CN111619779A - Vibration isolation device based on acoustic black hole structure and ship system - Google Patents
Vibration isolation device based on acoustic black hole structure and ship system Download PDFInfo
- Publication number
- CN111619779A CN111619779A CN202010467784.4A CN202010467784A CN111619779A CN 111619779 A CN111619779 A CN 111619779A CN 202010467784 A CN202010467784 A CN 202010467784A CN 111619779 A CN111619779 A CN 111619779A
- Authority
- CN
- China
- Prior art keywords
- black hole
- acoustic black
- vibration
- hole structure
- vibration isolation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002955 isolation Methods 0.000 title claims abstract description 57
- 238000009434 installation Methods 0.000 claims description 16
- 238000000576 coating method Methods 0.000 claims description 10
- 238000013016 damping Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 abstract description 16
- 230000005540 biological transmission Effects 0.000 abstract description 8
- 238000010521 absorption reaction Methods 0.000 abstract description 7
- 238000009825 accumulation Methods 0.000 abstract description 5
- 230000008859 change Effects 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 230000005284 excitation Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/30—Mounting of propulsion plant or unit, e.g. for anti-vibration purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63G—OFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
- B63G8/00—Underwater vessels, e.g. submarines; Equipment specially adapted therefor
- B63G8/28—Arrangement of offensive or defensive equipment
- B63G8/34—Camouflage
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Ocean & Marine Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Vibration Prevention Devices (AREA)
Abstract
本发明涉及隔振技术领域,公开了一种基于声学黑洞结构的隔振装置及船舶系统,其中隔振装置包括支撑结构,所述支撑结构用于设置在振源设备和安装基座之间,所述支撑结构上构造有若干个声学黑洞结构,所述声学黑洞结构连接有局域振子组件。本发明提供的一种基于声学黑洞结构的隔振装置及船舶系统,通过支撑结构上的声学黑洞结构,将振源设备传递的振动能量汇聚于声学黑洞结构,实现振动能量的高效聚集,在此基础上,通过在声学黑洞结构处安装局域振子组件,能够实现振动能量的高效吸收,从而在振源设备的振动传递过程中,有效提升振动隔离效果。
The invention relates to the technical field of vibration isolation, and discloses a vibration isolation device and a ship system based on an acoustic black hole structure. Several acoustic black hole structures are constructed on the support structure, and the acoustic black hole structures are connected with local oscillator components. The present invention provides a vibration isolation device and a ship system based on an acoustic black hole structure. Through the acoustic black hole structure on the support structure, the vibration energy transmitted by the vibration source equipment is concentrated in the acoustic black hole structure, so as to realize the efficient accumulation of vibration energy. On the basis, by installing local vibrator components at the acoustic black hole structure, efficient absorption of vibration energy can be achieved, thereby effectively improving the vibration isolation effect during the vibration transmission process of the vibration source equipment.
Description
技术领域technical field
本发明涉及隔振技术领域,特别是涉及一种基于声学黑洞结构的隔振装置及船舶系统。The invention relates to the technical field of vibration isolation, in particular to a vibration isolation device and a ship system based on an acoustic black hole structure.
背景技术Background technique
动力机械是船舶最重要的振动噪声来源,剧烈的振动会造成结构疲劳破坏,诱发机械故障,并降低动力机械的性能和安全可靠性,更重要的是,动力机械的振动通过减振器传递给船体,船体的振动引起水下辐射噪声,而过大的辐射噪声会影响水下舰船的声自导和制导,并且易于暴露自己,降低自身的声隐身性,成为影响舰船隐蔽性和生命力的重要因素。Power machinery is the most important source of vibration and noise for ships. Severe vibration will cause structural fatigue damage, induce mechanical failure, and reduce the performance, safety and reliability of power machinery. More importantly, the vibration of power machinery is transmitted to the The vibration of the hull and the hull causes underwater radiated noise, and the excessive radiated noise will affect the acoustic self-guidance and guidance of the underwater ship, and it is easy to expose itself, reduce its own acoustic stealth, and become an influence on the concealment and vitality of the ship. important factor.
隔振技术被认为是控制机械设备振动传递的主要技术手段,然而,传统的隔振技术均存在一定的局限性。为提高低频隔振效果,需要减振器具有足够低的刚度,而同时为保证一定的承载能力和稳定性,又必须具有较大的静态刚度,因此,传统被动隔振技术能较为有效地隔离机械设备的中高频振动,但对低频振动控制效果差,而对于舰船而言,低频振动产生的水下辐射噪声由于其传播距离远且不易衰减对舰船的隐蔽性和生命力有着至关重要的影响。理论上讲,主动隔振技术能有效控制低频振动,但由于主动控制系统是机电一体化系统,其系统复杂、代价昂贵,并且受到安装空间、重量等多方面因素的影响和制约,目前主动隔振技术在国内舰船领域的工程应用面临极大困难。Vibration isolation technology is considered to be the main technical means to control the vibration transmission of mechanical equipment. However, traditional vibration isolation technology has certain limitations. In order to improve the low-frequency vibration isolation effect, the shock absorber needs to have a sufficiently low stiffness, and at the same time to ensure a certain bearing capacity and stability, it must have a large static stiffness. Therefore, the traditional passive vibration isolation technology can effectively isolate The medium and high frequency vibration of mechanical equipment has poor control effect on low frequency vibration. For ships, the underwater radiated noise generated by low frequency vibration is of great importance to the concealment and vitality of the ship due to its long propagation distance and not easy attenuation. Impact. In theory, active vibration isolation technology can effectively control low-frequency vibration, but because the active control system is a mechatronics system, its system is complex and expensive, and it is affected and restricted by many factors such as installation space and weight. The engineering application of vibration technology in the field of domestic ships faces great difficulties.
目前传统的隔振技术存在对低频振动控制效果较差,不能满足船舶机械设备隔振需要的问题。At present, the traditional vibration isolation technology has the problem that the low-frequency vibration control effect is poor and cannot meet the vibration isolation requirements of marine machinery and equipment.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供一种基于声学黑洞结构的隔振装置及船舶系统,用于解决或部分解决目前传统的隔振技术存在对低频振动控制效果较差,不能满足船舶机械设备隔振需要的问题。The embodiments of the present invention provide a vibration isolation device and a ship system based on an acoustic black hole structure, which are used to solve or partially solve the problem that the current traditional vibration isolation technology has poor control effect on low-frequency vibration and cannot meet the vibration isolation requirements of marine machinery and equipment .
本发明实施例提供一种基于声学黑洞结构的隔振装置,包括支撑结构,所述支撑结构用于设置在振源设备和安装基座之间,所述支撑结构上构造有若干个声学黑洞结构,所述声学黑洞结构连接有局域振子组件。An embodiment of the present invention provides a vibration isolation device based on an acoustic black hole structure, including a support structure configured to be arranged between a vibration source device and an installation base, and a plurality of acoustic black hole structures are constructed on the support structure , the acoustic black hole structure is connected with a local oscillator component.
在上述方案的基础上,若干个所述声学黑洞结构在所述支撑结构上均匀分布。On the basis of the above solution, a plurality of the acoustic black hole structures are evenly distributed on the support structure.
在上述方案的基础上,所述声学黑洞结构的上下表面分别设有阻尼涂层。Based on the above solution, damping coatings are respectively provided on the upper and lower surfaces of the acoustic black hole structure.
在上述方案的基础上,所述声学黑洞结构的上下表面分别呈凹面,且所述声学黑洞结构的厚度从中间到边缘连续性增大。Based on the above solution, the upper and lower surfaces of the acoustic black hole structure are respectively concave, and the thickness of the acoustic black hole structure increases continuously from the middle to the edge.
在上述方案的基础上,所述声学黑洞结构的中间部位形成有厚度均匀的支撑平台。On the basis of the above solution, a support platform with uniform thickness is formed in the middle part of the acoustic black hole structure.
在上述方案的基础上,所述局域振子组件连接于所述支撑平台。Based on the above solution, the local vibrator assembly is connected to the support platform.
在上述方案的基础上,所述局域振子组件连接在所述声学黑洞结构的上方或下方。Based on the above solution, the local oscillator component is connected above or below the acoustic black hole structure.
在上述方案的基础上,所述局域振子组件包括支撑弹簧和质量块,所述支撑弹簧的一端与所述声学黑洞结构相连,所述支撑弹簧的另一端与所述质量块相连。Based on the above solution, the local oscillator assembly includes a support spring and a mass block, one end of the support spring is connected to the acoustic black hole structure, and the other end of the support spring is connected to the mass block.
在上述方案的基础上,所述支撑结构的上表面连接有用于连接振源设备的上层隔振器,所述支撑结构的下表面连接有用于连接安装基座的下层隔振器。Based on the above solution, the upper surface of the support structure is connected with an upper vibration isolator for connecting the vibration source equipment, and the lower surface of the support structure is connected with a lower vibration isolator for connecting the installation base.
本发明实施例提供还一种船舶系统,包括上述基于声学黑洞结构的隔振装置,还包括振源设备、安装基座和船舶壳体,所述隔振装置设于所述振源设备和所述安装基座之间,所述安装基座固定于所述船舶壳体。An embodiment of the present invention provides a ship system, including the above-mentioned vibration isolation device based on an acoustic black hole structure, and also includes a vibration source device, a mounting base and a ship shell, the vibration isolation device is provided on the vibration source device and the vibration isolation device. between the installation bases, and the installation bases are fixed to the ship shell.
本发明实施例提供的一种基于声学黑洞结构的隔振装置及船舶系统,通过支撑结构上的声学黑洞结构,将振源设备传递的振动能量汇聚于声学黑洞结构,实现振动能量的高效聚集,在此基础上,通过在声学黑洞结构处安装局域振子组件,能够实现振动能量的高效吸收,从而在振源设备的振动传递过程中,有效提升振动隔离效果。The embodiment of the present invention provides a vibration isolation device and a ship system based on an acoustic black hole structure. Through the acoustic black hole structure on the support structure, the vibration energy transmitted by the vibration source equipment is concentrated in the acoustic black hole structure, so as to realize the efficient accumulation of vibration energy, On this basis, by installing local vibrator components at the acoustic black hole structure, efficient absorption of vibration energy can be achieved, thereby effectively improving the vibration isolation effect during the vibration transmission process of the vibration source equipment.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1为本发明实施例的基于声学黑洞结构的隔振装置的整体连接示意图;1 is a schematic diagram of an overall connection of a vibration isolation device based on an acoustic black hole structure according to an embodiment of the present invention;
图2为本发明实施例中声学黑洞结构的示意图;2 is a schematic diagram of an acoustic black hole structure in an embodiment of the present invention;
图3为本发明实施例中声学黑洞结构在支撑结构上的分布示意图;3 is a schematic diagram of the distribution of the acoustic black hole structure on the support structure in the embodiment of the present invention;
图4为本发明实施例中支撑结构的截面示意图。4 is a schematic cross-sectional view of a support structure in an embodiment of the present invention.
附图标记说明:Description of reference numbers:
其中,1、振源设备;2、上层隔振器;3、支撑结构;4、声学黑洞结构;5、阻尼涂层;6、局域振子组件;6a、质量块;6b、支撑弹簧;7、下层隔振器;8、安装基座;9、船舶壳体;10、支撑平台;11、厚度光滑变化区域。Among them, 1. Vibration source equipment; 2. Upper vibration isolator; 3. Support structure; 4. Acoustic black hole structure; 5. Damping coating; 6. Local oscillator component; 6a, Mass block; 6b, Support spring; 7 , Lower vibration isolator; 8. Installation base; 9. Ship shell; 10. Support platform; 11. Area with smooth thickness change.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purposes, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments These are some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, it should be noted that the terms "installed", "connected" and "connected" should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood in specific situations.
参考图1,本发明实施例提供一种基于声学黑洞结构的隔振装置,该隔振装置包括支撑结构3,支撑结构3用于设置在振源设备1和安装基座8之间,支撑结构3上构造有若干个声学黑洞结构4,参考图2,声学黑洞结构4连接有局域振子组件6。1, an embodiment of the present invention provides a vibration isolation device based on an acoustic black hole structure, the vibration isolation device includes a
在支撑结构3上构造形成声学黑洞结构4,用于聚集从振源设备1传递来的振动能量。在声学黑洞结构4处连接局域振子组件6,用于吸收声学黑洞结构4聚集的振动能量。通过支撑结构3中声学黑洞结构4聚集振源设备1传递的振动能量。An acoustic
本实施例提供的一种基于声学黑洞结构的隔振装置,通过支撑结构3上的声学黑洞结构4,将振源设备1传递的振动能量汇聚于声学黑洞结构4,实现振动能量的高效聚集,在此基础上,通过在声学黑洞结构4处安装局域振子组件6,能够实现振动能量的高效吸收,从而在振源设备1的振动传递过程中,有效提升振动隔离效果。The vibration isolation device based on the acoustic black hole structure provided in this embodiment, through the acoustic
且设置支撑结构3可满足对振源设备1进行稳定支撑的静态刚度要求,在支撑结构3上设置声学黑洞结构4,可实现对振动能量的高效聚集吸收,从而可提高对低频振动的控制效果,既能满足支撑刚度需要,又能满足隔振需要,可满足船舶机械设备的隔振需要。进一步地,在支撑结构3上构造形成声学黑洞结构4,是在支撑结构3的基础上通过对支撑结构3进行加工处理形成声学黑洞结构4,声学黑洞结构4与支撑结构3为一体结构,进一步地增大了支撑结构3的静态刚度。Moreover, setting the
进一步地,支撑结构3可为钢板,也可为其他材质,以能满足支撑刚度要求为目的,具体不做限定。Further, the
在上述实施例的基础上,进一步地,参考图3,若干个声学黑洞结构4在支撑结构3上均匀分布。可对振源设备1传递来的振动能量实现均匀充分的吸收,有利于保证隔振效果。On the basis of the above-mentioned embodiment, further, referring to FIG. 3 , several acoustic
进一步地,每个声学黑洞结构4均连接有一个局域振子组件6。从而使得局域振子组件6同样在支撑结构3上均匀分布。优选地,声学黑洞结构4关于振源设备1均匀对称分布。Further, each acoustic
将声学黑洞结构4和局域振子组件6在支撑结构3中的分布呈现均匀性的形态,利用声学黑洞结构4和局域振子组件6的均匀性,使支撑结构3成为一种人工的声子晶体结构,这种人工声子晶体兼具布拉格散射型声子晶体和局域共振型声子晶体的特性,从而获得支撑结构3的振动宽频带隙,有效增加支撑结构3振动幅值的衰减幅度,并使支撑结构3振动带隙的作用范围向低频拓展。The distribution of the acoustic
进一步地,参考图3,本实施例中支撑结构3可为矩形,声学黑洞结构4的外轮廓可为圆形,声学黑洞结构4可呈阵列均匀分布在支撑结构3上。支撑结构3还可为其他形状,例如圆形、方形或其他任何规则不规则形状;声学黑洞结构4的外轮廓同样可为其他任何规则不规则形状,以满足厚度变化为目的;声学黑洞结构4在支撑结构3上也可为其他排布形式;具体不做限定。Further, referring to FIG. 3 , in this embodiment, the
在上述实施例的基础上,进一步地,参考图2,声学黑洞结构4的上下表面分别设有阻尼涂层5。阻尼涂层5用于损耗声学黑洞结构4聚集的振动能量。On the basis of the above embodiment, further referring to FIG. 2 , the upper and lower surfaces of the acoustic
在上述实施例的基础上,进一步地,声学黑洞结构4的上下表面分别呈凹面,且声学黑洞结构4的厚度从中间到边缘连续性增大。声学黑洞结构4的上下表面相比支撑结构3的表面呈凹面。且为光滑连续凹面。声学黑洞结构4的边缘与支撑结构3的表面光滑连接。On the basis of the above embodiment, further, the upper and lower surfaces of the acoustic
在上述实施例的基础上,进一步地,声学黑洞结构4的中间部位形成有厚度均匀的支撑平台10。On the basis of the above embodiment, further, a
在上述实施例的基础上,进一步地,局域振子组件6连接于支撑平台10。在声学黑洞结构4的中间部位形成支撑平台10,可便于在支撑平台10处连接局域振子组件6。声学黑洞结构4从支撑平台10向边缘部位厚度连续性增大。On the basis of the above embodiment, further, the
具体的,声学黑洞结构4由中间支撑平台10和厚度光滑变化区域11组成。厚度光滑变化区域11的结构厚度以指数函数形式变化。参考图2,具体的,厚度光滑变化区域11的厚度h(x)=εxm,其中指数m≥2,系数ε可根据实际情况和经验选取。即图2中厚度光滑变化区域11的表面在x1和x2两点之间呈指数函数变化,其中x1为支撑平台10的外侧位置即为厚度光滑变化区域11的起点位置,x2为厚度光滑变化区域11的终点位置。Specifically, the acoustic
厚度光滑变化区域11使得支撑结构3的局部结构阻抗随厚度变化而发生光滑地变化,弯曲波的波速会随之减小,大量振动能量将汇聚于声学黑洞结构4的中间,实现振动能量的高效聚集。进一步地,一方面通过在声学黑洞结构4的上下内凹表面粘贴阻尼涂层5,起到损耗声学黑洞结构4区域振动能量的作用,能够降低整个频域范围内共振频率处中间支撑结构3的振动响应;另一方面通过在声学黑洞结构4中间支撑平台10安装局域振子组件6,起到将声学黑洞结构4区域振动能量转移吸收至局域振子组件6的作用,能够有效降低支撑结构3的振动响应。The smooth
本实施例利用支撑结构3分布的声学黑洞结构4、阻尼涂层5和局域振子组件6,实现结构振动能量的高效聚集、损耗和吸收,从而在振源设备1的振动传递过程中,使结构振动强烈衰减,有效提升振动隔离效果。进一步地,设置声学黑洞结构4的上下表面均呈凹面,更有利于振动能量的汇集,提高隔振效果。In this embodiment, the acoustic
在上述实施例的基础上,进一步地,参考图4,局域振子组件6连接在声学黑洞结构4的上方或下方。On the basis of the above embodiment, further referring to FIG. 4 , the
在上述实施例的基础上,进一步地,局域振子组件6包括支撑弹簧6b和质量块6a,支撑弹簧6b的一端与声学黑洞结构4相连,支撑弹簧6b的另一端与质量块6a相连。On the basis of the above embodiment, the
参见图1和图4所示,局域振子组件6包含集中质量块6a和支撑弹簧6b,并可根据安装的空间条件采用正向安装方式或反向吊装方式安装于支撑结构3的声学黑洞结构4支撑平台10的上部或下部。本实施例中局域振子组件6具有抑制结构振动低频特征线谱的作用,具体地,针对振源设备1的最强激励频率,可通过合理设计局域振子组件6中质量块6a的质量和支撑弹簧6b的刚度,实现支撑结构3中最强低频线谱峰值的大幅降低。该质量块6a的具体质量和支撑弹簧6b的具体刚度可结合实际情况,根据经验或者试验确定。Referring to FIG. 1 and FIG. 4 , the
在上述实施例的基础上,进一步地,支撑结构3的上表面连接有用于连接振源设备1的上层隔振器2,支撑结构3的下表面连接有用于连接安装基座8的下层隔振器7。On the basis of the above embodiment, further, the upper surface of the
在上述实施例的基础上,进一步地,参考图1,本实施例提供一种船舶系统,该船舶系统包括上述任一实施例所述的基于声学黑洞结构4的隔振装置,还包括振源设备1、安装基座8和船舶壳体9,隔振装置设于振源设备1和安装基座8之间,安装基座8固定于船舶壳体9。该船舶系统中的振源设备1可为动力设备。On the basis of the above embodiment, further, referring to FIG. 1 , the present embodiment provides a marine system, the marine system includes the vibration isolation device based on the acoustic
在上述实施例的基础上,进一步地,本实施例针对目前船舶动力机械隔振技术的不足,提供一种具有低频宽带性能、附加影响小、成本低的船舶动力机械隔振系统。具体公开了一种基于声学黑洞结构4的隔振装置,其用于提升振动隔离的低频宽带效果,可用于船舶振源设备1的隔振,能够有效提升低频段隔振效果。隔振装置包括:声学黑洞结构4,其用于聚集振源设备1传递的振动能量;支撑结构3,其分布有均匀的声学黑洞结构4,且与上、下层隔振器7相连接,作为振源设备1向船舶壳体9振动传递的主要通道;阻尼涂层5,其用于损耗声学黑洞结构4聚集的振动能量;局域振子组件6,其用于吸收声学黑洞结构4聚集的振动能量。On the basis of the above embodiments, further, this embodiment provides a marine power machinery vibration isolation system with low frequency broadband performance, small additional influence and low cost in view of the deficiencies of the current marine power machinery vibration isolation technology. Specifically disclosed is a vibration isolation device based on the acoustic
本实施例能够在振源设备1向船舶壳体9振动传递的过程中,通过声学黑洞结构4实现振动能量的高效聚集,阻尼涂层5和局域振子实现振动能量的高效损耗和吸收,并利用声学黑洞结构4和局域振子的均匀性获得低频振动带隙,达到有效提升振动隔离低频宽带效果的目的。In this embodiment, in the process of vibration transmission from the vibration source device 1 to the ship hull 9, the acoustic
本实施例通过支撑结构3中的声学黑洞结构4,使结构阻抗随厚度的变化而发生光滑地变化,弯曲波的能量将汇聚于声学黑洞结构4的中间,实现振动能量的高效聚集。在此基础上,通过在声学黑洞的上下内凹表面粘贴阻尼涂层5,并在声学黑洞结构4支撑平台10安装局域振子组件6,能够实现振动能量的高效损耗和吸收,从而在振源设备1向船舶壳体9振动传递的过程中,有效提升振动隔离效果。In this embodiment, through the acoustic
本实施例将声学黑洞结构4和局域振子组件6在支撑结构3中的分布呈现均匀性的形态,使支撑结构3成为一种人工的声子晶体结构,这种人工声子晶体兼具布拉格散射型声子晶体和局域共振型声子晶体的特性,从而获得支撑结构3的振动宽频带隙,有效增加支撑结构3振动幅值的衰减幅度,并使支撑结构3振动带隙的作用范围向低频拓展。In this embodiment, the distribution of the acoustic
本实施例中局域振子组件6具有抑制结构振动低频特征线谱的作用,针对振源设备1的最强激励频率,通过合理设计局域振子中集中质量块6a的质量和支撑弹簧6b的刚度,实现结构中最强低频线谱峰值的大幅降低。In this embodiment, the
本实施例在实现提升船舶振源设备1振动隔离低频宽带效果的同时,可根据不同振源设备1的激励特性,灵活确定支撑结构3中声学黑洞结构4的数目、尺寸、分布以及局域振子组件6的设计参数,且适用范围广、易于实施、成本低。声学黑洞结构4的具体数目、尺寸和分布可根据实际振源设备1的激励特性以及支撑刚度需要设定,具体不做限定。This embodiment can flexibly determine the number, size, distribution and local oscillators of the acoustic
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the scope of the present invention. within the scope of protection.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010467784.4A CN111619779A (en) | 2020-05-28 | 2020-05-28 | Vibration isolation device based on acoustic black hole structure and ship system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010467784.4A CN111619779A (en) | 2020-05-28 | 2020-05-28 | Vibration isolation device based on acoustic black hole structure and ship system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111619779A true CN111619779A (en) | 2020-09-04 |
Family
ID=72256327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010467784.4A Pending CN111619779A (en) | 2020-05-28 | 2020-05-28 | Vibration isolation device based on acoustic black hole structure and ship system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111619779A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113314088A (en) * | 2021-05-18 | 2021-08-27 | 北京航空航天大学 | Heterogeneous/special-shaped acoustic black hole and phonon crystal mixed vibration and noise reduction enhancement structure |
CN113658573A (en) * | 2021-08-24 | 2021-11-16 | 东北大学 | A spiral two-dimensional acoustic black hole vibration isolation and noise reduction structure |
CN115359773A (en) * | 2022-08-17 | 2022-11-18 | 东北大学 | A Vibration and Noise Reduction Board Based on Destructive Interference and Acoustic Black Hole Structure |
CN115783116A (en) * | 2022-12-09 | 2023-03-14 | 洛阳双瑞橡塑科技有限公司 | A light-weight sound-insulating fire-resistant wallboard |
CN116682401A (en) * | 2023-07-31 | 2023-09-01 | 南京理工大学 | Nested acoustic black hole beam structure |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3028906A1 (en) * | 2014-11-25 | 2016-05-27 | Inst De Rech Tech Jules Verne | METHOD AND DEVICE FOR VIBRATORY AMORTIZATION OF A PANEL |
DE102015100442A1 (en) * | 2015-01-13 | 2016-07-14 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Active acoustic black hole for vibration and noise reduction |
CN106023979A (en) * | 2016-05-23 | 2016-10-12 | 南京航空航天大学 | local resonance acoustic black hole structure |
CN106023978A (en) * | 2016-05-23 | 2016-10-12 | 南京航空航天大学 | Double-layer-board sonic black hole vibration and noise reduction structure |
CN110094452A (en) * | 2018-01-30 | 2019-08-06 | 香港理工大学 | Inhibit device using the wide-band vibration of acoustics black hole feature |
CN212423433U (en) * | 2020-05-28 | 2021-01-29 | 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) | Vibration isolation device based on acoustic black hole structure and ship system |
-
2020
- 2020-05-28 CN CN202010467784.4A patent/CN111619779A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3028906A1 (en) * | 2014-11-25 | 2016-05-27 | Inst De Rech Tech Jules Verne | METHOD AND DEVICE FOR VIBRATORY AMORTIZATION OF A PANEL |
DE102015100442A1 (en) * | 2015-01-13 | 2016-07-14 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Active acoustic black hole for vibration and noise reduction |
CN106023979A (en) * | 2016-05-23 | 2016-10-12 | 南京航空航天大学 | local resonance acoustic black hole structure |
CN106023978A (en) * | 2016-05-23 | 2016-10-12 | 南京航空航天大学 | Double-layer-board sonic black hole vibration and noise reduction structure |
CN110094452A (en) * | 2018-01-30 | 2019-08-06 | 香港理工大学 | Inhibit device using the wide-band vibration of acoustics black hole feature |
CN212423433U (en) * | 2020-05-28 | 2021-01-29 | 武汉第二船舶设计研究所(中国船舶重工集团公司第七一九研究所) | Vibration isolation device based on acoustic black hole structure and ship system |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113314088A (en) * | 2021-05-18 | 2021-08-27 | 北京航空航天大学 | Heterogeneous/special-shaped acoustic black hole and phonon crystal mixed vibration and noise reduction enhancement structure |
CN113314088B (en) * | 2021-05-18 | 2022-06-28 | 北京航空航天大学 | Vibration and Noise Reduction Enhancement Structure of Hetero/Alien-Shaped Acoustic Black Holes Mixed with Phononic Crystals |
CN113658573A (en) * | 2021-08-24 | 2021-11-16 | 东北大学 | A spiral two-dimensional acoustic black hole vibration isolation and noise reduction structure |
CN113658573B (en) * | 2021-08-24 | 2023-07-14 | 东北大学 | A spiral two-dimensional acoustic black hole vibration isolation and noise reduction structure |
CN115359773A (en) * | 2022-08-17 | 2022-11-18 | 东北大学 | A Vibration and Noise Reduction Board Based on Destructive Interference and Acoustic Black Hole Structure |
CN115783116A (en) * | 2022-12-09 | 2023-03-14 | 洛阳双瑞橡塑科技有限公司 | A light-weight sound-insulating fire-resistant wallboard |
CN115783116B (en) * | 2022-12-09 | 2024-12-06 | 洛阳双瑞橡塑科技有限公司 | Lightweight sound insulation and fire-resistant wallboard |
CN116682401A (en) * | 2023-07-31 | 2023-09-01 | 南京理工大学 | Nested acoustic black hole beam structure |
CN116682401B (en) * | 2023-07-31 | 2023-10-03 | 南京理工大学 | Nested acoustic black hole beam structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111619779A (en) | Vibration isolation device based on acoustic black hole structure and ship system | |
CN108133700B (en) | An acoustic black hole vibration and noise reduction device | |
CN212423433U (en) | Vibration isolation device based on acoustic black hole structure and ship system | |
CN212694826U (en) | An additional eccentric acoustic black hole vibration reduction structure | |
CN106678271A (en) | Local resonance low-frequency band gap vibration suppression periodic structure | |
CN111862921B (en) | Additional eccentric acoustic black hole vibration reduction structure | |
CN109949789B (en) | Frequency-variable sandwich sheet vibration reduction superstructure | |
JP7387219B2 (en) | Composite vibration damping support frame using acoustic black hole and its design method | |
CN103594080A (en) | A light-weight low-frequency broadband thin-film metamaterial sound insulation device | |
CN110751937A (en) | High-rigidity high-damping local resonance unit for constructing acoustic metamaterial structure | |
CN212473812U (en) | Hull composite wave-blocking base based on acoustic black hole effect | |
CN116682402A (en) | Additional slotting acoustic black hole vibration reduction structure | |
CN212256904U (en) | High-rigidity high-damping local resonance unit for constructing acoustic metamaterial structure | |
CN111206623A (en) | Diamond seismic metamaterial with low-frequency damping characteristic | |
CN112356521A (en) | Low-frequency vibration-damping light metamaterial lattice structure and manufacturing method thereof | |
CN113658573B (en) | A spiral two-dimensional acoustic black hole vibration isolation and noise reduction structure | |
CN117153137A (en) | Phonon unit cell and phonon crystal | |
CN113066463B (en) | Sound absorption and insulation structure for controlling sound vibration of transformer oil tank, transformer oil tank and transformer | |
CN106683658B (en) | A tandem-structured phononic crystal | |
CN117167425A (en) | Vibration and noise reduction device and underwater vehicle | |
CN115288313B (en) | Super-structure vibration isolation beam and assembly method thereof | |
CN206257199U (en) | A kind of all-metal is every rushing pad | |
CN110594332A (en) | A Broadband Vibration and Noise Reduction Metamaterial Multi-span Beam Structure | |
CN113879459A (en) | Composite wave blocking base of ship hull based on acoustic black hole effect | |
CN218996354U (en) | Sound barrier of local resonance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |