CN111624702A - Orthogonal double-shaft aspheric optical fiber micro lens - Google Patents
Orthogonal double-shaft aspheric optical fiber micro lens Download PDFInfo
- Publication number
- CN111624702A CN111624702A CN202010389630.8A CN202010389630A CN111624702A CN 111624702 A CN111624702 A CN 111624702A CN 202010389630 A CN202010389630 A CN 202010389630A CN 111624702 A CN111624702 A CN 111624702A
- Authority
- CN
- China
- Prior art keywords
- fiber
- elliptical core
- orthogonal biaxial
- microlens
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 70
- 239000000835 fiber Substances 0.000 claims abstract description 209
- 238000009826 distribution Methods 0.000 claims abstract description 85
- 238000009792 diffusion process Methods 0.000 claims abstract description 44
- 239000002019 doping agent Substances 0.000 claims abstract description 24
- 238000010438 heat treatment Methods 0.000 claims description 23
- 238000013461 design Methods 0.000 claims description 9
- 238000005520 cutting process Methods 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 21
- 238000002360 preparation method Methods 0.000 abstract description 8
- 238000003384 imaging method Methods 0.000 abstract description 3
- 238000012576 optical tweezer Methods 0.000 abstract description 2
- 230000001413 cellular effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 13
- 238000012545 processing Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000004088 simulation Methods 0.000 description 6
- 238000005253 cladding Methods 0.000 description 5
- 238000007493 shaping process Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000007516 diamond turning Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000025 interference lithography Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/028—Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/028—Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
- G02B6/0281—Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
本发明提供的是一种正交双轴非球面光纤微透镜。其特征是:它由椭圆芯光纤经热扩散制备而成。正交双轴非球面光纤微透镜是在恒温场中,经热扩散制备而成,精细设计的椭圆芯光纤的椭圆芯掺杂剂扩散后,折射率分布变为非圆周对称的准高斯分布,可以等效为微透镜。本发明提供了一种纤维集成的正交双轴非球面光纤微透镜,同时具有制作简单、成本低的优点。本发明可用于纤维集成的微透镜的制备,可广泛应用于基于纤维集成的正交双轴非球面光纤微透镜的微型内窥镜、细胞生物光纤成像系统、光纤光镊系统、微型无人机等领域。
The invention provides an orthogonal biaxial aspherical optical fiber microlens. It is characterized in that it is prepared by thermal diffusion of elliptical core optical fiber. Orthogonal biaxial aspheric fiber microlenses are prepared by thermal diffusion in a constant temperature field. After the elliptical core dopant of the finely designed elliptical core fiber is diffused, the refractive index distribution becomes a non-circumferentially symmetric quasi-Gaussian distribution. Can be equivalent to a microlens. The invention provides a fiber-integrated orthogonal biaxial aspherical optical fiber microlens, which has the advantages of simple manufacture and low cost. The invention can be used for the preparation of fiber-integrated microlenses, and can be widely used in micro-endoscopes, cellular biological optical fiber imaging systems, optical fiber optical tweezers systems, and micro-unmanned aerial vehicles based on fiber-integrated orthogonal biaxial aspherical optical fiber microlenses and other fields.
Description
(一)技术领域(1) Technical field
本发明涉及的是一种正交双轴非球面光纤微透镜,可用于纤维集成的微透镜的制备,可广泛应用于基于纤维集成的正交双轴非球面光纤微透镜的微型内窥镜、细胞生物光纤成像系统、光纤光镊系统、微型无人机等领域。The invention relates to an orthogonal biaxial aspherical optical fiber microlens, which can be used for the preparation of a fiber-integrated microlens, and can be widely used in microendoscopes based on the fiber-integrated orthogonal biaxial aspherical optical fiber microlens, Cell biological fiber imaging system, fiber optical tweezers system, micro-UAV and other fields.
(二)背景技术(2) Background technology
随着现代工业与科学技术的发展,人们已经逐步进入到信息化时代。信息技术的快速发展要求一个完整的信息系统能在尽可能小的空间内实现尽可能多的功能,这就要求实现各种功能的器件尽可能地小,向小型化、微型化方向发展。With the development of modern industry and science and technology, people have gradually entered the information age. The rapid development of information technology requires that a complete information system can realize as many functions as possible in as small a space as possible.
纤维集成的微光学元件具有体积小、重量轻、设计制造灵活、制造成本低,并易于实现阵列化和批量化生产等优点,能够实现普通光学元件难以实现的功能,在光纤通信、信息处理、航空航天、生物医学、激光技术、光计算等领域具有重要的应用价值。Fiber-integrated micro-optical components have the advantages of small size, light weight, flexible design and manufacturing, low manufacturing cost, and easy to realize array and mass production. It has important application value in aerospace, biomedicine, laser technology, optical computing and other fields.
随着研究的不断深入,人们提出了很多微光学元件的制备方法,主要有半导体光刻工艺法、单点金刚石车削、电子束刻蚀、飞秒激光直写等。半导体光刻工艺需要用到掩模板,利用紫外光曝光,通过显影将微结构转移到光刻胶上。这种方法工艺成熟,适合大批量制作,平均成本低。缺点是加工的结构只能是平面的,加工多阶结构时需要多次套刻,对准精度要求高,成本急剧上升。单点金刚石车削加工的表面粗糙度小,一般表面粗糙度都在10nm以下,适合加工任意回转形貌的结构。加工的精度取决于刀头和机床,对机床的精度要求高,加工材料有所限制,加工结构的尺寸不能太小。电子束刻蚀分为扫描式和投影式,扫描式不需要掩模板,对准、拼接均由计算机自动控制,加工精度极高。缺点是设备复杂、成本昂贵、单次曝光面积小、制作大尺寸结构时间太长。投影式加工速度快,但掩模制备困难。两种方式都需要在真空中进行,极大地限制了其适用范围。飞秒激光加工是一种无接触、高精度的微纳光电器件加工方法,对可应用的材料具有很强的广泛性。缺点是设备成本高,加工工艺复杂,加工效率比较低。With the deepening of research, many preparation methods for micro-optical components have been proposed, mainly including semiconductor photolithography, single-point diamond turning, electron beam etching, and femtosecond laser direct writing. The semiconductor lithography process requires the use of a mask, which is exposed to ultraviolet light, and the microstructure is transferred to the photoresist through development. This method is mature in technology, suitable for mass production, and has a low average cost. The disadvantage is that the processed structure can only be flat, and multiple overlays are required when processing a multi-level structure, the alignment accuracy is high, and the cost rises sharply. The surface roughness of single-point diamond turning is small, and the general surface roughness is below 10nm, which is suitable for processing structures with arbitrary rotational topography. The machining accuracy depends on the cutter head and the machine tool. The machine tool requires high accuracy, the machining materials are limited, and the size of the machining structure cannot be too small. Electron beam etching is divided into scanning type and projection type. The scanning type does not require a mask, and the alignment and splicing are automatically controlled by the computer, and the processing accuracy is extremely high. The disadvantage is that the equipment is complicated, the cost is high, the single exposure area is small, and the production time of large-scale structures is too long. Projection processing is fast, but mask preparation is difficult. Both methods need to be performed in a vacuum, which greatly limits their applicability. Femtosecond laser processing is a non-contact, high-precision processing method for micro-nano optoelectronic devices, which has a strong wide range of applicable materials. The disadvantage is that the equipment cost is high, the processing technology is complex, and the processing efficiency is relatively low.
由于制造工艺的影响,目前的透镜系统在形状和尺寸等方面受到了限制。用于光纤与微光学元件纤维集成的制作技术,最近已经提出了使用诸如聚焦离子束铣削,干涉光刻,纳米压印技术,光刻,抛光技术等制造技术的不同方法,将微光学元件直接加工制造在光纤的端面上。然而他们具有加工难度大,复杂的制造装置等缺点。Due to the impact of the manufacturing process, the current lens system is limited in terms of shape and size. Fabrication techniques for fiber integration with micro-optics, different approaches have recently been proposed using fabrication techniques such as focused ion beam milling, interference lithography, nanoimprinting, lithography, polishing, etc., to directly integrate micro-optics. Processed and manufactured on the end face of the optical fiber. However, they have disadvantages such as difficult processing and complicated manufacturing equipment.
而热扩散加工技术具有易于实现、成本低和操作简单等优点,热扩散技术在微机电系统,光集成器件,光通信和光纤传感中具有巨大的应用潜力。光纤经过热扩散处理,会在热扩散加工区域形成平滑的折射率渐变,平滑渐变的折射率区域具有微透镜的效果。对精细设计的椭圆芯光纤进行热扩散加工,可制备纤维集成的正交双轴非球面光纤微透镜。Thermal diffusion processing technology has the advantages of easy implementation, low cost and simple operation. Thermal diffusion technology has great application potential in MEMS, optical integrated devices, optical communication and optical fiber sensing. After the optical fiber is thermally diffused, a smooth gradient of refractive index will be formed in the thermally diffused area, and the smooth gradient of refractive index area has the effect of a microlens. Fiber-integrated orthogonal biaxial aspherical fiber microlenses can be prepared by thermal diffusion processing of finely designed elliptical core fibers.
专利CN01144937.3公开了一种具备透镜功能的光纤及其制造方法,使用周期长度显示透镜功能的渐变折射率光纤,对突变折射率光纤有效。该方法能够对单模光纤进行准直,但是不具有正交双轴非球面光纤微透镜的功能。Patent CN01144937.3 discloses an optical fiber with a lens function and a manufacturing method thereof, using a graded-index optical fiber whose period length shows the lens function, which is effective for abrupt refractive index optical fiber. This method can collimate single-mode fibers, but does not have the function of orthogonal biaxial aspheric fiber microlenses.
专利CN201210011571.6公开了一种大模面积的单模光纤连接器及制造方法,将阶跃型多模光纤进行纤芯掺杂元素的热扩散,形成沿径向向外减小的折射率渐变透镜,主要用于大模面积的单模光纤连接,不具备正交双轴非球面光纤微透镜的功能。Patent CN201210011571.6 discloses a single-mode optical fiber connector with a large mode area and a manufacturing method. The step-type multi-mode optical fiber is subjected to thermal diffusion of core doping elements to form a gradient of refractive index that decreases radially outward. The lens is mainly used for single-mode fiber connection with large mode area, and does not have the function of orthogonal biaxial aspheric fiber microlens.
专利CN201721647567.3公开了一种激光光纤准直聚焦透镜,其特点是在玻璃管一端接入光纤,另一端连接透镜。因为使用微型透镜的方式进行光束准直,无法适用插入连接等情况,限制了使用的范围,而且制造比较困难。Patent CN201721647567.3 discloses a laser fiber collimation focusing lens, which is characterized in that one end of the glass tube is connected to an optical fiber, and the other end is connected to a lens. Because the beam collimation is performed by using a micro lens, it cannot be used for insertion and connection, which limits the scope of use and is difficult to manufacture.
专利US4269648A公开了一种将微球耦合透镜安装在光纤上的方法,使用粘合剂可以将微球耦合透镜安装到光纤的末端上。公开了一种在光纤端制造微透镜的方法,但是该方法制作工艺复杂,且不具备正交双轴非球面光纤微透镜的功能。Patent US4269648A discloses a method of mounting a microsphere coupling lens on an optical fiber, and the microsphere coupling lens can be mounted on the end of the optical fiber by using an adhesive. A method for manufacturing a microlens at the end of an optical fiber is disclosed, but the method has a complicated manufacturing process and does not have the function of an orthogonal biaxial aspherical optical fiber microlens.
专利US7013678B2公开了一种渐变折射率光纤透镜的制造方法,渐变折射率光纤透镜是光纤通信系统中的重要组件,可以作为透镜使用,但是渐变折射率光纤透镜不具备正交双轴非球面光纤微透镜的功能,且该方法工艺比较复杂,生产成本高。Patent US7013678B2 discloses a manufacturing method of a graded-index fiber lens. The graded-index fiber lens is an important component in an optical fiber communication system and can be used as a lens, but the graded-index fiber lens does not have an orthogonal biaxial aspheric fiber microlens. The function of the lens is relatively complicated, and the production cost of this method is relatively high.
专利US7228033B2公开了一种光波导透镜及其制造方法,通过将均匀的玻璃透镜毛坯熔接到光纤的远端,加热并拉伸透镜毛坯,使其分成两段,并将该段连接到定义锥形端的光纤上,然后将透镜毛坯加热到其软化点以上,从而形成球形透镜。该光波导透镜可以用于光束的准直或聚焦,但是该方法制造的透镜,不具备正交双轴非球面光纤微透镜的功能。Patent US7228033B2 discloses an optical waveguide lens and its manufacturing method, by fusing a uniform glass lens blank to the distal end of an optical fiber, heating and stretching the lens blank to divide it into two sections, and connecting the section to a defined taper The lens blank is then heated above its softening point to form a spherical lens. The optical waveguide lens can be used for beam collimation or focusing, but the lens manufactured by this method does not have the function of an orthogonal biaxial aspherical fiber microlens.
本发明公开了一种正交双轴非球面光纤微透镜,本发明可用于纤维集成的微透镜的制备,可广泛应用于基于纤维集成的正交双轴非球面光纤微透镜的微型内窥镜、细胞生物光纤成像系统、光纤光镊系统、微型无人机等领域。它采用热扩散技术,对精细设计的椭圆芯光纤在恒温场中进行热扩散处理,在热扩散区域形成非圆周对称的准高斯分布的折射率渐变区,对热扩散后的椭圆芯光纤进行定长度切割,即可制备不同尺寸的正交双轴非球面光纤微透镜。与在先技术相比,由于采用了热扩散技术和精细设计的椭圆芯光纤,能够将微透镜集成到光纤上,并且能够在光纤上实现纤维集成的非球面透镜的功能,还可以低成本、批量且高效的制备纤维集成的正交双轴非球面光纤微透镜。The invention discloses an orthogonal biaxial aspherical optical fiber microlens. The invention can be used for the preparation of a fiber-integrated microlens, and can be widely used in microendoscopes based on the fiber-integrated orthogonal biaxial aspherical optical fiber microlens. , cell biological fiber imaging system, fiber optic tweezers system, micro-UAV and other fields. It adopts thermal diffusion technology to carry out thermal diffusion treatment on finely designed elliptical core fibers in a constant temperature field, and forms a non-circumferentially symmetrical quasi-Gaussian distribution refractive index gradient region in the thermal diffusion area, and then conducts thermal diffusion treatment on the thermally diffused elliptical core fibers. By cutting to length, orthogonal biaxial aspherical fiber microlenses of different sizes can be prepared. Compared with the prior art, due to the use of thermal diffusion technology and finely designed elliptical core fiber, microlenses can be integrated into the fiber, and the function of the fiber-integrated aspheric lens can be realized on the fiber. Batch and Efficient Fabrication of Fiber-Integrated Orthogonal Biaxial Aspheric Fiber Microlenses.
(三)发明内容(3) Contents of the invention
本发明的目的在于提供一种制作简单、成本低、可批量生产的一种正交双轴非球面光纤微透镜。The purpose of the present invention is to provide an orthogonal biaxial aspherical optical fiber microlens which is simple to manufacture, low in cost and can be mass produced.
本发明的目的是这样实现的:The object of the present invention is achieved in this way:
该正交双轴非球面光纤微透镜由椭圆芯光纤经热扩散制备而成。正交双轴非球面光纤微透镜是在恒温场中,经热扩散制备而成,精细设计的椭圆芯光纤的椭圆芯掺杂剂扩散后,折射率分布变为非圆周对称的准高斯分布,可以等效为微透镜。The orthogonal biaxial aspherical optical fiber microlenses are prepared by thermal diffusion of elliptical core optical fibers. Orthogonal biaxial aspheric fiber microlenses are prepared by thermal diffusion in a constant temperature field. After the elliptical core dopant of the finely designed elliptical core fiber is diffused, the refractive index distribution becomes a non-circumferentially symmetric quasi-Gaussian distribution. Can be equivalent to a microlens.
热扩散技术常用于基模场的扩展,热扩散能够使光纤中的掺杂剂分布渐变为稳定的准高斯分布。将精细设计的椭圆芯光纤放入恒温场中进行加热,椭圆芯中的掺杂剂分布渐变为稳定的非圆周对称的准高斯分布,且光纤的归一化频率在加热过程中不变。掺杂剂的非圆周对称的准高斯分布,使椭圆芯光纤的折射率分布渐变为非圆周对称的准高斯分布,光束传播过程中,向着折射率较高的区域弯曲,因此使热扩散后的椭圆芯光纤具有非球面微透镜的功能。Thermal diffusion technology is often used to expand the fundamental mode field. Thermal diffusion can gradually change the dopant distribution in the fiber to a stable quasi-Gaussian distribution. When the finely designed elliptical core fiber is heated in a constant temperature field, the dopant distribution in the elliptical core gradually changes into a stable non-circumferential quasi-Gaussian distribution, and the normalized frequency of the fiber remains unchanged during the heating process. The non-circumferential quasi-Gaussian distribution of the dopant makes the refractive index distribution of the elliptical core fiber gradually change to a non-circularly symmetric quasi-Gaussian distribution. The elliptical core fiber has the function of an aspherical microlens.
在热扩散过程中,随时间t的变化,局部掺杂浓度C可表示为:During the thermal diffusion process, the local doping concentration C can be expressed as:
公式(1)中D是掺杂剂扩散系数;t是加热时间。D主要取决于不同掺杂剂的种类、主体材料以及局部加热温度。在大多数情况下,考虑锗在光纤的纤芯中的扩散时,在其轴对称几何结构上,光纤的加热温度相对于径向位置r几乎是均匀不变的,并且假定扩散系数D相对于径向位置r是不变的。在实践中,忽略轴向上的掺杂剂的扩散,则在圆柱坐标系中简化扩散方程(1)为:In formula (1), D is the dopant diffusion coefficient; t is the heating time. D mainly depends on the type of different dopants, host material and local heating temperature. In most cases, considering the diffusion of germanium in the core of the fiber, the heating temperature of the fiber is almost uniform with respect to the radial position r over its axisymmetric geometry, and it is assumed that the diffusion coefficient D is relative to The radial position r is constant. In practice, ignoring the diffusion of dopants in the axial direction, the simplified diffusion equation (1) in the cylindrical coordinate system is:
掺杂剂的掺杂浓度C是径向距离r与加热时间t的函数。扩散系数D也受加热温度的影响,表示为:The doping concentration C of the dopant is a function of the radial distance r and the heating time t. The diffusion coefficient D is also affected by the heating temperature and is expressed as:
公式(3)中T(z)表示加热温度,单位为K,与炉内光纤的纵向位置相关;R=8.3145(J/K/mol)是理想气体常数;参数D0和Q可以从实验数据中得到。考虑初始边界条件:In formula (3), T(z) represents the heating temperature, the unit is K, which is related to the longitudinal position of the optical fiber in the furnace; R=8.3145 (J/K/mol) is the ideal gas constant; the parameters D 0 and Q can be obtained from the experimental data obtained in. Consider the initial boundary conditions:
其中,a为常数,表示光纤的直径。where a is a constant and represents the diameter of the fiber.
掺杂剂局部掺杂浓度分布C可以表示为:The dopant local doping concentration distribution C can be expressed as:
公式(5)中f(r)是初始浓度分布,在光纤边界表面r=a处的浓度为0。J0是第一类零阶Bessel函数,特征值αn是其正根In formula (5), f(r) is the initial concentration distribution, and the concentration at the fiber boundary surface r=a is 0. J 0 is a zero-order Bessel function of the first kind, and the eigenvalue α n is its positive root
J0(aαn)=0 (6)J 0 (aα n )=0 (6)
假设光纤在整个热扩散区域的折射率分布与掺杂剂分布成比例,则热扩散后光纤的折射率分布可表示为:Assuming that the refractive index distribution of the fiber in the entire thermal diffusion region is proportional to the dopant distribution, the refractive index distribution of the fiber after thermal diffusion can be expressed as:
公式(7)中ncl和nco分别是光纤包层和中间芯的折射率。在加热温度场为1600℃时,椭圆芯光纤的折射率分布,随加热时间t的变化。曲线21、22、23分别为椭圆芯光纤加热0h、0.2h、0.4h后,沿光纤a轴径向方向的折射率分布(如图2a);曲线24、25、26分别为椭圆芯光纤加热0h、0.2h、0.4h后,沿光纤b轴径向方向的折射率分布(如图2c)。经过0.4h的热扩散处理后,椭圆芯光纤a轴(如图2b)和b轴(如图2d)的折射率分布都趋向于稳定的准高斯分布。椭圆芯a轴和b轴的热扩散系数相同,但直径不同,因此热扩散后,折射率分布不同。In formula (7), n cl and n co are the refractive indices of the fiber cladding and the central core, respectively. When the heating temperature field is 1600℃, the refractive index distribution of the elliptical core fiber varies with the heating time t.
渐变折射率透镜已经广泛应用于准直、聚焦和耦合等光学元件和器件。渐变折射率透镜是指折射率沿轴向、径向或者球面连续变化的透镜。对于折射率径向渐变的正交双轴非球面光纤微透镜,光纤的中心折射率最高,且随着径向距离中心轴的距离增加而减小。Graded index lenses have been widely used in optical components and devices such as collimation, focusing and coupling. A graded index lens refers to a lens whose refractive index changes continuously along the axial, radial or spherical surface. For the orthorhombic biaxial aspheric fiber microlenses with radially graded refractive index, the central refractive index of the fiber is the highest and decreases with increasing radial distance from the central axis.
椭圆芯光纤经过0.4h热扩散后,制备成的纤维集成的正交双轴非球面光纤微透镜的截面折射率如图3所示。图4是纤维集成的正交双轴非球面光纤微透镜的截面折射率的三维显示。从图中可以看出,正交双轴非球面光纤微透镜的折射率分布为椭圆形,即为非圆周对称的准高斯分布,中心折射率最高,且随着径向距离中心轴的距离增加而减小。After the elliptical core fiber is thermally diffused for 0.4 h, the cross-sectional refractive index of the fiber-integrated orthogonal biaxial aspheric fiber microlens is shown in Figure 3. Figure 4 is a three-dimensional display of the cross-sectional refractive index of a fiber-integrated orthogonal biaxial aspheric fiber microlens. It can be seen from the figure that the refractive index distribution of the orthogonal biaxial aspheric optical fiber microlens is elliptical, that is, a non-circumferentially symmetric quasi-Gaussian distribution. The central refractive index is the highest and increases with the radial distance from the central axis. and decrease.
本发明制备纤维集成的正交双轴非球面光纤微透镜时,可对椭圆芯光纤进行精细设计,包括对椭圆芯的几何尺寸、掺杂剂种类、数值孔径等进行设计。When the fiber-integrated orthogonal biaxial aspherical optical fiber microlens is prepared by the invention, the elliptical core optical fiber can be finely designed, including the design of the geometric size of the elliptical core, the type of dopant, the numerical aperture and the like.
本发明制备纤维集成的正交双轴非球面光纤微透镜时,是在恒温场中,经过热扩散制备而成。恒温场的温度,在1000℃以上。椭圆芯掺杂剂不同的椭圆芯光纤的热扩散系数不同。When the fiber-integrated orthogonal biaxial aspherical optical fiber microlenses are prepared by the invention, the microlenses are prepared by thermal diffusion in a constant temperature field. The temperature of the constant temperature field is above 1000°C. The thermal diffusivity of elliptical core fibers with different elliptical core dopants is different.
本发明制备纤维集成的正交双轴非球面光纤微透镜时,在恒温场中加热扩散一定时间之后,对热扩散后的椭圆芯光纤进行定长度切割,即可制备不同尺寸的正交双轴非球面光纤微透镜。When the fiber-integrated orthogonal biaxial aspherical optical fiber microlenses are prepared by the present invention, after heating and diffusing in a constant temperature field for a certain period of time, the thermally diffused elliptical core fiber is cut to a fixed length to prepare orthogonal biaxial optical fibers of different sizes. Aspheric Fiber Microlenses.
本发明制备纤维集成的正交双轴非球面光纤微透镜的制备方法,其特征是包括以下步骤:The method for preparing a fiber-integrated orthogonal biaxial aspherical optical fiber microlens according to the present invention is characterized by comprising the following steps:
第一步,对椭圆芯光纤进行精细设计,包括对椭圆芯的几何尺寸、掺杂剂种类、数值孔径等进行设计。The first step is to finely design the elliptical core fiber, including the design of the geometric size of the elliptical core, the types of dopants, and the numerical aperture.
第二步,对椭圆芯光纤进行热扩散处理,将椭圆芯光纤放在恒温场中进行热扩散处理,加热一定时间之后,椭圆芯光纤的折射率分布渐变为稳定的非圆周对称的准高斯分布。In the second step, the elliptical core fiber is subjected to thermal diffusion treatment, and the elliptical core fiber is placed in a constant temperature field for thermal diffusion treatment. After heating for a certain period of time, the refractive index distribution of the elliptical core fiber gradually changes into a stable non-circumferentially symmetric quasi-Gaussian distribution .
第三步,对椭圆芯光纤进行切割,将热扩散后的椭圆芯光纤进行定长度切割,即可制备不同尺寸的正交双轴非球面光纤微透镜。In the third step, the elliptical core optical fiber is cut, and the thermally diffused elliptical core optical fiber is cut to a fixed length to prepare orthogonal biaxial aspherical optical fiber microlenses of different sizes.
本发明制备纤维集成的正交双轴非球面光纤微透镜时,经过一定时间的热扩散处理后,椭圆芯光纤的折射率分布趋向于稳定的非圆周对称的准高斯分布,光纤的中心折射率最高,且随着径向距离中心轴的距离增加而减小。椭圆芯光纤经过热扩散处理后,在热扩散加工区域,掺杂剂形成平滑的非圆周对称的准高斯分布。掺杂剂的分布为非圆周对称的准高斯分布,则椭圆芯光纤的折射率分布也为非圆周对称的准高斯分布,光束传播过程中,向着折射率较高的区域弯曲,因此使热扩散后的椭圆芯光纤具有微透镜功能。When the fiber-integrated orthogonal biaxial aspherical optical fiber microlens is prepared by the invention, after a certain time of thermal diffusion treatment, the refractive index distribution of the elliptical core fiber tends to be a stable non-circumferentially symmetrical quasi-Gaussian distribution, and the central refractive index of the optical fiber highest and decreases with increasing radial distance from the central axis. After the elliptical core fiber is thermally diffused, the dopant forms a smooth, non-circumferentially symmetric quasi-Gaussian distribution in the thermally diffused processing region. The distribution of the dopant is a non-circular symmetric quasi-Gaussian distribution, and the refractive index distribution of the elliptical core fiber is also a non-circularly symmetric quasi-Gaussian distribution. During the propagation of the beam, it bends toward the area with higher refractive index, so the heat spreads. The latter elliptical core fiber has a microlens function.
如图3所示,为纤维集成的正交双轴非球面光纤微透镜的截面折射率分布为椭圆形,即为非圆周对称的准高斯分布,光纤的中心折射率最高,且随着径向距离中心轴的距离增加而减小。光束传播过程中,向着折射率较高的区域弯曲,入射的光束经过微透镜时,中心及边缘的光线会逐渐向折射率高的区域弯曲,而a轴和b轴对光线弯曲的能力不同,相当于非球面微透镜。因此在正交双轴非球面光纤微透镜中传输一段距离后,光束会变成椭圆形的光场分布。As shown in Figure 3, the cross-sectional refractive index distribution of the fiber-integrated orthogonal biaxial aspherical fiber microlens is elliptical, that is, a non-circumferentially symmetric quasi-Gaussian distribution. The central refractive index of the fiber is the highest, and with the radial direction The distance from the central axis increases and decreases. In the process of beam propagation, it bends toward the area with higher refractive index. When the incident beam passes through the microlens, the light in the center and edge will gradually bend toward the area with high refractive index, and the a-axis and b-axis have different ability to bend light. Equivalent to an aspherical microlens. Therefore, after transmitting a certain distance in the orthogonal biaxial aspherical fiber microlens, the light beam will become an elliptical light field distribution.
本发明制备的纤维集成的正交双轴非球面光纤微透镜,可实现对光束整形的功能,使高斯光束等整形为椭圆形的光场分布。对纤维集成的正交双轴非球面光纤微透镜进行定长度切割,即可制备不同尺寸的正交双轴非球面光纤微透镜,实现不同需求的光束整形的功能。The fiber-integrated orthogonal biaxial aspherical optical fiber microlenses prepared by the invention can realize the function of beam shaping, so that Gaussian beams and the like can be shaped into elliptical light field distribution. By cutting the fiber-integrated orthogonal biaxial aspherical fiber microlenses to a fixed length, orthogonal biaxial aspherical fiber microlenses of different sizes can be prepared to realize the beam shaping function of different requirements.
本发明对椭圆芯光纤精细设计时,可以根据需要,椭圆芯的掺杂剂为一种或多种掺杂的不同掺杂剂。使用椭圆芯光纤进行正交双轴非球面光纤微透镜制备时,设计更大的椭圆芯直径,或增长加热时间、提高加热温度,可以制备更大模场直径的正交双轴非球面光纤微透镜。使用一种或多种掺杂的不同掺杂剂,不影响正交双轴非球面光纤微透镜光束整形功能的实现。When the present invention finely designs the elliptical core optical fiber, the dopant of the elliptical core can be one or more doped different dopants as required. When using elliptical core fiber for the preparation of orthogonal biaxial aspheric fiber microlenses, designing a larger elliptical core diameter, or increasing the heating time and heating temperature, can prepare orthogonal biaxial aspheric fiber microlenses with larger mode field diameters. lens. The use of one or more doped different dopants does not affect the realization of the beam shaping function of the orthogonal biaxial aspherical fiber microlens.
本发明提供的纤维集成的正交双轴非球面光纤微透镜,由椭圆芯光纤经热扩散制备而成。与在先技术相比,由于采用了热扩散技术和精细设计的椭圆芯光纤,能够将微透镜集成到光纤上,并且能够在光纤上实现纤维集成的非球面透镜的功能,还可以低成本、批量且高效的制备纤维集成的正交双轴非球面光纤微透镜。The fiber-integrated orthogonal biaxial aspherical optical fiber microlens provided by the invention is prepared by thermal diffusion of elliptical core optical fibers. Compared with the prior art, due to the use of thermal diffusion technology and finely designed elliptical core fiber, microlenses can be integrated into the fiber, and the function of the fiber-integrated aspheric lens can be realized on the fiber. Batch and Efficient Fabrication of Fiber-Integrated Orthogonal Biaxial Aspheric Fiber Microlenses.
(四)附图说明(4) Description of drawings
图1是一种纤维集成的正交双轴非球面光纤微透镜经热扩散制备前后折射率分布变化的示意图。Fig. 1 is a schematic diagram of the change of refractive index distribution before and after the preparation of a fiber-integrated orthogonal biaxial aspheric optical fiber microlens by thermal diffusion.
图2a是椭圆芯光纤的沿a轴折射率分布随着加热时间t的变化在温度场为1600℃内的变化的示意图,而图2b是椭圆芯光纤加热0.4h后沿a轴的折射率分布示意图,图2c是椭圆芯光纤的沿b轴折射率分布随着加热时间t的变化在温度场为1600℃内的变化的示意图,而图2d是椭圆芯光纤加热0.4h后沿b轴的折射率分布示意图。Figure 2a is a schematic diagram of the change of the refractive index distribution along the a-axis of the elliptical core fiber with the heating time t in a temperature field of 1600 °C, and Figure 2b is the refractive index distribution of the elliptical core fiber along the a-axis after heating for 0.4h Schematic diagram, Figure 2c is a schematic diagram of the change of the refractive index distribution along the b-axis of the elliptical core fiber with the heating time t in a temperature field of 1600 °C, and Figure 2d is the elliptical core fiber after heating for 0.4h The refraction along the b-axis Schematic diagram of the rate distribution.
图3是椭圆芯光纤加热0.4h后的截面折射率分布。Figure 3 is the cross-sectional refractive index distribution of the elliptical core fiber after heating for 0.4h.
图4是椭圆芯光纤加热0.4h后的截面折射率分布的三维显示。Figure 4 is a three-dimensional display of the cross-sectional refractive index distribution of the elliptical core fiber after heating for 0.4 h.
图5是实施例中椭圆芯光纤的截面示意图。51为椭圆芯光纤的包层,52为椭圆芯光纤的椭圆芯。5 is a schematic cross-sectional view of an elliptical core optical fiber in an embodiment. 51 is the cladding of the elliptical core fiber, and 52 is the elliptical core of the elliptical core fiber.
图6是实施例中单模光纤+正交双轴非球面光纤微透镜的结构示意图。61为单模光纤,62为由椭圆芯光纤制备而成的纤维集成的正交双轴非球面光纤微透镜。FIG. 6 is a schematic structural diagram of a single-mode fiber + an orthogonal biaxial aspherical fiber microlens in an embodiment. 61 is a single-mode fiber, and 62 is a fiber-integrated orthogonal biaxial aspherical fiber microlens prepared from an elliptical core fiber.
图7a是实施例中单模光纤+正交双轴非球面光纤微透镜沿a轴方向的折射率分布,图7b是实施例中单模光纤+正交双轴非球面光纤微透镜沿a轴方向的折射率分布的三维显示,图7c是实施例中单模光纤+正交双轴非球面光纤微透镜沿b轴方向的折射率分布,图7d是实施例中单模光纤+正交双轴非球面光纤微透镜沿b轴方向的折射率分布的三维显示。Fig. 7a is the refractive index distribution of the single-mode fiber+orthogonal biaxial aspherical fiber microlens along the a-axis in the embodiment, and Fig. 7b is the single-mode fiber+orthogonal biaxial aspherical fiber microlens along the a-axis in the embodiment The three-dimensional display of the refractive index distribution in the direction, FIG. 7c is the refractive index distribution of the single-mode fiber + orthogonal biaxial aspherical fiber microlens along the b-axis direction in the embodiment, and FIG. 7d is the single-mode fiber + orthogonal double in the embodiment. Three-dimensional display of the refractive index profile of an aspherical fiber microlens along the b-axis.
图8a是实施例中单模光纤的纤端出射的光场分布,图8b是实施例中单模光纤+正交双轴非球面光纤微透镜沿a轴方向的纤端出射的光场分布,图8c是实施例中单模光纤+正交双轴非球面光纤微透镜沿b轴方向的纤端出射的光场分布,图8d是实施例中单模光纤的纤端出射光场的光强分布,图8e是实施例中单模光纤+正交双轴非球面光纤微透镜沿a轴方向的纤端出射光场的光强分布,图8f是实施例中单模光纤+正交双轴非球面光纤微透镜沿b轴方向的纤端出射光场的光强分布。Fig. 8a is the light field distribution of the single-mode fiber exiting the fiber end in the embodiment, Fig. 8b is the light field distribution of the single-mode fiber+orthogonal biaxial aspherical fiber microlens exiting the fiber end along the a-axis direction in the embodiment, Fig. 8c is the light field distribution of the single-mode fiber + orthogonal biaxial aspherical fiber microlens along the b-axis direction of the light field output in the embodiment, and Fig. 8d is the light intensity of the light field output from the fiber end of the single-mode fiber in the embodiment Distribution, Figure 8e is the light intensity distribution of the light field output from the fiber end along the a-axis direction of the single-mode fiber+orthogonal biaxial aspherical fiber microlens in the embodiment, and Figure 8f is the single-mode fiber+orthogonal biaxial in the embodiment The light intensity distribution of the outgoing light field from the fiber end of the aspherical fiber microlens along the b-axis direction.
图9a~g分别为实施例中光束在单模光纤+正交双轴非球面光纤微透镜中,传播0μm、80μm、180μm、280μm、380μm、480μm、580μm时切面的光场分布。Figures 9a-g respectively show the light field distribution of the cross-section when the light beam propagates in a single-mode fiber + an orthogonal biaxial aspherical fiber microlens at 0 μm, 80 μm, 180 μm, 280 μm, 380 μm, 480 μm, and 580 μm in the embodiment.
(五)具体实施方式(5) Specific implementation methods
下面结合具体的实施例来进一步阐述本发明。The present invention will be further described below in conjunction with specific embodiments.
实施例1:Example 1:
本实施例椭圆芯光纤的截面示意图,如图5所示。51为椭圆芯光纤的包层,52为椭圆芯光纤的椭圆芯。A schematic cross-sectional view of the elliptical core optical fiber in this embodiment is shown in FIG. 5 . 51 is the cladding of the elliptical core fiber, and 52 is the elliptical core of the elliptical core fiber.
本实施例纤维集成的正交双轴非球面光纤微透镜的制备步骤为:The preparation steps of the fiber-integrated orthogonal biaxial aspherical optical fiber microlens of the present embodiment are as follows:
第一步,对椭圆芯光纤进行精细设计,包括对椭圆芯的几何尺寸、掺杂剂种类、数值孔径等进行设计。本实施例所精细设计的椭圆芯光纤的参数为,包层半径为62.5μm,椭圆芯的a轴半径为17.5μm、b轴半径为10μm,数值孔径为0.14。椭圆芯光纤的掺杂剂种类为锗。The first step is to finely design the elliptical core fiber, including the design of the geometric size of the elliptical core, the types of dopants, and the numerical aperture. The parameters of the finely designed elliptical core fiber in this embodiment are that the cladding radius is 62.5 μm, the a-axis radius of the elliptical core is 17.5 μm, the b-axis radius is 10 μm, and the numerical aperture is 0.14. The dopant species of the elliptical core fiber is germanium.
第二步,对椭圆芯光纤进行热扩散处理。将一段椭圆芯光纤放在恒温场中进行热扩散处理,恒温场的温度为1600℃,加热0.4h后,椭圆芯光纤的折射率分布渐变为稳定的非圆周对称的准高斯分布。In the second step, thermal diffusion treatment is performed on the elliptical core fiber. A section of elliptical core fiber was placed in a constant temperature field for thermal diffusion treatment. The temperature of the constant temperature field was 1600 °C. After heating for 0.4 h, the refractive index distribution of the elliptical core fiber gradually changed to a stable non-circumferentially symmetric quasi-Gaussian distribution.
第三步,对椭圆芯光纤进行切割,将热扩散后的椭圆芯光纤进行定长度切割,即可制备不同尺寸的正交双轴非球面光纤微透镜。In the third step, the elliptical core optical fiber is cut, and the thermally diffused elliptical core optical fiber is cut to a fixed length to prepare orthogonal biaxial aspherical optical fiber microlenses of different sizes.
先取一段单模光纤,将热扩散后的椭圆芯光纤与单模光纤进行焊接,在热扩散后的椭圆芯光纤侧进行定长度切割,使其作为纤维集成的正交双轴非球面光纤微透镜,组成单模光纤+正交双轴非球面光纤微透镜的结构,如图6所示。61为单模光纤;62为定长度切割的热扩散后的椭圆芯光纤,作为微透镜焊接在单模光纤61的纤端。First take a piece of single-mode fiber, weld the thermally diffused elliptical core fiber to the single-mode fiber, and cut the thermally diffused elliptical core fiber side to a fixed length to use it as a fiber-integrated orthogonal biaxial aspherical fiber microlens , the structure of single-mode fiber + orthogonal biaxial aspheric fiber microlens is formed, as shown in Figure 6. 61 is a single-mode fiber; 62 is a heat-diffused elliptical core fiber cut to a fixed length, which is welded to the fiber end of the single-
利用有限元法对光纤热扩散处理过程建立模型,对热扩散处理后折射率分布的变化进行了仿真。如图7a所示,是单模光纤+正交双轴非球面光纤微透镜沿a轴方向的折射率分布,图7c是单模光纤+正交双轴非球面光纤微透镜沿b轴方向的折射率分布。所建立的仿真模型中,单模光纤61的长度为5μm,数值孔径为0.14,纤芯直径为9μm,包层直径为125μm;纤维集成的正交双轴非球面光纤微透镜62的长度为380μm。图7b是实施例中单模光纤+正交双轴非球面光纤微透镜沿a轴方向的折射率分布的三维显示,图7d是实施例中单模光纤+正交双轴非球面光纤微透镜沿b轴方向的折射率分布的三维显示。The finite element method was used to establish a model for the thermal diffusion process of the optical fiber, and the change of the refractive index distribution after the thermal diffusion treatment was simulated. As shown in Figure 7a, it is the refractive index distribution of the single-mode fiber + orthogonal biaxial aspherical fiber microlens along the a-axis direction, and Figure 7c shows the single-mode fiber + orthogonal biaxial aspherical fiber microlens along the b-axis direction. Refractive index distribution. In the established simulation model, the length of the single-
纤维集成的正交双轴非球面光纤微透镜62,具有平滑渐变的折射率分布过渡,且折射率分布为椭圆形,即是稳定的非圆周对称的准高斯分布,中心折射率最高,且随着径向距离中心轴的距离增加而减小。The fiber-integrated orthogonal biaxial aspherical
本实施例中正交双轴非球面光纤微透镜的折射率分布为椭圆形,分别沿其a轴和b轴的过中心线的切面进行建模仿真。利用有限元法分别对单模光纤的出射光场,单模光纤+正交双轴非球面光纤微透镜的出射光场进行了仿真。所建立的单模光纤61的仿真模型中,单模光纤61的长度为20μm,真空63的长度为200μm。所建立的单模光纤+正交双轴非球面光纤微透镜仿真模型中,单模光纤61的长度为5μm,纤维集成的正交双轴非球面光纤微透镜62的长度为380μm,真空63的长度为200μm。仿真结果如图8所示。图8a所示,为单模光纤61的纤端出射的光场分布,图8b是单模光纤61+正交双轴非球面光纤微透镜62沿a轴方向的纤端出射的光场分布,图8c是单模光纤+正交双轴非球面光纤微透镜沿b轴方向的纤端出射的光场分布,图8d是单模光纤61的纤端出射光场的光强分布,图8e是单模光纤61+正交双轴非球面光纤微透镜62沿a轴方向的纤端出射光场的光强分布,图8f是单模光纤61+正交双轴非球面光纤微透镜62沿b轴方向的纤端出射光场的光强分布。In this embodiment, the refractive index distribution of the orthogonal biaxial aspherical optical fiber microlens is elliptical, and modeling and simulation are performed along the tangent planes passing through the center line of the a-axis and the b-axis respectively. The outgoing light field of single-mode fiber and the outgoing light field of single-mode fiber + orthogonal biaxial aspherical fiber microlens were simulated by finite element method. In the established simulation model of the single-mode
对比图8a、8b和8c,分别为单模光纤61、单模光纤61+正交双轴非球面光纤微透镜62沿a轴方向和单模光纤61+正交双轴非球面光纤微透镜62沿b轴方向的纤端出射的光场分布。光束在在纤维集成的正交双轴非球面光纤微透镜62中传播时,沿a轴方向和沿b轴方向的光线逐渐向折射率高的区域弯曲,即单模光纤61+正交双轴非球面光纤微透镜62中出射光束的发散角比单模光纤61出射光束的发散角要小。但是沿b轴方向的折射率更高,沿b轴方向对光线的弯曲能力更强,沿b轴方向的光束发散相比沿a轴方向更小,正交双轴非球面光纤微透镜62相当于非球面微透镜。因此光束在正交双轴非球面光纤微透镜62中传输一段距离后,光束会变成椭圆形的光场分布。对比单模光纤61与单模光纤61+正交双轴非球面光纤微透镜62的纤端出射的光场分布,本发明提供的正交双轴非球面光纤微透镜62具有光束整形的功能。Comparing Figures 8a, 8b and 8c, single-
对比图8d、8e和8f,分别为单模光纤61、单模光纤61+正交双轴非球面光纤微透镜62沿a轴方向和单模光纤61+正交双轴非球面光纤微透镜62沿b轴方向的纤端出射光场的光强分布。光纤端出射光场的光强分布取其光束出射时,光场分布能量最大值的1/2e。对比可以看出,光束在纤维集成的正交双轴非球面光纤微透镜62中传播时,沿a轴方向和沿b轴方向的光线逐渐向折射率高的区域弯曲,即单模光纤61+正交双轴非球面光纤微透镜62中出射光束光场的能量比单模光纤61出射光束光场的能量要为集中,传播的距离更远。但是沿b轴方向的折射率更高,沿b轴方向对光线的弯曲能力更强,因此沿b轴方向的光束光场的能量相比沿a轴方向更为集中,并在真空63中稳定传播。本发明提供的正交双轴非球面光纤微透镜62,具有对光束进行整形,且准直的功能。Comparing Figures 8d, 8e and 8f, single-
利用光束传播法建立仿真模型,图9a~g分别为实施例中光束在单模光纤61+正交双轴非球面光纤微透镜62中,传播0μm、80μm、180μm、280μm、380μm、480μm、580μm时切面的光场分布。光束在轴向方向上传播时,由单模光纤61中圆周对称的高斯分布光场,光束直径分别沿a轴、b轴逐渐变大,且b轴的光束直径小于a轴的光束直径。因此在纤维集成的正交双轴非球面光纤微透镜62中传播时,圆周对称的高斯分布光束逐渐变成非圆周对称的椭圆形分布的光束,并在真空63中稳定传播。The simulation model is established by the beam propagation method. Figures 9a to g respectively show that the beam propagates 0μm, 80μm, 180μm, 280μm, 380μm, 480μm, 580μm in the single-
本发明实施例提供的纤维集成的正交双轴非球面光纤微透镜,能够将微透镜集成到光纤上,并且能够在光纤上实现纤维集成的非球面微透镜的功能。与在先技术相比,由于采用了热扩散技术和精细设计的椭圆芯光纤,可以低成本、批量且高效的制备纤维集成的正交双轴非球面光纤微透镜。The fiber-integrated orthogonal biaxial aspherical optical fiber microlens provided by the embodiments of the present invention can integrate the microlens into the optical fiber, and can realize the function of the fiber-integrated aspherical microlens on the optical fiber. Compared with the prior art, the fiber-integrated orthogonal biaxial aspherical fiber microlenses can be fabricated in a low-cost, batch and high-efficiency manner due to the adoption of thermal diffusion technology and finely designed elliptical core fibers.
以上所述,仅为本发明的优选实施例,但本发明的保护范围并不局限于此。任何本领域的技术人员根据本发明的精神和范围,对本发明进行各种改动和变化,均应包含在本发明权利要求保护范围内。The above descriptions are only preferred embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art can make various modifications and changes to the present invention according to the spirit and scope of the present invention, which shall be included in the protection scope of the claims of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010389630.8A CN111624702B (en) | 2020-05-10 | 2020-05-10 | Orthogonal double-shaft aspheric optical fiber micro lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010389630.8A CN111624702B (en) | 2020-05-10 | 2020-05-10 | Orthogonal double-shaft aspheric optical fiber micro lens |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111624702A true CN111624702A (en) | 2020-09-04 |
CN111624702B CN111624702B (en) | 2022-05-17 |
Family
ID=72269904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010389630.8A Active CN111624702B (en) | 2020-05-10 | 2020-05-10 | Orthogonal double-shaft aspheric optical fiber micro lens |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111624702B (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5256851A (en) * | 1992-02-28 | 1993-10-26 | At&T Bell Laboratories | Microlenses for coupling optical fibers to elliptical light beams |
US5301252A (en) * | 1991-09-26 | 1994-04-05 | The Furukawa Electric Company, Ltd. | Mode field conversion fiber component |
JPH0882718A (en) * | 1994-09-14 | 1996-03-26 | Furukawa Electric Co Ltd:The | Method for making core of elliptic core optical fiber completely round and production of optical fiber by using this method |
US20030035630A1 (en) * | 2001-03-16 | 2003-02-20 | Gerald Meltz | Thermally diffused multi-core waveguide |
US20080118208A1 (en) * | 2006-11-21 | 2008-05-22 | Monte Thomas D | Optical fiber composite, devices, and methods of making same |
CN110446957A (en) * | 2017-03-22 | 2019-11-12 | 株式会社藤仓 | Polarization maintaining optical fibre, optical device, the base material of polarization maintaining optical fibre and manufacturing method |
-
2020
- 2020-05-10 CN CN202010389630.8A patent/CN111624702B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5301252A (en) * | 1991-09-26 | 1994-04-05 | The Furukawa Electric Company, Ltd. | Mode field conversion fiber component |
US5256851A (en) * | 1992-02-28 | 1993-10-26 | At&T Bell Laboratories | Microlenses for coupling optical fibers to elliptical light beams |
JPH0882718A (en) * | 1994-09-14 | 1996-03-26 | Furukawa Electric Co Ltd:The | Method for making core of elliptic core optical fiber completely round and production of optical fiber by using this method |
US20030035630A1 (en) * | 2001-03-16 | 2003-02-20 | Gerald Meltz | Thermally diffused multi-core waveguide |
US20080118208A1 (en) * | 2006-11-21 | 2008-05-22 | Monte Thomas D | Optical fiber composite, devices, and methods of making same |
CN110446957A (en) * | 2017-03-22 | 2019-11-12 | 株式会社藤仓 | Polarization maintaining optical fibre, optical device, the base material of polarization maintaining optical fibre and manufacturing method |
Non-Patent Citations (1)
Title |
---|
VAN GIA TRUONG.ET.AL: "Spatial effect of conical angle on optical-thermal distribution for circumferential photocoagulation", 《BIOMEDICAL OPTICS EXPRESS》 * |
Also Published As
Publication number | Publication date |
---|---|
CN111624702B (en) | 2022-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3121614B2 (en) | Method of manufacturing cylindrical microlenses of selected shape and products obtained thereby | |
US6963682B2 (en) | Beam altering fiber lens device and method of manufacture | |
US7317853B2 (en) | Integrated optics spot size converter and manufacturing method | |
EP3218750B1 (en) | Adiabatic optical coupling systems | |
CN111316148A (en) | Optical fiber and optical system including the same | |
US10725244B2 (en) | Optical fiber with cladding-embedded light-converging structure for lateral optical coupling | |
CN103728696A (en) | 1*N optical fiber coupler | |
EP1664868A2 (en) | Fiber lens with multimode pigtail | |
EP3574363A1 (en) | Optical fibers and optical systems comprising the same | |
CN109633822B (en) | A kind of optical fiber Bessel beam generator and its making method | |
CN111650688B (en) | An optical fiber micro-combination lens | |
CN106291821A (en) | A kind of hollow-core photonic crystal fiber bonder | |
US7474821B2 (en) | Manufacturing a microlens at the extremity of a lead waveguide | |
Hoque et al. | Design and fabrication of a biconvex aspherical microlens for maximizing fiber coupling efficiency with an ultraviolet laser diode | |
JP2005519341A (en) | Biconic lens for optical fiber and manufacturing method thereof | |
CN111650690A (en) | A micro-collimator based on double-clad fiber | |
CN111624702B (en) | Orthogonal double-shaft aspheric optical fiber micro lens | |
CN111624700A (en) | Fiber-integrated optical fiber concave lens and preparation method thereof | |
JPH05107428A (en) | End structure of optic fiber and manufacture thereof | |
CN111308608A (en) | A fiber-integrated Gaussian mode field beam splitter/combiner | |
CN102109645B (en) | Coupling device of semiconductor strip laser diode and single-mode fiber | |
CN111650692B (en) | Multicore optical fiber beam splitter based on high-refractive-index matching fluid | |
CN111650689B (en) | Fiber integrated micro lens set | |
CN111624703A (en) | Fiber integrated Fourier transform micro optical system | |
CN111427119A (en) | A kind of preparation method of integrated crystal optical waveguide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20200904 Assignee: Jianuo (Tianjin) Technology Development Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2023980045809 Denomination of invention: A Kind of Orthogonal Biaxial Aspheric Fiber Microlens Granted publication date: 20220517 License type: Common License Record date: 20231107 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20200904 Assignee: Ningbo Yifei Technology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2024980021661 Denomination of invention: An orthogonal biaxial non spherical fiber optic microlens Granted publication date: 20220517 License type: Common License Record date: 20241101 |
|
EE01 | Entry into force of recordation of patent licensing contract |