CN111621320A - Pyrolysis product grading separation method and multi-inner-tower rectifying device - Google Patents
Pyrolysis product grading separation method and multi-inner-tower rectifying device Download PDFInfo
- Publication number
- CN111621320A CN111621320A CN202010368695.4A CN202010368695A CN111621320A CN 111621320 A CN111621320 A CN 111621320A CN 202010368695 A CN202010368695 A CN 202010368695A CN 111621320 A CN111621320 A CN 111621320A
- Authority
- CN
- China
- Prior art keywords
- rectification
- tower
- column
- liquid
- rectifying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000197 pyrolysis Methods 0.000 title claims abstract description 41
- 238000000926 separation method Methods 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 44
- 238000005194 fractionation Methods 0.000 claims abstract description 5
- 239000007788 liquid Substances 0.000 claims description 206
- 238000004821 distillation Methods 0.000 claims description 115
- 238000000605 extraction Methods 0.000 claims description 37
- 238000010992 reflux Methods 0.000 claims description 34
- 239000007791 liquid phase Substances 0.000 claims description 23
- 239000007921 spray Substances 0.000 claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 238000009834 vaporization Methods 0.000 claims description 4
- 230000008016 vaporization Effects 0.000 claims description 4
- 239000012071 phase Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000005215 recombination Methods 0.000 claims 1
- 230000006798 recombination Effects 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 11
- 238000005516 engineering process Methods 0.000 abstract description 10
- 239000002028 Biomass Substances 0.000 abstract description 5
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 39
- 239000012075 bio-oil Substances 0.000 description 33
- 238000010438 heat treatment Methods 0.000 description 25
- 238000012856 packing Methods 0.000 description 19
- 238000009835 boiling Methods 0.000 description 14
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 9
- 235000011613 Pinus brutia Nutrition 0.000 description 9
- 241000018646 Pinus brutia Species 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 238000012546 transfer Methods 0.000 description 9
- 239000002023 wood Substances 0.000 description 9
- 239000003921 oil Substances 0.000 description 7
- 238000007670 refining Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- CWRYPZZKDGJXCA-UHFFFAOYSA-N acenaphthene Chemical compound C1=CC(CC2)=C3C2=CC=CC3=C1 CWRYPZZKDGJXCA-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 3
- 235000005822 corn Nutrition 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003502 gasoline Substances 0.000 description 3
- 238000000199 molecular distillation Methods 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 241000219000 Populus Species 0.000 description 2
- HXGDTGSAIMULJN-UHFFFAOYSA-N acetnaphthylene Natural products C1=CC(C=C2)=C3C2=CC=CC3=C1 HXGDTGSAIMULJN-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000003256 environmental substance Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 238000000194 supercritical-fluid extraction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G7/00—Distillation of hydrocarbon oils
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
一种热解产物分级分离方法及多内塔精馏装置,多内精馏塔精馏装置由外精馏塔及设置于外精馏塔内部的至少2个内精馏塔组成,内精馏塔为分隔壁精馏塔或者由多根管组成的管束构成,能够解决已有多组分混合物分离技术能耗高、热敏性混合物分离纯度低的问题,用于生物质等热解产物的分级分离。
A method for fractional separation of pyrolysis products and a multi-inner column rectification device. The multi-inner rectification column rectification device is composed of an outer rectification column and at least two inner rectification columns arranged inside the outer rectification column. The tower is a dividing wall rectification tower or a tube bundle composed of multiple tubes, which can solve the problems of high energy consumption and low separation purity of heat-sensitive mixtures in the existing multi-component mixture separation technology, and is used for the fractionation of biomass and other pyrolysis products. .
Description
技术领域technical field
本方案涉及化学工业领域,具体涉及一种热解产物分级分离方法及多内塔精馏装置,用于化工、炼油、石化、环保等领域的传质分离过程。The solution relates to the field of chemical industry, and specifically relates to a method for fractional separation of pyrolysis products and a multi-inner tower rectification device, which are used for mass transfer and separation processes in the fields of chemical industry, oil refining, petrochemical, environmental protection and the like.
背景技术Background technique
随着全球能源消耗的增加和环境污染的加剧,可再生能源越来越受到人们的重视。生物质能具有对环境友好、原料来源广泛、可再生等特点,已成为国际能源转型的重要力量。热解技术能够将能量密度较低的生物质(秸秆、果壳、木屑等)转化为能量密度较高的生物油,基于液体燃料在整个能源结构中的重要性,生物油的制取及应用备受关注。生物油组成十分复杂,含氧量很高,已被确定的组分达数百种,几乎包括所有的含氧有机物,如醚、酯、醛、酮、酚、酸和醇等,并且具有粘度高、水含量高、稳定性差和腐蚀性大的特点,严重阻碍了其应用推广。如果能够实现生物油的规模化精细分离将能够获得大量多种用途的产品,有望带来一场原料与能源产业的革命。With the increase of global energy consumption and the aggravation of environmental pollution, more and more attention has been paid to renewable energy. Biomass energy has the characteristics of being friendly to the environment, having a wide range of raw material sources and being renewable, and has become an important force in the international energy transformation. Pyrolysis technology can convert biomass with low energy density (straw, husk, wood chips, etc.) into bio-oil with high energy density. Based on the importance of liquid fuel in the entire energy structure, the preparation and application of bio-oil Much attention. The composition of bio-oil is very complex, with high oxygen content. Hundreds of components have been identified, including almost all oxygen-containing organic compounds, such as ethers, esters, aldehydes, ketones, phenols, acids and alcohols, etc., and have viscosity. The characteristics of high water content, high water content, poor stability and high corrosiveness seriously hinder its application and promotion. If the large-scale and fine separation of bio-oil can be realized, a large number of products with various uses can be obtained, which is expected to bring about a revolution in the raw material and energy industry.
常规的生物油精制分离手段包括蒸馏、溶剂分离、离心分离、色谱分离、膜分离、超临界萃取和分子蒸馏等,都是先获得液体生物油产物再进行精制分离,这无疑会增加技术和工艺的复杂程度,例如在传统蒸馏过程中,热敏性生物油的分离效果不理想且存在结焦老化的问题,虽然采用减压蒸馏能够降低生物油的沸点,但热敏性生物油在整个精馏塔内仍然会发生多种反应而生成高沸点物质,导致产品收率依然不理想,所得馏分组成仍然很复杂;采用多侧线分馏工艺得到的每一个馏分中都会出现热敏性生物油生成的高沸点物质;采用分子蒸馏可以在更低的温度下操作,但分子蒸馏生产能力小,设备投资高,所得馏分组成也很复杂。如果在生物质热解气冷凝过程中直接分离成几类用途不同、性质相对稳定的产物,再根据其性质进行精制分离,将大大降低生物油的分离成本和利用难度。Conventional bio-oil refining and separation methods include distillation, solvent separation, centrifugal separation, chromatographic separation, membrane separation, supercritical extraction and molecular distillation, etc., all of which are to obtain liquid bio-oil products before refining and separation, which will undoubtedly increase technology and technology. For example, in the traditional distillation process, the separation effect of heat-sensitive bio-oil is not ideal and there is a problem of coking and aging. Although vacuum distillation can reduce the boiling point of bio-oil, heat-sensitive bio-oil will still be in the whole distillation column. A variety of reactions occur to generate high-boiling substances, resulting in unsatisfactory product yields and complex composition of fractions; high-boiling substances generated by heat-sensitive bio-oil will appear in each fraction obtained by the multi-side fractionation process; molecular distillation is used It can be operated at a lower temperature, but the molecular distillation production capacity is small, the equipment investment is high, and the obtained fraction composition is also very complicated. If the biomass pyrolysis gas is directly separated into several types of products with different uses and relatively stable properties, and then refined and separated according to their properties, the separation cost and utilization difficulty of bio-oil will be greatly reduced.
分级冷凝技术就是根据各组分沸点的不同逐级将生物质热解气冷凝下来的方法,能够实现从源头将生物油进行初步分级分离,所得生物油的品质得到明显提升,但由于只是采用了简单的分级冷凝,所得到的生物油组成仍然十分复杂,利用难度仍较大,迫切需要开发一种更加精细的生物油精制分离技术。The fractional condensation technology is a method of condensing the biomass pyrolysis gas step by step according to the different boiling points of each component, which can realize the preliminary fractionation and separation of the bio-oil from the source, and the quality of the obtained bio-oil has been significantly improved. Simple grading condensation, the obtained bio-oil composition is still very complex, and the utilization is still difficult, and it is urgent to develop a more refined bio-oil refining and separation technology.
精馏是一种应用广泛的化工分离单元操作,但精馏过程能耗很大,提高精馏过程的能量利用率始终是研究的热点,已有的精馏过程节能方法,包括塔间的能量集成、精馏换热网络合成以及单塔内部的能量集成等,其中热偶精馏由于既节能又节省设备投资引起了人们的广泛关注。Rectification is a widely used chemical separation unit operation, but the rectification process consumes a lot of energy. Improving the energy utilization rate of the rectification process has always been a research hotspot. The existing energy saving methods in the rectification process include Integration, rectification heat exchange network synthesis, and energy integration within a single column, among which thermocouple rectification has attracted widespread attention because of its energy saving and equipment investment.
精馏塔内部热耦合技术是一种理想节能方法,新型装置不断被开发,其中内部能量集成精馏塔通过在精馏段和提馏段之间安装压缩机和节流阀,可以让精馏段操作在比提馏段更高的压力下,从而产生足够大的换热温差,使热量从精馏塔段传递给对应位置的提馏塔段。日本先后开发了同心圆柱式和多同心圆柱捆绑式热耦合精馏塔;但是,同心圆柱式热耦合精馏塔结构较为简单,但仍未解决原有的内部热耦合传热面积小的问题,多同心圆柱捆绑式内部热耦合蒸馏塔虽然具有更大的传热面积,但结构复杂,成本很高,难以在实际中推广应用。专利200910087709.9设计了一种内部热耦合蒸馏塔,通过三个外部换热器实现精馏段与提馏段之间的热耦合,一个外部换热器进行精馏段顶部与提馏段顶部之间的热量交换,从而实现了内部热耦合蒸馏塔的无外部回热操作;但是,该内部热耦合蒸馏塔包括有四个外部换热器和两个塔体,设备体积大、成本高。专利201010195101.0公开了一种液体并流复合塔,包括塔体,塔体分为内精馏塔和外精馏塔,内精馏塔套装在外精馏塔内,内精馏塔和外精馏塔中分别设置有与其横截面相应的塔板,塔板上设置有能够使每层塔板上的液体呈同方向流动的降液系统,该专利消除了传统塔板上的液体滞留区,增加了有效传质面积,增大了处理能力,提高了塔板的传质效率,但该液体并流复合塔的热量均由塔底的再沸器提供,能耗高,热量利用率低,而且为了达到较好的精馏效果,塔高通常较高,安装施工难度大,不易维护检修,之后201420863590.6和201420871708.X,公开了一种热耦合喷射并流塔,包括塔体和多层连续传质塔板,塔体包括内精馏塔和外精馏塔,每层连续传质塔板包括设置有升气孔的塔板、帽罩和降液系统,所述内精馏塔和外精馏塔之间通过内精馏塔的外壁隔离形成精馏段和提馏段,有效利用了提馏段和精馏段的温差在内精馏塔塔壁处进行换热、回收热量,增大了换热面积,有效减少了散热量,强化了提馏段对精馏段的热量传递,从而达到节能目的。但这些技术都是针对简单混合物开发的精馏节能方法,难以对组分复杂的生物油进行精细分级分离。The internal thermal coupling technology of the distillation column is an ideal energy-saving method, and new devices are constantly being developed. The internal energy-integrated distillation column can make the distillation The section operates at a higher pressure than the stripping section, thereby creating a heat exchange temperature difference large enough to transfer heat from the rectifying column section to the corresponding stripping column section. Japan has successively developed concentric cylindrical and multi-concentric cylindrical bundled thermally coupled rectification towers; however, the concentric cylindrical thermally coupled rectification tower has a relatively simple structure, but the original problem of small internal thermally coupled heat transfer area has not been solved. Although the multi-concentric cylindrical bundled internal thermally coupled distillation column has a larger heat transfer area, the structure is complex and the cost is high, so it is difficult to popularize and apply in practice. Patent 200910087709.9 designs an internal thermally coupled distillation column, which realizes the thermal coupling between the rectification section and the stripping section through three external heat exchangers, and one external heat exchanger for the top of the rectification section and the top of the stripping section. The heat exchange of the internal thermally coupled distillation column is realized without external heat recovery; however, the internal thermally coupled distillation column includes four external heat exchangers and two tower bodies, and the equipment is bulky and expensive. Patent 201010195101.0 discloses a liquid co-current composite tower, including a tower body, the tower body is divided into an inner rectification tower and an outer rectification tower, the inner rectification tower is sheathed in the outer rectification tower, the inner rectification tower and the outer rectification tower There are column plates corresponding to their cross-sections, and the column plate is provided with a descending liquid system that can make the liquid on each layer of the column plate flow in the same direction. This patent eliminates the liquid retention area on the traditional column plate and increases the The effective mass transfer area increases the processing capacity and improves the mass transfer efficiency of the tray, but the heat of the liquid co-flow composite tower is provided by the reboiler at the bottom of the tower, which has high energy consumption and low heat utilization rate. To achieve a better rectification effect, the tower height is usually high, the installation and construction are difficult, and maintenance is not easy. Later, 201420863590.6 and 201420871708.X, a thermally coupled jet co-current tower was disclosed, including a tower body and a multi-layer continuous mass transfer. The column plate, the column body includes an inner rectification column and an outer rectification column, each layer of continuous mass transfer column plate includes a column plate provided with a gas lift hole, a cap and a descending liquid system, the inner rectification column and the outer rectification column. The rectification section and the stripping section are separated by the outer wall of the inner rectification column, and the temperature difference between the stripping section and the rectification section is effectively used for heat exchange and recovery at the wall of the inner rectification column, which increases the exchange rate. The thermal area effectively reduces the heat dissipation and strengthens the heat transfer from the stripping section to the rectifying section, so as to achieve the purpose of energy saving. However, these technologies are all energy-saving distillation methods developed for simple mixtures, and it is difficult to finely fractionate bio-oils with complex components.
另外,分隔壁精馏塔是热偶精馏塔的一种,例如专利201210172039.2、201110074332.0和201510647969.2都采用了设有一块分隔壁的分隔壁精馏塔,缩短了工艺流程,减少了设备投资,提高了分离效率,降低了分离能耗。目前这种采用一块分隔壁的分隔壁精馏塔技术已近成熟,但只能用于简单3组分的分离。分离四组分及以上物系则需要更多的分隔壁,文献(D Dwivedi, IJ Halvorsen, S Skogestad. Control structureselection for four-product Petlyuk column[J]. Chemical Engineering andProcessing & Process Intensification, 2013, 67(5): 49-59.)采用设有3块分隔壁的分隔壁精馏塔用于分离甲醇、乙醇、丙二醇、丁醇四组分物系;专利201310279930.0采用了具有较多隔板的隔板塔,用于分离制备甲基萘和工业苊,洗油馏分进入隔板塔进行精馏,从隔板塔引出多股产品物流:萘油、甲基萘、中质洗油、苊馏分、重质洗油,产品纯度和收率提高。但是采用两块及以上分隔壁的分隔壁精馏塔的结构和控制趋于复杂,调整某一块分隔壁将对其它操作参数影响很大,使得分隔壁精馏塔的操作弹性、动态特性和可控性较差,因此采用的分隔壁数量受到限制,一般控制在1~6块,仅限于分离3~5组分物系,难以对组分达数百种的生物油进行高纯度分离。In addition, the dividing wall rectifying column is a kind of thermocouple rectifying column. For example, patents 201210172039.2, 201110074332.0 and 201510647969.2 all adopt a dividing wall rectifying column with a dividing wall, which shortens the process flow, reduces equipment investment, and improves the The separation efficiency is improved and the separation energy consumption is reduced. At present, the technology of this dividing wall rectification column using a dividing wall is nearly mature, but it can only be used for the separation of simple 3 components. Separation of four-component and more systems requires more partitions, literature (D Dwivedi, IJ Halvorsen, S Skogestad. Control structureselection for four-product Petlyuk column[J]. Chemical Engineering and Processing & Process Intensification, 2013, 67( 5): 49-59.) Adopt the dividing wall rectification column that is provided with 3 dividing walls for separating methanol, ethanol, propylene glycol, butanol four-component material system; Patent 201310279930.0 adopts the dividing plate with more dividing walls The tower is used to separate and prepare methyl naphthalene and industrial acenaphthene. The washed oil fraction enters the baffle tower for rectification, and multiple product streams are drawn from the baffle tower: naphthalene oil, methyl naphthalene, medium washing oil, acenaphthene fraction, heavy Quality washing oil, product purity and yield increase. However, the structure and control of the dividing wall rectification column with two or more dividing walls tend to be complicated. Adjusting a certain dividing wall will have a great influence on other operating parameters, which makes the operation flexibility, dynamic characteristics and flexibility of the dividing wall rectifying column. The controllability is poor, so the number of partition walls used is limited, generally controlled at 1 to 6 pieces, limited to the separation of 3 to 5 components, and it is difficult to separate the bio-oil with hundreds of components with high purity.
不只是生物油,其它诸如石油、废塑料、废橡胶、垃圾、煤等原料的热解产物也是复杂的多组分混合物,需要进行分离以提高热解产物的附加值;在石油、化工、环保等领域也存在着大量多组分混合物,也需要高效低耗的分离技术。Not only bio-oil, but other pyrolysis products such as petroleum, waste plastics, waste rubber, garbage, coal and other raw materials are also complex multi-component mixtures, which need to be separated to improve the added value of pyrolysis products; in petroleum, chemical, environmental protection There are also a large number of multi-component mixtures in such fields, and high-efficiency and low-consumption separation technology is also required.
发明内容SUMMARY OF THE INVENTION
本方案的目的在于提供一种热解产物分级分离方法及多内塔精馏装置。The purpose of this scheme is to provide a pyrolysis product fractional separation method and a multi-inner column rectification device.
本方案是通过以下技术方案来实现的:一种多内塔精馏装置,它是由外精馏塔及设置于外精馏塔内部的至少2个内精馏塔组成,内精馏塔排列于外精馏塔内部不同高度位置;外精馏塔的侧壁设有进料口,外精馏塔的顶部设有塔顶气出口,外精馏塔的底部设有塔底出料口,外精馏塔的上部设有回流液进口,下部设有再沸器返塔口;外精馏塔塔顶设有冷凝器及冷凝器之后的回流罐,回流罐设有不凝气口和产品排出管路,产品排出管路分为两路,一路设有塔顶产品阀,另一路设有塔顶回流泵并与回流液进口相连;外精馏塔塔底设有再沸器,外精馏塔塔底出料口之后的管路分为两路,一路设有塔底出料泵,另一路经再沸器后与再沸器返塔口相连;内精馏塔顶部封闭并且设有内精馏塔出气口,内精馏塔出气口为倒U形管结构,起液封作用,防止液相进入内精馏塔;内精馏塔底部封闭并且设有内精馏塔排液口,内精馏塔排液口为U形管结构,防止气相进入内精馏塔;内精馏塔侧壁设有内精馏塔进液口,外精馏塔内部在每个内精馏塔进液口的上方都设有液体分配器;内精馏塔进液口与通过管路与上部的液体分配器的出液管相连。This solution is realized by the following technical solutions: a multi-inner column rectification device, which is composed of an outer rectification column and at least two inner rectification columns arranged inside the outer rectification column, and the inner rectification columns are arranged At different heights inside the outer rectification tower; the side wall of the outer rectification tower is provided with a feed port, the top of the outer rectification tower is provided with a tower top gas outlet, and the bottom of the outer rectification tower is provided with a column bottom outlet, The upper part of the outer rectification tower is provided with a reflux liquid inlet, and the lower part is provided with a reboiler return column; the top of the outer rectification tower is provided with a condenser and a reflux tank after the condenser, and the reflux tank is provided with a non-condensable gas port and product discharge The pipeline, the product discharge pipeline is divided into two channels, one is equipped with a product valve at the top of the tower, and the other is equipped with a reflux pump at the top of the tower and is connected with the reflux liquid inlet; the bottom of the outer rectification tower is equipped with a reboiler, and the outer rectification tower is equipped with a reboiler. The pipeline after the discharge port at the bottom of the tower is divided into two paths, one path is provided with a tower bottom discharge pump, and the other path is connected to the return tower port of the reboiler after passing through the reboiler; the top of the inner rectification tower is closed and equipped with an internal The air outlet of the rectification tower and the air outlet of the inner rectification tower are of an inverted U-shaped tube structure, which acts as a liquid seal to prevent the liquid phase from entering the inner rectification tower; the bottom of the inner rectification tower is closed and is provided with an inner rectification tower liquid outlet, The liquid discharge port of the inner rectification tower is a U-shaped pipe structure to prevent the gas phase from entering the inner rectification tower; the inner rectification tower is provided with an inner rectification tower liquid inlet on the side wall, and the inner rectification tower enters each inner rectification tower. A liquid distributor is arranged above the liquid port; the liquid inlet of the inner rectification tower is connected with the liquid outlet pipe of the upper liquid distributor through a pipeline.
液体分配器采用盘式孔流分布器,包括带有底板的筒体,底板上布置有升气管、喷淋孔和导流孔,其中导流孔与液体分配器的出液管相连。The liquid distributor adopts a disc-type hole flow distributor, including a cylinder with a bottom plate, and the bottom plate is provided with an air riser, a spray hole and a guide hole, wherein the guide hole is connected with the liquid outlet pipe of the liquid distributor.
所述内精馏塔的个数为至少2个,优选3~9个。The number of the internal rectification towers is at least 2, preferably 3 to 9.
内精馏塔为分隔壁精馏塔,即在内精馏塔内部设置一分隔壁,内精馏塔被分隔壁分成6个部分,公共精馏区Ⅰ,公共提馏区Ⅵ,及由分隔壁分开的进料段和侧线采出段,其中进料段和侧线采出段又可分为进料精馏段Ⅱ、侧线采出精馏段Ⅲ和进料提馏段Ⅳ、侧线采出提馏段Ⅴ;内精馏塔进料段设有进料分布器,内精馏塔的侧线采出段在侧壁中部设有侧线采出口,该侧线采出口与侧线采出管连接;侧线采出管的一端与内精馏塔中的侧采分布器连接,另一端穿过外精馏塔塔壁延伸至外精馏塔外部。The inner rectifying column is a dividing wall rectifying column, that is, a dividing wall is set inside the inner rectifying column, and the inner rectifying column is divided into 6 parts by the dividing wall, the common rectifying zone I, the common stripping zone VI, and the parts by the dividing wall. The feed section and the side extraction section are separated by the partition wall. The feed section and the side extraction section can be further divided into the feed rectification section II, the side extraction rectification section III, the feed stripping section IV, and the side extraction section. Stripping section V; the feed section of the inner rectification tower is provided with a feed distributor, the side line extraction section of the inner rectification tower is provided with a side line extraction port in the middle of the side wall, and the side line extraction port is connected with the side line extraction pipe; One end of the extraction pipe is connected with the side-drawing distributor in the inner rectification tower, and the other end extends to the outside of the outer rectification tower through the tower wall of the outer rectification tower.
进料分布器采用盘式孔流分布器,包括带有底板的筒体,底板上布置有升气管和喷淋孔。The feed distributor adopts a disc-type orifice flow distributor, including a cylinder with a bottom plate, and the bottom plate is provided with air risers and spray holes.
侧采分布器采用盘式孔流分布器,包括带有底板的筒体,底板上布置有升气管、喷淋孔和导流孔,其中导流孔与侧线采出管相连。The side extraction distributor adopts a disc-type orifice flow distributor, including a cylinder with a bottom plate, and the bottom plate is arranged with an air riser, a spray hole and a diversion hole, wherein the diversion hole is connected with the side line extraction pipe.
内精馏塔采用由多根管组成的管束构成,内精馏塔进料段设有盒式进料器,内精馏塔顶部设有出气分配器,该出气分配器顶部封闭并且设有内精馏塔出气口;内精馏塔底部设有液体汇集器,该液体汇集器底部封闭并且设有内精馏塔排液口;侧线采出管的一端与内精馏塔中的盒式侧采器连接,侧线采出管的另一端穿过外精馏塔塔壁延伸至外精馏塔外部;公共精馏区Ⅰ的底部设有公共精馏气液分布器,公共提馏区Ⅵ的顶部设有公共提馏气液分布器;公共精馏区Ⅰ的管束上端与内精馏塔的出气分配器相连通,管束下端与内精馏塔的公共精馏气液分布器相连通;进料精馏段Ⅱ的管束上端与内精馏塔的公共精馏气液分布器相连通,管束下端与内精馏塔的盒式进料器相连通;侧线采出精馏段Ⅲ的管束上端与内精馏塔的公共精馏气液分布器相连通,管束下端与内精馏塔的盒式侧采器相连通;进料提馏段Ⅳ的管束上端与内精馏塔的盒式进料器相连通,管束下端与内精馏塔的公共提馏气液分布器相连通;侧线采出提馏段Ⅴ的管束上端与内精馏塔的盒式侧采器相连通,管束下端与内精馏塔的公共提馏气液分布器相连通;公共提馏区Ⅵ的管束上端与内精馏塔的公共提馏气液分布器相连通,管束下端与内精馏塔的液体汇集器相连通;液体汇集器底部封闭并且设有排液口。The inner rectification tower is composed of a tube bundle composed of multiple tubes, the feed section of the inner rectification tower is provided with a box feeder, and the top of the inner rectification tower is provided with an outlet distributor, the top of the outlet distributor is closed and is provided with an inner rectifier. The gas outlet of the rectification tower; the bottom of the inner rectification tower is provided with a liquid collector, and the bottom of the liquid collector is closed and is provided with a liquid outlet of the inner rectification tower; The other end of the side line extraction pipe extends to the outside of the outer rectification tower through the outer rectification tower; the bottom of the common rectification zone I is provided with a common rectification gas-liquid distributor, and the common stripping zone VI The top is provided with a common stripping gas-liquid distributor; the upper end of the tube bundle of the common rectification zone I is communicated with the gas outlet distributor of the inner rectification tower, and the lower end of the tube bundle is communicated with the public rectification gas-liquid distributor of the inner rectification tower; The upper end of the tube bundle of the rectification section II is connected with the common rectification gas-liquid distributor of the inner rectification tower, and the lower end of the tube bundle is communicated with the cassette feeder of the inner rectification tower; the upper end of the tube bundle of the rectification section III is drawn from the side line It is communicated with the public rectification gas-liquid distributor of the inner rectification column, and the lower end of the tube bundle is communicated with the cassette side drawer of the inner rectification column; the upper end of the tube bundle of the feed stripping section IV is communicated with the cassette feeder of the inner rectification column. The lower end of the tube bundle is communicated with the common stripping gas-liquid distributor of the inner rectification tower; the upper end of the tube bundle of the stripping section V of the side line extraction is communicated with the box-type side collector of the inner rectification tower, and the lower end of the tube bundle is communicated with the side collector of the inner rectification tower. The common stripping gas-liquid distributor of the inner rectification tower is connected; the upper end of the tube bundle of the common stripping zone VI is connected with the common stripping gas-liquid distributor of the inner rectification tower, and the lower end of the tube bundle is connected with the liquid collector of the inner rectification tower Connected; the bottom of the liquid collector is closed and is provided with a drain port.
盒式进料器、出气分配器、公共精馏气液分布器、盒式侧采器、公共提馏气液分布器、液体汇集器的结构为顶部封闭和底部封闭的筒体,但不限于这种结构,也可采用其它能够起到液体收集分配和气体再分布作用的装置。The structure of the cassette feeder, gas outlet distributor, public rectification gas-liquid distributor, cassette-type side drawer, public stripping gas-liquid distributor, and liquid collector is a cylinder with a closed top and a closed bottom, but not limited to With this structure, other devices capable of collecting and distributing liquid and redistributing gas can also be used.
本方案提供一种使用上述多内精馏塔精馏装置进行热解产物分级分离的方法,包括以下步骤:将热解产物从外精馏塔进料口加入到外精馏塔中进行精馏,到达外精馏塔塔底的液相经塔底出料口排出,一部分进入到再沸器汽化后经再沸器返塔口返回外精馏塔,其余液相部分经塔底出料泵排至外精馏塔塔外;到达外精馏塔塔顶的轻组分经塔顶气出口排出,经冷凝器冷凝后进入回流罐,不凝气经不凝气口排出,液相从回流罐排出后一路经塔顶产品阀排出作为产品,另一路依次经塔顶回流泵和回流液进口回流到外精馏塔内;在某一高度的液相从外精馏塔的液体分配器的出液管排出后经管路从内精馏塔进液口进入内精馏塔进行精馏,轻组分和一部分中间组分向塔上方移动,重组分和一部分中间组分向塔下方移动,在公共精馏区完成轻组分和中间组分的分离,轻组分以气体状态从内精馏塔出气口排出返回外精馏塔继续精馏;公共提馏区完成中间组分和重组分的分离,重组分以液体状态从内精馏塔排液口排出进入外精馏塔继续精馏,中间组分以液体状态从侧线采出口采出,之后经侧线采出管排出至外精馏塔塔外,收集各个内精馏塔侧线采出的馏分。This scheme provides a method for fractional separation of pyrolysis products using the above-mentioned multi-inner rectification tower rectification device, comprising the following steps: adding the pyrolysis products from the feed port of the outer rectification tower into the outer rectification tower for rectification , the liquid phase that reaches the bottom of the outer rectification tower is discharged through the discharge port at the bottom of the tower, and a part of it enters the reboiler for vaporization and returns to the external rectification tower through the reboiler return to the tower port, and the rest of the liquid phase passes through the bottom discharge pump of the tower. It is discharged to the outside of the outer rectification tower; the light components that reach the top of the outer rectification tower are discharged through the top gas outlet, condensed by the condenser and then enter the reflux tank, the non-condensable gas is discharged through the non-condensable gas outlet, and the liquid phase is discharged from the reflux tank After discharge, one way is discharged as product through the product valve at the top of the tower, and the other way is returned to the outer rectification tower through the reflux pump at the top of the tower and the reflux liquid inlet in turn; the liquid phase at a certain height is discharged from the liquid distributor of the outer rectification tower. After the liquid pipe is discharged, it enters the inner rectification tower through the pipeline from the liquid inlet of the inner rectification tower for rectification. The light components and a part of the intermediate components move to the top of the tower, and the heavy components and a part of the intermediate components move to the bottom of the tower. The separation of light components and intermediate components is completed in the rectification zone, and the light components are discharged from the gas outlet of the inner rectification tower and returned to the outer rectification tower to continue rectification; the common stripping zone completes the separation of the intermediate components and heavy components The heavy components are discharged in liquid state from the liquid outlet of the inner rectification tower and enter the outer rectification tower to continue rectification. The intermediate components are extracted from the side line extraction port in liquid state, and then discharged to the outer rectification tower through the side line extraction pipe. In addition, the fractions drawn from the side draw of each inner rectification column are collected.
经再沸器返塔口向外精馏塔中通入甲醇或者乙醇。Methanol or ethanol is passed into the outward rectification column through the reboiler return column port.
本方案的有益效果是:(1) 外精馏塔内部设置数个乃至数十个内精馏塔,相应的将热解产物分离得到数个乃至数十个馏分,利用一个装置实现热解产物的精细分级分离,突破了分隔壁精馏塔仅用于分离3~5组分物系的限制。The beneficial effects of this scheme are: (1) Several or even dozens of inner rectification towers are arranged inside the outer rectification tower, correspondingly, the pyrolysis products are separated to obtain several or even dozens of fractions, and one device is used to realize the pyrolysis products. The fine fractionation and separation of the system breaks through the limitation that the dividing wall rectification column is only used to separate 3-5 components.
(2) 利用一个精馏塔完成多个普通精馏塔所能完成的分离任务,并且每个内精馏塔均与外精馏塔之间形成热偶,每一个内精馏塔不需再沸器和冷凝器,内精馏塔内的低沸点馏分汽化所需热量是利用外精馏塔内的高沸点馏分冷凝放出的热量,实现了能量耦合利用。(2) One rectifying tower is used to complete the separation tasks that can be accomplished by a plurality of ordinary rectifying towers, and each inner rectifying tower forms a thermocouple with the outer rectifying tower, and each inner rectifying tower does not need to be further Boiler and condenser, the heat required for the vaporization of the low-boiling fraction in the inner rectifying tower is the heat released by the condensation of the high-boiling fraction in the outer rectifying tower, realizing the coupled utilization of energy.
(3) 调整某一个内精馏塔对其它操作参数影响小,具有良好的操作弹性、动态特性和可控性。(3) Adjusting a certain inner distillation column has little effect on other operating parameters, and has good operating flexibility, dynamic characteristics and controllability.
(4) 内精馏塔采用分隔壁精馏塔,运行时在某一高度的液相进入到一内精馏塔中进行精馏,轻组分和重组分分别从内精馏塔顶部和底部排出返回外精馏塔继续精馏,中间组分(目标组分)从内精馏塔侧线采出,能够将热敏性生物油在外精馏塔生成的高沸点物质分离到相应沸程的馏分中,同时实现生物油的稳定化,获得沸程切割清晰的高品质馏分油。(4) The inner rectification column adopts a dividing wall rectification column. During operation, the liquid phase at a certain height enters an inner rectification column for rectification, and the light components and heavy components are separated from the top and bottom of the inner rectification column. It is discharged and returned to the outer rectification tower to continue rectification, and the intermediate components (target components) are extracted from the side line of the inner rectification tower, which can separate the high-boiling substances generated by the heat-sensitive bio-oil in the outer rectification tower into the corresponding boiling range fractions, At the same time, the stabilization of bio-oil is achieved, and high-quality distillate oil with clear boiling range is obtained.
附图说明Description of drawings
图1为多内塔精馏装置示意图。图2为内精馏塔采用分隔壁精馏塔的结构与分区示意图。图3为内精馏塔采用管束形式的分隔壁精馏塔的结构示意图。图4为液体分配器采用的盘式孔流分布器的结构示意图。图5为进料分布器采用的盘式孔流分布器的结构示意图。图6为侧采分布器采用的盘式孔流分布器的结构示意图。Figure 1 is a schematic diagram of a multi-inner column rectification device. Figure 2 is a schematic diagram of the structure and division of an internal rectifying column using a dividing wall rectifying column. Fig. 3 is the structural representation of the dividing wall rectifying column in which the inner rectifying column adopts the tube bundle form. FIG. 4 is a schematic structural diagram of a disc-type hole flow distributor used in the liquid distributor. Figure 5 is a schematic structural diagram of a disc-type hole flow distributor used in the feed distributor. FIG. 6 is a schematic structural diagram of the disc-type hole flow distributor used in the side-collection distributor.
图中:101-塔顶气出口;102-外精馏塔;1031-第一内精馏塔;1032-第二内精馏塔;1033-第三内精馏塔;1034-第四内精馏塔;1035-第五内精馏塔;1036-第六内精馏塔;1037-第七内精馏塔;104-进料口;105-塔底出料口;106-冷凝器;107-不凝气口;108-回流罐;109-塔顶产品阀;110-塔顶回流泵;111-回流液进口;112-内精馏塔进液口;113-内精馏塔出气口;114-侧线采出口;115-侧线采出管;116-分隔壁;117-内精馏塔排液口;118-液体分配器;119-液体分配器的出液管;120-再沸器返塔口;121-再沸器;122-塔底出料泵;201-进料分布器;202-侧采分布器;301-盒式进料器;302-出气分配器;303-公共精馏气液分布器;304-盒式侧采器;305-公共提馏气液分布器;306-液体汇集器;401-升气管;402-底板;403-筒体;404-喷淋孔;405-导流孔。In the figure: 101-top gas outlet; 102-outer rectification tower; 1031-first inner rectification tower; 1032-second inner rectification tower; 1033-third inner rectification tower; 1034-fourth inner rectification tower Distillation column; 1035-Fifth inner rectification column; 1036-Sixth inner rectification column; 1037-Seventh inner rectification column; 104-Feed inlet; 105-Column bottom outlet; 106-Condenser; 107 -Non-condensable gas port; 108- reflux tank; 109- tower top product valve; 110- tower top reflux pump; 111- reflux liquid inlet; 112- inner rectifying tower liquid inlet; 113- inner rectifying tower gas outlet; 114 - side line extraction outlet; 115- side line extraction pipe; 116- dividing wall; 117- liquid outlet of inner rectification tower; 118- liquid distributor; 119- liquid outlet pipe of liquid distributor; 120- reboiler return tower 121-reboiler; 122-bottom discharge pump; 201-feed distributor; 202-side draw distributor; 301-cassette feeder; 302-outlet distributor; 303-public rectified gas Liquid distributor; 304-box side sampler; 305-common stripping gas-liquid distributor; 306-liquid collector; 401-gas riser; 402-bottom plate; 403-cylinder; 404-spray hole; diversion hole.
具体实施方式Detailed ways
下面结合附图并通过具体实施例对本方案作进一步详述。The present scheme will be further described in detail below with reference to the accompanying drawings and through specific embodiments.
实施例1:如图1所示,一种多内塔精馏装置,它是由外精馏塔102及设置于外精馏塔102内部的七个内精馏塔组成,内精馏塔排列于外精馏塔102内部不同高度位置,最上面的内精馏塔命名为第一内精馏塔1031,往下依次命名为第二内精馏塔1032、第三内精馏塔1033、第四内精馏塔1034、第五内精馏塔1035、第六内精馏塔1036、第七内精馏塔1037;外精馏塔102的侧壁设有进料口104,外精馏塔102的顶部设有塔顶气出口101,外精馏塔102的底部设有塔底出料口105,外精馏塔102的上部设有回流液进口111,下部设有再沸器返塔口120。Embodiment 1: as shown in Figure 1, a kind of multi-inner column rectification device, it is made up of
外精馏塔102塔顶设有冷凝器106及冷凝器106之后的回流罐108,回流罐108设有不凝气口107和产品排出管路,产品排出管路分为两路,一路设有塔顶产品阀109,另一路设有塔顶回流泵110并与回流液进口111相连。The top of the
外精馏塔102塔底设有再沸器121,外精馏塔102塔底出料口105之后的管路分为两路,一路设有塔底出料泵122,另一路经再沸器121后与再沸器返塔口120相连。A
内精馏塔顶部封闭并且设有内精馏塔出气口113,内精馏塔底部封闭并且设有内精馏塔排液口117,内精馏塔侧壁设有内精馏塔进液口112,外精馏塔102内部在每个内精馏塔进液口112的上方都设有液体分配器118,液体分配器118能够起到液体分配和气体再分布的作用;内精馏塔进液口112与通过管路与上部的液体分配器118的出液管119相连通。内精馏塔出气口113为倒U形管结构,起液封作用,防止液相进入内精馏塔;内精馏塔排液口117为U形管结构,防止气相进入内精馏塔。The top of the inner rectification tower is closed and provided with an inner rectification
如图2所示,内精馏塔为分隔壁精馏塔,即在内精馏塔内部设置一分隔壁116,内精馏塔被分隔壁116分成6个部分,包括公共精馏区Ⅰ,公共提馏区Ⅵ,及由分隔壁116分开的进料段和侧线采出段,其中进料段和侧线采出段又可分为进料精馏段Ⅱ、侧线采出精馏段Ⅲ和进料提馏段Ⅳ、侧线采出提馏段Ⅴ;内精馏塔进料段设有进料分布器201,内精馏塔的侧线采出段在侧壁中部设有侧线采出口114,侧线采出口114与侧线采出管115连接;侧线采出管115的一端与内精馏塔中的侧采分布器202连接,另一端穿过外精馏塔102塔壁延伸至外精馏塔102外部。As shown in Figure 2, the inner rectifying column is a dividing wall rectifying column, that is, a dividing
外精馏塔102塔高6米,内径0.22米,装填直径和高都为4 mm的不锈钢θ网环填料,填料段顶部距离外精馏塔102塔顶0.4米,填料段底部距离外精馏塔102塔底1.5米;外精馏塔102的进料口104高于外精馏塔102填料段下端0.6米;内精馏塔塔高0.9米,内径0.042米,装填直径和高都为4 mm的不锈钢θ网环填料,填料段顶部距离外精馏塔102塔顶0.02米,填料段底部距离外精馏塔102塔底0.10米;第七内精馏塔1037的塔顶高于外精馏塔102填料段下端1.15米,第六内精馏塔1036的塔顶高于第七内精馏塔1037的塔顶0.4米,第五内精馏塔1035的塔顶高于第六内精馏塔1036的塔顶0.4米,第四内精馏塔1034的塔顶高于第五内精馏塔1035的塔顶0.3米,第三内精馏塔1033的塔顶高于第四内精馏塔1034的塔顶0.3米,第二内精馏塔1032的塔顶高于第三内精馏塔1033的塔顶0.3米,第一内精馏塔1031的塔顶高于第二内精馏塔1032的塔顶0.3米;液体分配器118比之下相邻的内精馏塔的内精馏塔进液口112高0.2米。The
内精馏塔进液口112高于内精馏塔填料段下端0.35米,侧线采出口114高于内精馏塔填料段下端0.35米;分隔壁116高度为0.35米,宽0.042米,其下端高于内精馏塔填料段下端0.2米。The
液体分配器118采用盘式孔流分布器,如图4所示,包括带有底板402的筒体403,底板402上围绕圆心均匀布置有8个升气管401,另外还布置有喷淋孔404和导流孔405,其中导流孔405与液体分配器118的出液管119相连。底板402为圆形,其直径0.22米;筒体403直径0.22米,高0.05米;升气管401的直径和高度分别为0.042米和0.03米,升气管401圆心与底板402圆心的距离为0.06米。喷淋孔404直径0.005米,孔中心间距0.02米;导流孔405圆心位于底板402圆心,导流孔405直径0.04米。The
进料分布器201采用盘式孔流分布器,如图5所示,包括带有底板402的筒体403,底板402上布置有升气管401和喷淋孔404。底板402为半圆形,其直径0.042米;筒体403直径0.042米,高0.03米;底板402上围绕圆心均匀布置有4个升气管401,升气管401的直径和高度分别为0.006米和0.02米,升气管401圆心与底板402圆心的距离为0.016米。喷淋孔404直径0.004米,孔中心间距0.012米。The
侧采分布器202采用盘式孔流分布器,如图6所示,包括带有底板402的筒体403,底板402上布置有升气管401、喷淋孔404和导流孔405,其中导流孔405与侧线采出管115相连。底板402为半圆形,其直径0.042米;筒体403直径0.042米,高0.03米;底板402上围绕圆心均匀布置有4个升气管401,升气管401的直径和高度分别为0.006米和0.02米,升气管401圆心与底板402圆心的距离为0.016米。喷淋孔404直径0.004米,孔中心间距0.012米。导流孔405圆心位于半圆形底板402的对称轴上,且与底板402圆心的距离为0.0065米。The
采用上述的多内精馏塔精馏装置分级分离松木热解产物制备生物油,以20-50目的松木粉(含水量10%)为原料,经螺旋进料系统以10 kg/h的速度向螺旋式热解反应器(长1500 mm,内径15 mm)中进料,热解温度550℃,热解产生的固体炭产物直接进入炭箱收集;热解气体产物经旋风分离器除尘后进入冷却器冷却至240℃,从外精馏塔102进料口104加入到外精馏塔102中进行精馏,到达外精馏塔102塔底的液相经塔底出料口105排出,一部分进入到再沸器121汽化后经再沸器返塔口120返回外精馏塔102,其余液相部分经塔底出料泵122排至外精馏塔102塔外;再沸器121采用电加热式再沸器,通过控制再沸器121的加热功率使外精馏塔102塔底的液相温度稳定在260℃。Bio-oil is prepared by using the above-mentioned multi-inner rectifying tower rectification device to fractionate and separate the pine wood pyrolysis products. The 20-50 mesh pine wood powder (water content 10%) is used as the raw material. The feed is fed into the spiral pyrolysis reactor (length 1500 mm, inner diameter 15 mm), the pyrolysis temperature is 550 °C, and the solid carbon products produced by the pyrolysis directly enter the carbon box for collection; the pyrolysis gas products are dedusted by the cyclone separator and then enter the cooling system The device is cooled to 240 ° C, and is added to the
到达外精馏塔102塔顶的轻组分经塔顶气出口101排出,经冷凝器106冷凝后进入回流罐108,不凝气经不凝气口107排出,液相从回流罐108排出后一路经塔顶产品阀109排出作为产品,另一路依次经塔顶回流泵110和回流液进口111回流到外精馏塔102内,回流比控制在2∶1,外精馏塔102塔顶温度为80℃;冷凝器106采用水冷式冷凝器,通过控制进水流量使经过冷凝器106后冷凝液温度降到45℃。The light components arriving at the top of the
在某一高度的液相从外精馏塔102的液体分配器118的出液管119排出后经管路从内精馏塔进液口112进入内精馏塔进行精馏,轻组分和一部分中间组分向塔上方移动,重组分和一部分中间组分向塔下方移动,在公共精馏区完成轻组分和中间组分的分离,轻组分以气体状态从内精馏塔出气口113排出返回外精馏塔102继续精馏;公共提馏区完成中间组分和重组分的分离,重组分以液体状态从内精馏塔排液口117排出进入外精馏塔102继续精馏,中间组分以液体状态从侧线采出口114采出,之后经侧线采出管115排出至外精馏塔102塔外,收集各个内精馏塔侧线采出的馏分。按照《GB/T 6536-2010石油产品常压蒸馏特性测定法》测定样品的馏程。The liquid phase at a certain height is discharged from the
外精馏塔102塔顶产品阀109排出的馏分为无色液体,馏程测定过程中在30~90℃的馏出体积占样品体积的92.8%,在30℃存放24小时,30℃下的粘度上升3.5%;第一内精馏塔1031排出的馏分为无色液体,馏程测定过程中在90~110℃的馏出体积占样品体积的91.9%,在80℃加热24小时,40℃下的粘度上升6.2%;第二内精馏塔1032排出的馏分为无色液体,馏程测定过程中在110~130℃的馏出体积占样品体积的90.5%,在80℃加热24小时,40℃下的粘度上升8.4%;第三内精馏塔1033排出的馏分为淡黄色液体,馏程测定过程中在130~150℃的馏出体积占样品体积的90.0%,在80℃加热24小时,40℃下的粘度上升10.6%;第四内精馏塔1034排出的馏分为淡黄色液体,馏程测定过程中在150~170℃的馏出体积占样品体积的89.1%,在80℃加热24小时,40℃下的粘度上升12.9%;第五内精馏塔1035排出的馏分为浅黄色液体,馏程测定过程中在170~190℃的馏出体积占样品体积的88.7%,在80℃加热24小时,40℃下的粘度上升13.1%;第六内精馏塔1036排出的馏分为浅黄色液体,馏程测定过程中在190~210℃的馏出体积占样品体积的88.0%,在80℃加热24小时,40℃下的粘度上升15.8%;第七内精馏塔1037排出的馏分为浅黄色液体,馏程测定过程中在210~240℃的馏出体积占样品体积的86.5%,在80℃加热24小时,40℃下的粘度上升16.3%;外精馏塔102塔底出料泵122排出的物料为黑色粘稠液体,馏程测定过程中在30~240℃的馏出体积占样品体积的10.3%。The distillate discharged from the
采用常规热解和精制方法制备的生物油稳定性较差,例如文献(张伟,赵增立,郑安庆,等. 生物油储存稳定性实验研究[J]. 燃料化学学报,2012,40(2):184-189)以松木为原料采用常规热解和精制方法制备的生物油在80℃加热24小时,40℃下测定的粘度上升约113%。又例如文献(Oasmaa A.,Kuoppala E. Fast Pyrolysis of Forestry Residue.3. Storage Stability of Liquid Fuel [J]. Energy & Fuels,2003,17(4):1075-1084.)以松木为原料采用常规热解和精制方法制备的生物油在80℃加热24小时,40℃下测定的粘度上升约89~143%。采用本实施例得到的生物油在加热后粘度上升幅度明显较小,表明本发明能够获得较为稳定的生物油产品。Bio-oil prepared by conventional pyrolysis and refining methods has poor stability, such as literature (Zhang Wei, Zhao Zengli, Zheng Anqing, et al. Experimental study on storage stability of bio-oil [J]. Journal of Fuel Chemistry, 2012, 40(2) : 184-189) Bio-oil prepared from pine wood by conventional pyrolysis and refining methods was heated at 80 °C for 24 hours, and the viscosity measured at 40 °C increased by about 113%. Another example is the literature (Oasmaa A., Kuoppala E. Fast Pyrolysis of Forestry Residue. 3. Storage Stability of Liquid Fuel [J]. Energy & Fuels, 2003, 17(4): 1075-1084.) using pine as raw material and using conventional The bio-oil prepared by the pyrolysis and refining method was heated at 80°C for 24 hours, and the viscosity measured at 40°C increased by about 89-143%. The viscosity of the bio-oil obtained in this example is obviously smaller after heating, indicating that the present invention can obtain a relatively stable bio-oil product.
本实施例利用一个精馏塔完成多个普通精馏塔所能完成的分离任务,并且每个内精馏塔均与外精馏塔之间形成热偶,每一个内精馏塔不需再沸器和冷凝器,内精馏塔内的低沸点馏分汽化所需热量是利用外精馏塔内的高沸点馏分冷凝放出的热量,实现了能量耦合利用。In this embodiment, one rectifying tower is used to complete the separation tasks that can be accomplished by a plurality of common rectifying towers, and a thermocouple is formed between each inner rectifying tower and the outer rectifying tower, and each inner rectifying tower does not need to be further Boiler and condenser, the heat required for the vaporization of the low-boiling fraction in the inner rectifying tower is the heat released by the condensation of the high-boiling fraction in the outer rectifying tower, realizing the coupled utilization of energy.
本实施例中,内精馏塔采用分隔壁精馏塔,运行时在某一高度的液相进入到一内精馏塔中进行精馏,轻组分和重组分分别从内精馏塔顶部和底部排出返回外精馏塔继续精馏,中间组分(目标组分)从内精馏塔侧线采出,能够将热敏性生物油在外精馏塔生成的高沸点物质分离到相应沸程的馏分中,同时实现生物油的稳定化,获得沸程切割清晰的高品质馏分油。In this embodiment, the inner rectification column adopts a dividing wall rectification column, and during operation, a liquid phase at a certain height enters an inner rectification column for rectification, and light components and heavy components are respectively removed from the top of the inner rectification column. And the bottom is discharged back to the outer rectification tower to continue rectification, and the intermediate components (target components) are extracted from the side line of the inner rectification tower, which can separate the high-boiling substances generated by the heat-sensitive bio-oil in the outer rectification tower into the corresponding boiling range fractions At the same time, the stabilization of bio-oil is achieved, and high-quality distillate oil with clear boiling range is obtained.
实施例2:本实施例与实施例1相同之处不再赘述,不同之处在于:第二内精馏塔1032的塔顶高于第三内精馏塔1033的塔顶0.4米,第二内精馏塔1032装填直径和高都为5mm的不锈钢θ网环填料。Embodiment 2: the same part of this embodiment and embodiment 1 will not be repeated, the difference is: the top of the second
外精馏塔102塔顶产品阀109排出的馏分为无色液体,馏程测定过程中在30~90℃的馏出体积占样品体积的92.7%,在30℃存放24小时,30℃下的粘度上升3.4%;第一内精馏塔1031排出的馏分为无色液体,馏程测定过程中在90~110℃的馏出体积占样品体积的91.7%,在80℃加热24小时,40℃下的粘度上升6.1%;第二内精馏塔1032排出的馏分为无色液体,馏程测定过程中在110~130℃的馏出体积占样品体积的90.7%,在80℃加热24小时,40℃下的粘度上升8.2%;第三内精馏塔1033排出的馏分为淡黄色液体,馏程测定过程中在130~150℃的馏出体积占样品体积的90.0%,在80℃加热24小时,40℃下的粘度上升10.5%;第四内精馏塔1034排出的馏分为淡黄色液体,馏程测定过程中在150~170℃的馏出体积占样品体积的89.5%,在80℃加热24小时,40℃下的粘度上升12.6%;第五内精馏塔1035排出的馏分为浅黄色液体,馏程测定过程中在170~190℃的馏出体积占样品体积的88.8%,在80℃加热24小时,40℃下的粘度上升13.6%;第六内精馏塔1036排出的馏分为浅黄色液体,馏程测定过程中在190~210℃的馏出体积占样品体积的87.0%,在80℃加热24小时,40℃下的粘度上升15.6%;第七内精馏塔1037排出的馏分为浅黄色液体,馏程测定过程中在210~240℃的馏出体积占样品体积的86.7%,在80℃加热24小时,40℃下的粘度上升16.1%;外精馏塔102塔底出料泵122排出的物料为黑色粘稠液体,馏程测定过程中在30~240℃的馏出体积占样品体积的10.1%。The distillate discharged from the
本实施例表明调整多内塔精馏装置的某一个内精馏塔对其它操作参数影响小,具有良好的操作弹性、动态特性和可控性。This example shows that adjusting a certain inner rectification column of the multi-inner column rectification device has little influence on other operating parameters, and has good operation flexibility, dynamic characteristics and controllability.
实施例3:本实施例与实施例1相同之处不再赘述,不同之处在于:一种多内塔精馏装置,它是由外精馏塔102及设置于外精馏塔102内部的2个内精馏塔组成,内精馏塔排列于外精馏塔102内部不同高度位置,上面的内精馏塔命名为第一内精馏塔1031,下面的内精馏塔命名为第二内精馏塔1032。外精馏塔102的进料口104高于外精馏塔102填料段下端0.8米;第二内精馏塔1032的塔顶高于外精馏塔102填料段下端1.6米,第一内精馏塔1031的塔顶高于第二内精馏塔1032的塔顶1.5米。Embodiment 3: the same part of this embodiment and embodiment 1 will not be repeated, the difference is: a kind of multi-inner tower rectification device, it is composed of
采用上述的多内精馏塔精馏装置分级分离松木热解产物制备生物油。外精馏塔102塔顶产品阀109排出的馏分为无色液体,馏程测定过程中在30~90℃的馏出体积占样品体积的90.2%,在30℃存放24小时,30℃下的粘度上升10.8%;第一内精馏塔1031排出的馏分为淡黄色液体,馏程测定过程中在90~150℃的馏出体积占样品体积的85.4%,在80℃加热24小时,40℃下的粘度上升18.5%;第二内精馏塔1032排出的馏分为浅黄色液体,馏程测定过程中在150~220℃的馏出体积占样品体积的85.6%,在80℃加热24小时,40℃下的粘度上升20.1%;外精馏塔102塔底出料泵122排出的物料为黑色粘稠液体,馏程测定过程中在30~240℃的馏出体积占样品体积的12.7%。Bio-oil is prepared by fractional separation of pine wood pyrolysis products using the above-mentioned multi-inner rectifying tower rectification device. The distillate discharged from the
实施例4:本实施例与实施例1相同之处不再赘述,不同之处在于:一种多内塔精馏装置,它是由外精馏塔102及设置于外精馏塔102内部的3个内精馏塔组成,内精馏塔排列于外精馏塔102内部不同高度位置,最上面的内精馏塔命名为第一内精馏塔1031,往下依次命名为第二内精馏塔1032、第三内精馏塔1033。外精馏塔102的进料口104高于外精馏塔102填料段下端0.7米;最下面的第三内精馏塔1033的塔顶高于外精馏塔102填料段下端1.3米,第二内精馏塔1032的塔顶高于第三内精馏塔1033的塔顶0.9米,第一内精馏塔1031的塔顶高于第二内精馏塔1032的塔顶1.0米。液体分配器118比之下相邻的内精馏塔的内精馏塔进液口112高0.3米。Embodiment 4: the same part of this embodiment and embodiment 1 will not be repeated, the difference is: a kind of multi-inner tower rectification device, it is composed of
采用上述的多内精馏塔精馏装置分级分离玉米秸秆热解产物制备生物油,以20-50目的玉米秸秆粉(含水量10%)为原料。热解气体产物经旋风分离器除尘后进入冷却器冷却至220℃,从外精馏塔102进料口104加入到外精馏塔102中进行精馏,并且以1.15 kg/h的速度经再沸器返塔口120向外精馏塔102中通入甲醇。回流比控制在1.5∶1,外精馏塔102塔顶温度为60℃,经过冷凝器106后冷凝液温度降到40℃。Bio-oil is prepared by using the above-mentioned multi-inner rectifying tower rectification device to fractionate and separate the pyrolysis product of corn stalk, and use 20-50 mesh corn stalk powder (water content 10%) as the raw material. The pyrolysis gas product is dedusted by the cyclone separator and then enters the cooler to be cooled to 220 ° C, and is added to the
外精馏塔102塔顶产品阀109排出的馏分为无色液体,馏程测定过程中在30~130℃的馏出体积占样品体积的92.8%,在30℃存放24小时,30℃下的粘度上升5.4%;第一内精馏塔1031排出的馏分为无色液体,馏程测定过程中在120~160℃的馏出体积占样品体积的90.5%,在80℃加热24小时,40℃下的粘度上升7.0%;第二内精馏塔1032排出的馏分为淡黄色液体,馏程测定过程中在160~200℃的馏出体积占样品体积的88.9%,在80℃加热24小时,40℃下的粘度上升8.1%;第三内精馏塔1033排出的馏分为浅黄色液体,馏程测定过程中在180~240℃的馏出体积占样品体积的88.0%,在80℃加热24小时,40℃下的粘度上升10.5%;外精馏塔102塔底出料泵122排出的物料为黑色粘稠液体,馏程测定过程中在30~240℃的馏出体积占样品体积的8.9%。The distillate discharged from the
实施例5(对比例):本实施例与实施例4相同之处不再赘述,不同之处在于:第一内精馏塔1031、第二内精馏塔1032和第三内精馏塔1033的内部没有设置分隔壁116,也没有设置侧采分布器202和侧线采出口114,内精馏塔排液口117之后设置管路穿过外精馏塔102塔壁延伸至外精馏塔102外部。Embodiment 5 (comparative example): the same parts of this embodiment and embodiment 4 will not be repeated, the difference is: the first
精馏过程中,在某一高度的液相从外精馏塔102的液体分配器118的出液管119排出后经管路从内精馏塔进液口112进入内精馏塔进行精馏,轻组分和一部分中间组分向塔上方移动并以气体状态从内精馏塔出气口113排出返回外精馏塔102继续精馏,重组分和一部分中间组分向塔下方移动并以液体状态从内精馏塔排液口117通过管路排出至外精馏塔102塔外,收集各个馏分。液体分配器118比之下相邻的内精馏塔的内精馏塔进液口112高0.4米。During the rectification process, the liquid phase at a certain height is discharged from the
外精馏塔102塔顶产品阀109排出的馏分为无色液体,馏程测定过程中在30~130℃的馏出体积占样品体积的83.1%,在30℃存放24小时,30℃下的粘度上升12.8%;第一内精馏塔1031排出的馏分为无色液体,馏程测定过程中在120~160℃的馏出体积占样品体积的81.7%,在80℃加热24小时,40℃下的粘度上升16.8%;第二内精馏塔1032排出的馏分为淡黄色液体,馏程测定过程中在160~200℃的馏出体积占样品体积的81.0%,在80℃加热24小时,40℃下的粘度上升14.9;第三内精馏塔1033排出的馏分为浅黄色液体,馏程测定过程中在180~240℃的馏出体积占样品体积的80.2%,在80℃加热24小时,40℃下的粘度上升14.5%;外精馏塔102塔底出料泵122排出的物料为黑色粘稠液体,馏程测定过程中在30~240℃的馏出体积占样品体积的9.6%。The distillate discharged from the
本实施例中的内精馏塔的内部没有设置分隔壁,所得馏分馏程分布较实施例4得到的馏分馏程宽,加热后粘度上升幅度大,热稳定性稍差。The inner rectification tower in this example is not provided with a dividing wall, the distillation range distribution of the obtained fraction is wider than that of the fraction obtained in Example 4, the viscosity rises greatly after heating, and the thermal stability is slightly worse.
实施例6:本实施例与实施例1相同之处不再赘述,不同之处在于:多内精馏塔精馏装置由外精馏塔102及设置于外精馏塔102内部的5个内精馏塔组成,内精馏塔排列于外精馏塔102内部不同高度位置,最上面的内精馏塔命名为第一内精馏塔1031,往下依次命名为第二内精馏塔1032、第三内精馏塔1033、第四内精馏塔1034、第五内精馏塔1035。最下面的第五内精馏塔1035的塔顶高于外精馏塔1034填料段下端1.2米,第四内精馏塔1034的塔顶高于第五内精馏塔1035的塔顶0.5米,第三内精馏塔1033的塔顶高于第四内精馏塔1034的塔顶0.5米,第二内精馏塔1032的塔顶高于第三内精馏塔1033的塔顶0.5米,第一内精馏塔1031的塔顶高于第二内精馏塔1032的塔顶0.5米。Embodiment 6: the similarities between the present embodiment and embodiment 1 will not be repeated, the difference is: the multi-inner rectifying tower rectification device consists of the
如图3所示,内精馏塔采用由多根内径为0.015米的圆管组成的管束构成,圆管内装填直径和高都为4 mm的不锈钢θ网环填料,相邻的两管间距为5 mm,内精馏塔进料段设有盒式进料器301,内精馏塔顶部设有出气分配器302,出气分配器302顶部封闭并且设有内精馏塔出气口113;内精馏塔底部设有液体汇集器306,液体汇集器306底部封闭并且设有内精馏塔排液口117;在侧线采出段,侧线采出管115的一端与内精馏塔中的盒式侧采器304连接,侧线采出管115的另一端穿过外精馏塔102塔壁延伸至外精馏塔102外部;公共精馏区Ⅰ的底部设有公共精馏气液分布器303,公共提馏区Ⅵ的顶部设有公共提馏气液分布器305;公共精馏区Ⅰ的管束上端与内精馏塔的出气分配器302相连通,管束下端与内精馏塔的公共精馏气液分布器303相连通;进料精馏段Ⅱ的管束上端与内精馏塔的公共精馏气液分布器303相连通,管束下端与内精馏塔的盒式进料器301相连通;侧线采出精馏段Ⅲ的管束上端与内精馏塔的公共精馏气液分布器303相连通,管束下端与内精馏塔的盒式侧采器304相连通;进料提馏段Ⅳ的管束上端与内精馏塔的盒式进料器301相连通,管束下端与内精馏塔的公共提馏气液分布器305相连通;侧线采出提馏段Ⅴ的管束上端与内精馏塔的盒式侧采器304相连通,管束下端与内精馏塔的公共提馏气液分布器305相连通;公共提馏区Ⅵ的管束上端与内精馏塔的公共提馏气液分布器305相连通,管束下端与内精馏塔的液体汇集器306相连通;液体汇集器306底部封闭并且设有排液口。As shown in Figure 3, the inner rectification tower is composed of a tube bundle composed of a plurality of circular tubes with an inner diameter of 0.015 meters. The circular tubes are filled with stainless steel θ mesh rings with a diameter and height of 4 mm, and the distance between the two adjacent tubes is 5 mm, a cassette feeder 301 is provided in the feed section of the inner rectification tower, an outlet distributor 302 is arranged at the top of the inner rectification tower, and the top of the outlet distributor 302 is closed and provided with an outlet 113 of the inner rectification tower; The bottom of the distillation column is provided with a liquid collector 306, the bottom of the liquid collector 306 is closed and is provided with a liquid discharge port 117 of the inner rectification column; in the side line extraction section, one end of the side line extraction pipe 115 The side drawer 304 is connected, and the other end of the side draw pipe 115 extends to the outside of the outer rectification tower 102 through the wall of the outer rectification tower 102; the bottom of the public rectification zone I is provided with a public rectification gas-liquid distributor 303, The top of the common stripping zone VI is provided with a common stripping gas-liquid distributor 305; the upper end of the tube bundle of the common rectifying zone I is connected to the gas outlet distributor 302 of the inner rectifying tower, and the lower end of the tube bundle is connected to the common rectifying tower of the inner rectifying tower. The gas-
盒式进料器301与公共精馏气液分布器303之间相距0.2米,设置有5根管;盒式进料器301与公共提馏气液分布器305之间相距0.15米,设置有5根管;盒式侧采器304与公共精馏气液分布器303之间相距0.25米,设置有3根管;盒式侧采器304与公共提馏气液分布器305之间相距0.1米,设置有3根管;公共精馏气液分布器303与出气分配器302之间相距0.35米,设置有8根管;公共提馏气液分布器305与液体汇集器306之间相距0.2米,设置有8根管。The distance between the
盒式进料器301、出气分配器302、公共精馏气液分布器303、盒式侧采器304、公共提馏气液分布器305、液体汇集器306的结构为顶部封闭和底部封闭的筒体,筒体高度0.02米,但不限于这种结构,也可采用其它能够起到液体收集分配和气体再分布作用的装置。本实施例中,从公共精馏气液分布器303流出后进入内精馏塔进料段与侧线采出段的液相体积之比为5∶3;从侧线采出口114流出的液相体积占通过盒式侧采器304的液相总体积的60%。The structure of the
采用上述的多内精馏塔精馏装置分级分离杨木木屑热解产物制备生物油,以20-50目的杨木木屑(含水量5%)为原料。Bio-oil is prepared by adopting the above-mentioned multi-inner rectifying tower rectification device to fractionate and separate the pyrolysis products of poplar sawdust, and using 20-50 mesh poplar sawdust (water content 5%) as the raw material.
热解气体产物经旋风分离器除尘后进入冷却器冷却至220℃,从外精馏塔102进料口104加入到外精馏塔102中进行精馏,并且以1.05 kg/h的速度经再沸器返塔口120向外精馏塔102中通入乙醇。回流比控制在1.5∶1,外精馏塔102塔顶温度为75℃,经过冷凝器106后冷凝液温度降到50℃。After the pyrolysis gas product is dedusted by the cyclone, it enters the cooler to be cooled to 220 ° C, is fed into the
外精馏塔102塔顶产品阀109排出的馏分为无色液体,馏程测定过程中在30~115℃的馏出体积占样品体积的92.9%,在30℃存放24小时,30℃下的粘度上升4.9%;第一内精馏塔1031排出的馏分为无色液体,馏程测定过程中在110~135℃的馏出体积占样品体积的91.7%,在80℃加热24小时,40℃下的粘度上升11.5%;第二内精馏塔1032排出的馏分为淡黄色液体,馏程测定过程中在135~160℃的馏出体积占样品体积的89.0%,在80℃加热24小时,40℃下的粘度上升11.7%;第三内精馏塔1033排出的馏分为浅黄色液体,馏程测定过程中在160~185℃的馏出体积占样品体积的86.3%,在80℃加热24小时,40℃下的粘度上升14.1%;第四内精馏塔1034排出的馏分为浅黄色液体,馏程测定过程中在185~210℃的馏出体积占样品体积的85.1%,在80℃加热24小时,40℃下的粘度上升14.5%;第五内精馏塔1035排出的馏分为浅黄色液体,馏程测定过程中在210~240℃的馏出体积占样品体积的83.9%,在80℃加热24小时,40℃下的粘度上升14.8%;外精馏塔102塔底出料泵122排出的物料为黑色粘稠液体,馏程测定过程中在30~240℃的馏出体积占样品体积的7.5%,在80℃加热24小时,40℃下的粘度上升19.8%。The distillate discharged from the
实施例7:本实施例与实施例1相同之处不再赘述,不同之处在于:多内精馏塔精馏装置由外精馏塔102及设置于外精馏塔102内部的9个内精馏塔组成,内精馏塔装填直径和高都为6 mm的不锈钢θ网环填料,内精馏塔排列于外精馏塔102内部不同高度位置,最上面的内精馏塔命名为第一内精馏塔1031,往下依次命名为第二内精馏塔1032、第三内精馏塔1033、第四内精馏塔1034、第五内精馏塔1035、第六内精馏塔1036、第七内精馏塔1037、内精馏塔1038、内精馏塔1039。最下面的内精馏塔1039的塔顶高于外精馏塔102填料段下端1.1米,内精馏塔1038的塔顶高于内精馏塔1039的塔顶0.3米,第七内精馏塔1037的塔顶高于内精馏塔1038的塔顶0.25米,第六内精馏塔1036的塔顶高于第七内精馏塔1037的塔顶0.25米,第五内精馏塔1035的塔顶高于第六内精馏塔1036的塔顶0.3米,第四内精馏塔1034的塔顶高于第五内精馏塔1035的塔顶0.3米,第三内精馏塔1033的塔顶高于第四内精馏塔1034的塔顶0.3米,第二内精馏塔1032的塔顶高于第三内精馏塔1033的塔顶0.35米,第一内精馏塔1031的塔顶高于第二内精馏塔1032的塔顶0.35米。 Embodiment 7: the similarities between the present embodiment and embodiment 1 will not be repeated, the difference is: the multi-inner rectifying tower rectification device is composed of the
采用上述的多内精馏塔精馏装置分级分离松木热解原油与松木的混合物的热解产物制备生物油,松木热解原油制备过程为:以20-50目的松木粉(含水量5%)为原料,经螺旋进料系统以10 kg/h的速度向螺旋式热解反应器(长1500 mm,内径15 mm)中进料,热解温度550℃,热解产生的固体炭产物直接进入炭箱收集;热解气体产物经旋风分离器除尘后进入两级喷淋塔冷却至80℃,液相从塔底排出后收集得到玉米秸秆热解原油,测定含水量为0.362 g/g,密度为1.1 g/ml,酸值为42.28 mg KOH/g。将上述制备的松木热解原油与松木粉(含水量5%,20-50目)按照1∶5的质量比混合,之后作为原料进行热解,热解气体产物经旋风分离器除尘后进入冷却器冷却至220℃,从外精馏塔102进料口104加入到外精馏塔102中进行精馏,并且以1.1 kg/h的速度经再沸器返塔口120向外精馏塔102中通入乙醇。通过控制再沸器121的加热功率使外精馏塔102塔底的液相温度稳定在240℃,外精馏塔102塔顶温度为80℃,经过冷凝器106后冷凝液温度降到40℃。Bio-oil is prepared by adopting the above-mentioned multi-inner rectifying tower rectification device to fractionate the pyrolysis product of the mixture of pine wood pyrolysis crude oil and pine wood. As raw material, it was fed into a spiral pyrolysis reactor (length 1500 mm, inner diameter 15 mm) at a rate of 10 kg/h through a screw feeding system. The pyrolysis temperature was 550 °C, and the solid carbon products produced by pyrolysis directly entered The carbon box is collected; the pyrolysis gas product is dedusted by the cyclone separator and then enters the two-stage spray tower to be cooled to 80 °C, and the liquid phase is discharged from the bottom of the tower to collect the corn stalk pyrolysis crude oil. was 1.1 g/ml, and the acid value was 42.28 mg KOH/g. The pine wood pyrolysis crude oil prepared above is mixed with pine wood powder (water content 5%, 20-50 mesh) according to a mass ratio of 1:5, followed by pyrolysis as a raw material, and the pyrolysis gas product enters cooling after being dedusted by a cyclone separator. The reboiler is cooled to 220° C., and is added to the
外精馏塔102塔顶产品阀109排出的馏分为无色液体,馏程测定过程中在30~100℃的馏出体积占样品体积的92.8%,在30℃存放24小时,30℃下的粘度上升3.5%;第一内精馏塔1031排出的馏分为无色液体,馏程测定过程中在90~105℃的馏出体积占样品体积的85.4%,在80℃加热24小时,40℃下的粘度上升13.0%;第二内精馏塔1032排出的馏分为淡黄色液体,馏程测定过程中在105~120℃的馏出体积占样品体积的84.0%,在80℃加热24小时,40℃下的粘度上升13.5%;第三内精馏塔1033排出的馏分为淡黄色液体,馏程测定过程中在120~135℃的馏出体积占样品体积的83.3%,在80℃加热24小时,40℃下的粘度上升13.9%;第四内精馏塔1034排出的馏分为淡黄色液体,馏程测定过程中在130~145℃的馏出体积占样品体积的83.2%,在80℃加热24小时,40℃下的粘度上升14.3%;第五内精馏塔1035排出的馏分为淡黄色液体,馏程测定过程中在140~155℃的馏出体积占样品体积的82.8%,在80℃加热24小时,40℃下的粘度上升14.8%;第六内精馏塔1036排出的馏分为淡黄色液体,馏程测定过程中在150~165℃的馏出体积占样品体积的82.1%,在80℃加热24小时,40℃下的粘度上升15.3%;第七内精馏塔1037排出的馏分为淡黄色液体,馏程测定过程中在160~175℃的馏出体积占样品体积的81.5%,在80℃加热24小时,40℃下的粘度上升16.0%;内精馏塔1038排出的馏分为淡黄色液体,馏程测定过程中在170~185℃的馏出体积占样品体积的80.4%,在80℃加热24小时,40℃下的粘度上升16.7%;内精馏塔1039排出的馏分为淡黄色液体,馏程测定过程中在180~200℃的馏出体积占样品体积的80.1%,在80℃加热24小时,40℃下的粘度上升17.1%;外精馏塔102塔底出料泵122排出的物料为黑色粘稠液体,馏程测定过程中在30~220℃的馏出体积占样品体积的6.1%,在80℃加热24小时,40℃下的粘度上升18.7%。The distillate discharged from the
实施例8:本实施例与实施例6相同之处不再赘述,不同之处在于:采用多内塔精馏装置分级分离市购车用汽油,将汽油加热到50℃后以4.0 kg/h的速度从外精馏塔102进料口104加入到外精馏塔102中进行精馏,外精馏塔102塔底的液相温度稳定在180℃,回流比控制在2∶1,外精馏塔102塔顶温度为60℃,经过冷凝器106后冷凝液温度降到40℃。没有经再沸器返塔口120向外精馏塔102中通入乙醇。Embodiment 8: the same part of this embodiment and embodiment 6 will not be repeated, the difference is: adopt the multi-inner tower rectifying device to fractionate the gasoline for commercial use, and after the gasoline is heated to 50 ℃, the gasoline is heated to 4.0 kg/h. The speed is added into the
外精馏塔102塔顶产品阀109排出的馏分为无色液体,馏程测定过程中在30~65℃的馏出体积占样品体积的94.2%;第一内精馏塔1031排出的馏分为无色液体,馏程测定过程中在60~80℃的馏出体积占样品体积的93.1%;第二内精馏塔1032排出的馏分为无色液体,馏程测定过程中在80~100℃的馏出体积占样品体积的91.5%;第三内精馏塔1033排出的馏分为无色液体,馏程测定过程中在100~120℃的馏出体积占样品体积的88.6%;第四内精馏塔1034排出的馏分为无色液体,馏程测定过程中在120~150℃的馏出体积占样品体积的87.8%;第五内精馏塔1035排出的馏分为淡黄色液体,馏程测定过程中在150~180℃的馏出体积占样品体积的87.5%;外精馏塔102塔底出料泵122排出的物料为浅黄色液体,馏程测定过程中在30~180℃的馏出体积占样品体积的8.2%。The fraction discharged from the top product valve 109 of the outer rectification tower 102 is a colorless liquid, and the distillate volume at 30-65°C during the distillation range determination process accounts for 94.2% of the sample volume; the fraction discharged from the first inner rectification tower 1031 is Colorless liquid, the distillate volume at 60~80℃ during the distillation range determination accounts for 93.1% of the sample volume; the distillate discharged from the second inner distillation column 1032 is a colorless liquid, and the distillation range determination process is at 80~100℃ The distillate volume of 100-120°C during the determination of the distillation range accounts for 88.6% of the sample volume; The fraction discharged from the rectifying tower 1034 is a colorless liquid, and the distillate volume at 120~150°C during the determination of the distillation range accounts for 87.8% of the sample volume; the fraction discharged from the fifth inner rectifying tower 1035 is a pale yellow liquid, and the distillation range During the measurement process, the distillate volume at 150~180°C accounts for 87.5% of the sample volume; the material discharged from the bottom discharge pump 122 of the external rectification tower 102 is a light yellow liquid, and the distillation range at 30~180°C during the measurement of the distillation range. The output volume was 8.2% of the sample volume.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010368695.4A CN111621320A (en) | 2020-05-02 | 2020-05-02 | Pyrolysis product grading separation method and multi-inner-tower rectifying device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010368695.4A CN111621320A (en) | 2020-05-02 | 2020-05-02 | Pyrolysis product grading separation method and multi-inner-tower rectifying device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111621320A true CN111621320A (en) | 2020-09-04 |
Family
ID=72257068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010368695.4A Pending CN111621320A (en) | 2020-05-02 | 2020-05-02 | Pyrolysis product grading separation method and multi-inner-tower rectifying device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111621320A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114733221A (en) * | 2022-04-24 | 2022-07-12 | 南通利奥化工科技有限公司 | Rectifying tower for quickly heating and vaporizing materials |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1051516A (en) * | 1990-10-16 | 1991-05-22 | 天津大学 | Novel multiple-tube filling tower |
CN1633579A (en) * | 2002-02-18 | 2005-06-29 | 三菱丽阳株式会社 | Vertical multitubular heat exchanger and distillation column system including the same |
CN101028567A (en) * | 2006-12-29 | 2007-09-05 | 中国石油化工股份有限公司 | Distillating telescopic tower with short inner tube structure and its use |
CN101717657A (en) * | 2009-11-24 | 2010-06-02 | 江苏工业学院 | Device and method for separating light-colored C9 fraction of cracking |
CN104001343A (en) * | 2014-05-14 | 2014-08-27 | 华南理工大学 | Internal heat-integration rectification tower having heat transfer strengthened |
-
2020
- 2020-05-02 CN CN202010368695.4A patent/CN111621320A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1051516A (en) * | 1990-10-16 | 1991-05-22 | 天津大学 | Novel multiple-tube filling tower |
CN1633579A (en) * | 2002-02-18 | 2005-06-29 | 三菱丽阳株式会社 | Vertical multitubular heat exchanger and distillation column system including the same |
CN101028567A (en) * | 2006-12-29 | 2007-09-05 | 中国石油化工股份有限公司 | Distillating telescopic tower with short inner tube structure and its use |
CN101717657A (en) * | 2009-11-24 | 2010-06-02 | 江苏工业学院 | Device and method for separating light-colored C9 fraction of cracking |
CN104001343A (en) * | 2014-05-14 | 2014-08-27 | 华南理工大学 | Internal heat-integration rectification tower having heat transfer strengthened |
Non-Patent Citations (2)
Title |
---|
上海市经济团体联合会: "《节能减排理论基础与装备技术》", 31 May 2010, 华东理工大学出版社 * |
徐志远: "《制药化工过程及设备》", 31 December 1980, 化学工业出版社 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114733221A (en) * | 2022-04-24 | 2022-07-12 | 南通利奥化工科技有限公司 | Rectifying tower for quickly heating and vaporizing materials |
CN114733221B (en) * | 2022-04-24 | 2023-03-28 | 南通利奥化工科技有限公司 | Rectifying tower for quickly heating and vaporizing materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ma et al. | Preparation of multipurpose bio-oil from rice husk by pyrolysis and fractional condensation | |
CN100582066C (en) | Process for producing ethylene by ethanol dehydration | |
CN103555377B (en) | A kind of de-benzene method of decompression | |
CA1110985A (en) | Production of volatile organic compound by continuous fermentation | |
CN102408901B (en) | Biomass rapid pyrolysis method and device | |
CN102225244A (en) | Grading type condensing device for coal/biomass pyrolysis equipment | |
CN201094869Y (en) | Multipurpose internal reflux distillation device | |
CN106316769A (en) | Apparatus and method for separating styrene from hydrocarbons mixture | |
CN111621320A (en) | Pyrolysis product grading separation method and multi-inner-tower rectifying device | |
CN102311769B (en) | Reduced-pressure flash tank and crude oil processing method | |
CN102311768B (en) | Reduced-pressure flash tank and crude oil reduced-pressure deep drawing method | |
CN202705321U (en) | Biomass pyrolysis vinegar cooling and collecting device | |
CN208577652U (en) | A kind of process units of propyl propionate | |
CN1008276B (en) | Single tower debenzolizing process and new model of debenzolizing tower | |
CN201125232Y (en) | Biological diesel oil distilling tower | |
CN209092748U (en) | A kind of vacuum distillation apparatus for the separating-purifying normal butane from C-4-fraction | |
CN203938664U (en) | A kind of device of energy saving and environment friendly base-catalyzed transesterification method production biofuel | |
CN203048845U (en) | Ethylene tar processing system | |
CN213077534U (en) | Novel falling film reboiler for benzyl chloride rectification | |
CN104087426A (en) | Energy-saving environmental-friendly base catalytic transesterification-method biodiesel production device and method | |
CN221815348U (en) | Biomass pyrolysis gas condensation system | |
CN219002013U (en) | Ethanol recovery system is used in stevioside production | |
CN202199149U (en) | Condenser pipe and distillation plant | |
CN218011105U (en) | Methanol recovery system in enzyme method biodiesel production process | |
CN214105868U (en) | Chemical methanol purification device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200904 |