electrical contact structure, and any method that can be used to form an independent contact plug and a contact plug whose tops are connected together can be applied to the present invention. The technical solution of the invention, for example, in another example of the present invention, after the structure of FIG. 1A is formed and the mask pattern 103 is removed, the sacrificial layer is no longer filled, but the material of the contact plug (including the barrier metal layer and the material of the contact plug) is directly filled. metal layer) to form independent contact plugs, then the mask pattern 105 in FIG. 1B is formed on the interlayer dielectric layer 102 and the independent contact plugs, and the interlayer dielectric layer 102 is further etched to form exposed The trenches 102d at the boundary 1-2 contact the top sidewalls of the at least two plugs 102b, after which the trenches 102d are filled with conductive material to form contact pads (not shown) that connect the trenches 102d The exposed tops of the contact plugs 102b are joined together.

在下文中,将参照图3A至图11来详细描述本发明一实施例的半导体器件及其制造方法。其中图3A是本发明一实施例的半导体器件的制造方法中的器件结构俯视示意图;图3B~图11是本发明一实施例的半导体器件的制造方法中沿图3A中的aa’线的器件结构剖面示意图。Hereinafter, a semiconductor device and a manufacturing method thereof according to an embodiment of the present invention will be described in detail with reference to FIGS. 3A to 11 . 3A is a schematic top view of a device structure in a method for manufacturing a semiconductor device according to an embodiment of the present invention; FIGS. 3B to 11 are devices along line aa' in FIG. 3A in a method for manufacturing a semiconductor device according to an embodiment of the present invention. Schematic diagram of the structural section.

首先,请参考图3A和3B,提供具有多个核心元件(即存储晶体管)的半导体衬底300,具体过程包括:First, referring to FIGS. 3A and 3B , a semiconductor substrate 300 having a plurality of core elements (ie, memory transistors) is provided, and the specific process includes:

首先,请参考图3A和图3B,提供一个半导体基底300a,其包含核心元件区I和周边电路区II。本实施例中,核心元件区I为存储区,核心元件区I上待形成的核心元件包括选择元件,后续在核心元件上方接数据存储元件,选择元件例如是MOS晶体管或二极管,数据存储元件例如是电容器、可变电阻器等,一个选择元件和相应的数据存储元件组成存储单元。周边电路区II中可形成外围电路TR(例如,NMOS晶体管和PMOS晶体管、二极管或电阻器)来控制存储单元。半导体基底300a中形成有多个浅沟槽隔离结构301,该浅沟槽隔离结构301在二维平面上界定出了核心元件区I和周边电路区II的分界处(即界定出了核心元件区I的边界处I-2),同时还界定出了核心元件区I中的各个核心元件所对应的有源区AA1以及周边电路区II中的外围元件所对应的有源区AA2。其中有源区AA1在二维平面上的分布呈现条形且均沿第一方向延伸,且有源区AA1在半导体基底300a的面上可呈现错位的排列设置。First, referring to FIGS. 3A and 3B , a semiconductor substrate 300 a is provided, which includes a core element region I and a peripheral circuit region II. In this embodiment, the core element area I is a storage area, the core element to be formed on the core element area I includes a selection element, and then a data storage element is connected above the core element. The selection element is, for example, a MOS transistor or a diode. The data storage element is, for example, It is a capacitor, a variable resistor, etc., a selection element and a corresponding data storage element form a storage unit. Peripheral circuits TR (eg, NMOS transistors and PMOS transistors, diodes or resistors) may be formed in the peripheral circuit region II to control the memory cells. A plurality of shallow trench isolation structures 301 are formed in the semiconductor substrate 300a, and the shallow trench isolation structures 301 define the boundary between the core element region I and the peripheral circuit region II on a two-dimensional plane (ie, define the core element region. At the boundary of I, I-2), the active area AA1 corresponding to each core element in the core element area I and the active area AA2 corresponding to the peripheral elements in the peripheral circuit area II are also defined. The distribution of the active areas AA1 on the two-dimensional plane is strip-shaped and extends along the first direction, and the active areas AA1 may be arranged in a dislocation arrangement on the surface of the semiconductor substrate 300a.

然后,在半导体基底300a中形成的埋入式字线WL,埋入式字线WL一般埋设在半导体基底300a中一预定深度位置,沿第二方向(即行方向)延伸并穿过浅沟槽隔离结构301以及有源区AA1,第二方向与有源区AA1的第一方向走向不垂直。埋入式字线WL作为栅极来控制存储单元的开关,其包含但不限定为掺杂性的半导体材料(如掺杂硅)、金属材(如钨、铝、钛、或钽)、导电性金属材(如氮化钛、氮化钽、或氮化钨)、或是金属半导体化合物(如氮化硅)等。通常埋入式字线WL的侧壁和底部被栅介质层(未图示)包围,埋入式字线WL的顶部被栅极盖层302掩埋在内。由于埋入式字线WL并非本发明的重点,其相关制作工艺可以参考本领域的已知技术方案,在此不再详述。此外,栅介质层可包括氧化硅或其他适合的介电材料,埋入式字线WL可包括铝、钨、铜、钛铝合金、多晶硅或其他适合的导电材料,而栅极盖层302可包括氮化硅、氮氧化硅、氮碳化硅或其他适合的绝缘材料。Then, the buried word line WL formed in the semiconductor substrate 300a, the buried word line WL is generally buried in a predetermined depth position in the semiconductor substrate 300a, extends along the second direction (ie the row direction) and passes through the shallow trench isolation In the structure 301 and the active area AA1, the second direction is not perpendicular to the first direction of the active area AA1. The buried word line WL is used as a gate to control the switching of the memory cell, which includes but is not limited to doped semiconductor materials (such as doped silicon), metal materials (such as tungsten, aluminum, titanium, or tantalum), conductive metal materials (such as titanium nitride, tantalum nitride, or tungsten nitride), or metal-semiconductor compounds (such as silicon nitride). Usually, the sidewall and bottom of the buried word line WL are surrounded by a gate dielectric layer (not shown), and the top of the buried word line WL is buried by the gate capping layer 302 . Since the buried word line WL is not the focus of the present invention, the related fabrication process can refer to known technical solutions in the art, and will not be described in detail here. In addition, the gate dielectric layer may include silicon oxide or other suitable dielectric materials, the buried word lines WL may include aluminum, tungsten, copper, titanium aluminum alloy, polysilicon or other suitable conductive materials, and the gate capping layer 302 may include Including silicon nitride, silicon oxynitride, silicon nitride carbide or other suitable insulating materials.

再者,在埋入式字线WL两旁的有源区AA1中可掺入第二类型的掺质,如P类型或N类型的掺质,来形成源区和漏区(统一定义为S/D1),埋入式字线WL两旁的AA1中的一者位于AA1中心处对应预定的位线接触结构的位置,另一者位于有源区AA1末端预定的存储节点接触结构的位置。字线WL和S/D1可以构成或限定形成在半导体器件的核心元件区I上的多个MOS存储晶体管。此外,在形成S/D1的同时,也可以一并在周边电路区II中形成外围晶体管对应的源区和漏区(统一定义为S/D2)。在形成所述S/D1和S/D2之后,还可进一步形成刻蚀停止层303在所述半导体基底300a上,所述刻蚀停止层303覆盖所述S/D1和S/D2,其材料例如包括氮化硅(SiN)和/或氧化硅(SiO2)等。Furthermore, a second type of dopant, such as a P-type or N-type dopant, can be doped into the active region AA1 on both sides of the buried word line WL to form a source region and a drain region (uniformly defined as S/ D1), one of the AA1 on both sides of the buried word line WL is located at the center of AA1 corresponding to the predetermined bit line contact structure, and the other is located at the predetermined storage node contact structure at the end of the active region AA1. The word lines WL and S/D1 may constitute or define a plurality of MOS memory transistors formed on the core element region I of the semiconductor device. In addition, at the same time as S/D1 is formed, source regions and drain regions corresponding to peripheral transistors (uniformly defined as S/D2 ) may also be formed in peripheral circuit region II. After the S/D1 and S/D2 are formed, an etch stop layer 303 may be further formed on the semiconductor substrate 300a, and the etch stop layer 303 covers the S/D1 and S/D2, and its material For example, silicon nitride (SiN) and/or silicon oxide (SiO 2 ) and the like are included.

然后,在核心元件区I的用作漏区的S/D1上形成多个位线接触插塞(bit linecontact,未图示)以及位于所述位线接触插塞上方的位线BL,位线接触插塞可以通过先刻蚀一个有源区AA1中形成的相邻两条WL之间的S/D1来形成凹槽,之后在凹槽中形成金属硅化物的方法来形成。多条位线BL相互平行且沿着垂直于埋入式字线WL的第三方向(即列方向)延伸,并同时横跨该有源区AA1与埋入式字线WL。各位线BL例如包含依序堆叠的一半导体层(例如多晶硅,未图示)、一阻障层(例如包括Ti或TiN等,未图示)、一金属层(例如钨、铝或铜等,无图示)与一掩模层(例如包含氧化硅、氮化硅或碳氮化硅,未图示)。Then, a plurality of bit line contact plugs (bit line contacts, not shown) and a bit line BL located above the bit line contact plugs are formed on S/D1 serving as a drain region of the core element region I, and the bit line The contact plug can be formed by first etching S/D1 between two adjacent WLs formed in one active area AA1 to form a groove, and then forming a metal silicide in the groove. The plurality of bit lines BL are parallel to each other and extend along a third direction (ie, the column direction) perpendicular to the buried word line WL, and simultaneously span the active area AA1 and the buried word line WL. Each bit line BL includes, for example, a semiconductor layer (such as polysilicon, not shown), a barrier layer (such as Ti or TiN, not shown), and a metal layer (such as tungsten, aluminum, or copper, etc.) stacked in sequence, not shown) and a mask layer (eg, including silicon oxide, silicon nitride or silicon carbonitride, not shown).

此外,在半导体基底300a的周边电路区II上,则形成有至少一栅极结构G1,其例如包含依序堆叠的一栅极介电层(未图示)和一栅极层(未图示)。在一具体示例中,栅极结构G1的栅极层与位线BL的半导体层或金属层是一并形成。进一步地,可采用不同工艺或同道工艺形成分别环绕各位线BL与栅极结构G1的侧墙304。举例来说,可先进行栅极结构G1的侧墙的制作工艺,使栅极结构G1的侧墙304包含氧化硅或氮氧化硅(SiON),再进行位线BL的侧墙的制作工艺,而使位线BL的侧墙可包含氮化硅。此外,在栅极结构G1的侧墙的制作工艺中,可再进行一回蚀刻(etching back)制作工艺,使栅极结构G1的整体高度低于各位线BL。In addition, on the peripheral circuit region II of the semiconductor substrate 300a, at least one gate structure G1 is formed, which includes, for example, a gate dielectric layer (not shown) and a gate layer (not shown) stacked in sequence. ). In a specific example, the gate layer of the gate structure G1 and the semiconductor layer or metal layer of the bit line BL are formed together. Further, the sidewall spacers 304 surrounding each bit line BL and the gate structure G1 can be formed by using different processes or the same process. For example, the fabrication process of the sidewall spacers of the gate structure G1 can be performed first, so that the sidewall spacers 304 of the gate structure G1 include silicon oxide or silicon oxynitride (SiON), and then the fabrication process of the sidewall spacers of the bit line BL is performed. The sidewall spacers of the bit line BL may include silicon nitride. In addition, in the fabrication process of the sidewall spacers of the gate structure G1, an etching back fabrication process may be performed again, so that the overall height of the gate structure G1 is lower than the bit lines BL.

然后,可以采用本发明的图1A~1D或图2A~图2D所示的半导体器件的电接触结构的制作方法来形成存储节点接触结构,下面以采用图1A~1D所示的半导体器件的电接触结构的制作方法来形成存储节点接触结构为例,具体过程如下:Then, the storage node contact structure can be formed by using the method for fabricating the electrical contact structure of the semiconductor device shown in FIGS. 1A to 1D or FIGS. 2A to 2D of the present invention. For example, the manufacturing method of the contact structure to form the storage node contact structure, the specific process is as follows:

首先,请参考图4,在提供具有位线BL、核心元件的源区和漏区S/D1的半导体衬底300之后,在半导体衬底300上形成一层间介质层400,其材质例如包括氧化硅、氮化硅或低K介质等。具体地,先通过沉积工艺全面地在半导体衬底300上覆盖层间介质层400,并使得层间介质层400填满各位线BL之间的空间并将各位线BL与栅极结构G1及其侧墙304掩埋在内,然后通过化学机械研磨等工艺对层间介质层400进行平坦化,形成整体上具有平坦的顶表面的层间介质层400。其中,平坦化后的层间介质层400的顶表面至少不低于各位线BL的顶表面。First, referring to FIG. 4 , after providing the semiconductor substrate 300 with the bit line BL, the source region and the drain region S/D1 of the core element, an interlayer dielectric layer 400 is formed on the semiconductor substrate 300 , and its material includes, for example, Silicon oxide, silicon nitride or low-K dielectrics, etc. Specifically, the interlayer dielectric layer 400 is fully covered on the semiconductor substrate 300 through a deposition process, and the interlayer dielectric layer 400 fills the space between the bit lines BL and connects the bit lines BL with the gate structure G1 and its structure. The sidewall spacers 304 are buried inside, and then the interlayer dielectric layer 400 is planarized by chemical mechanical polishing and other processes to form the interlayer dielectric layer 400 having a flat top surface as a whole. The top surface of the planarized interlayer dielectric layer 400 is at least not lower than the top surface of each bit line BL.

接着,请参照图4,通过光刻工艺,在层间介质层400上形成第一掩模图案(未图示),该第一掩模图案定义出各个存储节点接触结构的位置,然后,使用第一掩模图案作为蚀刻掩模,各向异性地蚀刻层间介质层400,以形成贯穿所述层间介质层400且暴露出下方相应的用作源区的S/D1的接触孔401a、401b和401d、401e,每个接触孔401a位于在核心元件区I的中央区I-1中并暴露出中央区I-1中的相应核心元件的用作源区的S/D1,每个接触孔401b位于核心元件区I的边界处I-2且暴露出边界处I-2中的相应核心元件的用作源区的S/D1,每个接触孔401d、401e位于周边电路区II中并暴露出相应外围元件的源区/漏区S/D2或栅极结构G1。Next, referring to FIG. 4 , a first mask pattern (not shown) is formed on the interlayer dielectric layer 400 through a photolithography process, and the first mask pattern defines the positions of the contact structures of each storage node. Then, use The first mask pattern is used as an etching mask to anisotropically etch the interlayer dielectric layer 400 to form contact holes 401a, 401a, 401a, 401a, 401a, 401a, 401a penetrating the interlayer dielectric layer 400 and exposing the corresponding S/D1 used as source regions below. 401b and 401d, 401e, each contact hole 401a is located in the central region I-1 of the core element region 1 and exposes S/D1 serving as a source region of the corresponding core element in the central region I-1, each contact The hole 401b is located at the boundary I-2 of the core element region I and exposes the S/D1 serving as a source region of the corresponding core element in the boundary I-2, and each contact hole 401d, 401e is located in the peripheral circuit region II and The source/drain regions S/D2 or gate structures G1 of the corresponding peripheral elements are exposed.

然后,请参考图5,在形成接触孔401a、401b和401d、401e之后,可以执行灰化工艺或湿式清洗工艺,以去除第一掩模图案,并填充牺牲层501于各个接触孔401a、401b和401d、401e中。所述牺牲层501可以由旋涂硬掩模(SOH)层或非晶碳层ACL)形成,这样可以使得能够用牺牲层501填充具有高的高宽比的接触孔401a、401b和401d、401e。Then, referring to FIG. 5, after the contact holes 401a, 401b and 401d, 401e are formed, an ashing process or a wet cleaning process may be performed to remove the first mask pattern and fill the sacrificial layer 501 in each of the contact holes 401a, 401b and 401d, 401e. The sacrificial layer 501 may be formed of a spin-on hard mask (SOH) layer or an amorphous carbon layer (ACL), which may enable the contact holes 401a, 401b and 401d, 401e with a high aspect ratio to be filled with the sacrificial layer 501 .

接着,请继续参考图4和5,可以在层间介质层400和牺牲层501上形成第二掩模图案(未图示),第二掩模图案定义出用于将边界处I-2相应的至少两个接触孔401b的顶部相连的沟槽401c。以第二掩模图案为掩模,刻蚀边界处I-2处的层间介质层400,以形成将边界处I-2相应的至少两个接触孔401b(包括最靠近周边电路区II的一列接触孔中的至少一个)的顶部相连的沟槽401c。沟槽401c至少跨过边界处I-2最外侧的一条字线WL。4 and 5, a second mask pattern (not shown) may be formed on the interlayer dielectric layer 400 and the sacrificial layer 501. The tops of the at least two contact holes 401b are connected to the trench 401c. Using the second mask pattern as a mask, the interlayer dielectric layer 400 at the boundary I-2 is etched to form at least two contact holes 401b corresponding to the boundary I-2 (including the one closest to the peripheral circuit region II). at least one of a row of contact holes) is connected to the top of the trench 401c. The trench 401c spans at least one of the outermost word lines WL of I-2 at the boundary.

然后,请参考图6,可以使用氧、臭氧或紫外线的灰化工艺或者通过湿式清洗工艺去除接触孔401a、401b和401d、401e中的牺牲层501以及第二掩模图案,以重新暴露出各个接触孔401a、401b和401d、401e和沟槽401c。Then, referring to FIG. 6, the sacrificial layer 501 and the second mask pattern in the contact holes 401a, 401b and 401d, 401e may be removed using an ashing process of oxygen, ozone or ultraviolet light or through a wet cleaning process to re-exposed the respective Contact holes 401a, 401b and 401d, 401e and trench 401c.

接着,请参考图7,可以在接触孔401a、401b和401d、401e和沟槽401c中形成阻挡金属层(未图示),例如,阻挡金属层可以以均匀的厚度覆盖接触孔401a、401b和401d、401e和沟槽401c的内壁与层间介质层400的顶表面。阻挡金属层能够减少或防止设置在接触孔401a、401b和401d、401e和沟槽401c中的金属材料扩散到层间介质层400中。例如,所述阻挡金属层可以由Ta、TaN、TaSiN、Ti、Ti N、TiSiN、W、WN或它们的任何组合形成,可以使用化学气相沉积(CVD)、原子层沉积(ALD)或物理气相沉积(PVD)(例如,溅射)等工艺形成。然后,在各个接触孔401a、401b和401d、401e和沟槽401c中填充金属层,以形成接触插塞501a、501d、501e和组合接触结构501b。其中,金属层可以由(一种或多种)难熔金属(例如,钴、铁、镍、钨和/或钼)形成。另外,可以使用具有良好阶梯覆盖性质的沉积工艺形成金属层,例如,使用化学气相沉积(CVD)、原子层沉积(ALD)或物理气相沉积(PVD)(例如,溅射)形成。形成的金属层还覆盖在接触孔和沟槽周围的层间介质层400的表面上,之后,可以采用化学机械抛光(CMP)工艺对沉积的金属层的顶面进行化学机械抛光,直至暴露出出层间介质层400的顶面,以形成位于层间介质层400中的接触插塞501a、501d、501e和组合接触结构501b。接触插塞501a作为核心元件区I的中央区I-1中的存储节点接触结构,用于与后续在中央区I-1上方形成的电容结构连接。组合接触结构501b由核心元件区I的边界处I-2中的至少两个顶部相连的接触插塞(包括与边界处I-2的最外侧的源区电接触的边界处最外侧的接触插塞)形成,作为核心元件区I的边界处I-2中的存储节点接触结构,用于与后续在边界处I-2上方形成的电容结构连接,组合接触结构501b的顶部结构(即顶部相联一起的所有接触插塞形成的顶部连接结构)位于位线BL上方并横跨过至少一条字线WL,组合接触结构501b与位线BL对准平行。组合接触结构501b例如为倒U形电接触结构或者梳状电接触结构,其可以最少可以跨过边界处I-2最外侧的一个有源区AA1中的一条所述字线WL。接触插塞501d作为周边电路区II的栅极结构G1的接触结构,用于将栅极结构G1向外引出,接触插塞501e作为周边电路区II的源区或漏区S/D2的接触结构,用于将周边电路区II的源区或漏区S/D2向外引出。Next, referring to FIG. 7, a barrier metal layer (not shown) may be formed in the contact holes 401a, 401b and 401d, 401e and the trench 401c. For example, the barrier metal layer may cover the contact holes 401a, 401b and 401b with a uniform thickness. 401d, 401e and the inner walls of the trench 401c and the top surface of the interlayer dielectric layer 400. The barrier metal layer can reduce or prevent the metal material disposed in the contact holes 401 a , 401 b and 401 d , 401 e and the trench 401 c from diffusing into the interlayer dielectric layer 400 . For example, the barrier metal layer may be formed of Ta, TaN, TaSiN, Ti, TiN, TiSiN, W, WN, or any combination thereof, using chemical vapor deposition (CVD), atomic layer deposition (ALD), or physical vapor deposition Deposition (PVD) (eg, sputtering) and other processes. Then, a metal layer is filled in each of the contact holes 401a, 401b and 401d, 401e and the trench 401c to form the contact plugs 501a, 501d, 501e and the combined contact structure 501b. Therein, the metal layer may be formed of refractory metal(s) (eg, cobalt, iron, nickel, tungsten, and/or molybdenum). Additionally, the metal layer may be formed using deposition processes with good step coverage properties, eg, using chemical vapor deposition (CVD), atomic layer deposition (ALD), or physical vapor deposition (PVD) (eg, sputtering). The formed metal layer also covers the surface of the interlayer dielectric layer 400 around the contact holes and the trenches, after which a chemical mechanical polishing (CMP) process may be used to chemically mechanically polish the top surface of the deposited metal layer until exposed. The top surface of the interlayer dielectric layer 400 is removed to form the contact plugs 501 a , 501 d , 501 e and the combined contact structure 501 b in the interlayer dielectric layer 400 . The contact plug 501a serves as a storage node contact structure in the central region I-1 of the core element region I, and is used for connecting with a capacitor structure formed on the central region I-1 subsequently. The combined contact structure 501b is connected by at least two top contact plugs in I-2 at the boundary of the core element region 1 (including the outermost contact plug at the boundary that is in electrical contact with the outermost source region of I-2 at the boundary. plug) is formed as the storage node contact structure in I-2 at the boundary of the core element region 1, for connecting with the subsequent capacitor structure formed above the boundary at I-2, the top structure of the combined contact structure 501b (that is, the top phase The top connection structure formed by all the contact plugs joined together is located above the bit line BL and spans at least one word line WL, and the combined contact structure 501b is aligned parallel to the bit line BL. The combined contact structure 501b is, for example, an inverted U-shaped electrical contact structure or a comb-shaped electrical contact structure, which can span at least one of the word lines WL in the outermost active region AA1 at the boundary I-2. The contact plug 501d is used as a contact structure for the gate structure G1 of the peripheral circuit region II, for pulling the gate structure G1 outward, and the contact plug 501e is used as a contact structure for the source region or the drain region S/D2 of the peripheral circuit region II , used to lead out the source or drain region S/D2 of the peripheral circuit region II.

之后,可以采用本领域常规的电容结构的制作方法来在核心元件区I上制作相应的电容结构,请参考图8~11,具体过程如下:After that, a conventional capacitor structure fabrication method in the art can be used to fabricate a corresponding capacitor structure on the core element region I. Please refer to FIGS. 8 to 11. The specific process is as follows:

首先,请参考图8,可以通过化学气相沉积、旋涂等工艺在所述层间介质层400和接触插塞501a、501d、501e及组合接触结构501b的表面上依次形成底层支撑层600、第一牺牲层611、中间支撑层601、第二牺牲层612以及顶层支撑层602,其中底层支撑层600一方面用于对后续形成的下电极层进行底部支撑,另一方面还用于隔离半导体衬底300的内部元件与上方的电容器等元件。底层支撑层600的形成工艺还可以是热氧化工艺。所述底层支撑层600、中间支撑层601和顶层支撑层602的材质包含但不限于氮化硅,第一牺牲层611、第二牺牲层612的材质包含但不限于氧化硅。所述第一牺牲层611的厚度界定出后续所形成的中间支撑层601的高度,因此,所述第一牺牲层611的厚度可根据所需形成的中间支撑层601的高度位置进行调整。在所述第一牺牲层611与中间支撑层601的厚度确定的情况下,所述第二牺牲层612的厚度界定出后续所形成的顶层支撑层602的高度,因此,所述第二牺牲层612的厚度可根据所需形成的顶层支撑层602的高度位置进行调整。在本发明的其他实施例中,为了对下电极层进行更好的支撑,底层支撑层600和顶层支撑层602之间还可以层叠两层以上的中间支撑层601,相邻中间支撑层之间有牺牲层进行隔离。First of all, please refer to Figure 8. You can form the underlying support layer 600 and No. 400, 501D, 501E, and combined contact structure 501B through the process of chemical gas deposition, spinning and other processes. A sacrificial layer 611, an intermediate supporting layer 601, a second sacrificial layer 612 and a top supporting layer 602, wherein the bottom supporting layer 600 is used to support the bottom electrode layer formed later on the one hand, and is also used to isolate the semiconductor liner on the other hand Internal components of the bottom 300 and components such as capacitors above. The formation process of the underlying support layer 600 may also be a thermal oxidation process. The materials of the bottom support layer 600 , the middle support layer 601 and the top support layer 602 include but not limited to silicon nitride, and the materials of the first sacrificial layer 611 and the second sacrificial layer 612 include but not limited to silicon oxide. The thickness of the first sacrificial layer 611 defines the height of the intermediate support layer 601 to be formed subsequently. Therefore, the thickness of the first sacrificial layer 611 can be adjusted according to the height of the intermediate support layer 601 to be formed. Under the condition that the thicknesses of the first sacrificial layer 611 and the intermediate support layer 601 are determined, the thickness of the second sacrificial layer 612 defines the height of the top support layer 602 formed subsequently. Therefore, the second sacrificial layer The thickness of 612 can be adjusted according to the height position of the top support layer 602 to be formed. In other embodiments of the present invention, in order to better support the lower electrode layer, more than two intermediate supporting layers 601 may be stacked between the bottom supporting layer 600 and the top supporting layer 602, and between adjacent intermediate supporting layers There are sacrificial layers for isolation.

接着,请参考图9所示,形成多个电容孔700a和700b在所述核心元件区I上的牺牲层与所述支撑层内,电容孔700a形成在核心元件区I的中央区I-1中且暴露出所述中央区I-1中接触插塞501a的表面,用于形成中央区I-1中的电容结构。电容孔700b形成在核心元件区I的边界处I-2且暴露出所述边界处I-2的组合接触结构501b的表面,用于形成边界处I-2中的电容结构。电容孔700a和700b呈阵列排布,且电容孔700b具有第一宽度W1,电容孔700a具有第二宽度W2,可选地,W1不小于1.5*W2。具体的,在所述顶层支撑层602上形成一掩模层(未图示),对所述掩模层进行图形化,暴露出预定形成电容孔700a和700b的区域,然后以图形化的掩模层为掩模,依次对所述顶层支撑层602、第二牺牲层612、中间支撑层601、第一牺牲层611以及底层支撑层600进行刻蚀,以去除所述周边电路区II及核心元件区I边缘区域上的所述支撑层及牺牲层,并在核心元件区I中形成多个电容孔700a和700b,然后去除所述图形化的掩模层。所述电容孔700a和700b依次贯穿所述顶层支撑层602、第二牺牲层612、中间支撑层601、第一牺牲层611以及底层支撑层600,以暴露出所述核心元件区I的相应的接触插塞501a和组合接触结构501b的表面,可选的,所有的电容孔呈六方密堆积排布。此外,电容孔可以是倒梯形孔、矩形孔等,其侧壁可以是不规则形貌,如具有曲线侧壁等,在此不做具体限制。此外,本实施例中,周边电路区II上还保留有所述底层支撑层600,以用于在后续电容器形成工艺中保护周边电路区II的器件表面。Next, referring to FIG. 9, a plurality of capacitor holes 700a and 700b are formed in the sacrificial layer and the support layer on the core element region I, and the capacitor hole 700a is formed in the central region I-1 of the core element region I and exposing the surface of the contact plug 501a in the central area I-1 for forming the capacitor structure in the central area I-1. The capacitance hole 700b is formed at the boundary I-2 of the core element region 1 and exposes the surface of the combined contact structure 501b at the boundary I-2 for forming the capacitance structure in the boundary I-2. The capacitor holes 700a and 700b are arranged in an array, and the capacitor hole 700b has a first width W1, and the capacitor hole 700a has a second width W2, optionally, W1 is not less than 1.5*W2. Specifically, a mask layer (not shown) is formed on the top support layer 602, the mask layer is patterned to expose the areas where the capacitor holes 700a and 700b are to be formed, and then the patterned mask The mold layer is used as a mask, and the top supporting layer 602, the second sacrificial layer 612, the middle supporting layer 601, the first sacrificial layer 611 and the bottom supporting layer 600 are sequentially etched to remove the peripheral circuit area II and the core The supporting layer and the sacrificial layer on the edge region of the element region I, and a plurality of capacitor holes 700a and 700b are formed in the core element region I, and then the patterned mask layer is removed. The capacitor holes 700a and 700b penetrate through the top support layer 602, the second sacrificial layer 612, the middle support layer 601, the first sacrificial layer 611 and the bottom support layer 600 in sequence to expose the corresponding parts of the core element region I. On the surfaces of the contact plug 501a and the combined contact structure 501b, optionally, all the capacitor holes are arranged in a hexagonal close-packed arrangement. In addition, the capacitor hole may be an inverted trapezoidal hole, a rectangular hole, etc., and the sidewalls thereof may be irregular in shape, such as having curved sidewalls, etc., which are not specifically limited herein. In addition, in this embodiment, the underlying support layer 600 is still reserved on the peripheral circuit region II, so as to protect the device surface of the peripheral circuit region II in the subsequent capacitor formation process.

可以理解的是,由于组合接触结构501b的面积较大,因此可以为边界处I-2的电容孔700b的制作提供足够的工艺余量,且使得边界处I-2的电容孔700b的宽度较大,避免该边界处的电容孔700b发生异常变形或坍塌,同时使得后续在该边界处形成的电容结构和所述组合接触结构具有较大的接触面积,进而降低接触阻抗减小,有利于提高器件的电学性能。此外,因为边界处I-2的电容孔700b的宽度较大,能够缓冲周边电路区II和核心元件区I中的电路图案的密度差异,从而在执行电容孔的光刻工艺和/或蚀刻工艺时能够改善光学邻近效应,减小稀疏/密集负载效应,保证核心元件区边界以内的电容孔的一致性,防止出现核心元件区内一些位置的接触插塞上方的电容孔出现异常而引起后续形成的电容结构失效的问题。It can be understood that, due to the large area of the combined contact structure 501b, sufficient process margin can be provided for the fabrication of the capacitor hole 700b at the border I-2, and the width of the capacitor hole 700b at the border I-2 can be made larger. large, avoid abnormal deformation or collapse of the capacitor hole 700b at the boundary, and at the same time make the subsequent capacitor structure and the combined contact structure formed at the boundary have a larger contact area, thereby reducing the contact resistance reduction, which is conducive to improving electrical properties of the device. In addition, because the width of the capacitor hole 700b at the boundary I-2 is larger, the density difference of the circuit patterns in the peripheral circuit region II and the core element region I can be buffered, so that the photolithography process and/or the etching process of the capacitor hole can be performed during the photolithography process and/or the etching process of the capacitor hole. It can improve the optical proximity effect, reduce the sparse/dense load effect, ensure the consistency of the capacitance holes within the boundary of the core component area, and prevent the abnormality of the capacitance holes above the contact plugs at some positions in the core component area, which may cause subsequent formation. The problem of the failure of the capacitor structure.

请参考图10所示,形成一下电极层701覆盖于所述电容孔700a、700b的侧壁和底壁上。所述下电极层701位于所述电容孔700a、700b中的部分,其形貌与所述电容孔700a、700b的形貌一致,从而使得位于所述电容孔700a、700b中的所述下电极层701构成一筒状结构。具体的,所述下电极层701可在沉积工艺的基础上结合平坦化工艺形成,例如,首先,可以采用光刻胶等图形化保护层(未图示)将周边电路区II保护起来,并暴露出核心元件区I中的顶层支撑层602的顶表面以及电容孔700a、700b的表面;接着,采用物理气相沉积或化学气相沉积等工艺形成一电极材料层于所述图形化保护层以及核心元件区I的暴露表面上,所述电极材料层覆盖所述电容孔700a、700b的底部和侧壁,以及覆盖所述核心元件区I的顶层支撑层602和周边电路区II的图形化保护层顶表面;接着,执行平坦化工艺(例如,化学机械研磨工艺CMP),去除电极材料层中位于所述顶层支撑层602上方的部分,从而使剩余的电极材料层仅形成在所述电容孔700a、700b中,以构成具有多个筒状结构的下电极层701,之后去除所述图形化保护层。此外,在本实施例中,所述接触插塞501a、501b分别通过所述电容孔700a、700b暴露出来,从而使得所形成的下电极层701的筒状结构的底部能够与所述接触插塞501a、501b电性接触。进一步的,所述下电极层701可以是多晶硅电极或金属电极。当下电极层701为金属电极时,还可以采用氮化钛(TiN)和Ti层叠结构。当下电极层701为多晶硅电极时,可以采用零掺杂和/或掺杂的多晶硅材料形成。Referring to FIG. 10 , a lower electrode layer 701 is formed to cover the side walls and bottom walls of the capacitor holes 700 a and 700 b. The shape of the lower electrode layer 701 in the capacitor holes 700a and 700b is consistent with the shape of the capacitor holes 700a and 700b, so that the lower electrodes located in the capacitor holes 700a and 700b Layer 701 constitutes a cylindrical structure. Specifically, the lower electrode layer 701 can be formed on the basis of the deposition process combined with the planarization process. For example, first, a patterned protective layer (not shown) such as photoresist can be used to protect the peripheral circuit region II, and Expose the top surface of the top support layer 602 and the surfaces of the capacitor holes 700a and 700b in the core element region 1; then, a process such as physical vapor deposition or chemical vapor deposition is used to form an electrode material layer on the patterned protective layer and the core On the exposed surface of the element region I, the electrode material layer covers the bottoms and sidewalls of the capacitor holes 700a, 700b, as well as the top support layer 602 of the core element region I and the patterned protective layer of the peripheral circuit region II top surface; then, a planarization process (eg, chemical mechanical polishing process CMP) is performed to remove the portion of the electrode material layer above the top support layer 602, so that the remaining electrode material layer is only formed on the capacitor hole 700a and 700b, to form a lower electrode layer 701 having a plurality of cylindrical structures, and then remove the patterned protective layer. In addition, in this embodiment, the contact plugs 501a, 501b are exposed through the capacitor holes 700a, 700b, respectively, so that the bottom of the cylindrical structure of the lower electrode layer 701 can be formed with the contact plugs 501a, 501b are in electrical contact. Further, the lower electrode layer 701 may be a polysilicon electrode or a metal electrode. When the lower electrode layer 701 is a metal electrode, a stacked structure of titanium nitride (TiN) and Ti may also be used. When the lower electrode layer 701 is a polysilicon electrode, it can be formed using zero-doped and/or doped polysilicon material.

请继续参考图10所示,去除各个所述的牺牲层并保留各个所述的支撑层,所有的所述支撑层组成横向支撑层,以横向连接所述下电极层701的多个筒状结构的外壁,以在各个所述筒状结构的侧壁上对下电极层701进行支撑。具体的,所述顶层支撑层602位于所述下电极层701的多个筒状结构的顶部外围,所述中间支撑层601位于所述下电极层701的多个筒状结构的中间部位,底层支撑层600位于所述下电极层701的多个筒状结构的底部外围。其中,具体过程包括:形成第一开口(未图示)于所述顶层支撑层602并暴露出所述第二牺牲层612;可以采用湿法刻蚀工艺刻蚀去除所述第二牺牲层612;形成第二开口于所述中间支撑层601中以暴露出所述第一牺牲层611;采用湿法刻蚀工艺刻蚀去除所述第一牺牲层611;其中,一个所述第一开口仅与一个所述电容孔700a或700b交叠,或者一个所述第一开口同时与多个所述电容孔700a和/或700b交叠;一个所述第二开口仅与一个所述电容孔700a或700b交叠,或者一个所述第二开口同时与多个所述电容孔700a和/或700b交叠。此外,所述第二开口可以与所述第一开口完全对齐。Please continue to refer to FIG. 10 , each of the sacrificial layers is removed and each of the support layers is retained. All the support layers form a lateral support layer to laterally connect the plurality of cylindrical structures of the lower electrode layer 701 . to support the lower electrode layer 701 on the sidewalls of each of the cylindrical structures. Specifically, the top support layer 602 is located at the top periphery of the plurality of cylindrical structures of the lower electrode layer 701 , the middle support layer 601 is located in the middle of the plurality of cylindrical structures of the lower electrode layer 701 , the bottom layer The support layer 600 is located at the bottom periphery of the plurality of cylindrical structures of the lower electrode layer 701 . The specific process includes: forming a first opening (not shown) in the top support layer 602 and exposing the second sacrificial layer 612; and removing the second sacrificial layer 612 by using a wet etching process ; form a second opening in the intermediate support layer 601 to expose the first sacrificial layer 611; use a wet etching process to etch and remove the first sacrificial layer 611; wherein, one of the first openings is only overlapping with one of the capacitor holes 700a or 700b, or one of the first openings simultaneously overlaps with a plurality of the capacitor holes 700a and/or 700b; one of the second openings only overlaps with one of the capacitor holes 700a or 700b 700b overlaps, or one of the second openings simultaneously overlaps a plurality of the capacitor holes 700a and/or 700b. Furthermore, the second opening may be perfectly aligned with the first opening.

请参考图11所示,采用化学气相沉积工艺或原子层沉积工艺等形成一电容介质层702于所述下电极层701的内外表面以及各个所述支撑层暴露出的表面;接着,形成一上电极层703于所述电容介质层702的内表面和外表面。其中,所述电容介质层702覆盖所述下电极层701的筒状结构的内表面和外表面,以充分利用下电极层701的两个相对表面,构成具有较大电极表面积的电容器。优选的,所述电容介质层702可以为金属氧化物等高K介质层。进一步的,所述电容介质层702为多层结构,例如为氧化哈-氧化锆的两层结构。所述上电极层703可以为单层结构也可以为多层结构,当所述上电极层703为单层结构时,例如为多晶硅电极,也可以为金属电极,当上电极层703为金属电极时,例如可以采用氮化钛(TiN)形成。所述上电极层703在对应所述筒状结构的内部和所述筒状结构的外部均能够与所述电容介质层702以及所述下电极层701构成电容器。此外,在核心元件区I边缘区域(即电容孔阵列的边界区域)上,由于横向支撑层(即中间支撑层601、顶层支撑层602)的存在,所述电容介质层702和所述上电极层703均具有凹凸不平形貌的侧壁结构,所述凹凸不平形貌的侧壁结构对应于在所述下电极层701的筒状结构筒外部的所述中间支撑层601、顶层支撑层602,由此使得所述上电极层703在所述核心元件区I边缘区域(即电容孔阵列的边界区域)上的部分,对应所述中间支撑层601、顶层支撑层602以远离所述下电极层701的方向凸出,使核心元件区I中的电容器阵列边界不平整。此外,本实施例中,所述电容介质层702和所述上电极层703还依次延伸覆盖在所述周边电路区II上保留的底层支撑层600的表面上。Referring to FIG. 11 , a capacitive dielectric layer 702 is formed on the inner and outer surfaces of the lower electrode layer 701 and the exposed surfaces of each of the supporting layers by chemical vapor deposition or atomic layer deposition. Then, an upper Electrode layers 703 are formed on the inner and outer surfaces of the capacitive dielectric layer 702 . The capacitor dielectric layer 702 covers the inner and outer surfaces of the cylindrical structure of the lower electrode layer 701 to make full use of the two opposite surfaces of the lower electrode layer 701 to form a capacitor with a larger electrode surface area. Preferably, the capacitor dielectric layer 702 may be a high-K dielectric layer such as metal oxide. Further, the capacitor dielectric layer 702 is a multi-layer structure, for example, a two-layer structure of Ha-zirconia. The upper electrode layer 703 can be a single-layer structure or a multi-layer structure. When the upper electrode layer 703 is a single-layer structure, such as a polysilicon electrode, it can also be a metal electrode. When the upper electrode layer 703 is a metal electrode For example, titanium nitride (TiN) can be used. The upper electrode layer 703 can form a capacitor with the capacitor dielectric layer 702 and the lower electrode layer 701 both inside the cylindrical structure and outside the cylindrical structure. In addition, on the edge region of the core element region I (ie, the boundary region of the capacitor hole array), due to the existence of the lateral support layers (ie, the middle support layer 601, the top support layer 602), the capacitor dielectric layer 702 and the upper electrode The layers 703 all have sidewall structures with uneven topography, and the sidewall structures with uneven topography correspond to the middle support layer 601 and the top support layer 602 outside the cylindrical structure barrel of the lower electrode layer 701 . , so that the part of the upper electrode layer 703 on the edge region of the core element region I (ie, the boundary region of the capacitor hole array) corresponds to the middle support layer 601 and the top support layer 602 to be far away from the lower electrode The direction of the layer 701 is convex, making the boundary of the capacitor array in the core element region I uneven. In addition, in this embodiment, the capacitor dielectric layer 702 and the upper electrode layer 703 are further extended to cover the surface of the underlying support layer 600 remaining on the peripheral circuit region II in sequence.

请参考图11所示,可以先采用化学气相沉积工艺在所述上电极层703表面形成一上电极填充层704,所述上电极填充层704填满所述上电极层703之间的间隙,也就是说,所述上电极填充层704填充满相邻的筒状结构之间的间隙并覆盖上述形成的结构。优选的,所述上电极填充层704的材质包括未掺杂或者硼掺杂的多晶硅。由此完成了电容器阵列的制作,即在中央区I-1形成了电容结构705a,在边界处I-2形成电容结构705b。Referring to FIG. 11 , a chemical vapor deposition process may be used to form an upper electrode filling layer 704 on the surface of the upper electrode layer 703 , and the upper electrode filling layer 704 fills the gap between the upper electrode layers 703 . That is to say, the upper electrode filling layer 704 fills the gaps between adjacent cylindrical structures and covers the above-formed structures. Preferably, the material of the upper electrode filling layer 704 includes undoped or boron-doped polysilicon. Thus, the fabrication of the capacitor array is completed, that is, the capacitor structure 705a is formed at the central region I-1, and the capacitor structure 705b is formed at the boundary I-2.

由于电容孔700b的宽度大于电容孔700a的宽度,因此在边界处I-2的所述电容结构705b的宽度(即W1)大于中央区I-1的电容结构705a的宽度(即W2),例如W1=W2*1.5。且由于电容孔700b的尺寸较大,有利于材料填充,进而改善了在边界处I-2形成的所述电容结构的性能。Since the width of the capacitor hole 700b is larger than the width of the capacitor hole 700a, the width of the capacitor structure 705b at the boundary I-2 (ie W1) is greater than the width of the capacitor structure 705a at the central region I-1 (ie W2), for example W1=W2*1.5. And because the size of the capacitor hole 700b is relatively large, it is favorable for material filling, thereby improving the performance of the capacitor structure formed at the boundary I-2.

需要说明的是,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。以及,上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于本发明技术方案的保护范围。It should be noted that the various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments may be referred to each other. And, the above description is only a description of the preferred embodiments of the present invention, and does not limit the scope of the present invention. Any changes and modifications made by those of ordinary skill in the field of the present invention according to the above disclosure belong to the protection scope of the technical solutions of the present invention. .

此外,还需要说明的是,除非特别说明或者指出,否则说明书中的术语“第一”、“第二”和“第三”等描述仅仅用于区分说明书中的各个组件、元素、步骤等,而不是用于表示各个组件、元素、步骤之间的逻辑关系或者顺序关系等。文中的用语“和/或”表示二者兼具或者二选一。In addition, it should also be noted that, unless otherwise specified or pointed out, the terms "first", "second" and "third" in the specification are only used to distinguish various components, elements, steps, etc. in the specification. It is not used to represent the logical relationship or sequence relationship between various components, elements, steps, etc. The term "and/or" in the text means both or one of the two.

Claims (17)

1.一种半导体器件的电接触结构,其特征在于,所述电接触结构包括:1. An electrical contact structure for a semiconductor device, wherein the electrical contact structure comprises: 多个接触插塞,形成于所述半导体器件的核心元件区的核心元件的上方,且各个所接触插塞的底部与相应的核心元件的有源区接触,a plurality of contact plugs formed above the core elements in the core element region of the semiconductor device, and the bottoms of the respective contact plugs are in contact with the active regions of the corresponding core elements, 其中,形成在所述核心元件区的边界处的至少两个接触插塞的顶部相联在一起,且所述顶部相联在一起的接触插塞中包括边界处最外侧的接触插塞。Wherein, the tops of at least two contact plugs formed at the boundary of the core element region are connected together, and the contact plugs whose tops are connected together include the outermost contact plug at the boundary. 2.如权利要求1所述的半导体器件的电接触结构,其特征在于,所述顶部相联一起的所有接触插塞构成倒U形电接触结构或者梳状电接触结构。2 . The electrical contact structure of a semiconductor device according to claim 1 , wherein all the contact plugs whose tops are connected together form an inverted U-shaped electrical contact structure or a comb-shaped electrical contact structure. 3 . 3.如权利要求2所述的半导体器件的电接触结构,其特征在于,所述半导体器件的核心元件区中形成有与多个所述有源区相交的多条字线以及与所述字线垂直的位线,所述顶部相联一起的所有接触插塞构成的结构跨过至少一条所述字线并与所述位线对准。3 . The electrical contact structure of a semiconductor device according to claim 2 , wherein a plurality of word lines intersecting with a plurality of the active regions and a plurality of word lines intersecting with the word lines are formed in the core element region of the semiconductor device. 4 . A vertical bit line with all the contact plugs joined together on top of the structure spans at least one of the word lines and is aligned with the bit line. 4.如权利要求1所述的半导体器件的电接触结构,其特征在于,还包括相互独立的接触垫,形成在所述核心元件区的其他所述接触插塞的顶部,并一一对应地与相应的接触插塞的顶部电接触。4 . The electrical contact structure of a semiconductor device according to claim 1 , further comprising contact pads that are independent of each other, formed on top of other contact plugs in the core element region, and corresponding to one another. 5 . Make electrical contact with the top of the corresponding contact plug. 5.如权利要求1所述的半导体器件的电接触结构,其特征在于,所述顶部相联在一起的所有接触插塞为一体成型的结构,或者,所述边界处的至少两个接触插塞通过上接同一个接触垫而顶部相联在一起。5 . The electrical contact structure of a semiconductor device according to claim 1 , wherein all the contact plugs connected together at the top are integrally formed structures, or at least two contact plugs at the boundary are formed. 6 . The plugs are joined together at the top by attaching the same contact pad. 6.如权利要求1所述的半导体器件的电接触结构,其特征在于,所述电接触结构上接电容结构,其中,所述边界处的电容结构具有第一宽度,所述核心元件区的所述边界处以内的电容结构具有第二宽度,所述第一宽度大于所述第二宽度。6 . The electrical contact structure of a semiconductor device according to claim 1 , wherein a capacitor structure is connected to the electrical contact structure, wherein the capacitor structure at the boundary has a first width, and the core element region has a first width. 7 . The capacitive structure within the boundary has a second width, and the first width is greater than the second width. 7.如权利要求6所述的半导体器件的电接触结构,其特征在于,所述第一宽度大于1.5倍的所述第二宽度。7. The electrical contact structure for a semiconductor device according to claim 6, wherein the first width is greater than 1.5 times the second width. 8.一种半导体器件,其特征在于,包括:8. A semiconductor device, comprising: 半导体衬底,所述半导体衬底具有核心元件区,所述核心元件区中形成有多个核心元件;a semiconductor substrate, the semiconductor substrate has a core element region, and a plurality of core elements are formed in the core element region; 层间介质层,覆盖在所述半导体衬底上;以及,an interlayer dielectric layer covering the semiconductor substrate; and, 如权利要求1~7中任一项所述的半导体器件的电接触结构,所述电接触结构形成于所述层间介质层中,所述电接触结构的各个所述接触插塞的底部与相应的核心元件的有源区接触,且所述电接触结构中形成在所述核心元件区的边界处的至少两个接触插塞的顶部相联在一起,且所述顶部相联的所有的接触插塞中包括边界处最外侧的接触插塞。The electrical contact structure of a semiconductor device according to any one of claims 1 to 7, wherein the electrical contact structure is formed in the interlayer dielectric layer, and the bottom of each of the contact plugs of the electrical contact structure is connected to The active regions of the corresponding core elements are in contact, and the tops of at least two contact plugs formed at the boundaries of the core element regions in the electrical contact structure are connected together, and all the tops are connected. The outermost contact plugs at the boundary are included in the contact plugs. 9.如权利要求8所述的半导体器件,其特征在于,所述半导体器件为DRAM,所述核心元件区为存储区,所述核心元件为存储晶体管,所述电接触结构为存储节点接触结构。9 . The semiconductor device of claim 8 , wherein the semiconductor device is a DRAM, the core element area is a storage area, the core element is a storage transistor, and the electrical contact structure is a storage node contact structure. 10 . . 10.如权利要求9所述的半导体器件,其特征在于,所述半导体器件还包括:电容结构,形成于所述层间介质层上且底部与所述电接触结构相接触,所述边界处的电容结构具有第一宽度,所述核心元件区的所述边界处以内的电容结构具有第二宽度,所述第一宽度大于所述第二宽度。10 . The semiconductor device according to claim 9 , wherein the semiconductor device further comprises: a capacitor structure formed on the interlayer dielectric layer and the bottom of which is in contact with the electrical contact structure, and the boundary is at the boundary. 11 . The capacitor structure has a first width, and the capacitor structure within the boundary of the core element region has a second width, and the first width is greater than the second width. 11.如权利要求10所述的半导体器件,其特征在于,所述第一宽度大于1.5倍的所述第二宽度。11. The semiconductor device of claim 10, wherein the first width is greater than 1.5 times the second width. 12.如权利要求9所述的半导体器件,其特征在于,所述半导体器件包括多条字线和多条位线,每条所述字线与所述核心元件区中的多个所述有源区相交,所述位线与所述字线垂直,所述顶部相联一起的所有接触插塞构成的结构跨过至少一条所述字线并与所述位线对准。12. The semiconductor device of claim 9, wherein the semiconductor device comprises a plurality of word lines and a plurality of bit lines, and each of the word lines is associated with a plurality of the said core element regions. The source regions intersect, the bit line is perpendicular to the word line, and all the contact plugs joined together at the top form a structure that spans at least one of the word lines and is aligned with the bit line. 13.一种半导体器件的电接触结构的制造方法,其特征在于,包括:13. A method for manufacturing an electrical contact structure of a semiconductor device, comprising: 提供半导体衬底,所述半导体衬底具有核心元件区,所述核心元件区中形成有多个核心元件;providing a semiconductor substrate, the semiconductor substrate having a core element region in which a plurality of core elements are formed; 在所述半导体衬底上形成层间介质层,并在所述层间介质层中形成多个接触孔,各个所述接触孔贯穿所述层间介质层并暴露出相应的核心元件的有源区;An interlayer dielectric layer is formed on the semiconductor substrate, and a plurality of contact holes are formed in the interlayer dielectric layer, each of the contact holes penetrates the interlayer dielectric layer and exposes the active elements of the corresponding core elements Area; 在所述接触孔中形成接触插塞,且各个所述接触插塞的底部与相应的核心元件的有源区接触,且形成在所述核心元件区的边界处的至少两个接触插塞的顶部相联在一起,所述顶部相联在一起的所有接触插塞中包括边界处最外侧的接触插塞。Contact plugs are formed in the contact holes, and the bottom of each of the contact plugs is in contact with the active region of the corresponding core element, and at least two contact plugs formed at the boundary of the core element region have The tops are connected together, and all the contact plugs in which the tops are connected include the outermost contact plug at the boundary. 14.如权利要求13所述的半导体器件的电接触结构的制造方法,其特征在于,在所述层间介质层中形成多个接触孔时,先通过一次光刻工艺在层间介质层中形成相互独立的接触孔,然后通过另一次光刻工艺刻蚀层间介质层,以使得所述边界处的至少两个接触孔的顶部相连通,以用于形成顶部相联在一起的接触插塞;或者,14 . The method for manufacturing an electrical contact structure of a semiconductor device according to claim 13 , wherein when forming a plurality of contact holes in the interlayer dielectric layer, a photolithography process is performed first in the interlayer dielectric layer. 15 . forming mutually independent contact holes, and then etching the interlayer dielectric layer through another photolithography process, so that the tops of at least two contact holes at the boundary are connected, so as to form contact plugs whose tops are connected together plug; or, 在所述层间介质层中形成多个接触孔时,通过一次光刻工艺在层间介质层中形成相互独立的接触孔;然后,在所述接触孔中形成相互独立的接触插塞,接着,通过另一次光刻工艺刻蚀层间介质层,以形成暴露出所述边界处的至少两个接触插塞的顶部侧壁的沟槽,在所述沟槽中形成接触垫,以使得相应的接触插塞的顶部相联在一起;或者,When multiple contact holes are formed in the interlayer dielectric layer, mutually independent contact holes are formed in the interlayer dielectric layer through a single photolithography process; then, mutually independent contact plugs are formed in the contact holes, and then , the interlayer dielectric layer is etched through another photolithography process to form trenches exposing the top sidewalls of at least two contact plugs at the boundary, and contact pads are formed in the trenches, so that the corresponding the tops of the contact plugs together; or, 在所述层间介质层中形成多个接触孔时,通过一次光刻工艺在层间介质层中形成相互独立的接触孔;然后,在所述接触孔中形成相互独立的接触插塞,接着,形成另一层间介质层以覆盖具有所述接触插塞的层间介质层;然后通过另一次光刻工艺刻蚀所述另一层间介质层,以形成暴露出所述边界处的至少两个接触插塞的顶部的沟槽,在所述沟槽中形成接触垫,以使得相应的接触插塞的顶部相联在一起。When multiple contact holes are formed in the interlayer dielectric layer, mutually independent contact holes are formed in the interlayer dielectric layer through a single photolithography process; then, mutually independent contact plugs are formed in the contact holes, and then , forming another interlayer dielectric layer to cover the interlayer dielectric layer with the contact plugs; then etching the other interlayer dielectric layer through another photolithography process to form at least a The grooves in the tops of the two contact plugs in which the contact pads are formed such that the tops of the respective contact plugs are joined together. 15.一种半导体器件的制造方法,其特征在于,包括:采用权利要求13或14中任一项所述的半导体器件的电接触结构的制造方法,在一具有核心元件区的半导体衬底上形成与相应的核心元件电接触的电接触结构。15. A method for manufacturing a semiconductor device, comprising: using the method for manufacturing an electrical contact structure of a semiconductor device according to any one of claims 13 or 14, on a semiconductor substrate having a core element region Electrical contact structures are formed that make electrical contact with the corresponding core elements. 16.如权利要求15所述的半导体器件的制造方法,其特征在于,所述核心元件区为存储区,所述核心元件为存储晶体管,所述电接触结构为存储节点接触结构,所述半导体器件的制造方法还包括:16. The method for manufacturing a semiconductor device according to claim 15, wherein the core element region is a storage region, the core element is a storage transistor, the electrical contact structure is a storage node contact structure, and the semiconductor The method of fabricating the device also includes: 在所述电接触结构上形成电容结构的下电极forming the lower electrode of the capacitive structure on the electrical contact structure 形成覆盖所述下电极的电容介质;以及,forming a capacitive dielectric overlying the lower electrode; and, 在所述电容介质上形成电容结构的上电极。The upper electrode of the capacitive structure is formed on the capacitive medium. 17.如权利要求16所述的半导体器件的制造方法,其特征在于,提供具有核心元件区的半导体衬底的步骤包括:17. The method of manufacturing a semiconductor device according to claim 16, wherein the step of providing a semiconductor substrate having a core element region comprises: 提供一半导体衬底,在所述半导体衬底中定义出多个有源区;providing a semiconductor substrate in which a plurality of active regions are defined; 在所述半导体衬底中形成字线,所述字线与所述有源区交叉;forming word lines in the semiconductor substrate, the word lines intersecting the active region; 在所述字线两侧的有源区中分别形成源区及漏区;forming source regions and drain regions respectively in the active regions on both sides of the word line; 在所述漏区上形成位线接触结构;以及forming a bit line contact structure on the drain region; and 在所述位线接触结构上形成位线,所述位线与所述字线交叉,其中所述电接触结构中的接触插塞的底部与所述源区接触。A bit line is formed on the bit line contact structure, the bit line intersecting the word line, wherein the bottom of the contact plug in the electrical contact structure is in contact with the source region.
CN201910926990.4A 2019-09-27 2019-09-27 Semiconductor device, electric contact structure and manufacturing method thereof Pending CN111640747A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201910926990.4A CN111640747A (en) 2019-09-27 2019-09-27 Semiconductor device, electric contact structure and manufacturing method thereof
PCT/CN2020/079580 WO2021056984A1 (en) 2019-09-27 2020-03-17 Electrical contact structure, contact pad layout and structure, mask plate combination, and manufacturing method
US17/320,244 US12075609B2 (en) 2019-09-27 2021-05-14 Contact structure, contact pad layout and structure, mask combination and manufacturing method thereof
US18/780,504 US20240381629A1 (en) 2019-09-27 2024-07-23 Contact structure, contact pad layout and structure, mask combination and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910926990.4A CN111640747A (en) 2019-09-27 2019-09-27 Semiconductor device, electric contact structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
CN111640747A true CN111640747A (en) 2020-09-08

Family

ID=72332323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910926990.4A Pending CN111640747A (en) 2019-09-27 2019-09-27 Semiconductor device, electric contact structure and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN111640747A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909169A (en) * 2021-01-28 2021-06-04 长鑫存储技术有限公司 Semiconductor structure and method for manufacturing semiconductor structure
US11417533B1 (en) 2021-05-20 2022-08-16 Changxin Memory Technologies, Inc. Manufacturing method of semiconductor structure
WO2022183313A1 (en) * 2021-03-01 2022-09-09 京东方科技集团股份有限公司 Shift register, gate driver circuit, and display panel
WO2022217785A1 (en) * 2021-04-15 2022-10-20 长鑫存储技术有限公司 Memory manufacturing method and memory
CN116209257A (en) * 2023-05-05 2023-06-02 长鑫存储技术有限公司 Semiconductor device and method for manufacturing the same
WO2024066235A1 (en) * 2022-09-27 2024-04-04 长鑫存储技术有限公司 Semiconductor structure and manufacturing method therefor
US12127390B2 (en) 2021-03-30 2024-10-22 Changxin Memory Technologies, Inc. Method for manufacturing a semiconductor structure and semiconductor structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756262B1 (en) * 1999-11-11 2004-06-29 Hitachi, Ltd. Semiconductor integrated circuit device having spaced-apart electrodes and the method thereof
US20060284229A1 (en) * 2005-06-20 2006-12-21 Samsung Electronics Co., Ltd. Semiconductor device with a bit line contact plug and method of fabricating the same
CN101673744A (en) * 2008-09-12 2010-03-17 南亚科技股份有限公司 Transistor structure, dynamic random access memory structure and manufacturing method thereof
US20120286343A1 (en) * 2010-02-25 2012-11-15 Panasonic Corporation Nonvolatile semiconductor memory device
CN103779392A (en) * 2012-10-18 2014-05-07 成一电子股份有限公司 Transistor layout device
CN210575953U (en) * 2019-09-27 2020-05-19 福建省晋华集成电路有限公司 Semiconductor device and electrical contact structure thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756262B1 (en) * 1999-11-11 2004-06-29 Hitachi, Ltd. Semiconductor integrated circuit device having spaced-apart electrodes and the method thereof
US20060284229A1 (en) * 2005-06-20 2006-12-21 Samsung Electronics Co., Ltd. Semiconductor device with a bit line contact plug and method of fabricating the same
CN101673744A (en) * 2008-09-12 2010-03-17 南亚科技股份有限公司 Transistor structure, dynamic random access memory structure and manufacturing method thereof
US20120286343A1 (en) * 2010-02-25 2012-11-15 Panasonic Corporation Nonvolatile semiconductor memory device
CN103779392A (en) * 2012-10-18 2014-05-07 成一电子股份有限公司 Transistor layout device
CN210575953U (en) * 2019-09-27 2020-05-19 福建省晋华集成电路有限公司 Semiconductor device and electrical contact structure thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909169A (en) * 2021-01-28 2021-06-04 长鑫存储技术有限公司 Semiconductor structure and method for manufacturing semiconductor structure
CN112909169B (en) * 2021-01-28 2022-04-29 长鑫存储技术有限公司 Semiconductor structure and method for manufacturing semiconductor structure
WO2022183313A1 (en) * 2021-03-01 2022-09-09 京东方科技集团股份有限公司 Shift register, gate driver circuit, and display panel
CN115335890A (en) * 2021-03-01 2022-11-11 京东方科技集团股份有限公司 Shift register, gate drive circuit and display panel
CN115335890B (en) * 2021-03-01 2023-06-09 京东方科技集团股份有限公司 Shift register, gate drive circuit and display panel
US12190782B2 (en) 2021-03-01 2025-01-07 Beijing Boe Display Technology Co., Ltd. Shift register, gate driving circuit and display panel for preventing channel short circuit
US12127390B2 (en) 2021-03-30 2024-10-22 Changxin Memory Technologies, Inc. Method for manufacturing a semiconductor structure and semiconductor structure
WO2022217785A1 (en) * 2021-04-15 2022-10-20 长鑫存储技术有限公司 Memory manufacturing method and memory
US11417533B1 (en) 2021-05-20 2022-08-16 Changxin Memory Technologies, Inc. Manufacturing method of semiconductor structure
WO2024066235A1 (en) * 2022-09-27 2024-04-04 长鑫存储技术有限公司 Semiconductor structure and manufacturing method therefor
CN116209257A (en) * 2023-05-05 2023-06-02 长鑫存储技术有限公司 Semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2021056984A1 (en) Electrical contact structure, contact pad layout and structure, mask plate combination, and manufacturing method
TWI621245B (en) Semiconductor memory device with increased memory cell contact area and manufacturing method thereof
TWI615921B (en) Semiconductor memory component having coplanar digital bit line contact structure and storage node contact structure in memory array and manufacturing method thereof
CN111640747A (en) Semiconductor device, electric contact structure and manufacturing method thereof
CN108389861B (en) Semiconductor device and method for forming the same
CN111640748A (en) Semiconductor device, electric contact structure thereof and manufacturing method
US8507980B2 (en) Semiconductor devices having bit line interconnections with increased width and reduced distance from corresponding bit line contacts and methods of fabricating such devices
US7208391B2 (en) Method of manufacturing a semiconductor integrated circuit device that includes forming an isolation trench around active regions and filling the trench with two insulating films
JP3577197B2 (en) Method for manufacturing semiconductor device
JP4964407B2 (en) Semiconductor device and manufacturing method thereof
CN110061001B (en) Semiconductor element and manufacturing method thereof
US20220384449A1 (en) Semiconductor memory device and method of fabricating the same
JP2000340772A (en) Method for manufacturing capacitor of integrated circuit device using CMP blocking film
CN111640733A (en) Semiconductor device and contact pad layout, contact pad structure and mask plate combination thereof
JP2007049016A (en) Semiconductor device and manufacturing method thereof
WO2021056985A1 (en) Electrical contact structure, mask plate combination, contact plug manufacturing method, and semiconductor device
CN210778577U (en) Semiconductor device and contact pad layout, contact pad structure and mask plate combination thereof
CN210575953U (en) Semiconductor device and electrical contact structure thereof
CN111640705A (en) Mask plate combination and contact plug manufacturing method, semiconductor device and manufacturing method thereof
CN114068552A (en) Semiconductor device and method of manufacturing the same
CN210778604U (en) Semiconductor device and electrical contact structure thereof
US20230137846A1 (en) Semiconductor device and methods of manufacturing the same
US20230298999A1 (en) Semiconductor memory device
CN210778544U (en) Mask plate combination and semiconductor device
US7687344B2 (en) Method for fabricating capacitor in semiconductor device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination