CN111621510B - Optimized clostridium Yankeei exogenous DNA electrotransformation method - Google Patents
Optimized clostridium Yankeei exogenous DNA electrotransformation method Download PDFInfo
- Publication number
- CN111621510B CN111621510B CN201910145151.9A CN201910145151A CN111621510B CN 111621510 B CN111621510 B CN 111621510B CN 201910145151 A CN201910145151 A CN 201910145151A CN 111621510 B CN111621510 B CN 111621510B
- Authority
- CN
- China
- Prior art keywords
- clostridium
- exogenous dna
- yankeei
- yankee
- self
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 108091029865 Exogenous DNA Proteins 0.000 title claims abstract description 44
- 241000193403 Clostridium Species 0.000 title claims abstract description 29
- 230000004048 modification Effects 0.000 claims abstract description 46
- 238000012986 modification Methods 0.000 claims abstract description 46
- 238000006243 chemical reaction Methods 0.000 claims abstract description 34
- 239000013612 plasmid Substances 0.000 claims description 45
- 210000004027 cell Anatomy 0.000 claims description 29
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Natural products NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 28
- 230000003313 weakening effect Effects 0.000 claims description 24
- 230000035939 shock Effects 0.000 claims description 18
- 210000002421 cell wall Anatomy 0.000 claims description 17
- 239000004471 Glycine Substances 0.000 claims description 16
- 239000003795 chemical substances by application Substances 0.000 claims description 15
- 239000000872 buffer Substances 0.000 claims description 12
- 230000011987 methylation Effects 0.000 claims description 11
- 238000007069 methylation reaction Methods 0.000 claims description 11
- 241000588724 Escherichia coli Species 0.000 claims description 10
- 229930006000 Sucrose Natural products 0.000 claims description 10
- 108090000623 proteins and genes Proteins 0.000 claims description 10
- 239000005720 sucrose Substances 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 4
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 claims description 4
- 125000000185 sucrose group Chemical group 0.000 claims description 4
- 241000186566 Clostridium ljungdahlii Species 0.000 description 71
- 238000011084 recovery Methods 0.000 description 27
- 108020004414 DNA Proteins 0.000 description 23
- 230000009466 transformation Effects 0.000 description 20
- 238000004520 electroporation Methods 0.000 description 15
- 241001256038 Clostridium ljungdahlii DSM 13528 Species 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 108010044289 DNA Restriction-Modification Enzymes Proteins 0.000 description 8
- 102000006465 DNA Restriction-Modification Enzymes Human genes 0.000 description 8
- 239000003223 protective agent Substances 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 6
- 230000001580 bacterial effect Effects 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- TWBYWOBDOCUKOW-UHFFFAOYSA-N isonicotinic acid Chemical compound OC(=O)C1=CC=NC=C1 TWBYWOBDOCUKOW-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 3
- 102000016943 Muramidase Human genes 0.000 description 3
- 108010014251 Muramidase Proteins 0.000 description 3
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 3
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000009630 liquid culture Methods 0.000 description 3
- 229960000274 lysozyme Drugs 0.000 description 3
- 239000004325 lysozyme Substances 0.000 description 3
- 235000010335 lysozyme Nutrition 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000011573 trace mineral Substances 0.000 description 3
- 235000013619 trace mineral Nutrition 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- 108060004795 Methyltransferase Proteins 0.000 description 2
- 102000016397 Methyltransferase Human genes 0.000 description 2
- 102000055027 Protein Methyltransferases Human genes 0.000 description 2
- 108700040121 Protein Methyltransferases Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- 239000003782 beta lactam antibiotic agent Substances 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000011426 transformation method Methods 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 150000003722 vitamin derivatives Chemical class 0.000 description 2
- 239000002132 β-lactam antibiotic Substances 0.000 description 2
- 229940124586 β-lactam antibiotics Drugs 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 241000192125 Firmicutes Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 235000013878 L-cysteine Nutrition 0.000 description 1
- 239000004201 L-cysteine Substances 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-M Methanesulfonate Chemical compound CS([O-])(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-M 0.000 description 1
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 108010013639 Peptidoglycan Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- 101710188297 Trehalose synthase/amylase TreS Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 238000003766 bioinformatics method Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 description 1
- 229960002079 calcium pantothenate Drugs 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 210000005056 cell body Anatomy 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010362 genome editing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 101150066555 lacZ gene Proteins 0.000 description 1
- AGBQKNBQESQNJD-UHFFFAOYSA-M lipoate Chemical compound [O-]C(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-M 0.000 description 1
- 235000019136 lipoic acid Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- 229960002663 thioctic acid Drugs 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/90—Stable introduction of foreign DNA into chromosome
Landscapes
- Genetics & Genomics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Mycology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域Technical field
本发明属于生物技术领域,具体涉及一种优化的扬氏梭菌(Clostridiumljungdahlii)外源DNA电转化方法。The invention belongs to the field of biotechnology, and specifically relates to an optimized electrotransformation method of exogenous DNA of Clostridium jungdahlii (Clostridium ljungdahlii).
背景技术Background technique
近年来,化石燃料的大量使用造成了严重的环境问题,如空气污染,温室效应等;与此同时,化石燃料的不可再生性也使得人们在可预见的未来面临着能源短缺的窘境。因此,寻找可再生的清洁能源迫在眉睫。显然,如果能够将富含CO2、CO等一碳气体的废气转化为能够被我们利用的能源或化学原料就能够完美解决这一系列的问题。而幸运的是,食气梭菌的发酵过程恰恰符合这点,它们能够在消耗一碳气体的同时产生各种有机化合物,其中不乏可以作为燃料及化学原料的高价值产物。In recent years, the extensive use of fossil fuels has caused serious environmental problems, such as air pollution, greenhouse effect, etc.; at the same time, the non-renewable nature of fossil fuels has also caused people to face energy shortages in the foreseeable future. Therefore, the search for renewable and clean energy is urgent. Obviously, if the waste gas rich in one-carbon gases such as CO 2 and CO can be converted into energy or chemical raw materials that can be utilized by us, this series of problems can be perfectly solved. Fortunately, the fermentation process of Clostridium aerogenes is exactly in line with this point. They can produce various organic compounds while consuming one-carbon gas, many of which are high-value products that can be used as fuel and chemical raw materials.
扬氏梭菌是食气梭菌的一员,它是一种极具潜力与竞争力的工业菌,可以利用一碳气体(CO、CO2)进行厌氧发酵,通过特殊的Wood-Ljungdahl固碳途径生成中心代谢产物乙酰辅酶A,最终合成乙醇、乙酸等生物燃料和化工原料。相比于其他食气梭菌,扬氏梭菌的分子操作系统比较完善,目前人们已经可以对其进行基本的外源质粒导入、简单的基因编辑等操作。Clostridium ljungdahlii is a member of Clostridium aerogenes. It is an industrial bacterium with great potential and competitiveness. It can use one-carbon gas (CO, CO 2 ) for anaerobic fermentation through special Wood-Ljungdahl solids. The carbon pathway generates the central metabolite acetyl-CoA, which ultimately synthesizes biofuels and chemical raw materials such as ethanol and acetic acid. Compared with other Clostridium aerogenes, the molecular operating system of Clostridium ljungdahlii is relatively complete, and people can now perform basic operations such as introducing foreign plasmids and simple gene editing.
然而,扬氏梭菌现有的转化方法效率较低,以最常用的大肠杆菌-梭菌穿梭质粒PMTL83151质粒为例:2016年Bastian Molitor等人报道的最新效率仅在3.23±2.02×102CFU/μg;而迄今为止所报道的最高效率是Ching Leang等在2013年所取得的3.1±1.8×103CFU/μg,其主要是通过提高感受态菌体浓度取得的,其浓缩倍数在1000倍左右。这大大限制了相关研究的进行,例如基于扬氏梭菌建立有效库容量的突变体库、对转化效率要求较高的基因组大片段编辑等。于是,建立起一套高效的扬氏梭菌转化方法成为了一个急需解决的瓶颈。However, the efficiency of existing transformation methods for C. ljungdahlii is low. Take the most commonly used E. coli-Clostridium shuttle plasmid PMTL83151 plasmid as an example: the latest efficiency reported by Bastian Molitor et al. in 2016 is only 3.23±2.02×10 2 CFU /μg; the highest efficiency reported so far is 3.1±1.8×10 3 CFU/μg achieved by Ching Leang et al. in 2013, which was mainly achieved by increasing the concentration of competent bacteria, with a concentration factor of 1000 times about. This greatly limits the conduct of related research, such as the establishment of a mutant library with effective library capacity based on Clostridium ljungdahlii and the editing of large genome fragments that require high transformation efficiency. Therefore, establishing an efficient transformation method for C. ljungdahlii has become a bottleneck that urgently needs to be solved.
因此,本领域迫切需要开发一种高效的、易操作的扬氏梭菌外源DNA电转化方法。Therefore, there is an urgent need in this field to develop an efficient and easy-to-operate electrotransformation method for exogenous DNA of C. ljungdahlii.
发明内容Contents of the invention
本发明的目的就是提供一种高效的、易操作的扬氏梭菌外源DNA电转化方法。The purpose of the present invention is to provide an efficient and easy-to-operate electrotransformation method of exogenous DNA of Clostridium ljungdahlii.
在本发明的第一方面,提供了一种扬氏梭菌自身限制性修饰系统的用途,用于将扬氏梭菌的外源DNA进行修饰,以提高所述外源DNA向扬氏梭菌的电转化效率。In a first aspect of the present invention, there is provided the use of a Clostridium ljungdahlii self-restriction modification system for modifying exogenous DNA of Clostridium ljungdahlii to improve the ability of the exogenous DNA to electrical conversion efficiency.
在另一优选例中,所述扬氏梭菌包括:扬氏梭菌ATCC 55383、扬氏梭菌ATCC49587、扬氏梭菌DSM 13528。In another preferred embodiment, the Clostridium ljungdahlii includes: Clostridium ljungdahlii ATCC 55383, Clostridium ljungdahlii ATCC 49587, and Clostridium ljungdahlii DSM 13528.
在另一优选例中,所述修饰为甲基化修饰。In another preferred embodiment, the modification is methylation modification.
在另一优选例中,所述扬氏梭菌自身限制性修饰系统为II型扬氏梭菌自身限制性修饰系统。In another preferred embodiment, the Clostridium ljungdahlii self-restriction modification system is a type II Clostridium ljungdahlii self-restriction modification system.
在另一优选例中,所述的扬氏梭菌自身限制性修饰系统包括甲基化酶编码基因CLJU_c08460和CLJU_c24700。In another preferred example, the Clostridium ljungdahlii self-restriction modification system includes methylase encoding genes CLJU_c08460 and CLJU_c24700.
在另一优选例中,所述的扬氏梭菌自身限制性修饰系统为甲基化酶编码基因CLJU_c24700。In another preferred example, the Clostridium ljungdahlii self-restriction modification system is the methylase encoding gene CLJU_c24700.
在另一优选例中,所述外源DNA为穿梭质粒。In another preferred embodiment, the exogenous DNA is a shuttle plasmid.
在另一优选例中,所述外源DNA来源于:质粒pMTL83151(http://clostron.com/pMTL80000.php)。In another preferred example, the exogenous DNA is derived from: plasmid pMTL83151 (http://clostron.com/pMTL80000.php).
在另一优选例中,所述外源DNA包括质粒pMTL83151以及后续整合至pMTL83151中的其他来源的DNA序列。In another preferred embodiment, the exogenous DNA includes plasmid pMTL83151 and DNA sequences from other sources that are subsequently integrated into pMTL83151.
在另一优选例中,所述修饰在修饰质粒宿主中完成,所述修饰质粒宿主包括:大肠杆菌。In another preferred embodiment, the modification is completed in a modified plasmid host, and the modified plasmid host includes: Escherichia coli.
在另一优选例中,所述修饰质粒宿主为大肠杆菌JM110(基因型dam-,dcm-)。In another preferred example, the modified plasmid host is E. coli JM110 (genotype dam - , dcm - ).
在另一优选例中,所述电转化效率可提高至≥104CFU/μg,较佳地≥1.73×104CFU/μg,更佳地≥2.5×104CFU/μg。In another preferred example, the electroconversion efficiency can be increased to ≥10 4 CFU/μg, preferably ≥1.73×10 4 CFU/μg, and more preferably ≥2.5×10 4 CFU/μg.
在本发明的第二方面,提供了一种提高扬氏梭菌的外源DNA电转化效率的方法,包括步骤:In a second aspect of the present invention, a method for improving the electrotransformation efficiency of exogenous DNA of Clostridium ljungdahlii is provided, including the steps:
(a)提供一经过扬氏梭菌自身限制性修饰系统修饰的外源DNA;(a) providing an exogenous DNA modified by Clostridium ljungdahlii's own restriction modification system;
(b)将步骤(a)中所提供的外源DNA电转化入扬氏梭菌;(b) electrotransforming the exogenous DNA provided in step (a) into Clostridium ljungdahlii;
(c)所述扬氏梭菌的细胞复苏。(c) Cell recovery of C. ljungdahlii.
在另一优选例中,在所述步骤(a)中,所述扬氏梭菌包括:扬氏梭菌ATCC 55383、扬氏梭菌ATCC 49587、扬氏梭菌DSM 13528。In another preferred example, in the step (a), the Clostridium ljungdahlii includes: Clostridium ljungdahlii ATCC 55383, Clostridium ljungdahlii ATCC 49587, and Clostridium ljungdahlii DSM 13528.
在另一优选例中,在所述步骤(a)中,所述修饰为甲基化修饰。In another preferred embodiment, in step (a), the modification is methylation modification.
在另一优选例中,在所述步骤(a)中,所述扬氏梭菌自身限制性修饰系统为II型扬氏梭菌自身限制性修饰系统。In another preferred embodiment, in step (a), the Clostridium ljungdahlii self-limiting modification system is a type II Clostridium ljungdahlii self-restricting modification system.
在另一优选例中,在所述步骤(a)中,所述的扬氏梭菌自身限制性修饰系统包括甲基化酶编码基因CLJU_c08460和CLJU_c24700。In another preferred example, in step (a), the Clostridium ljungdahlii self-restriction modification system includes methylase encoding genes CLJU_c08460 and CLJU_c24700.
在另一优选例中,在所述步骤(a)中,所述的扬氏梭菌自身限制性修饰系统为甲基化酶CLJU_c24700基因。In another preferred example, in step (a), the Clostridium ljungdahlii self-restriction modification system is the methylase CLJU_c24700 gene.
在另一优选例中,在所述步骤(a)中,所述外源DNA为穿梭质粒。In another preferred embodiment, in step (a), the exogenous DNA is a shuttle plasmid.
在另一优选例中,在所述步骤(a)中,所述外源DNA来源于:质粒pMTL83151(http://clostron.com/pMTL80000.php)。In another preferred example, in step (a), the exogenous DNA is derived from: plasmid pMTL83151 (http://clostron.com/pMTL80000.php).
在另一优选例中,在所述步骤(a)中,所述外源DNA包括质粒pMTL83151以及后续整合至pMTL83151中的其他来源的DNA序列。In another preferred embodiment, in step (a), the exogenous DNA includes plasmid pMTL83151 and DNA sequences from other sources that are subsequently integrated into pMTL83151.
在另一优选例中,在所述步骤(a)中,所述修饰在修饰质粒宿主中完成,所述修饰质粒宿主为大肠杆菌。In another preferred embodiment, in step (a), the modification is completed in a modified plasmid host, and the modified plasmid host is Escherichia coli.
在另一优选例中,在所述步骤(a)中,所述修饰质粒宿主为大肠杆菌JM110(基因型dam-,dcm-)。In another preferred example, in step (a), the modified plasmid host is E. coli JM110 (genotype dam - , dcm - ).
在另一优选例中,在所述步骤(b)中,包括步骤:(b1)向所述扬氏梭菌菌体中加入弱化剂以对所述扬氏梭菌的细胞壁进行弱化处理。In another preferred embodiment, the step (b) includes the step of: (b1) adding a weakening agent to the Clostridium ljungdahlii cells to weaken the cell wall of the C. ljungdahlii.
在另一优选例中,所述弱化处理是指在菌体生长至OD600为0.35-0.55时进行,较佳地在菌体生长至OD600为0.4-0.5时进行。In another preferred embodiment, the weakening treatment is performed when the bacterial cells grow to an OD600 of 0.35-0.55, preferably when the bacterial cells grow to an OD600 of 0.4-0.5.
在另一优选例中,所述弱化处理的时间为60-120min,较佳地为80-100min,更佳地为90min。In another preferred example, the weakening treatment time is 60-120 min, preferably 80-100 min, more preferably 90 min.
在另一优选例中,所述弱化处理的温度为32-45℃,较佳地为35-40℃,更佳地为37℃。In another preferred example, the temperature of the weakening treatment is 32-45°C, preferably 35-40°C, and more preferably 37°C.
在另一优选例中,所述弱化剂包括甘氨酸、DL-苏氨酸、β-内酰胺类抗生素、溶菌酶、异烟酸。In another preferred embodiment, the weakening agent includes glycine, DL-threonine, β-lactam antibiotics, lysozyme, and isonicotinic acid.
在另一优选例中,所述弱化剂为甘氨酸,终浓度为0.5-5%w/v,较佳地为0.8-2.5%w/v,更佳地为1-1.5%w/v,更佳地为1.25%w/v。In another preferred embodiment, the weakening agent is glycine, and the final concentration is 0.5-5% w/v, preferably 0.8-2.5% w/v, more preferably 1-1.5% w/v, more preferably Optimum is 1.25% w/v.
在另一优选例中,在步骤(b1)中,还包括加入缓冲保护剂。In another preferred embodiment, step (b1) also includes adding a buffer protective agent.
在另一优选例中,所述缓冲保护剂为蔗糖。In another preferred embodiment, the buffer protective agent is sucrose.
在另一优选例中,所述缓冲保护剂为蔗糖,终浓度为0.1-0.5M,较佳地为0.2-0.4M,更佳地为0.3M。In another preferred embodiment, the buffer protective agent is sucrose, and the final concentration is 0.1-0.5M, preferably 0.2-0.4M, more preferably 0.3M.
在另一优选例中,在所述步骤(b)中,所述电转化中,电击电压为500-1500V,较佳地为800-1200V,更佳地为1000V。In another preferred embodiment, in step (b), in the electrical conversion, the electric shock voltage is 500-1500V, preferably 800-1200V, and more preferably 1000V.
在另一优选例中,在所述步骤(b)中,所述电转化中,电击电容为30-100μF,较佳地为40-60μF,更佳地为50μF。In another preferred example, in step (b), in the electrical conversion, the electric shock capacitance is 30-100 μF, preferably 40-60 μF, and more preferably 50 μF.
在另一优选例中,在所述步骤(b)中,所述电转化中,电击电阻为120-300Ω,较佳地为150-250Ω,更佳地为200Ω。In another preferred example, in step (b), in the electrical conversion, the electric shock resistance is 120-300Ω, preferably 150-250Ω, and more preferably 200Ω.
在另一优选例中,在所述步骤(c)中,所述细胞复苏的时间为15-25h,较佳地为18-22h,更佳地为20h。In another preferred embodiment, in step (c), the cell recovery time is 15-25h, preferably 18-22h, and more preferably 20h.
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。It should be understood that within the scope of the present invention, the above-mentioned technical features of the present invention and the technical features specifically described below (such as embodiments) can be combined with each other to form new or preferred technical solutions. Due to space limitations, they will not be described one by one here.
附图说明Description of drawings
图1显示了C.ljungdahlii DSM 13528的细胞壁弱化对外源DNA电转化效率的影响。其中,经1.25%v/v甘氨酸及0.3M蔗糖处理90min后,电转化效率达1.93×103CFU/μg。Figure 1 shows the effect of cell wall weakening of C.ljungdahlii DSM 13528 on the electroconversion efficiency of foreign DNA. Among them, after being treated with 1.25% v/v glycine and 0.3M sucrose for 90 minutes, the electroconversion efficiency reached 1.93×10 3 CFU/μg.
图2显示了用本发明提供的优化的电转参数所得到的转化效率与已有的较高效的电转参数所得到的转化效率之间的对比。Figure 2 shows the comparison between the conversion efficiency obtained using the optimized electroporation parameters provided by the present invention and the conversion efficiency obtained using the existing more efficient electroporation parameters.
图3显示了C.ljungdahlii DSM 13528经过电转化后复苏时间对转化效率的影响。其中,左图a、b、c、d分别是6h、12h、20h、30h复苏后100μl取复苏体系涂板后得到的转化子情况;右图是转化率的统计结果。Figure 3 shows the effect of recovery time on transformation efficiency of C.ljungdahlii DSM 13528 after electrotransformation. Among them, the left pictures a, b, c, and d are the transformants obtained after 100 μl of the recovery system was plated after 6h, 12h, 20h, and 30h recovery respectively; the right picture is the statistical result of the transformation rate.
图4显示了利用C.ljungdahlii DSM 13528甲基化酶对外源DNA进行甲基化修饰从而进行电转化的甲基化处理流程。Figure 4 shows the methylation process using C.ljungdahlii DSM 13528 methylase to methylate exogenous DNA for electroconversion.
图5显示了利用C.ljungdahlii DSM 13528甲基化酶对外源DNA进行甲基化修饰从而进行电转化后,不同甲基化酶处理后的转化率情况。Figure 5 shows the conversion rates after electroconversion using C.ljungdahlii DSM 13528 methylase to methylate exogenous DNA.
具体实施方式Detailed ways
本发明人经过广泛而深入的研究,经过大量的筛选,首次开发了一种高效的、易操作的扬氏梭菌外源DNA电转化方法。实验表明,使用本发明筛选出的扬氏梭菌自身限制性修饰系统对外源DNA进行甲基化修饰,有效提高对扬氏梭菌进行外源DNA电转化的效率。此外,实验证明,在电转化步骤前,向扬氏杆菌菌体中加入1.25%v/v的甘氨酸和0.3M的蔗糖进行细胞壁的弱化处理能够进一步提高外源DNA的转化效率;并且,在电转化步骤中,电击电压为1000V、电击电容为50μF、电击电阻为200Ω时,外源DNA的转化效率最高。在此基础上完成了本发明。After extensive and in-depth research and extensive screening, the inventor developed for the first time an efficient and easy-to-operate electroconversion method for exogenous DNA of Clostridium ljungdahlii. Experiments show that using the C. ljungdahlii self-restriction modification system selected in the present invention to perform methylation modification on exogenous DNA can effectively improve the efficiency of electrotransformation of exogenous DNA in C. ljungdahlii. In addition, experiments have shown that adding 1.25% v/v glycine and 0.3M sucrose to the Youngella bacteria to weaken the cell wall before the electrotransformation step can further improve the transformation efficiency of exogenous DNA; and, during electroporation In the transformation step, when the electric shock voltage is 1000V, the electric shock capacitance is 50 μF, and the electric shock resistance is 200Ω, the conversion efficiency of exogenous DNA is the highest. On this basis, the present invention was completed.
术语the term
如本文所用,术语“扬氏梭菌”、“食气扬氏梭菌”可互换使用,是指本发明所述的具有自身限制性修饰系统的待转化菌株。As used herein, the terms "Clostridium ljungdahlii" and "Clostridium ljungdahlii" are used interchangeably and refer to the strain to be transformed with its own limiting modification system as described in the present invention.
自身限制性修饰系统self-limiting modification system
如本文所用,术语“甲基化酶”、“甲基转移酶”可互换使用,是指本发明所述的扬氏梭菌中的自身限制性修饰系统中,可对DNA进行甲基化修饰的酶。As used herein, the terms "methylase" and "methyltransferase" are used interchangeably and refer to the self-restriction modification system in Clostridium ljungdahlii described in the present invention that can methylate DNA. modified enzyme.
对于梭菌属的细菌来说,限制其转化效率的一个重要因素就是其自身强大的限制性修饰系统。所述限制性修饰系统可以识别异源的DNA分子,随后在相应的限制性内切酶的作用下,切割入侵的DNA,最终保证自身遗传系统的稳定性。For bacteria of the genus Clostridium, an important factor limiting their transformation efficiency is their own powerful restriction modification system. The restriction modification system can recognize heterologous DNA molecules, and then cut the invading DNA under the action of corresponding restriction enzymes, ultimately ensuring the stability of its own genetic system.
在本发明中,基于此原理,提供了一种模拟宿主甲基化修饰的手段来保护外源DNA的方法。In the present invention, based on this principle, a method for protecting exogenous DNA by simulating host methylation modification is provided.
在扬氏梭菌中,共有七个限制性修饰系统,其中Ⅰ型一种(CLJU_c03310~CLJU-c03330),Ⅱ型六种(CLJU_c03480、CLJU_c08460、CLJU_c24700、CLJU_c30980、CLJU_c32690、CLJU_c33980),详见表3。In Clostridium ljungdahlii, there are seven restriction modification systems, including one type I (CLJU_c03310~CLJU-c03330) and six type II (CLJU_c03480, CLJU_c08460, CLJU_c24700, CLJU_c30980, CLJU_c32690, CLJU_c33980). See Table 3 for details. .
在本发明中,扬氏梭菌的七个限制性修饰系统中筛选出了可以显著提升测试质粒的转化效率的M4(CLJU_c24700)甲基化酶,M3(CLJU_c08460)次之。In the present invention, M4 (CLJU_c24700) methylase, which can significantly improve the transformation efficiency of the test plasmid, was screened out from seven restriction modification systems of Clostridium ljungdahlii, followed by M3 (CLJU_c08460).
本发明方法Method of the present invention
本发明提供了一种提高扬氏梭菌的外源DNA电转化效率的方法,包括步骤:The invention provides a method for improving the electrotransformation efficiency of exogenous DNA of Clostridium ljungdahlii, which includes the steps:
(a)提供一经过扬氏梭菌自身限制性修饰系统修饰的外源DNA;(a) providing an exogenous DNA modified by Clostridium ljungdahlii's own restriction modification system;
(b)将步骤(a)中所提供的外源DNA电转化入扬氏梭菌;(b) electrotransforming the exogenous DNA provided in step (a) into Clostridium ljungdahlii;
(c)所述扬氏梭菌的细胞复苏。(c) Cell recovery of C. ljungdahlii.
在本发明的一个实施方式中,所述的修饰为甲基化修饰。In one embodiment of the invention, the modification is methylation modification.
在本发明的一个实施方式中,所述扬氏梭菌自身限制性修饰系统为II型扬氏梭菌自身限制性修饰系统。In one embodiment of the present invention, the Clostridium ljungdahlii self-restriction modification system is a type II Clostridium ljungdahlii self-restriction modification system.
在本发明的一个优选的实施方式中,所述的扬氏梭菌自身限制性修饰系统包括甲基化酶编码基因CLJU_c08460和CLJU_c24700。在一个更加优选的实施方式中,所述的扬氏梭菌自身限制性修饰系统为甲基化酶CLJU_c24700基因。In a preferred embodiment of the present invention, the Clostridium ljungdahlii self-restriction modification system includes methylase encoding genes CLJU_c08460 and CLJU_c24700. In a more preferred embodiment, the Clostridium ljungdahlii self-restriction modification system is the methylase CLJU_c24700 gene.
在另一优选例中,所述外源DNA来源于:质粒pMTL83151。In another preferred example, the exogenous DNA is derived from: plasmid pMTL83151.
在另一优选例中,所述外源DNA包括质粒pMTL83151以及后续整合至pMTL83151中的其他来源的DNA序列。In another preferred embodiment, the exogenous DNA includes plasmid pMTL83151 and DNA sequences from other sources that are subsequently integrated into pMTL83151.
在另一优选例中,所述修饰在修饰质粒宿主中完成,所述修饰质粒宿主为大肠杆菌。在另一优选例中,所述修饰质粒宿主为大肠杆菌JM110(基因型dam-,dcm-)。In another preferred embodiment, the modification is completed in a modified plasmid host, and the modified plasmid host is Escherichia coli. In another preferred example, the modified plasmid host is E. coli JM110 (genotype dam - , dcm - ).
此外,扬氏梭菌是厚壁菌门的一员,除了前文所述的自身限制性修饰系统,其细胞膜外的较厚的细胞壁阻碍了外源DNA进入胞体,这是限制其转化效率的另一重要原因。In addition, Clostridium ljungdahlii is a member of the Firmicutes phylum. In addition to the self-limiting modification system described above, the thicker cell wall outside its cell membrane prevents foreign DNA from entering the cell body, which is another factor that limits its transformation efficiency. An important reason.
因此,想要提升扬氏梭菌的转化效率需要对其细胞壁进行弱化处理;目前常用的细胞壁弱化剂有甘氨酸、DL-苏氨酸、青霉素、溶菌酶等。值得一提的是,这些细胞壁弱化剂往往伴随着细胞毒性,操作不当容易引起细胞裂解,所以常常需要考虑添加缓冲保护剂、控制处理时间和处理时的试剂浓度等因素。在本发明中,本发明人经过大量的筛选,最终选择采用甘氨酸作为细胞壁弱化剂,并加入蔗糖作为缓冲保护剂。其中甘氨酸可以减少细胞壁中的肽聚糖的相互交连,降低细胞壁的强度,最终提高电击转化率。Therefore, in order to improve the transformation efficiency of C. ljungdahlii, it is necessary to weaken its cell wall; currently commonly used cell wall weakening agents include glycine, DL-threonine, penicillin, lysozyme, etc. It is worth mentioning that these cell wall weakening agents are often accompanied by cytotoxicity, and improper operation can easily cause cell lysis. Therefore, it is often necessary to consider factors such as adding buffer protective agents, controlling processing time, and reagent concentration during processing. In the present invention, after extensive screening, the inventor finally selected glycine as the cell wall weakening agent and added sucrose as the buffering and protecting agent. Among them, glycine can reduce the cross-linking of peptidoglycan in the cell wall, reduce the strength of the cell wall, and ultimately improve the electroshock conversion rate.
在本发明的一个实施方式中,本发明方法包括步骤:(b1)向所述扬氏梭菌菌体中加入弱化剂以对所述扬氏梭菌的细胞壁进行弱化处理。In one embodiment of the present invention, the method of the present invention includes the step of: (b1) adding a weakening agent to the Clostridium ljungdahlii cells to weaken the cell wall of the C. ljungdahlii.
在本发明的一个实施方式中,所述弱化处理是指在菌体生长至OD600为0.35-0.55时进行,较佳地在菌体生长至OD600为0.4-0.5时进行;所述弱化处理的时间为60-120min,较佳地为80-100min,更佳地为90min;所述弱化处理的温度为32-45℃,较佳地为35-40℃,更佳地为37℃。In one embodiment of the present invention, the weakening treatment is performed when the bacterial cells grow to an OD600 of 0.35-0.55, preferably when the bacterial cells grow to an OD600 of 0.4-0.5; the time of the weakening treatment It is 60-120min, preferably 80-100min, more preferably 90min; the temperature of the weakening treatment is 32-45°C, preferably 35-40°C, more preferably 37°C.
在另一优选例中,所述弱化剂包括甘氨酸、DL-苏氨酸、β-内酰胺类抗生素、溶菌酶、异烟酸。较佳地为甘氨酸。In another preferred embodiment, the weakening agent includes glycine, DL-threonine, β-lactam antibiotics, lysozyme, and isonicotinic acid. Preferably it is glycine.
在另一优选例中,所述弱化剂为甘氨酸,终浓度为0.5-5%w/v,较佳地为0.8-2.5%w/v,更佳地为1-1.5%w/v,更佳地为1.25%w/v。In another preferred embodiment, the weakening agent is glycine, and the final concentration is 0.5-5% w/v, preferably 0.8-2.5% w/v, more preferably 1-1.5% w/v, more preferably Optimum is 1.25% w/v.
在一个优选的实施方式中,在步骤(b1)中,还包括加入缓冲保护剂;在另一优选例中,所述缓冲保护剂为蔗糖,其终浓度为0.1-0.5M,较佳地为0.2-0.4M,更佳地为0.3M。In a preferred embodiment, step (b1) also includes adding a buffer protective agent; in another preferred example, the buffer protective agent is sucrose, and its final concentration is 0.1-0.5M, preferably 0.2-0.4M, preferably 0.3M.
此外,电转条件是影响转化效率的重要因素,它关系着质粒能否顺利进入细胞及后续的细胞复苏是否可以顺利进行。电转条件通常涉及以下几个方面:电击电压、电击电容、电击电阻、复苏时间等。In addition, electroporation conditions are an important factor affecting transformation efficiency. It is related to whether the plasmid can successfully enter the cells and whether subsequent cell recovery can proceed smoothly. Electroporation conditions usually involve the following aspects: shock voltage, shock capacitance, shock resistance, recovery time, etc.
在本发明的一个实施方式中,所述电转化中,电击电压为500-1500V,较佳地为800-1200V,更佳地为1000V;电击电容为30-100μF,较佳地为40-60μF,更佳地为50μF。;电击电阻为120-300Ω,较佳地为150-250Ω,更佳地为200Ω。In one embodiment of the present invention, in the electroconversion, the electric shock voltage is 500-1500V, preferably 800-1200V, more preferably 1000V; the electric shock capacitance is 30-100 μF, preferably 40-60 μF , preferably 50μF. ; The electric shock resistance is 120-300Ω, preferably 150-250Ω, and more preferably 200Ω.
除了以上电击参数之外,细胞在经过电击转化后,需要一段时间来恢复被击穿的细胞壁并使得质粒抗性表达,这段时间被称为复苏时间。复苏时间的长短也会影响最终的转化效率。为了探索复苏时间对转化效率的影响,本发明人设立了一系列的复苏时间梯度。最终发现,在适当延长复苏时间后,扬氏梭菌的电击转化效率可以得到大幅度的提升。In addition to the above electroporation parameters, cells need a period of time to recover the broken cell wall and express plasmid resistance after electroporation transformation. This period of time is called recovery time. The length of recovery time will also affect the final conversion efficiency. In order to explore the impact of recovery time on conversion efficiency, the inventors established a series of recovery time gradients. Finally, it was found that after appropriately extending the recovery time, the electroporation transformation efficiency of C. ljungdahlii can be greatly improved.
在本发明的一个实施方式中,所述细胞复苏的时间为15-25h,较佳地为18-22h,更佳地为20h。In one embodiment of the present invention, the cell recovery time is 15-25h, preferably 18-22h, and more preferably 20h.
本发明的主要优点包括:The main advantages of the present invention include:
1)利用扬氏梭菌的自身限制性修饰系统,将外源DNA进行修饰,以提高外源DNA向扬氏梭菌的转化效率;并且,在扬氏梭菌的多个自身限制性修饰系统中,首次筛选出了一种相比于其他修饰自身限制性修饰系统可以显著提升外源DNA的转化效率的自身限制性修饰系统。1) Utilize the self-restriction modification system of C. ljungdahlii to modify exogenous DNA to improve the conversion efficiency of exogenous DNA into C. ljungdahlii; and, in the multiple self-restriction modification systems of C. ljungdahlii , for the first time, a self-restriction modification system was screened that can significantly improve the conversion efficiency of foreign DNA compared with other self-restriction modification systems.
2)优化出了弱化扬氏梭菌的细胞壁的效果较好的弱化剂及缓冲保护剂的浓度。2) Optimized the concentration of weakening agent and buffer protective agent that are more effective in weakening the cell wall of Clostridium ljungdahlii.
3)优化出了较为高效的电转化条件,所述条件涉及电击电压、电击电容、电击电阻,以及复苏时间。3) Optimize relatively efficient electrical conversion conditions, which involve shock voltage, shock capacitance, shock resistance, and recovery time.
4)用本发明的方法,可以使外源DNA向扬氏梭菌的电转化效率提升至1.73±0.04×104CFU/μg,相较于已有的技术,提升了2个数量级。4) Using the method of the present invention, the electrotransformation efficiency of exogenous DNA into Clostridium ljungdahlii can be increased to 1.73±0.04×10 4 CFU/μg, which is an improvement of 2 orders of magnitude compared with the existing technology.
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,例如Sambrook等人,分子克隆:实验室手册(New York:Cold Spring HarborLaboratory Press,1989)中所述的条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数是重量百分比和重量份数。The present invention will be further described below in conjunction with specific embodiments. It should be understood that these examples are only used to illustrate the invention and are not intended to limit the scope of the invention. Experimental methods without specifying specific conditions in the following examples usually follow conventional conditions, such as those described in Sambrook et al., Molecular Cloning: Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989), or according to the manufacturer. Suggested conditions. Unless otherwise stated, percentages and parts are by weight.
如无特别说明,实施例所用的材料和试剂均为市售产品。Unless otherwise specified, the materials and reagents used in the examples are all commercially available products.
材料与方法Materials and Methods
材料Material
1.菌株及质粒1. Strains and plasmids
表1细菌菌株和质粒Table 1 Bacterial strains and plasmids
2.引物2. Primers
实验中所用到的引物见下表,所有引物均由上海华津生物科技公司合成。The primers used in the experiment are shown in the table below. All primers were synthesized by Shanghai Huajin Biotechnology Company.
表2本发明用到的引物Table 2 Primers used in the present invention
3.试剂与器材3. Reagents and equipment
实验所用的胶回收试剂盒、质粒抽提试剂盒是Axygen公司的产品;限制性内切酶是Thermo Fisher Scientific公司的产品;PCR反应所用的KOD FX、KOD-plus-neo是TOYOBO公司的产品;大肠杆菌菌落PCR反应所用的Taq DNA聚合酶是TRANSGEN BIOTECH的产品;连接反应用的SolutionⅠ是Takara公司产品;YTF培养基(Yeast extract 10g/L,Tryptone16g/L,Fructose 10g/L,NaCl 0.2g/L,L-半胱氨酸0.3g/L,微量元素储存液2ml/L,维生素储存液1ml/L,用6M HCl调pH至6.0);微量元素储存液(氨三乙酸10.00g/L,MnSO4 5.00g/L,(NH4)2SO4·FeSO4·6H2O 4.00g/L,CoCl2·6H2O 1.00g/L,ZnSO4·7H2O 1.00g/L,CuCl2·2H2O 0.10g/L,NiCl2·6H2O 0.10g/L,Na2MoO4·2H2O 0.10g/L,Na2O4Se 0.10g/L,Na2WO4·2H2O 0.10g/L,pH6.0。过滤除菌。微量元素贮液配制时,除氨三乙酸外其他成分先混合溶解定容,然后调节pH至6.0后,迅速加入氨三乙酸);维生素储存液(VB6 100mg/L,硫胺素50.00mg/L,VB2 50.00mg/L,泛酸钙50.00mg/L,硫辛酸50.00mg/L,对氨基苯甲酸50.00mg/L,烟碱酸50.00mg/L,VB12 50.00mg/L,生物素20.00mg/L,叶酸20.00mg/L。配好后用0.22μm过滤器过滤除菌使用);SMP buffer(Na2HPO4 1mM,NaH2PO4 1mM,MgCl2 1mM,Sucrose270mM);电击仪Gene PulserTM、电击杯(0.2cm)、BIO-RAD PCR仪、专用凝胶扫描仪GS710scanner和PDquest软件BioRad公司产品;常温及冷冻离心机为Eppendorf公司产品;厌氧培养箱是GE公司的Whitley A35anaerobic workstation产品,分光光度计是HITACHI公司的U-1800spectrophotometer。The gel recovery kit and plasmid extraction kit used in the experiment are products of Axygen; the restriction enzymes are products of Thermo Fisher Scientific; the KOD FX and KOD-plus-neo used in the PCR reaction are products of TOYOBO; The Taq DNA polymerase used in the E. coli colony PCR reaction is a product of TRANSGEN BIOTECH; the Solution I used in the ligation reaction is a product of Takara; YTF medium (Yeast extract 10g/L, Tryptone16g/L, Fructose 10g/L, NaCl 0.2g/ L, L-cysteine 0.3g/L, trace element storage solution 2ml/L, vitamin storage solution 1ml/L, adjust pH to 6.0 with 6M HCl); trace element storage solution (nitrilotriacetic acid 10.00g/L, MnSO 4 5.00g/L, (NH 4 ) 2 SO 4 ·FeSO 4 ·6H 2 O 4.00g/L, CoCl 2 ·6H 2 O 1.00g/L, ZnSO 4 ·7H 2 O 1.00g/L, CuCl 2 ·2H 2 O 0.10g/L, NiCl 2 ·6H 2 O 0.10g/L, Na 2 MoO 4 ·2H 2 O 0.10g/L, Na 2 O 4 Se 0.10g/L, Na 2 WO 4 ·2H 2 O 0.10g/L, pH 6.0. Filter and sterilize. When preparing the trace element storage solution, mix and dissolve other ingredients except nitrilotriacetic acid to a constant volume, then adjust the pH to 6.0, and quickly add nitrilotriacetic acid); vitamin storage Liquid (VB6 100mg/L, thiamine 50.00mg/L, VB2 50.00mg/L, calcium pantothenate 50.00mg/L, lipoic acid 50.00mg/L, para-aminobenzoic acid 50.00mg/L, niacin 50.00mg/ L, VB12 50.00mg/L, biotin 20.00mg/L, folic acid 20.00mg/L. After preparation, filter and sterilize with a 0.22μm filter before use); SMP buffer (Na 2 HPO 4 1mM, NaH 2 PO 4 1mM, MgCl 2 1mM, Sucrose 270mM); electroshocker Gene PulserTM, electroshock cup (0.2cm), BIO-RAD PCR instrument, special gel scanner GS710scanner and PDquest software BioRad products; room temperature and refrigerated centrifuges are products of Eppendorf; anaerobic The incubator is the Whitley A35anaerobic workstation product of GE Company, and the spectrophotometer is U-1800spectrophotometer of HITACHI Company.
方法method
1.电转感受态准备1. Electroporation competent preparation
将扬氏梭菌单菌落接种于5ml的YTF液体培养基,37℃过夜厌氧培养得到种子液;按照1‰的接种量接种于25ml YTF培养基中(50ml离心管),37℃厌氧培养。当OD600到0.4~0.5时,将菌体转移到冰上冷却10min;然后离心收集菌体,具体参数为5000rpm离心6min。使用SMP buffer(冰上预冷)清洗菌体两遍,最后使用450μl的SMP buffer加50μl的DMSO重悬菌体(冰上预冷),装于无菌保菌管中,-80℃保存。Inoculate a single colony of Clostridium ljungdahlii into 5 ml of YTF liquid culture medium, and culture it anaerobically at 37°C overnight to obtain a seed liquid; inoculate it into 25 ml YTF culture medium (50 ml centrifuge tube) according to an inoculation amount of 1‰, and culture it anaerobically at 37°C. . When OD 600 reaches 0.4-0.5, transfer the cells to ice and cool for 10 minutes; then centrifuge to collect the cells. The specific parameters are centrifugation at 5000 rpm for 6 minutes. Use SMP buffer (pre-cooled on ice) to wash the cells twice, and finally use 450 μl of SMP buffer plus 50 μl of DMSO to resuspend the cells (pre-cooled on ice), put them in sterile storage tubes, and store at -80°C.
2.电转化方法2.Electroconversion method
将冰上融化的200μl感受态细胞与测试质粒PMTL83151混合,质粒总量是1μg,体积不超过10μl;混合体系在冰上静置5min,随后将其加入电转杯(冰上预冷)中,电转。电转参数为电压1000v、电容50μF、电阻200Ω、电极间距2mm。电转后,迅速将电转体系与1ml的YTF液体培养基混合,在5ml的Eppendorf管中复苏。37℃厌氧复苏适当时间后,取100μl的复苏体系涂布于YTF固体平板,平板甲砜氯霉素浓度是5μg/ml。37℃厌氧培养5天后统计转化率。Mix 200 μl of competent cells melted on ice with the test plasmid PMTL83151. The total amount of plasmid is 1 μg and the volume does not exceed 10 μl. The mixed system is allowed to stand on ice for 5 minutes, then added to an electroporation cup (pre-cooled on ice) and electroporated. . The electroconversion parameters are voltage 1000v, capacitance 50μF, resistance 200Ω, and electrode spacing 2mm. After electroporation, quickly mix the electroporation system with 1 ml of YTF liquid culture medium and resuscitate it in a 5 ml Eppendorf tube. After an appropriate period of anaerobic resuscitation at 37°C, take 100 μl of the recovery system and apply it on a YTF solid plate. The concentration of methylsulfonate and chloramphenicol on the plate is 5 μg/ml. The conversion rate was calculated after 5 days of anaerobic cultivation at 37°C.
3.人工修饰质粒构建3. Artificially modified plasmid construction
我们抽取C.ljungdahlii的基因组作为模板,使用KOD neo酶进行PCR反应获取潜在的Mtase的基因片段,随后将获得的目的片段用SalⅠ和SmaⅠ双酶切后清洁回收,同时使用SalⅠ和SmaⅠ线性化pMV118载体,最后使用连接酶SolutionⅠ将片段与载体16℃过夜连接,连接产物转化大肠杆菌Top10感受态,涂布于含100μg/ml氨苄青霉素的LB培养基上,长出的单菌落后经菌落PCR验证、抽取质粒测序验证后得到正确的人工修饰质粒。We extracted the genome of C.ljungdahlii as a template and used KOD neo enzyme to perform a PCR reaction to obtain the potential Mtase gene fragment. Then, the obtained target fragment was digested with SalⅠ and SmaⅠ and cleaned and recovered. At the same time, SalⅠ and SmaⅠ were used to linearize pMV118. vector, and finally use ligase Solution I to ligate the fragment to the vector overnight at 16°C. The ligation product is transformed into Escherichia coli Top10 competent cells and spread on LB medium containing 100 μg/ml ampicillin. The single colony grown is then verified by colony PCR. , extract the plasmid and obtain the correct artificially modified plasmid after sequencing and verification.
实施例1:甘氨酸作为细胞壁弱化剂对电转化效率的影响Example 1: Effect of glycine as a cell wall weakening agent on electroconversion efficiency
在本实施例中,先使扬氏梭菌细胞在YTF液体培养基中生长,当菌体生长至OD600在0.4~0.5时,加入甘氨酸及蔗糖母液至终浓度分别为1.25%和0.3M,37℃处理90min(在此过程中细胞基本停止生长),然后收集菌体制作感受态细胞。测试感受态效率,实验结果见图1。In this example, Clostridium ljungdahlii cells are first grown in YTF liquid culture medium. When the cells grow to an OD 600 of 0.4-0.5, glycine and sucrose stock solutions are added to the final concentrations of 1.25% and 0.3M respectively. Treat at 37°C for 90 minutes (cells basically stop growing during this process), and then collect the bacteria to make competent cells. Test the competent efficiency. The experimental results are shown in Figure 1.
如图1所示,经1.25%甘氨酸及0.3M蔗糖处理90min后,电转化效率达1.93×103CFU/μg。As shown in Figure 1, after being treated with 1.25% glycine and 0.3M sucrose for 90 minutes, the electroconversion efficiency reached 1.93×10 3 CFU/μg.
实验结果显示,使用甘氨酸作为细胞壁弱化剂可以显著提升扬氏梭菌的转化效率;此时的转化效率与Ching Leang等报道的已有的最高效率在同一数量级,然而我们实验中所用的感受态菌体浓度是已报到的1/100左右,在保证了效率的同时大大简化的实验流程。Experimental results show that using glycine as a cell wall weakening agent can significantly improve the transformation efficiency of Clostridium ljungdahlii; the transformation efficiency at this time is in the same order of magnitude as the highest efficiency reported by Ching Leang et al. However, the competent bacteria used in our experiments The body concentration is about 1/100 of what has been reported, which greatly simplifies the experimental process while ensuring efficiency.
实施例2:电转条件对电转化效率的影响Example 2: Effect of electroconversion conditions on electroconversion efficiency
在本实施例中,对电转条件中的电击电压、电击电容和电击电阻的参数进行了优化。In this embodiment, the parameters of shock voltage, shock capacitance, and shock resistance in electroporation conditions are optimized.
首先,本发明人尝试了已报道的取得了较好转化效果的电转电压、电阻、电容等相关参数,在已有的报道中,采用无穷电阻、1.8kv电压、25μF电容时的质粒电转化效率最高。同时,用本发明所提供的优化的参数(电压1000v、电容50μF、电阻200Ω)进行电转化实验,并对比了两者的转化效率。First, the inventors tried the electroconversion voltage, resistance, capacitance and other related parameters that have been reported to achieve good conversion effects. In the existing reports, the plasmid electroconversion efficiency when infinite resistance, 1.8kv voltage, and 25μF capacitance were used Highest. At the same time, the optimized parameters provided by the present invention (voltage 1000v, capacitance 50μF, resistance 200Ω) were used to conduct electrical conversion experiments, and the conversion efficiencies of the two were compared.
实验结果如图2所示,结果表明,相比于已有的较高效的参数相比于本发明所提供的最优参数,不仅没有显著优势反而还有不如。The experimental results are shown in Figure 2. The results show that compared with the existing more efficient parameters and the optimal parameters provided by the present invention, not only do they have no significant advantages but they are even worse.
实施例3:适当延长复苏时间对电转化效率的影响Example 3: Effect of appropriately extending recovery time on electroconversion efficiency
在本实施例中,设立了一系列的复苏时间梯度,以探索复苏时间对转化效率的影响。In this example, a series of recovery time gradients were established to explore the impact of recovery time on conversion efficiency.
最终发现,在适当延长复苏时间后,扬氏梭菌的电击转化效率可以得到大幅度的提升,实验结果见图3。Finally, it was found that after appropriately extending the recovery time, the electroporation transformation efficiency of C. ljungdahlii can be greatly improved. The experimental results are shown in Figure 3.
图3显示了C.ljungdahlii DSM 13528经过电转化后复苏时间对转化效率的影响。其中,左图a、b、c、d分别是6h、12h、20h、30h复苏后100μl取复苏体系涂板后得到的转化子情况;右图是转化率的统计结果。Figure 3 shows the effect of recovery time on transformation efficiency of C.ljungdahlii DSM 13528 after electrotransformation. Among them, the left pictures a, b, c, and d are the transformants obtained after 100 μl of the recovery system was plated after 6h, 12h, 20h, and 30h recovery respectively; the right picture is the statistical result of the conversion rate.
可见,复苏时间对扬氏梭菌的电击转化效率有很大的影响,当把复苏时间延长至20h的时候,相比之前转化又效率提升了一个数量级,达到了104的水准。It can be seen that the recovery time has a great impact on the electric shock transformation efficiency of C. ljungdahlii. When the recovery time is extended to 20 hours, the transformation efficiency is improved by an order of magnitude compared to the previous one, reaching the level of 10 4 .
实施例4:异源模拟扬氏梭菌自身限制性修饰系统以保护外源DNAExample 4: Heterologous simulation of Clostridium ljungdahlii self-restriction modification system to protect foreign DNA
在本实施例中,本发明人首先利用生物信息学手段(http://rebase.neb.com/rebase/rebase.html)筛选了扬氏梭菌中可能的限制性修饰系统(结果见表3)。In this example, the inventor first used bioinformatics methods (http://rebase.neb.com/rebase/rebase.html) to screen possible restriction modification systems in Clostridium ljungdahlii (the results are shown in Table 3 ).
在扬氏梭菌中共有七个限制性修饰系统,其中Ⅰ型一种(CLJU_c03310),Ⅱ型六种(CLJU_c03480、CLJU_c08460、CLJU_c24700、CLJU_c30980、CLJU_c32690、CLJU_c33980)。There are seven restriction modification systems in Clostridium ljungdahlii, including one type I (CLJU_c03310) and six type II (CLJU_c03480, CLJU_c08460, CLJU_c24700, CLJU_c30980, CLJU_c32690, CLJU_c33980).
表3 C.ljungdahlii DSM 13528基因组中的MTasesTable 3 MTases in the C.ljungdahlii DSM 13528 genome
然后,选择具体的菌株和质粒来构建扬氏梭菌人工模拟修饰系统。Then, specific strains and plasmids were selected to construct the C. ljungdahlii artificial simulation modification system.
在本实施例中,选择了大肠杆菌JM110(基因型:dam-,dcm-)作为修饰质粒宿主;接下来,选择了低拷贝、氨苄氯霉素抗性的pMV118质粒作为人工修饰质粒出发载体(这是为了与氯霉素抗性的高拷贝测试质粒pMTL83151区分开)。在利用lacZ检测了其乳糖诱导型启动子可用之后(实验数据未展示),按照图4的实验流程测试了不同的甲基转移酶对扬氏梭菌电转化效率的影响。具体的实验结果见图5。In this example, E. coli JM110 (genotype: dam - , dcm - ) was selected as the modified plasmid host; next, the low-copy, ampicillin-resistant pMV118 plasmid was selected as the artificial modified plasmid starting vector ( This is to distinguish it from the chloramphenicol-resistant high-copy test plasmid pMTL83151). After using lacZ to detect the availability of its lactose-inducible promoter (experimental data not shown), the effects of different methyltransferases on the electrotransformation efficiency of C. ljungdahlii were tested according to the experimental process in Figure 4. The specific experimental results are shown in Figure 5.
结果表明,在七种甲基转移酶中,M4(CLJU_c24700)可以显著提升测试质粒的转化效率,将扬氏梭菌的电转化效率提升至1.73±0.04×104CFU/μg,满足了实验需求。The results show that among the seven methyltransferases, M4 (CLJU_c24700) can significantly improve the transformation efficiency of the test plasmid, increasing the electrotransformation efficiency of Clostridium ljungdahlii to 1.73±0.04×10 4 CFU/μg, meeting the experimental needs .
讨论discuss
本发明的实施例提供了一整套基于pMTL83151质粒的扬氏梭菌高效电转化的方法。在本发明中,利用甘氨酸作为细胞壁弱化剂、选择本发明优化的电转条件、延长复苏时间至20h、利用其自身的甲基化系统预处理质粒,最终将扬氏梭菌的转化效率提升至1.73±0.04×104CFU/μg。The embodiments of the present invention provide a complete set of methods for efficient electrotransformation of Clostridium ljungdahlii based on the pMTL83151 plasmid. In the present invention, glycine is used as a cell wall weakening agent, the electroporation conditions optimized by the invention are selected, the recovery time is extended to 20 hours, and its own methylation system is used to pretreat the plasmid, which ultimately increases the transformation efficiency of Clostridium ljungdahlii to 1.73 ±0.04×10 4 CFU/μg.
这是目前已报道的扬氏梭菌pMTL83151质粒电转化的最高效率,在高效率的同时该方法还具有收菌量少、制作过程简单快捷的优势,对于研究扬氏梭菌具有重要意义。This is the highest efficiency reported so far for the electrotransformation of C. ljungdahlii pMTL83151 plasmid. While being highly efficient, this method also has the advantages of small bacterial collection volume and simple and fast production process, which is of great significance for the study of C. ljungdahlii.
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。All documents mentioned in this application are incorporated by reference in this application to the same extent as if each individual document was individually incorporated by reference. In addition, it should be understood that after reading the above teaching content of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of this application.
序列表 sequence list
<110> 安徽吐露港生物科技有限公司<110> Anhui Tolo Port Biotechnology Co., Ltd.
<120> 一种优化的扬氏梭菌外源DNA电转化方法<120> An optimized electrotransformation method of exogenous DNA of Clostridium ljungdahlii
<130> P2018-0889<130> P2018-0889
<160> 16<160> 16
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 41<211> 41
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence
<400> 1<400> 1
tcccccggga tgagaaagat tattcctatt aataataatt g 41tcccccggga tgagaaagat tattcctatt aataataatt g 41
<210> 2<210> 2
<211> 33<211> 33
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence
<400> 2<400> 2
acgcgtcgac agatgaaatt ctctttctgt ttc 33acgcgtcgac agatgaaatt ctctttctgt ttc 33
<210> 3<210> 3
<211> 29<211> 29
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence
<400> 3<400> 3
tcccccggga tgaggtcaaa aattgaggc 29tcccccggga tgaggtcaaa aattgaggc 29
<210> 4<210> 4
<211> 32<211> 32
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence
<400> 4<400> 4
acgcgtcgac ctataccccc aaaatcttct tc 32acgcgtcgac ctatacccccc aaaatcttct tc 32
<210> 5<210> 5
<211> 31<211> 31
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence
<400> 5<400> 5
tcccccgggt tggagattca aaaggtatct g 31tcccccgggt tggagattca aaaggtatct g 31
<210> 6<210> 6
<211> 37<211> 37
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence
<400> 6<400> 6
acgcgtcgac ttattcaact ttaagtacat ttttata 37acgcgtcgac ttattcaact ttaagtacat ttttata 37
<210> 7<210> 7
<211> 30<211> 30
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence
<400> 7<400> 7
tcccccggga tgcataagtg gcgtgattta 30tcccccggga tgcataagtg gcgtgattta 30
<210> 8<210> 8
<211> 42<211> 42
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence
<400> 8<400> 8
acgcgtcgac ttaattattt tcaatatcat ttaatataat tc 42acgcgtcgac ttaattattt tcaatatcat ttaatataat tc 42
<210> 9<210> 9
<211> 36<211> 36
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence
<400> 9<400> 9
tcccccgggt tggttatttc tttaaaatgc attaag 36tcccccgggt tggttatatttc tttaaaatgc attaag 36
<210> 10<210> 10
<211> 31<211> 31
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence
<400> 10<400> 10
acgcgtcgac tcatattttg cacagcatct c 31acgcgtcgac tcatattttg cacagcatct c 31
<210> 11<210> 11
<211> 34<211> 34
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence
<400> 11<400> 11
tcccccggga tgaatagttt tataggttgg atag 34tcccccggga tgaatagttt tataggttgg atag 34
<210> 12<210> 12
<211> 36<211> 36
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence
<400> 12<400> 12
acgcgtcgac tcaataattt ctaataatca attcac 36acgcgtcgac tcaataattt ctaataatca attcac 36
<210> 13<210> 13
<211> 30<211> 30
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence
<400> 13<400> 13
tcccccggga tggataaatc cgcaattaaa 30tcccccggga tggataaatc cgcaattaaa 30
<210> 14<210> 14
<211> 35<211> 35
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence
<400> 14<400> 14
acgcgtcgac ctatattttt gccaataaat tagcc 35acgcgtcgac ctatattttt gccaataaat tagcc 35
<210> 15<210> 15
<211> 34<211> 34
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence
<400> 15<400> 15
tcccccggga tgaacagttt tattgaagat gttg 34tcccccggga tgaacagttt tattgaagat gttg 34
<210> 16<210> 16
<211> 37<211> 37
<212> DNA<212> DNA
<213> 人工序列(artificial sequence)<213> Artificial sequence
<400> 16<400> 16
acgcgtcgac tcagcaatta tcttttatct tttctac 37acgcgtcgac tcagcaatta tcttttatct tttctac 37
Claims (28)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910145151.9A CN111621510B (en) | 2019-02-27 | 2019-02-27 | Optimized clostridium Yankeei exogenous DNA electrotransformation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910145151.9A CN111621510B (en) | 2019-02-27 | 2019-02-27 | Optimized clostridium Yankeei exogenous DNA electrotransformation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111621510A CN111621510A (en) | 2020-09-04 |
CN111621510B true CN111621510B (en) | 2024-01-05 |
Family
ID=72256898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910145151.9A Expired - Fee Related CN111621510B (en) | 2019-02-27 | 2019-02-27 | Optimized clostridium Yankeei exogenous DNA electrotransformation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111621510B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103160535A (en) * | 2011-12-16 | 2013-06-19 | 江南大学 | Electrotransformation method for introducing shuttle plasmid into corynebacterium acetoacidophilum |
CN103339261A (en) * | 2010-10-22 | 2013-10-02 | 新西兰郎泽科技公司 | Production of butanol from carbon monoxide by a recombinant microorganism |
CN105518130A (en) * | 2013-06-21 | 2016-04-20 | 丹尼斯科美国公司 | Compositions and methods for clostridial transformation |
WO2016061696A1 (en) * | 2014-10-22 | 2016-04-28 | Chung Duane | Expansion of the genetic toolkit for metabolic engineering of clostridium pasteurianum: chromosomal gene disruption of the endogenous cpaai restriction enzyme |
WO2018070141A1 (en) * | 2016-10-13 | 2018-04-19 | 積水化学工業株式会社 | Obligately anaerobic acetic acid-producing microorganism, and recombinant microorganism |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140193916A1 (en) * | 2013-01-08 | 2014-07-10 | Algaeneers Inc. | Electrotransformation of Clostridium pasteurianum |
WO2014160343A1 (en) * | 2013-03-13 | 2014-10-02 | Coskata, Inc. | Use of clostridial methyltransferases for generating novel strains |
-
2019
- 2019-02-27 CN CN201910145151.9A patent/CN111621510B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103339261A (en) * | 2010-10-22 | 2013-10-02 | 新西兰郎泽科技公司 | Production of butanol from carbon monoxide by a recombinant microorganism |
CN103160535A (en) * | 2011-12-16 | 2013-06-19 | 江南大学 | Electrotransformation method for introducing shuttle plasmid into corynebacterium acetoacidophilum |
CN105518130A (en) * | 2013-06-21 | 2016-04-20 | 丹尼斯科美国公司 | Compositions and methods for clostridial transformation |
WO2016061696A1 (en) * | 2014-10-22 | 2016-04-28 | Chung Duane | Expansion of the genetic toolkit for metabolic engineering of clostridium pasteurianum: chromosomal gene disruption of the endogenous cpaai restriction enzyme |
WO2018070141A1 (en) * | 2016-10-13 | 2018-04-19 | 積水化学工業株式会社 | Obligately anaerobic acetic acid-producing microorganism, and recombinant microorganism |
Non-Patent Citations (5)
Title |
---|
A genetic system for Clostridium Ljungdahlii:a chassis for autotrophic production of biocommodities and a model homoacetogen;Leang,C等;《Applied and environmental microbiology》;第79卷(第4期);第1102-1109页 * |
Kopke,M.等.conserved hypothetical protein [Clostridium ljungdahlii DSM 13528].GneBank.2014,GenBank: ADK15528.1. * |
Kopke,M.等.predicted methyltransferase [Clostridium ljungdahlii DSM 13528].GenBank.2014,GenBank: ADK13914.1. * |
Restriction modification system analysis and development of in vivo methylation for the transformation of Clostridium cellulovorans;Xiaorui Yang等;《Applied genetics and molecular biotechnology》;第100卷;第2289-2299页 * |
克氏梭菌己酸合成途径基因的鉴定及该菌遗传操作工具的构建;杨娇;《中国优秀硕士学位论文全文数据库 基础科学辑》(第2019年第01期);第A006-662页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111621510A (en) | 2020-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wen et al. | Improved n-butanol production from Clostridium cellulovorans by integrated metabolic and evolutionary engineering | |
Walker et al. | Development of both type I–B and type II CRISPR/Cas genome editing systems in the cellulolytic bacterium Clostridium thermocellum | |
KR102777466B1 (en) | Genetically engineered bacteria producing L-arginine and methods for constructing and applying the same | |
Bengelsdorf et al. | Industrial acetogenic biocatalysts: a comparative metabolic and genomic analysis | |
Dong et al. | A systematically chromosomally engineered Escherichia coli efficiently produces butanol | |
Zhou et al. | Evolutionary engineering of Geobacillus thermoglucosidasius for improved ethanol production | |
CN116004500A (en) | A kind of genetic engineering bacteria producing L-valine and its construction method and application | |
Pan et al. | Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO 2 valorization | |
AU2011357608B2 (en) | Recombinant microorganisms with increased tolerance to ethanol | |
Zhang et al. | Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses | |
CN107287143A (en) | The Recombinant organism and its construction method of high yield butanol and application | |
CN118086346B (en) | A hydroxytyrosol producing strain and its construction method and application | |
JP2022513677A (en) | Designed biosynthetic pathway to produce 1,5-diaminopentane by fermentation | |
US20120329115A1 (en) | Chromosomal dna integration method | |
CN107267568A (en) | Utilize method of the spoT gene deletion strains by fermenting and producing L amino acid | |
CN114410560B (en) | An engineering strain with high yield of FK228 and its construction and application | |
CN111621510B (en) | Optimized clostridium Yankeei exogenous DNA electrotransformation method | |
Zou et al. | Enhanced electrotransformation of the ethanologen Zymomonas mobilis ZM4 with plasmids | |
CN104031932A (en) | Zymomonas mobilis-escherichia coli shuttle vector pSUZM1, pSUZM2 and pSUZM3 and construction method thereof | |
CN105567716A (en) | Applications of 1,2,4-butanetriol related protein in preparation of 1,2,4-butanetriol through biological method | |
Singh et al. | An improved protocol for electroporation in members of the genus Gordonia | |
Omorotionmwan et al. | Chromosomal engineering of inducible isopropanol-butanol-ethanol production in Clostridium acetobutylicum | |
CN107267541A (en) | Utilize method of the galT gene deletion strains by fermenting and producing L amino acid | |
US20210024965A1 (en) | Engineered microbes for conversion of organic compounds to butanol and methods of use | |
Davis et al. | Gene cloning in clostridia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210122 Address after: 411-37, building 17, SME industrialization base, biomedical park, 1777 Dazheng Road, high tech Zone, Jinan City, Shandong Province Applicant after: Abrack Biotechnology (Shandong) Co.,Ltd. Address before: 239000, 2nd floor, building 8, Zhaoyang Industrial Park, Century Avenue, Chuzhou City, Anhui Province Applicant before: Anhui tulugang Biotechnology Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20211020 Address after: 239000, 2nd floor, building 8, Zhaoyang Industrial Park, Century Avenue, Chuzhou City, Anhui Province Applicant after: Anhui tulugang Biotechnology Co.,Ltd. Address before: 411-37, building 17, SME industrialization base, biomedical park, 1777 Dazheng Road, high tech Zone, Jinan City, Shandong Province Applicant before: Abrack Biotechnology (Shandong) Co.,Ltd. |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20231008 Address after: 210000, 1st Floor, Building 2, Life Science and Technology Island, No. 11 Yaogu Avenue, Jiangbei New District, Nanjing, Jiangsu Province Applicant after: Nanjing Shiqi Biochemical Technology Co.,Ltd. Address before: 239000, 2nd floor, building 8, Zhaoyang Industrial Park, Century Avenue, Chuzhou City, Anhui Province Applicant before: Anhui tulugang Biotechnology Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20240105 |
|
CF01 | Termination of patent right due to non-payment of annual fee |